JP5577147B2 - Isolation structure - Google Patents

Isolation structure Download PDF

Info

Publication number
JP5577147B2
JP5577147B2 JP2010098694A JP2010098694A JP5577147B2 JP 5577147 B2 JP5577147 B2 JP 5577147B2 JP 2010098694 A JP2010098694 A JP 2010098694A JP 2010098694 A JP2010098694 A JP 2010098694A JP 5577147 B2 JP5577147 B2 JP 5577147B2
Authority
JP
Japan
Prior art keywords
flange member
main body
isolation structure
seismic isolation
fixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010098694A
Other languages
Japanese (ja)
Other versions
JP2011226613A (en
Inventor
伸夫 室田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2010098694A priority Critical patent/JP5577147B2/en
Publication of JP2011226613A publication Critical patent/JP2011226613A/en
Application granted granted Critical
Publication of JP5577147B2 publication Critical patent/JP5577147B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Springs (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Description

本発明は、軟質板と硬質板を交互に積層した免振構造体にかかり、特には、剪断変形時の座屈を抑制した免振構造体に関する。   The present invention relates to a vibration isolating structure in which soft plates and hard plates are alternately laminated, and particularly relates to a vibration isolating structure that suppresses buckling during shear deformation.

地震等によって建物等の構造物に作用する水平方向の加振力を低減するために、構造物を軟質板と硬質板を上下方向に交互に積層した免振構造体で支持することが行われている(例えば、特許文献1参照。)。   In order to reduce the horizontal excitation force that acts on structures such as buildings due to earthquakes, etc., the structure is supported by a vibration-isolating structure in which soft plates and hard plates are alternately stacked in the vertical direction. (For example, refer to Patent Document 1).

特開2001−140977JP 2001-140977 A

この種の免振構造体は、軟質板と硬質板を交互に積層した積層ゴム本体の上下部分に取り付け用のフランジ部材が接着されている。
免振構造体は水平方向の加振力を受けると水平方向に剪断変形するため、積層ゴム本体とフランジ部材との間に大きな剪断力が作用する。このため、積層ゴム本体とフランジ部材との接着部分の耐久性が重要である。
In this type of vibration isolation structure, a flange member for attachment is bonded to the upper and lower portions of a laminated rubber body in which soft plates and hard plates are alternately laminated.
Since the vibration isolation structure is subjected to horizontal deformation when subjected to a horizontal excitation force, a large shearing force acts between the laminated rubber body and the flange member. For this reason, the durability of the bonded portion between the laminated rubber body and the flange member is important.

例えば、免震構造体の下部に水が触れ、積層ゴム本体の外周側端部から上記接着部分に水が侵入して積層ゴム本体とフランジ部材との間の接着力が低下する場合が考えられるため、該接着力の低下を抑える工夫が必要である。
積層ゴム本体とフランジ部材との接着力が低下すると、剪断変形時に積層ゴム本体とフランジ部材とが離間して免震構造体が機能しなくなる。
For example, there may be a case where water touches the lower part of the seismic isolation structure, and water enters the bonding portion from the outer peripheral side end of the laminated rubber main body to reduce the adhesive force between the laminated rubber main body and the flange member. Therefore, it is necessary to devise a technique for suppressing the decrease in the adhesive force.
When the adhesive force between the laminated rubber body and the flange member is reduced, the laminated rubber body and the flange member are separated from each other during shear deformation, and the seismic isolation structure does not function.

従来では、図4に示すように、フランジ部材100の中央部分102がフランジ外周側よりも一段高く加工され、一段高くされた中央部分102に積層ゴム本体104を接着すると共に、積層ゴム本体104の外周面を覆うゴム106を中央部分102よりも一段低い外周部分108へ延設する構成としている。   Conventionally, as shown in FIG. 4, the central portion 102 of the flange member 100 is processed one step higher than the outer peripheral side of the flange, and the laminated rubber body 104 is bonded to the raised central portion 102. The rubber 106 covering the outer peripheral surface is extended to the outer peripheral portion 108 that is one step lower than the central portion 102.

これにより、積層ゴム本体104とフランジ部材100との接着面をフランジ外周側よりも一段高くして被覆しているゴム106の端部から接着面までの距離を長く取ることで、積層ゴム本体104とフランジ部材100との接着面まで水が到達し難くなり、免震構造体の耐久性の向上を図ることができる。   Thus, the laminated rubber main body 104 can be made longer by taking a longer distance from the end of the rubber 106 covering the laminated rubber main body 104 and the flange member 100 than the outer peripheral side of the flange to cover the bonded surface. It becomes difficult for water to reach the bonding surface between the base member and the flange member 100, and the durability of the seismic isolation structure can be improved.

ところで、免振構造体は、水平方向の加振力を受けると図4の実線で示すように水平方向に剪断変形をするが(なお、2点鎖線は通常時の形状)、同時に大きな垂直荷重も支持しているため、大きな垂直荷重を受けた状態で大きく剪断変形すると、上下方向両端側の硬質板110(図4では下方のみ図示)の端部が曲げ変形を生じて、荷重を支えることが出来なくなってしまう場合がある。免震構造体では、このような垂直荷重を支えることができなくなってしまう状態を「座屈」と呼んでいる。   By the way, the vibration-isolating structure undergoes shear deformation in the horizontal direction as shown by the solid line in FIG. 4 when subjected to the horizontal excitation force (note that the two-dot chain line is the normal shape), but at the same time a large vertical load Therefore, when a large shear deformation is received in a state where a large vertical load is applied, the ends of the hard plates 110 (only shown below in FIG. 4) on both ends in the vertical direction are bent and deformed to support the load. May not be possible. In a base-isolated structure, the state where it becomes impossible to support such a vertical load is called “buckling”.

硬質板110の端部が曲げ変形するのは、図4に示すように積層ゴム本体104が大きく剪断変形した最に、硬質板110の下方に空間が出来てしまい、荷重を支持できなくなるからである。なお、図示は省略するが、上方向側の硬質板110においても同様に曲げ変形をきたす。   The end of the hard plate 110 is bent and deformed because, as shown in FIG. 4, when the laminated rubber body 104 undergoes a large shear deformation, a space is formed below the hard plate 110 and the load cannot be supported. is there. In addition, although illustration is abbreviate | omitted, the bending deformation is similarly caused in the hard plate 110 on the upper side.

本発明は、上記問題を解決すべく成されたもので、耐久性を確保しつつ耐座屈性能を向上させた免震構造体を提供することが目的である。   The present invention has been made to solve the above-described problems, and an object thereof is to provide a seismic isolation structure having improved buckling resistance while ensuring durability.

本発明は上記事実に鑑みてなされたものであって、請求項1に記載の発明は、複数枚の剛性を有する硬質層と、前記硬質層よりも剛性が低く、かつ粘弾性的性質を有する軟質層とを上下方向に交互に積層した本体と、前記本体の外周を覆う被覆材と、前記本体の上下の前記軟質層に各々固着され、前記軟質層と固着される側の面が平面状に形成された一対のフランジ部材と、前記本体を囲むように前記フランジ部材の前記軟質層と固着される側の面に形成され、前記被覆材の端部が入り込んで固着され、前記本体が水平方向に剪断変形した際に、前記被覆材の一部を前記フランジ部材と前記フランジ部材に最も近い前記硬質層との間に挟持させる環状溝と、を有する。 This invention is made | formed in view of the said fact, Comprising: The invention of Claim 1 has a hard layer which has multiple rigidity, rigidity lower than the said hard layer , and has viscoelastic property. A main body in which soft layers are alternately laminated in the vertical direction, a covering material that covers the outer periphery of the main body, and a surface that is fixed to the upper and lower soft layers of the main body, and a surface that is fixed to the soft layer is planar a pair of flange members formed on the formed on the surface of the side to be fixed to the soft layer of the flange member so as to surround the main body, the covering material is secured enters the end of the body horizontal And an annular groove for sandwiching a part of the covering material between the flange member and the hard layer closest to the flange member when shear-deformed in a direction .

次に、請求項1に記載の免震構造体の作用を説明する。
請求項1に記載の免震構造体は、例えば、建物と建物基礎との間に配置され、一方のフランジ部材が建物に、他方のフランジ部材が建物基礎に固定される。
このようにして免震構造体が適用された建築物が、地震等によって建物基礎に対し水平方向に相対移動(振動)すると、本体がせん断変形(弾性変形)して、振動のエネルギーの一部を吸収すると共に、復元力を発揮する。
Next, the operation of the seismic isolation structure according to claim 1 will be described.
The seismic isolation structure according to claim 1 is disposed, for example, between a building and a building foundation, and one flange member is fixed to the building and the other flange member is fixed to the building foundation.
When the building to which the seismic isolation structure is applied in this way moves relative to the building foundation in the horizontal direction (vibrates) due to an earthquake or the like, the body undergoes shear deformation (elastic deformation), and a part of the energy of vibration Absorbs and exhibits resilience.

建築物と建物基礎との水平方向の相対移動量が比較的小さい場合には、本体は剪断変形するものの、外周面がフランジ部材に接触することは無いが、相対移動量が大きくなると本体の外周面を覆っている被覆材がフランジ部材に接触してフランジ部に対して荷重支持面積が増大する。そして、フランジ部材に最も近い剛性板の端部とフランジ部材との間に軟質層と被覆材が挟持され、荷重による該端部の曲げ変形が抑えられるので、免震構造体が座屈し難くなり、耐座屈性能が向上する。   When the horizontal relative movement amount between the building and the building foundation is relatively small, the main body shears and deforms, but the outer peripheral surface does not come into contact with the flange member, but when the relative movement amount increases, the outer periphery of the main body The covering material covering the surface comes into contact with the flange member, and the load support area increases with respect to the flange portion. The soft layer and the covering material are sandwiched between the end of the rigid plate closest to the flange member and the flange member, and the bending deformation of the end due to the load is suppressed, so that the seismic isolation structure is less likely to buckle. , Buckling resistance is improved.

また、この免震構造体では、被覆材の端部分が、積層ゴム本体の外周から径方向外側へ離れた位置に形成した環状溝に入り込んで固着されているため、本体とフランジ部材との接着面までの距離が十分に確保されており、本体とフランジ部材との接着面に水が浸入し難く、免震構造体の耐久性が十分に確保される。   Further, in this seismic isolation structure, the end portion of the covering material enters and adheres to the annular groove formed at a position away from the outer periphery of the laminated rubber main body in the radial direction, so that the main body and the flange member are bonded. The distance to the surface is sufficiently secured, and it is difficult for water to enter the bonding surface between the main body and the flange member, and the durability of the seismic isolation structure is sufficiently secured.

請求項2に記載の発明は、請求項1に記載の免震構造体において、前記環状溝には、径方向内側に前記被覆材の端部が固着され、径方向外側には前記端部と前記フランジ部材との境界を覆うシーリング材が固着されている。   According to a second aspect of the present invention, in the seismic isolation structure according to the first aspect, an end portion of the covering material is fixed to the annular groove on a radially inner side, and the end portion is disposed on a radially outer side. A sealing material covering the boundary with the flange member is fixed.

次に、請求項2に記載の免震構造体の作用を説明する。
請求項2に記載の免震構造体では、環状溝の径方向内側部分に被覆材の端部を固着し、径方向外側部分にシーリング材を固着し、被覆材の端部とフランジ部材との境界部分をシーリング材で覆うことで、水の浸入経路(被覆材とフランジ部材との接着面)の上流側にシーリング材が配置されることなり、被覆材の端部側から水が浸入し難くなり、耐久性を更に向上させることが出来る。
Next, the operation of the seismic isolation structure according to claim 2 will be described.
In the seismic isolation structure according to claim 2, the end portion of the covering material is fixed to the radially inner portion of the annular groove, the sealing material is fixed to the radially outer portion, and the end portion of the covering material and the flange member By covering the boundary portion with the sealing material, the sealing material is arranged on the upstream side of the water intrusion path (bonding surface between the coating material and the flange member), and it is difficult for water to enter from the end side of the coating material. Thus, the durability can be further improved.

以上説明したように、請求項1に記載の免震構造体は上記の構成としたので、耐久性を確保しつつ、耐座屈性能を向上させることができる、という優れた効果を有する。   As described above, since the seismic isolation structure according to claim 1 has the above-described configuration, it has an excellent effect that the buckling resistance can be improved while ensuring the durability.

また、請求項2に記載の免震構造体は上記の構成としたので、耐久性を更に向上させることができる。   Moreover, since the seismic isolation structure of Claim 2 was set as said structure, durability can further be improved.

本発明の第1の実施形態に係る免震構造体の通常時の縦断面図である。It is a longitudinal cross-sectional view at the normal time of the seismic isolation structure which concerns on the 1st Embodiment of this invention. 第1の実施形態に係る免震構造体の剪断変形時の縦断面図である。It is a longitudinal cross-sectional view at the time of the shear deformation of the seismic isolation structure which concerns on 1st Embodiment. 第2の実施形態に係る免震構造体の要部の断面図である。It is sectional drawing of the principal part of the seismic isolation structure which concerns on 2nd Embodiment. 従来の免震構造体の剪断変形時の断面図である。It is sectional drawing at the time of the shear deformation of the conventional seismic isolation structure.

[第1の実施形態]
図1には、本発明の第1の実施形態に係る免震構造体10が示されている。免震構造体10は、例えば、支持部材の一例である建物基礎12と、被支持部材の一例である建築物14の底部との間に配置される。
[First Embodiment]
FIG. 1 shows a seismic isolation structure 10 according to a first embodiment of the present invention. The seismic isolation structure 10 is arrange | positioned, for example between the building foundation 12 which is an example of a supporting member, and the bottom part of the building 14 which is an example of a supported member.

免震構造体10は、各々円盤状に形成された複数の内部鋼板16とゴム板18とを鉛直方向に交互に積層して構成された積層ゴム本体20を有している。なお、本実施形態では、内部鋼板16の厚さは全て同一であり、ゴム板18の厚さも全て同一である。   The seismic isolation structure 10 has a laminated rubber body 20 configured by alternately laminating a plurality of internal steel plates 16 and rubber plates 18 each formed in a disk shape in the vertical direction. In the present embodiment, all the internal steel plates 16 have the same thickness, and all the rubber plates 18 have the same thickness.

内部鋼板16とゴム板18とは加硫接着により(あるいは接着剤により)強固に張り合わされており、これらが不用意に分離したり位置ズレしたりしないようになっている。そして、積層ゴム本体20が水平方向のせん断力を受けると、弾性的にせん断変形する。
したがって、建築物14が地震等によって建物基礎12に対し水平方向に相対移動(振動)すると、免震構造体10が全体として弾性的にせん断変形し、この振動のエネルギーを吸収する。
The internal steel plate 16 and the rubber plate 18 are firmly bonded to each other by vulcanization adhesion (or by an adhesive) so that they are not inadvertently separated or misaligned. When the laminated rubber body 20 receives a horizontal shearing force, it elastically shears and deforms.
Therefore, when the building 14 is relatively moved (vibrated) in the horizontal direction with respect to the building foundation 12 due to an earthquake or the like, the seismic isolation structure 10 is elastically sheared as a whole and absorbs energy of this vibration.

ここで、上記のように、内部鋼板16とゴム板18とを交互に積層したことで、積層方向に荷重が作用しても、積層ゴム本体20の圧縮(すなわちゴム板18の圧縮)が抑制されている。したがって、ゴム板18を十分にせん断変形させてエネルギーを吸収すると共に、復元力を発揮することが可能になっている。   Here, as described above, by alternately laminating the internal steel plates 16 and the rubber plates 18, even when a load acts in the laminating direction, the compression of the laminated rubber body 20 (that is, compression of the rubber plates 18) is suppressed. Has been. Accordingly, the rubber plate 18 can be sufficiently sheared to absorb energy and exhibit a restoring force.

積層ゴム本体20はさらに、内部鋼板16とゴム板18の外側端面を周囲から被覆する被覆材22を有している。
被覆材22には、ゴム板18よりも耐候性に優れたゴム等の材料を用いることが好ましく、この被覆材22によって内部鋼板16及びゴム板18に対して外部から雨(水)や光が直接的に作用しなくなり、内部鋼板16及びゴム板18が酸素やオゾン、紫外線などによって劣化することが防止される。なお、被覆材22は、場合によってはゴム板18と同一の材料によって形成しても良い。
The laminated rubber body 20 further includes a covering material 22 that covers the inner steel plate 16 and the outer end face of the rubber plate 18 from the periphery.
The covering material 22 is preferably made of a material such as rubber having better weather resistance than the rubber plate 18, and rain (water) or light is externally applied to the internal steel plate 16 and the rubber plate 18 by the covering material 22. It does not act directly, and the internal steel plate 16 and the rubber plate 18 are prevented from being deteriorated by oxygen, ozone, ultraviolet rays or the like. The covering material 22 may be formed of the same material as that of the rubber plate 18 in some cases.

積層ゴム本体20の積層方向両端(上端及び下端)のゴム板18には、積層ゴム本体20よりも大径で、かつ一定厚さの円盤状に形成された鋼板等からなるフランジ部材24が加硫接着されている。なお、フランジ部材24は、積層ゴム本体20のゴム板18の接着される側の面は、平面である。
積層ゴム本体20は、フランジ部材24の中心に配置されており、フランジ部材24には、積層ゴム本体20のゴム板18が接着されている側の面に、積層ゴム本体20よりも大径とされた環状溝26が積層ゴム本体20と同軸的に形成されている。環状溝26は、エンドミル等で簡単に加工することができる。
A flange member 24 made of a steel plate or the like formed in a disk shape having a larger diameter than the laminated rubber body 20 and a certain thickness is added to the rubber plates 18 at both ends (upper and lower ends) of the laminated rubber body 20 in the lamination direction. Sulfur bonded. In addition, as for the flange member 24, the surface by which the rubber plate 18 of the laminated rubber main body 20 is adhere | attached is a plane.
The laminated rubber body 20 is disposed at the center of the flange member 24, and the flange member 24 has a larger diameter than the laminated rubber body 20 on the surface of the laminated rubber body 20 to which the rubber plate 18 is bonded. The annular groove 26 is formed coaxially with the laminated rubber body 20. The annular groove 26 can be easily processed with an end mill or the like.

積層ゴム本体20の外周面を被覆している被覆材22は、フランジ部材24の外周方向へ向けて若干量延びてから環状溝26に入り込んでおり、フランジ部材24の積層ゴム本体20のゴム板18が接着されている側の面、及び環状溝26の溝壁面全体に接着されている。   The covering material 22 covering the outer peripheral surface of the laminated rubber main body 20 extends slightly toward the outer peripheral direction of the flange member 24 and then enters the annular groove 26, and the rubber plate of the laminated rubber main body 20 of the flange member 24. It is bonded to the surface of the side where 18 is bonded and the entire groove wall surface of the annular groove 26.

また、フランジ部材24には複数のボルト孔28が形成されており、ボルト孔28を挿通させたボルト30にナット32を締め付けることで、上側のフランジ部材24を建築物14の底部に、下側のフランジ部材24を建物基礎12に固定している。   A plurality of bolt holes 28 are formed in the flange member 24. By tightening a nut 32 on a bolt 30 through which the bolt holes 28 are inserted, the upper flange member 24 is placed on the bottom of the building 14 and the lower side. The flange member 24 is fixed to the building foundation 12.

因みに、本実施形態の免震構造体10は、積層ゴム本体20の外径が600〜1600mm、フランジ部材24の直径が800〜1900mm、フランジ部材24の厚みが30〜45mm、環状溝26の深さが10mm程度、環状溝26の幅が5mm程度であるが、本発明はこれらの寸法に限定されるものではない。   Incidentally, the seismic isolation structure 10 of the present embodiment has an outer diameter of the laminated rubber body 20 of 600 to 1600 mm, a diameter of the flange member 24 of 800 to 1900 mm, a thickness of the flange member 24 of 30 to 45 mm, and a depth of the annular groove 26. The width of the annular groove 26 is about 5 mm, but the present invention is not limited to these dimensions.

(作用)
このようにして免震構造体10が適用された建築物14が、地震等によって、建物基礎12に対し水平方向に相対移動(振動)すると、積層ゴム本体20がせん断変形(弾性変形)して、この振動のエネルギーの一部を吸収すると共に、復元力を発揮する。
(Function)
When the building 14 to which the seismic isolation structure 10 is applied in this manner is moved relative to the building foundation 12 in the horizontal direction (vibrated) due to an earthquake or the like, the laminated rubber body 20 undergoes shear deformation (elastic deformation). In addition to absorbing a part of the energy of this vibration, it exhibits a restoring force.

ここで、本実施形態の積層ゴム本体20は水平断面が円形とされているので、変形に方向性が生じない。したがって、水平方向のどのような方向の振動であっても、積層ゴム本体20は確実に弾性変形して、このエネルギーを吸収できる。   Here, since the laminated rubber body 20 of the present embodiment has a circular horizontal cross section, there is no directionality in deformation. Therefore, the laminated rubber main body 20 can be elastically deformed and absorb this energy regardless of the vibration in any direction in the horizontal direction.

ところで、建築物14と建物基礎12との水平方向の相対移動量が大きくなると、図2に示すように、建築物14の変位している方向(矢印A方向)の積層ゴム本体20の下端側の外周面を覆っている被覆材22の一部分が、基礎側のフランジ部材24の上面に接触して荷重支持面積を増大させ、最も下側に配置された内部鋼板16の矢印A方向側の端部と基礎側のフランジ部材24との間にゴム板18、及び被覆材22が挟持されて、該端部を下側から支持するので、内部鋼板16の端部が上方から作用する荷重によって曲げ変形すること、即ち、免震構造体10の座屈が抑えられる。   By the way, when the horizontal relative movement amount between the building 14 and the building foundation 12 increases, as shown in FIG. 2, the lower end side of the laminated rubber body 20 in the direction in which the building 14 is displaced (direction of arrow A). A portion of the covering material 22 covering the outer peripheral surface of the inner surface of the inner steel plate 16 disposed on the lowermost side is in contact with the upper surface of the flange member 24 on the base side to increase the load support area. Since the rubber plate 18 and the covering material 22 are sandwiched between the base portion and the flange member 24 on the base side and the end portion is supported from the lower side, the end portion of the internal steel plate 16 is bent by a load acting from above. Deformation, that is, buckling of the seismic isolation structure 10 is suppressed.

なお、図2に示すように、積層ゴム本体20の上端側においても被覆材22の一部分がフランジ部材24に接触し、最も上側に配置された内部鋼板16の矢印A方向側とは反対方向側の端部とフランジ部材24との間にゴム板18、及び被覆材22が挟持されて、該端部を上側から支持するので、内部鋼板16の端部が曲げ変形することが抑えられている。
このようにして、本実施形態の免震構造体10は、耐座屈性能の向上が図られている。
As shown in FIG. 2, a part of the covering material 22 is also in contact with the flange member 24 on the upper end side of the laminated rubber body 20, and the side opposite to the arrow A direction side of the inner steel plate 16 disposed on the uppermost side. Since the rubber plate 18 and the covering material 22 are sandwiched between the end portion of the steel plate and the flange member 24 and the end portion is supported from the upper side, the end portion of the internal steel plate 16 is prevented from being bent and deformed. .
In this way, the seismic isolation structure 10 of the present embodiment is improved in buckling resistance.

また、本実施形態の免震構造体10では、被覆材22の端部分を、積層ゴム本体20の外周から径方向外側へ離れた位置に形成した環状溝26に入り込ませて接着しているため、従来の免震構造体と同様に、被覆材22の端部から積層ゴム本体20とフランジ部材24との接着面までの距離が十分に確保されており、積層ゴム本体20とフランジ部材24との接着面に水が浸入し難く、免震構造体10の耐久性は十分に確保される。   Moreover, in the seismic isolation structure 10 of this embodiment, since the edge part of the coating | covering material 22 penetrates into the annular groove 26 formed in the position away from the outer periphery of the laminated rubber main body 20 to the radial direction outer side, and is adhere | attached. Similarly to the conventional seismic isolation structure, a sufficient distance from the end of the covering material 22 to the bonding surface between the laminated rubber main body 20 and the flange member 24 is secured, and the laminated rubber main body 20 and the flange member 24 It is difficult for water to enter the bonding surface, and the durability of the seismic isolation structure 10 is sufficiently ensured.

また、本実施形態のフランジ部材24は、全体が一定厚さであるため、例えば、鋼板を円形に切り抜き、その後、エンドミル等で環状溝26を加工するのみで良いため、従来の段差を設けたフランジ部材に比較して加工部分が少なくて済み、製造が容易である。   In addition, since the flange member 24 of the present embodiment has a constant thickness as a whole, for example, it is only necessary to cut out a steel plate into a circle and then process the annular groove 26 with an end mill or the like. Compared to the flange member, the number of processed parts is small, and manufacturing is easy.

[第2の実施形態]
次に、免震構造体10の第2の実施形態を図3にしたがって説明する。なお、第1の実施形態と同一構成には同一符合を付し、その説明は省略する。
図3に示すように、本実施形態のフランジ部材24の環状溝26は、第1の実施形態の環状溝26よりも幅広に形成され、被覆材22の端部は、環状溝26の内部において径方向内側に固着され、径方向外側に弾性シーリング材(コーキング材。シリコンゴム等の周知の材料が適用可能。)34が固着されている。
[Second Embodiment]
Next, 2nd Embodiment of the seismic isolation structure 10 is described according to FIG. In addition, the same code | symbol is attached | subjected to the same structure as 1st Embodiment, and the description is abbreviate | omitted.
As shown in FIG. 3, the annular groove 26 of the flange member 24 of the present embodiment is formed wider than the annular groove 26 of the first embodiment, and the end portion of the covering material 22 is located inside the annular groove 26. An elastic sealing material (caulking material; a known material such as silicon rubber can be applied) 34 is fixed to the radially inner side.

したがって、本実施形態では、被覆材22の端部が弾性シーリング材34で覆われることとなり、第1の実施形態よりも更に水の浸入に対して強い構造となっており、耐久性を更に向上させることができる。   Therefore, in the present embodiment, the end portion of the covering material 22 is covered with the elastic sealing material 34, and has a structure that is more resistant to water ingress than the first embodiment, further improving durability. Can be made.

[その他の実施形態]
上記実施形態では、硬質層として鋼板を用い、軟質層としてゴム板を用いたが、硬質層は鋼以外の材料で構成されていても良く、軟質層はゴム以外の材料で形成されていても良く、従来の免震構造体に用いられる材料は全て適用可能である。
[Other Embodiments]
In the above embodiment, a steel plate is used as the hard layer and a rubber plate is used as the soft layer. However, the hard layer may be made of a material other than steel, and the soft layer may be made of a material other than rubber. Well, all materials used for conventional seismic isolation structures are applicable.

上記実施形態では、複数枚の内部鋼板16の厚みが全て一定であったが、フランジ部材24に近い内部鋼板16の厚みを他の内部鋼板16よりも厚く形成しても良い。   In the above embodiment, the thicknesses of the plurality of internal steel plates 16 are all constant, but the thickness of the internal steel plate 16 close to the flange member 24 may be formed thicker than the other internal steel plates 16.

上記実施形態では、フランジ部材24の厚みが一定であったが、少なくとも積層ゴム本体20の接着される側の面が平面状であれば良く、反対側の面は平面状でなくても良い。   In the above-described embodiment, the thickness of the flange member 24 is constant. However, at least the surface to which the laminated rubber main body 20 is bonded may be planar, and the opposite surface may not be planar.

10 免震構造体
16 内部鋼板(硬質層)
18 ゴム板(軟質層)
20 積層ゴム本体(本体)
22 被覆材
24 フランジ部材
26 環状溝
34 シーリング材
10 Seismic isolation structure 16 Internal steel plate (hard layer)
18 Rubber plate (soft layer)
20 Laminated rubber body (main body)
22 Coating material 24 Flange member 26 Annular groove 34 Sealing material

Claims (2)

複数枚の剛性を有する硬質層と、前記硬質層よりも剛性が低く、かつ粘弾性的性質を有する軟質層とを上下方向に交互に積層した本体と、
前記本体の外周を覆う被覆材と、
前記本体の上下の前記軟質層に各々固着され、前記軟質層と固着される側の面が平面状に形成された一対のフランジ部材と、
前記本体を囲むように前記フランジ部材の前記軟質層と固着される側の面に形成され、前記被覆材の端部が入り込んで固着され、前記本体が水平方向に剪断変形した際に、前記被覆材の一部を前記フランジ部材と前記フランジ部材に最も近い前記硬質層との間に挟持させる環状溝と、
を有する免震構造体。
A main body in which a plurality of rigid layers and a soft layer having lower rigidity than the hard layer and having viscoelastic properties are alternately stacked in the vertical direction;
A covering material covering the outer periphery of the main body;
A pair of flange members each fixed to the upper and lower soft layers of the main body, and the surface to be fixed to the soft layer is formed in a planar shape;
Formed on the surface of the flange member to be fixed to the soft layer so as to surround the main body, and when the end of the covering material enters and is fixed, and the main body is sheared in the horizontal direction, the covering is formed. An annular groove for sandwiching a part of the material between the flange member and the hard layer closest to the flange member ;
A base-isolated structure.
前記環状溝には、径方向内側に前記被覆材の端部が固着され、径方向外側には前記端部と前記フランジ部材との境界を覆うシーリング材が固着されている、請求項1に記載の免震構造体。   The end portion of the covering material is fixed to the annular groove on the radially inner side, and a sealing material that covers a boundary between the end portion and the flange member is fixed on the radially outer side. Seismic isolation structure.
JP2010098694A 2010-04-22 2010-04-22 Isolation structure Expired - Fee Related JP5577147B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010098694A JP5577147B2 (en) 2010-04-22 2010-04-22 Isolation structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010098694A JP5577147B2 (en) 2010-04-22 2010-04-22 Isolation structure

Publications (2)

Publication Number Publication Date
JP2011226613A JP2011226613A (en) 2011-11-10
JP5577147B2 true JP5577147B2 (en) 2014-08-20

Family

ID=45042177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010098694A Expired - Fee Related JP5577147B2 (en) 2010-04-22 2010-04-22 Isolation structure

Country Status (1)

Country Link
JP (1) JP5577147B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04127439U (en) * 1991-05-11 1992-11-19 住友ゴム工業株式会社 Anti-vibration bearing
JP2001140977A (en) * 1999-11-09 2001-05-22 Nitta Ind Corp Base isolation support body
JP2007113649A (en) * 2005-10-19 2007-05-10 Toyo Tire & Rubber Co Ltd Laminated rubber for base isolation

Also Published As

Publication number Publication date
JP2011226613A (en) 2011-11-10

Similar Documents

Publication Publication Date Title
JP5541329B2 (en) Seismic isolation device
JP2010180962A (en) Base isolation device
JP5577147B2 (en) Isolation structure
JP5763981B2 (en) Laminated rubber bearing
JP2012246643A (en) Seismic isolator
JP7427578B2 (en) Seismic isolation device
JP4594183B2 (en) Laminated support
JP2006207680A (en) Laminated rubber supporter
JP5703035B2 (en) Seismic isolation device
JP6532712B2 (en) Seismic isolation structure
JP2019127994A (en) Aseismic base isolation support device
JP4868435B2 (en) Laminated rubber body with lead plug
JP4736715B2 (en) Seismic isolation device
JP4740016B2 (en) Damping mechanism using inclined oval coil spring
JP2009228855A (en) Laminated layer rubber for seismic isolation
JP5136622B2 (en) Laminated rubber body with lead plug
JP7339149B2 (en) Seismic isolation device and its mounting structure
JP2011202691A (en) Base isolation device
JP2002188687A (en) Base-isolation device
TWI734527B (en) Anti-vibration device (two)
JP2005146680A (en) Laminated rubber bearing device including lead core material
JP2000081087A (en) Base isolation device
JP3931745B2 (en) Seismic isolation device
JP7404138B2 (en) Seismic isolation device
JP7182517B2 (en) Seismic isolation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140701

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140707

R150 Certificate of patent or registration of utility model

Ref document number: 5577147

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees