JP5856485B2 - Forged product and manufacturing method thereof - Google Patents

Forged product and manufacturing method thereof Download PDF

Info

Publication number
JP5856485B2
JP5856485B2 JP2012003604A JP2012003604A JP5856485B2 JP 5856485 B2 JP5856485 B2 JP 5856485B2 JP 2012003604 A JP2012003604 A JP 2012003604A JP 2012003604 A JP2012003604 A JP 2012003604A JP 5856485 B2 JP5856485 B2 JP 5856485B2
Authority
JP
Japan
Prior art keywords
less
heat insulating
insulating material
inclusions
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012003604A
Other languages
Japanese (ja)
Other versions
JP2013142180A (en
Inventor
渡辺 大輔
大輔 渡辺
哲史 出浦
哲史 出浦
浩司 岩永
浩司 岩永
晴記 飛松
晴記 飛松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2012003604A priority Critical patent/JP5856485B2/en
Publication of JP2013142180A publication Critical patent/JP2013142180A/en
Application granted granted Critical
Publication of JP5856485B2 publication Critical patent/JP5856485B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Description

本発明は、船舶用部品や発電部品などの鍛造品に関するものであり、特に高い疲労特性が要求される鍛造品に関するものである。   The present invention relates to forged products such as marine parts and power generation components, and more particularly to forged products that require high fatigue characteristics.

過酷な使用環境下でも疲労破壊の生じ難い、優れた疲労特性を発揮する鍛造品を得るにあたり、鋼中介在物の組成や形態を制御することが従来より行われている。   Controlling the composition and form of inclusions in steel has been conventionally carried out in obtaining forged products that exhibit excellent fatigue properties that are less likely to cause fatigue failure even under harsh usage environments.

例えば特許文献1には、鋼中の溶存Mg濃度および溶存Al濃度を制御して、溶鋼処理中および鋳造中に生成する酸化物が微細分散され易い組成に制御したり、鋼中に含まれる酸化物系介在物中のMgOおよびAl23の含有量を制御して介在物の凝集合体現象の発生を抑制し、粗大介在物の形成を防止することによって、疲労特性を高めた旨示されている。 For example, in Patent Document 1, the dissolved Mg concentration and dissolved Al concentration in steel are controlled so that the oxides generated during the molten steel processing and casting are easily dispersed finely, or the oxidation contained in the steel. It is shown that the fatigue characteristics are improved by controlling the content of MgO and Al 2 O 3 in the inclusions in the material to suppress the occurrence of inclusion aggregation and preventing the formation of coarse inclusions. ing.

また特許文献2には、鋼中の固溶Ca量、固溶Mg量、Total Ca量、Total Mg量、およびS量を制御することにより、鋼中に存在する最大介在物のサイズを十分に小さくし、疲労特性を高め得た旨示されている。   In Patent Document 2, the size of the maximum inclusion existing in steel is sufficiently controlled by controlling the amount of solid solution Ca, solid solution Mg, total Ca, total Mg, and S in steel. It is shown that the fatigue characteristics can be improved by reducing the size.

更に特許文献3には、鍛造用鋼塊の鋼塊下部の鋼断面で観察される長径5〜10μmの介在物の密度、同鋼塊上部の鋼断面で観察される長径5〜10μmの介在物の密度、および上記各鋼断面において観察される長径40μm以上の介在物の密度を制御することにより、鋼塊の疲労強度を低下させることなく、水素割れを防止できる旨示されている。   Further, in Patent Document 3, the density of inclusions having a major axis of 5 to 10 μm observed at the steel cross section at the lower part of the steel ingot for forging, and the inclusions having a major axis of 5 to 10 μm observed at the steel cross section at the upper part of the steel ingot. It is shown that hydrogen cracking can be prevented without reducing the fatigue strength of a steel ingot by controlling the density of inclusions and the density of inclusions having a major axis of 40 μm or more observed in each steel cross section.

しかし、疲労特性にバラツキが生じる場合があり、均質な鍛造品が得られないといった問題がある。この様な疲労特性のバラツキを抑制するため、下記の技術が提案されている。   However, there are cases where the fatigue characteristics vary and there is a problem that a homogeneous forged product cannot be obtained. In order to suppress such variations in fatigue characteristics, the following techniques have been proposed.

例えば特許文献4には、疲労破面で観察される主な介在物が、粗大S系介在物および粗大Ti系介在物であることに鑑みて、鋼断面において観察される長径5μm超の介在物のうち、Sの含有率が20%以上の介在物の密度が100個/cm2以下、かつTiの含有
率が50%以上の介在物の密度が30個/cm2以下とすることにより、鋼材中心部と鋼材周辺部(1/3R位置)の耐久限度比を共に高めることができた旨示されている。
For example, in Patent Document 4, in view of the fact that the main inclusions observed on the fatigue fracture surface are coarse S-based inclusions and coarse Ti-based inclusions, inclusions with a major axis exceeding 5 μm observed in the steel cross section. Among them, the density of inclusions with a S content of 20% or more is 100 pieces / cm 2 or less, and the density of inclusions with a Ti content of 50% or more is 30 pieces / cm 2 or less, It is shown that the durability limit ratio of the steel material central part and the steel material peripheral part (1 / 3R position) can be increased together.

また特許文献5には、鍛造品の両端面において、鍛造品の軸方向に垂直な断面の軸位置に観察される長径が5μm超の介在物の密度(D)を70個/cm2以下とし、かつ鍛
造品の半径をRとしたときに軸位置から半径方向に向かってR/3位置に観察される長径が5μm超の介在物の密度(D)と上記密度Dとの比(D/D)を0.5〜1.50の範囲内とすることによって、疲労特性のバラツキを低減させた鍛造品が示されている。
In Patent Document 5, the density (D 0 ) of inclusions having a major axis exceeding 5 μm observed at the axial position of the cross section perpendicular to the axial direction of the forged product at both end faces of the forged product is 70 pieces / cm 2 or less. And the ratio of the density (D R ) of inclusions whose major axis is more than 5 μm observed in the radial direction from the axial position to the radial direction when the radius of the forged product is R and the density D 0 Forgings in which variation in fatigue characteristics is reduced by setting (D R / D 0 ) within the range of 0.5 to 1.50 are shown.

特開2010−082662号公報JP 2010-082662 A 特開2009−173961号公報JP 2009-173961 A 特開2009−007598号公報JP 2009-007598 A 特開2009−091649号公報JP 2009-091649 A 特開2010−082662号公報JP 2010-082662 A

しかし、近年では船舶のエンジンや発電機の高性能化に伴い、過酷な使用環境下でも疲労破壊の生じ難い、より優れた疲労特性が要求されており、該機械部品に用いられる鍛造品には、疲労特性(具体的には耐久限度比)のバラツキが半径方向のみならず高さ方向(軸方向)においても抑制されていることが求められる。   However, in recent years, with higher performance of marine engines and generators, there has been a demand for better fatigue characteristics that are less likely to cause fatigue failure even under harsh usage environments. Further, it is required that the variation in fatigue characteristics (specifically, the durability limit ratio) is suppressed not only in the radial direction but also in the height direction (axial direction).

本発明はこの様な事情に着目してなされたものであって、その目的は、従来の鍛造品と比較して、疲労特性(具体的には耐久限度比)のバラツキが半径方向のみならず高さ方向においても抑制された鍛造品と、該鍛造品を製造するための有用な方法を提供することにある。   The present invention has been made paying attention to such circumstances, and the purpose thereof is not only in the radial direction, but in the variation in fatigue characteristics (specifically, the durability limit ratio) as compared with conventional forged products. An object of the present invention is to provide a forged product that is suppressed even in the height direction and a useful method for producing the forged product.

上記課題を解決し得た本発明の鍛造品は、C:0.2〜0.6%(「質量%」の意味。化学成分について以下同じ)、Si:0.05〜0.50%、Mn:0.20〜1.5%、Ni:0.10〜3.50%、Cr:0.9〜4%、Mo:0.10〜0.70%、V:0.01〜0.20%、Al:0.005〜0.10%、S:0.008%以下(0%を含まない)、Ti:0.005%以下(0%を含まない)、およびTotal O:0.0025%以下(0%を含まない)を満たし、残部が鉄及び不可避不純物からなるものであって、
鋼断面において観察される全介在物数に占める、CaO含有量が5質量%以上45質量%以下である酸化物系介在物数の割合が、5%以上であり、かつ、
鋼断面において観察される最大介在物の長径が100μm以下であるところに特徴を有する。
The forged product of the present invention capable of solving the above problems is C: 0.2 to 0.6% (meaning “mass%”; the same applies to chemical components), Si: 0.05 to 0.50%, Mn: 0.20 to 1.5%, Ni: 0.10 to 3.50%, Cr: 0.9 to 4%, Mo: 0.10 to 0.70%, V: 0.01 to 0. 20%, Al: 0.005 to 0.10%, S: 0.008% or less (not including 0%), Ti: 0.005% or less (not including 0%), and Total O: 0.0. Satisfying 0025% or less (excluding 0%), the balance being iron and inevitable impurities,
The ratio of the number of oxide inclusions having a CaO content of 5% by mass or more and 45% by mass or less in the total number of inclusions observed in the steel cross section is 5% or more, and
It is characterized in that the major axis of the maximum inclusion observed in the steel cross section is 100 μm or less.

本発明には、上記鍛造品を製造する方法も含まれる。   The present invention also includes a method for producing the forged product.

上記製造方法は、溶鋼を鋳型に注入管を介して下方から装入することにより鋳塊を製造する下注ぎ造塊方法を行うに際し、前記鋳型内の溶鋼に該溶鋼の浴面を被覆するための被覆材を添加した後、保温材を添加し、かつ、必要に応じてCa添加剤を保温材を添加する前又は保温材と同時に添加することとし、
前記保温材と必要に応じて添加するCa添加剤は、前記浴面の表面積に対する合計Ca換算添加量が0.35kg/m2〜10kg/m2を満たすように添加する;と共に、下記式(1)で示されるX値が0.08〜0.25を満たすように添加する;ところに特徴を有する。
In the above manufacturing method, the molten steel in the mold is covered with the bath surface of the molten steel when the ingot casting method is performed in which the molten steel is introduced into the mold from below through an injection tube to produce an ingot. After adding the covering material, the heat insulating material is added, and if necessary, the Ca additive is added before or simultaneously with the heat insulating material,
Ca additives to be added as required and the thermal insulation material, the total Ca in terms of amount to the surface area of the bath surface is added so as to satisfy the 0.35kg / m 2 ~10kg / m 2 ; with the following formula ( It is added so that the X value shown in 1) satisfies 0.08 to 0.25;

X値=[%Ca]/([%Al]+3[%Fe23]+2[%SiO2]+2[%MnO2]+[%S]) …(1)
(上記式(1)において、[%Ca]は、保温材中の全成分量に対する、Ca添加剤および保温材に含まれる合計Ca量の割合(モル%)を示し、[%Al]、[%Fe23]、[%SiO2][%MnO2]および[%S]は、それぞれ保温材中の各含有量(モル%)を示す。)
X value = [% Ca] / ([ % Al] +3 [% Fe 2 O 3] +2 [% SiO 2] +2 [% MnO 2] + [% S]) ... (1)
(In the above formula (1), [% Ca] represents the ratio (mol%) of the total amount of Ca contained in the Ca additive and the heat insulating material with respect to the total amount of the components in the heat insulating material, [% Al], [ % Fe 2 O 3 ], [% SiO 2 ], [% MnO 2 ], and [% S] represent the respective contents (mol%) in the heat insulating material.)

本発明によれば、介在物の組成を適切に制御しているため、介在物の凝集が抑制されて、疲労特性のバラツキが小さい鍛造品を得ることができる。特に本発明では、鍛造品の半径方向のバラツキが抑制されていると共に、高さ方向のバラツキも抑制されているため、より確実に、優れた疲労特性を確保することができる。   According to the present invention, since the composition of inclusions is appropriately controlled, it is possible to obtain a forged product in which aggregation of inclusions is suppressed and variation in fatigue characteristics is small. In particular, in the present invention, since the variation in the radial direction of the forged product is suppressed and the variation in the height direction is also suppressed, excellent fatigue characteristics can be ensured more reliably.

詳細には、本発明における「疲労特性のバラツキが小さい」とは、具体的に、下記の(I)および(II)を満たすことをいう。   Specifically, “small variation in fatigue characteristics” in the present invention specifically means that the following (I) and (II) are satisfied.

(I)鋼材上部のR/3部(軸中心に垂直な断面において、軸中心から半径(R)方向に向かってR/3位置をいう。以下同じ)における耐久限度比(ETOP)の平均値と最小値の差が0.025以下である。 (I) Average of endurance limit ratio (E TOP ) at R / 3 part of steel upper part (in the cross section perpendicular to the axis center, the R / 3 position from the axis center toward the radius (R) direction; the same applies hereinafter) The difference between the value and the minimum value is 0.025 or less.

(II)鋼材上部のR/3部の耐久限度比(ETOP)と鋼材底部のR/3部の耐久限度比(EBOT)との比(ETOP/EBOT)が、0.90≦(ETOP/EBOT)≦1.07を満たす。 (II) The ratio (E TOP / E BOT ) of the R / 3 part durability limit ratio (E TOP ) at the top of the steel material and the R / 3 part durability limit ratio (E BOT ) at the bottom of the steel material is 0.90 ≦ (E TOP / E BOT ) ≦ 1.07 is satisfied.

尚、上記「ETOP」は、鋼材上部におけるR/3部の疲労強度(σ)を引張強度(σ)で除して算出した値であり、「EBOT」は、鋼材底部におけるR/3部の疲労強度(σ)を引張強度(σ)で除して算出した値である。 The “E TOP ” is a value calculated by dividing the fatigue strength (σ w ) of the R / 3 part at the top of the steel by the tensile strength (σ B ), and “E BOT ” is the R at the bottom of the steel. / 3 parts fatigue strength (σ w ) divided by tensile strength (σ B ).

図1は、CaO含有量が5質量%以上45質量%以下である酸化物系介在物の割合と、鋼材上部におけるR/3部の、耐久限度比の平均値と最小値との差の関係を示すグラフである。FIG. 1 shows the relationship between the ratio of oxide inclusions having a CaO content of 5% by mass or more and 45% by mass or less and the difference between the average value and the minimum value of the endurance limit ratio of R / 3 part in the upper part of the steel material. It is a graph which shows. 図2は、CaO含有量が5質量%以上45質量%以下である酸化物系介在物の割合と、ETOP/EBOTとの関係を示すグラフである。FIG. 2 is a graph showing the relationship between the ratio of oxide inclusions having a CaO content of 5% by mass or more and 45% by mass or less and E TOP / E BOT .

本発明者らは、Alキルド鋼をベースとして疲労特性のバラツキが少ない鍛造品を提供すべく鋭意検討を重ねてきた。その結果、疲労特性のバラツキは介在物の組成に原因があり、この疲労特性のバラツキと介在物の組成の関係について調べたところ、介在物としてCaO−Al23系介在物の存在比率を高くする、具体的には、CaO含有量が5質量%以上45質量%以下である酸化物系介在物が一定以上存在するようにすれば、介在物の凝集が抑制されて微細分散を実現でき、結果として、疲労特性のバラツキが部位に関係なく小さい鍛造品が得られることを見出した。 The inventors of the present invention have made extensive studies to provide a forged product based on Al killed steel with little variation in fatigue characteristics. As a result, the variation in fatigue characteristics is caused by the composition of inclusions. When the relationship between the variation in fatigue characteristics and the composition of inclusions was examined, the existence ratio of CaO—Al 2 O 3 inclusions as inclusions was determined. More specifically, if an oxide inclusion having a CaO content of 5% by mass or more and 45% by mass or less is present in a certain amount or more, aggregation of inclusions can be suppressed and fine dispersion can be realized. As a result, it was found that a forged product having a small variation in fatigue characteristics can be obtained regardless of the part.

酸化物系介在物として、上記CaO含有量が5質量%未満のものは、凝集粗大化しやすい介在物となるため好ましくない。一方、CaO含有量が45質量%を超えるものも、粗大なCaO系介在物やCaS系介在物の割合が多くなるため好ましくない。   As oxide inclusions, those containing less than 5% by mass of CaO are not preferable because they become inclusions that are likely to be coarsened and coarsened. On the other hand, the case where the CaO content exceeds 45% by mass is not preferable because the ratio of coarse CaO-based inclusions and CaS-based inclusions increases.

本発明では、CaO含有量が5質量%以上45質量%以下である酸化物系介在物数の割合を、全介在物数に対し5%以上確保することによって、上述の通り粗大介在物の形成を抑制することができる。上記規定の介在物の比率は、好ましくは7.5%以上である。   In the present invention, as described above, the formation of coarse inclusions is ensured by securing a ratio of the number of oxide inclusions having a CaO content of 5 mass% or more and 45 mass% or less to the total number of inclusions. Can be suppressed. The ratio of inclusions specified above is preferably 7.5% or more.

上記CaO含有介在物が5%以上存在していれば効果が発揮され、存在比率は高い方が望ましいが、製造上では実質約30%以下である。尚、本発明の鍛造品において存在するその他の介在物は、主にMgO−Al23、およびMnSである。 If the CaO-containing inclusions are present in an amount of 5% or more, the effect is exhibited, and a higher abundance ratio is desirable, but in terms of production, it is substantially about 30% or less. The other inclusions present in the forged product of the present invention are mainly MgO—Al 2 O 3 and MnS.

尚、上記規定の介在物は、後述する実施例に示す通り、EPMAによって検出される5μm以上のものを対象とする。   In addition, the above-mentioned inclusions are intended for objects of 5 μm or more detected by EPMA, as shown in Examples described later.

また本発明の鍛造品は、下記の化学成分組成および製造条件を制御することによって、鋼断面において観察される最大介在物の長径が100μm以下に抑えられ、上述した疲労特性のバラツキがより十分に抑制されたものでもある。   In addition, the forged product of the present invention can control the following chemical composition and manufacturing conditions to suppress the longest diameter of the maximum inclusions observed in the steel cross section to 100 μm or less, and the variation in the above-described fatigue characteristics is more sufficient. It is also suppressed.

本発明の鍛造品は、上記介在物組成を満たして優れた疲労特性を示すと共に、強度や靭性等を具備すべく、下記の化学成分組成を満たすものである。   The forged product of the present invention satisfies the following chemical composition in order to satisfy the above inclusion composition and exhibit excellent fatigue properties, and to have strength, toughness and the like.

(鋼の化学成分組成)
[C:0.2〜0.6%]
Cは、鍛造品の強度向上に寄与する元素であり、十分な強度を確保するには、0.2%以上含有させる。C量は、好ましくは0.25%以上、より好ましくは0.30%以上である。しかし、C量が多過ぎると鍛造品の靭性を劣化させるので、0.6%以下とする。C量は、好ましくは0.55%以下、より好ましくは0.50%以下である。
(Chemical composition of steel)
[C: 0.2-0.6%]
C is an element that contributes to improving the strength of the forged product. To ensure sufficient strength, C is contained in an amount of 0.2% or more. The amount of C is preferably 0.25% or more, more preferably 0.30% or more. However, if the amount of C is too large, the toughness of the forged product is deteriorated, so the content is made 0.6% or less. The amount of C is preferably 0.55% or less, more preferably 0.50% or less.

[Si:0.05〜0.50%]
Siは、鍛造品の強度を向上する元素として作用し、充分な強度を確保するために、0.05%以上含有させる。Si量は、好ましくは0.1%以上、より好ましくは0.15%以上である。しかしSi量が多過ぎると逆V偏析が著しくなって清浄な鋼塊が得られ難くなるので、0.50%以下とする。Si量は、好ましくは0.45%以下、より好ましくは0.40%以下である。
[Si: 0.05 to 0.50%]
Si acts as an element that improves the strength of the forged product, and is contained in an amount of 0.05% or more in order to ensure sufficient strength. The amount of Si is preferably 0.1% or more, more preferably 0.15% or more. However, if the amount of Si is too large, the reverse V segregation becomes remarkable and it becomes difficult to obtain a clean steel ingot, so the content is made 0.50% or less. The amount of Si is preferably 0.45% or less, more preferably 0.40% or less.

[Mn:0.20〜1.5%]
Mnは、焼入れ性を高めると共に強度向上に寄与する元素であり、充分な焼入れ性と強度を確保するには、Mn量を0.20%以上とする。Mn量は、好ましくは0.5%以上、より好ましくは0.8%以上である。しかしMn量が多過ぎると逆V偏析を助長するので、1.5%以下とする。Mn量は、好ましくは1.2%以下、より好ましくは1.1%以下である。
[Mn: 0.20 to 1.5%]
Mn is an element that enhances hardenability and contributes to strength improvement. To ensure sufficient hardenability and strength, the amount of Mn is 0.20% or more. The amount of Mn is preferably 0.5% or more, more preferably 0.8% or more. However, when the amount of Mn is too large, reverse V segregation is promoted. The amount of Mn is preferably 1.2% or less, more preferably 1.1% or less.

[Ni:0.10〜3.50%]
Niは、靭性向上元素として有用な元素であり、本発明ではNi量を0.10%以上とする。好ましくは0.2%以上である。しかし、Ni量が過剰になるとコストアップとなるので、3.50%以下とする。好ましくは3.0%以下である。
[Ni: 0.10 to 3.50%]
Ni is an element useful as a toughness improving element, and in the present invention, the Ni content is 0.10% or more. Preferably it is 0.2% or more. However, if the amount of Ni becomes excessive, the cost increases, so the content is made 3.50% or less. Preferably it is 3.0% or less.

[Cr:0.9〜4%]
Crは、焼入れ性を高めると共に靭性を向上させるために有効な元素であり、それらの作用はCrを0.9%以上含有させることによって発揮される。Cr量は、好ましくは1.1%以上、より好ましくは1.3%以上である。しかし多過ぎると逆V偏析を助長して高清浄鋼の製造を困難にするので、Cr量は4%以下とする。好ましくは3.0%以下である。
[Cr: 0.9 to 4%]
Cr is an element effective for improving the hardenability and improving the toughness, and their action is exhibited by containing 0.9% or more of Cr. The amount of Cr is preferably 1.1% or more, more preferably 1.3% or more. However, if the amount is too large, reverse V segregation is promoted and it becomes difficult to produce highly clean steel. Therefore, the Cr content is 4% or less. Preferably it is 3.0% or less.

[Mo:0.10〜0.70%]
Moは、焼入れ性、強度、靭性の全てを向上させるのに有効に作用する元素であり、それらの作用を発揮させるにはMoを0.10%以上含有させる。Mo量は、好ましくは0.20%以上、より好ましくは0.25%以上である。しかし、Moは平衡分配係数が小さく、ミクロ偏析(正常偏析)を生じ易くするので、Mo量は0.70%以下とする。好ましくは0.60%以下である。
[Mo: 0.10 to 0.70%]
Mo is an element that effectively acts to improve all of hardenability, strength, and toughness, and Mo is contained in an amount of 0.10% or more in order to exert these effects. The amount of Mo is preferably 0.20% or more, and more preferably 0.25% or more. However, since Mo has a small equilibrium distribution coefficient and easily causes microsegregation (normal segregation), the amount of Mo is set to 0.70% or less. Preferably it is 0.60% or less.

[V:0.01〜0.20%]
Vは、析出強化及び組織微細化効果があり、高強度化に有用な元素である。この様な作用を有効に発揮させるため、Vを0.01%以上含有させる。但し、過剰に含有させても上記効果は飽和してしまい経済的に無駄であるので、V量は0.20%以下とする。好ましくは0.15%以下である。
[V: 0.01 to 0.20%]
V has an effect of precipitation strengthening and refinement of structure, and is an element useful for increasing the strength. In order to effectively exhibit such an action, V is contained in an amount of 0.01% or more. However, the V amount is set to 0.20% or less because the above effect is saturated and is economically wasteful even if contained excessively. Preferably it is 0.15% or less.

[Al:0.005〜0.10%]
Alは、製鋼工程における脱酸元素として有効に作用し、また鋼の耐割れ性にも有効に作用する。従って、Alは0.005%以上含有させる。好ましくは0.010%以上である。しかしAl量が多くなると、介在物としてAl23が生成し、この介在物が凝固時に偏析・凝集して粗大な介在物を生成し、鍛造品の疲労特性が悪化する。従ってAl量の上限は0.10%とする。好ましくは0.08%以下である。
[Al: 0.005 to 0.10%]
Al effectively acts as a deoxidizing element in the steel making process, and also effectively acts on the crack resistance of the steel. Therefore, Al is contained 0.005% or more. Preferably it is 0.010% or more. However, when the amount of Al increases, Al 2 O 3 is produced as inclusions, and these inclusions segregate and aggregate during solidification to produce coarse inclusions, which deteriorates the fatigue characteristics of the forged product. Therefore, the upper limit of the Al amount is 0.10%. Preferably it is 0.08% or less.

[S:0.008%以下(0%を含まない)]
Sは、不可避的に含まれる元素であり、凝固時の偏析によって、介在物として粗大な硫化物を形成し、鍛造品の疲労強度を低下させる元素である。従ってS量は、0.008%以下とする。S量は、好ましくは0.006%以下、より好ましくは0.004%以下である。
[S: 0.008% or less (excluding 0%)]
S is an element that is inevitably included, and is an element that forms coarse sulfides as inclusions due to segregation during solidification and lowers the fatigue strength of the forged product. Therefore, the S amount is 0.008% or less. The amount of S is preferably 0.006% or less, more preferably 0.004% or less.

[Ti:0.005%以下(0%を含まない)]
Tiは、TiNやTiC、Ti422のような微細介在物を形成して鋼中に分散し、固溶限を超えた鋼中の余剰水素を吸蔵捕捉することにより、鋼の耐水素割れ性を改善する元素である。この様な観点からTiを0.0002%以上含有させてもよい。しかしTi量が過剰になると、介在物として粗大な窒化物を形成し、鍛造品の疲労強度を低下させてしまう。従って、Ti量は0.005%以下とする。好ましくは0.004%以下、より好ましくは0.003%以下である。
[Ti: 0.005% or less (excluding 0%)]
Ti forms fine inclusions such as TiN, TiC, and Ti 4 C 2 S 2 and is dispersed in the steel, and occludes and captures excess hydrogen in the steel that exceeds the solid solubility limit. It is an element that improves hydrogen cracking. From such a viewpoint, 0.0002% or more of Ti may be contained. However, when the amount of Ti becomes excessive, coarse nitrides are formed as inclusions, and the fatigue strength of the forged product is reduced. Therefore, the Ti content is 0.005% or less. Preferably it is 0.004% or less, More preferably, it is 0.003% or less.

[Total O:0.0025%以下(0%を含まない)]
O(酸素)は、SiO2、Al23、MgO、CaO等の酸化物系介在物を形成し、鍛造品の疲労強度を低下させる元素である。従ってTotal O(トータル酸素)量は極力低減することが好ましく、0.0025%以下とする。好ましくは0.0015%以下、より好ましくは0.0010%以下である。
[Total O: 0.0025% or less (excluding 0%)]
O (oxygen) is an element that forms oxide inclusions such as SiO 2 , Al 2 O 3 , MgO, and CaO and reduces the fatigue strength of the forged product. Therefore, the total O (total oxygen) amount is preferably reduced as much as possible, and is 0.0025% or less. Preferably it is 0.0015% or less, More preferably, it is 0.0010% or less.

本発明の鍛造品に使用される鋼の基本成分は上記の通りであり、残部は鉄及び不可避不純物からなる。該不可避不純物として、例えばMg等が挙げられる。Mgの場合、15ppm以下の範囲で含むことが許容される。   The basic components of steel used in the forged product of the present invention are as described above, with the balance being iron and inevitable impurities. Examples of the inevitable impurities include Mg. In the case of Mg, it is allowed to be contained in the range of 15 ppm or less.

また、本発明の作用効果に悪影響を与えない範囲で更に他の元素を積極的に含有させることも可能である。積極添加が許容される他の元素の例としては、焼入れ性改善効果を有するB(ホウ素)や、固溶強化元素または析出強化元素であるW,Nb,Ta,Cu,Ce,Zr,Teなどが挙げられ、それらは単独であるいは2種以上を複合添加できる。これらの添加元素は、例えば、合計量で0.1%程度以下とすることが望ましい。   Moreover, it is possible to further contain other elements as long as the effects of the present invention are not adversely affected. Examples of other elements that allow positive addition include B (boron), which has an effect of improving hardenability, and W, Nb, Ta, Cu, Ce, Zr, Te, which are solid solution strengthening elements or precipitation strengthening elements. These may be added alone or in combination of two or more. For example, the total amount of these additive elements is preferably about 0.1% or less.

(鍛造品の製造方法)
本発明の鍛造品を製造するにあたっては、介在物の形態が上記規定を満たす鋼が得られる方法であれば特に問わず、常法に従い、溶解・一次精錬→溶鋼処理→造塊→鍛造して得ることができるが、上記介在物形態の鋼を確実に得るには、造塊工程における条件を下記の通りとすることが推奨される。以下、工程順に説明する。
(Method for manufacturing forged products)
In producing the forged product of the present invention, any method can be used as long as the inclusions form a steel that satisfies the above-mentioned regulations. According to a conventional method, melting / primary refining → molten steel treatment → ingot making → forging Although it can be obtained, it is recommended that the conditions in the ingot-making process be as follows in order to surely obtain the inclusion form steel. Hereinafter, it demonstrates in order of a process.

[溶解・一次精錬]
溶解・一次精錬は、常法に従って高周波溶解炉や電気炉、転炉などを用いて行うことができる。本発明では溶鋼量も特に問わない。
[Melting / Primary refining]
Melting / primary refining can be performed using a high-frequency melting furnace, electric furnace, converter, or the like according to a conventional method. In the present invention, the amount of molten steel is not particularly limited.

[溶鋼処理]
常法に従い、底吹きガス攪拌等の手段によって、取鍋内の溶鋼を攪拌しながら温度や主成分を調整すると共に、脱酸剤等を溶鋼に添加して、脱酸、脱硫等の処理を行えばよい。本発明では、Alキルド鋼を前提としているため、Alを添加して脱酸を行う。更に必要に応じて、LFや蓋脱ガス装置(VD)による溶鋼処理工程、還流式脱ガス法(RH)を用いて真空脱ガス処理を施し、溶鋼からの脱水素、脱硫を促進させて、溶鋼成分および溶鋼温度を調整すればよい。
[Molten steel treatment]
In accordance with conventional methods, the temperature and main components are adjusted while stirring the molten steel in the ladle by means of bottom blowing gas stirring, etc., and a deoxidizer and the like are added to the molten steel to perform deoxidation, desulfurization, etc. Just do it. In the present invention, since Al killed steel is assumed, deoxidation is performed by adding Al. Furthermore, if necessary, vacuum degassing treatment is performed using a molten steel treatment process using an LF or a lid degassing device (VD), a reflux degassing method (RH), and dehydrogenation and desulfurization from the molten steel are promoted, What is necessary is just to adjust a molten steel component and molten steel temperature.

[造塊]
上記溶鋼処理した溶鋼を、鋳型に注入管を介して下方から装入する下注ぎ造塊方法により鋳塊を製造する。尚、インゴットサイズ・形状は特に問わない。
[Agglomeration]
An ingot is produced by a bottom pouring ingot method in which the molten steel subjected to the molten steel treatment is charged into the mold from below through an injection tube. The ingot size and shape are not particularly limited.

溶鋼注入中、鋳型内を上昇する溶鋼の浴面の酸化を抑制するため、一般的に使用されている例えばC−SiO2−CaO−Al23系の被覆材(mould additives)を鋳型内の溶鋼表面(浴面)に散布する。被覆材の散布は、鋳型内に溶鋼が注入されてから溶鋼が押湯部に到達するまでの間、実施すればよい。散布されて浴面を覆った被覆材は、溶鋼が下部から注入されて浴面が上昇するにつれ、鋳型と溶鋼の界面に徐々に流入しながら消費されていく。よって、被覆材の消費により浴面が露出した場合は、速やかに被覆材を追加し、浴面が露出しないようにするのがよい。 In molten steel injection, in order to suppress oxidation of the bath surface of the molten steel rises in the mold, generally 2 are for example C-SiO used -CaO-Al 2 O 3 based coating material (Mold Additives) inside the mold It is sprayed on the molten steel surface (bath surface). The coating material may be sprayed after the molten steel is injected into the mold until the molten steel reaches the feeder. The coating material that has been sprayed and covered the bath surface is consumed while gradually flowing into the interface between the mold and the molten steel as the molten steel is poured from below and the bath surface rises. Therefore, when the bath surface is exposed due to consumption of the covering material, it is preferable to add the covering material promptly so that the bath surface is not exposed.

また本発明では、鋳造末期の保温用に保温材を用いる。保温材は、基本的には溶湯が押湯部到達以降に添加する。更に、この保温材に起因して生成する介在物を改質することによって本発明で規定の介在物を得るべく、Ca添加剤を添加して上記改質を図る。保温材とこのCa添加剤の添加時期の関係は次の通りである。   In the present invention, a heat insulating material is used for heat retention at the end of casting. The heat insulating material is basically added after the molten metal reaches the feeder part. Furthermore, in order to obtain the inclusions defined in the present invention by modifying the inclusions generated due to the heat insulating material, the above modification is attempted by adding a Ca additive. The relationship between the heat insulating material and the timing of addition of the Ca additive is as follows.

即ち、溶鋼が押湯部に到達時以降、鋳造終了時以前の間(押湯内を上昇中に添加する場合の他、鋳造終了時[鋳込み(Pouring)終了時、即ち、湯面が停止したタイミング]も含まれる)に、
(A)Ca添加剤と保温材とを;または、
(B)Ca添加剤と保温材のうち、保温材のみ(但し、保温材にCaが含まれる場合に限る)を;
下記(条件a)〜(条件c)の全てを満たすように、鋳型上部から、浴面を覆う被覆材を介して溶鋼に添加する。
That is, after the molten steel reaches the feeder part and before the end of casting (in addition to the case where the inside of the feeder is added while rising, at the end of casting [at the end of pouring, that is, the molten metal surface is stopped) Timing] is also included)
(A) a Ca additive and a heat insulating material; or
(B) Of the Ca additive and the heat insulating material, only the heat insulating material (however, only when Ca is contained in the heat insulating material);
It adds to molten steel from the upper part of a casting_mold | template via the coating | covering material which covers a bath surface so that all of the following (condition a)-(condition c) may be satisfy | filled.

この様に、溶鋼が押湯部に到達時以降、鋳造終了時以前の間に、Ca添加剤・保温材の添加を行うことによって、粗大なCaO系介在物を生成させることなく、造塊中に生成するAl23系介在物を、Ca添加によりCaO−Al23系介在物に改質して介在物の凝集を抑制することができる。また、溶鋼の表面を保温材で覆うことによって、欠陥や成分偏析が発生する部分を鋼塊の上方部に集中させることができる。即ち、溶鋼の表面を保温材で覆うことによって溶鋼の上方は保温されるため、該溶鋼の冷却速度が小さくなり、その結果、保温された溶鋼が最終凝固部となり、欠陥や成分偏析をこの最終凝固部に集中させることができる。 Thus, during the time of ingot forming without generating coarse CaO-based inclusions by adding the Ca additive / heat insulating material between the time when the molten steel reaches the feeder part and before the end of casting. Al 2 O 3 inclusions generated in the above can be modified to CaO—Al 2 O 3 inclusions by addition of Ca to suppress inclusion aggregation. Further, by covering the surface of the molten steel with a heat insulating material, a portion where defects or component segregation occurs can be concentrated on the upper part of the steel ingot. That is, since the upper part of the molten steel is kept warm by covering the surface of the molten steel with a heat insulating material, the cooling rate of the molten steel is reduced, and as a result, the heated molten steel becomes the final solidified part, and defects and component segregation are removed from It can be concentrated on the solidified part.

上述の通り、Ca添加剤や保温材は、鋳型上部から、浴面を覆う被覆材を介して溶鋼に添加する。Caが溶鋼に直接触れると、粗大なCaO系介在物の生成リスクが高まるためである。   As above-mentioned, Ca additive and a heat insulating material are added to molten steel from the upper part of a mold through the coating | covering material which covers a bath surface. This is because when Ca touches the molten steel directly, the risk of forming coarse CaO-based inclusions increases.

Ca添加剤の添加、保温材の添加は、それぞれ複数回に分けて添加してもよい。
以下、Ca添加剤・保温材の添加条件a〜cについて詳述する。
The addition of the Ca additive and the addition of the heat insulating material may be performed in a plurality of times.
Hereinafter, the addition conditions a to c of the Ca additive / heat insulating material will be described in detail.

(条件a)Ca添加剤の添加は、保温材と同時または保温材の添加前とする。   (Condition a) Addition of Ca additive is performed simultaneously with the heat insulating material or before the addition of the heat insulating material.

本発明では、特に保温材に起因する介在物の改質を図るべく、保温材の添加時期に合わせてCa添加剤を添加する。   In the present invention, in order to improve the inclusions caused by the heat insulating material in particular, the Ca additive is added in accordance with the addition timing of the heat insulating material.

この様な観点から、保温材の添加前にCa添加剤を添加する場合、このCa添加剤の添加から保温材添加までの時間は10分間以内とするのが好ましい。より好ましくは5分間以内である。   From such a viewpoint, when the Ca additive is added before the addition of the heat insulating material, the time from the addition of the Ca additive to the addition of the heat insulating material is preferably within 10 minutes. More preferably, it is within 5 minutes.

〔Ca添加剤の形態について〕
Ca添加剤の形態は、純金属CaでもよいしCa合金でもよい。Ca合金としては、Ca−Si合金、Ca−Ni合金など、鋼成分規格に応じて適宜選択することができる。添加形状としては、粉末状、板状等が挙げられる。
[About the form of Ca additive]
The form of the Ca additive may be pure metal Ca or Ca alloy. As Ca alloy, it can select suitably according to steel component specifications, such as Ca-Si alloy and Ca-Ni alloy. Examples of the added shape include powder and plate.

〔保温材について〕
本発明において保温材は、下記(条件c)における式(1)、保温材にCaが含まれる場合は、更に(条件b)を満たすものであればよく、個々の成分の濃度等は特に規定されない。即ち、成分としては、既知の成分(Al、Ca、Si、FetO(tは係数)、MnO2、SiO2、Al23、C、Sなど)からなる保温材を用いればよい。上記元素・化合物の全てが含まれていなくてもよい。よって保温材として、Caを含むものを用いてもよいし、Caを含まないものを用いてもよい。また、上記以外の金属・酸化物を含む保温材を用いてもよい。
[Insulation material]
In the present invention, the heat insulating material may satisfy Formula (1) in the following (Condition c), and when the heat insulating material contains Ca, it may further satisfy (Condition b). Not. That is, as the component, a known component (the Al, Ca, Si, Fe t O (t coefficient), MnO 2, SiO 2, Al 2 O 3, C, S , etc.) may be used insulation material made of. Not all of the above elements / compounds may be included. Therefore, what contains Ca may be used as a heat insulating material, and what does not contain Ca may be used. Moreover, you may use the heat insulating material containing metals and oxides other than the above.

(条件b)前記保温材と必要に応じて添加するCa添加剤は、前記浴面の表面積に対する合計Ca換算添加量が0.35kg/m2〜10kg/m2を満たすように添加する。 (Conditions b) the thermal insulation material and Ca additives to be added if necessary, the total Ca in terms of amount to the surface area of the bath surface is added so as to satisfy the 0.35kg / m 2 ~10kg / m 2 .

前記浴面の表面積に対し、添加されたCa添加剤と保温材に含まれるCaを、純Caに換算したときの合計量(kg):合計Ca換算添加量が、0.35kg/m2未満の場合、Caによる介在物の改質効果が十分得られない。上記合計Ca換算添加量は、好ましくは0.40kg/m2以上、より好ましくは0.45kg/m2以上である。一方、合計Ca換算添加量が、10kg/m2を超える場合、粗大CaO系介在物が発生するので好ましくない。好ましくは8kg/m2以下、より好ましくは6kg/m2以下である。 Total amount (kg) of Ca added to the surface area of the bath and Ca contained in the heat insulating material when converted to pure Ca: Total Ca equivalent added amount is less than 0.35 kg / m 2 In this case, the inclusion modification effect by Ca is not sufficiently obtained. The total Ca in terms of amount is preferably 0.40 kg / m 2 or more, more preferably 0.45 kg / m 2 or more. On the other hand, when the total Ca equivalent addition amount exceeds 10 kg / m 2 , coarse CaO inclusions are generated, which is not preferable. Preferably it is 8 kg / m 2 or less, more preferably 6 kg / m 2 or less.

(条件c)前記保温材と必要に応じて添加するCa添加剤は、下記式(1)で示されるX値が0.08〜0.25を満たすように添加する。
X値=[%Ca]/([%Al]+3[%Fe23]+2[%SiO2]+2[%MnO2]+[%S]) …(1)
(上記式(1)において、[%Ca]は、保温材中の全成分量に対する、Ca添加剤および保温材に含まれる合計Ca量の割合(モル%)を示し、[%Al]、[%Fe23]、[%SiO2][%MnO2]および[%S]は、それぞれ保温材中の各含有量(モル%)を示す。)
(Condition c) The heat-retaining material and the Ca additive added as necessary are added so that the X value represented by the following formula (1) satisfies 0.08 to 0.25.
X value = [% Ca] / ([ % Al] +3 [% Fe 2 O 3] +2 [% SiO 2] +2 [% MnO 2] + [% S]) ... (1)
(In the above formula (1), [% Ca] represents the ratio (mol%) of the total amount of Ca contained in the Ca additive and the heat insulating material with respect to the total amount of the components in the heat insulating material, [% Al], [ % Fe 2 O 3 ], [% SiO 2 ], [% MnO 2 ], and [% S] represent the respective contents (mol%) in the heat insulating material.)

上記式(1)で示されるX値は、保温材によってCaが消費されて(詳細には、保温材中の低級酸化物(例えばSiO2)によってCaが酸化されて)、介在物の改質に寄与するCaが不足するのを防止するため、保温材の成分に合わせてCa添加剤の添加量を調整するものである。 The X value represented by the above formula (1) indicates that the Ca is consumed by the heat insulating material (specifically, Ca is oxidized by the lower oxide (for example, SiO 2 ) in the heat insulating material), and the inclusion is reformed. In order to prevent the Ca that contributes to the deficiency, the addition amount of the Ca additive is adjusted in accordance with the components of the heat insulating material.

上記X値が0.08よりも小さいと、Caによる十分な上記改質効果が得られないため、本発明ではX値を0.08以上とする。X値は、好ましくは0.09以上、より好ましくは0.10以上である。一方、X値が大きすぎると粗大CaO系介在物が発生する。よって、X値は0.25以下とする。好ましくは0.20以下である。   If the X value is smaller than 0.08, the sufficient reforming effect by Ca cannot be obtained, so the X value is set to 0.08 or more in the present invention. The X value is preferably 0.09 or more, more preferably 0.10 or more. On the other hand, when the X value is too large, coarse CaO-based inclusions are generated. Therefore, the X value is 0.25 or less. Preferably it is 0.20 or less.

上記(条件b)および(条件c)の調整パターンとして、保温材中Ca含有の有無別に、以下の3パターンが挙げられる。即ち、
(A−1)Ca添加剤と保温材(Ca含む)を添加する場合
(条件b)および(条件c)は、Ca添加剤と保温材の両方に含まれるCa量で調整する。
As the adjustment patterns of (Condition b) and (Condition c), there are the following three patterns depending on whether Ca is contained in the heat insulating material. That is,
(A-1) When adding a Ca additive and a heat insulating material (including Ca) (condition b) and (condition c), the amount of Ca contained in both the Ca additive and the heat insulating material is adjusted.

(A−2)Ca添加剤と保温材(Ca含まない)を添加する場合
(条件b)および(条件c)は、Ca添加剤中のCa量で調整する。
(A-2) When adding a Ca additive and a heat insulating material (not including Ca) (condition b) and (condition c), the amount of Ca in the Ca additive is adjusted.

(B)Ca添加剤と保温材のうち、保温材(Ca含む)のみを添加する場合
(条件b)および(条件c)は、保温材中のCa量で調整する。
(B) When adding only the heat insulating material (including Ca) among the Ca additive and the heat insulating material (condition b) and (condition c), the amount of Ca in the heat insulating material is adjusted.

〔凝固〕
鋳込み終了後、鋳型内の溶鋼が完全に凝固完了するまで、鋳型を静置する。
〔coagulation〕
After casting, the mold is allowed to stand until the molten steel in the mold is completely solidified.

〔鍛造品〕
鍛造品として、例えば、上記凝固した鋼塊を脱型した後、加熱して熱間鍛造を施し、断面直径150〜700mmの鍛造材に仕上げることが挙げられる。
[Forged products]
As the forged product, for example, after removing the solidified steel ingot, it is heated and subjected to hot forging to finish a forged material having a cross-sectional diameter of 150 to 700 mm.

本発明の鍛造品は、機械、船舶、発電機等の産業分野で広く有効に活用されるものであり、特に高い疲労特性の要求される部品に適している。   The forged product of the present invention is widely and effectively used in industrial fields such as machinery, ships, and generators, and is particularly suitable for parts that require high fatigue characteristics.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. Of course, it is possible to implement them, and they are all included in the technical scope of the present invention.

常法に従い、電気炉を用いてスクラップを溶解した後、20〜100トンの溶鋼を取鍋に移湯した。そして取鍋内の溶鋼を、LFおよび蓋脱ガス装置(VD)による溶鋼処理工程(Alを投入して行う脱酸を含む)に供し、溶鋼成分および溶鋼温度を調整し、下記表1に示す化学成分組成の鋼(残部は鉄および不可避不純物)を溶製した。   According to a conventional method, after melting scrap using an electric furnace, 20 to 100 tons of molten steel was transferred to a ladle. Then, the molten steel in the ladle is subjected to a molten steel processing step (including deoxidation performed by adding Al) by LF and a lid degassing device (VD), and the molten steel components and molten steel temperature are adjusted, and shown in Table 1 below. Steel of chemical composition (the balance is iron and inevitable impurities) was melted.

Figure 0005856485
Figure 0005856485

次いで、一般的に行われている下注ぎ造塊法を採用し、20〜90トンクラスの鋳型に上記溶鋼を注入して鋼塊を製造した。   Next, a generally used ingot casting method was adopted, and the molten steel was poured into a 20-90 ton class mold to produce a steel ingot.

このとき、鋳型内を溶鋼が上昇する過程での溶鋼酸化を抑制するため、C−SiO2−CaO−Al23系の被覆材を鋳型内の溶鋼表面(浴面)に散布した。被覆材の散布は、鋳型内に溶鋼が注入されてから溶鋼が押湯部に到達するまでの間実施した。被覆材の消費によって浴面が露出した場合は、速やかに被覆材を追加し、浴面が露出しないようにした。尚、比較例として一部の実施例では、被覆材が消費されて浴面が露出しても追加の被覆材を添加せず、浴面が一部露出したまま次工程のCa添加剤の添加を行った。 At this time, a C—SiO 2 —CaO—Al 2 O 3 -based coating material was sprayed on the surface of the molten steel (bath surface) in the mold in order to suppress molten steel oxidation in the process of the molten steel rising in the mold. The coating material was sprayed after the molten steel was poured into the mold until the molten steel reached the feeder. When the bath surface was exposed due to the consumption of the coating material, the coating material was quickly added to prevent the bath surface from being exposed. In addition, in some examples as a comparative example, even if the coating material is consumed and the bath surface is exposed, no additional coating material is added, and the addition of the Ca additive in the next step is performed while the bath surface is partially exposed. Went.

溶鋼が押湯部に到達時以降、鋳造終了時以前の間に、浴面に、Ca添加剤(Ca−Si合金粉末)と保温材を添加した。保温材は、上記Ca添加剤の添加後、または上記Ca添加剤の添加と同時に投入した。また、Ca添加剤を散布してから保温材を投入するまでの時間は、0秒(同時)〜600秒(10分)とした。   The Ca additive (Ca—Si alloy powder) and a heat insulating material were added to the bath surface after the molten steel reached the feeder part and before the end of casting. The heat insulating material was added after the addition of the Ca additive or simultaneously with the addition of the Ca additive. Further, the time from spraying the Ca additive to adding the heat insulating material was set to 0 second (simultaneous) to 600 seconds (10 minutes).

保温材として、成分が、FeO:10〜20質量%、Fe23:10〜20質量%、Al:20〜25質量%、Al23:25〜40質量%、SiO2:5〜10質量を含み、MnO2とCaを実質含まないものを用いた。また、保温材中にはSが含有されているが、Sの含有量は200ppm程度(不可避不純物程度の量)であり、実質的に零と考えてもよい(即ち、式(1)に影響を及ぼす量ではない)。 As a heat insulating material, components are FeO: 10 to 20% by mass, Fe 2 O 3 : 10 to 20% by mass, Al: 20 to 25% by mass, Al 2 O 3 : 25 to 40% by mass, SiO 2 : 5 to 5%. A material containing 10 mass and substantially free of MnO 2 and Ca was used. Further, although S is contained in the heat insulating material, the content of S is about 200 ppm (amount of inevitable impurities) and may be considered to be substantially zero (that is, it affects the equation (1)). Not the amount that affects).

尚、保温材の組成は、ICP(誘導結合プラズマ)発光分光分析法で求めた。また、Ca添加剤(Ca−Si合金粉末)のCa量も前記ICP発光分光分析法で確認した。   The composition of the heat insulating material was determined by ICP (inductively coupled plasma) emission spectroscopy. Further, the Ca amount of the Ca additive (Ca—Si alloy powder) was also confirmed by the ICP emission spectroscopic analysis method.

上記Ca添加剤および保温材に含まれるCa量から、表2に示す(合計Ca換算添加量/浴面の表面積)を算出した。   From the amount of Ca contained in the Ca additive and the heat insulating material, the total amount in terms of Ca / the surface area of the bath surface shown in Table 2 was calculated.

表2において、(合計Ca換算添加量/浴面の表面積)が0.35kg/m2以上10kg/m2以下の場合を「○」、特に0.45kg/m2以上で6kg/m2以下の場合を「◎」と示し、0.35kg/m2未満や10kg/m2超の場合を「×」と示している。 In Table 2, a case (the total surface area Ca in terms amount / bath surface) is 0.35 kg / m 2 or more 10 kg / m 2 or less "○", in particular 6 kg / m 2 or less at 0.45 kg / m 2 or more in the case of shows as "◎", it is shown as "×" in the case of 0.35kg / m 2 less than or 10kg / m 2 greater.

また、Ca添加剤および保温材の成分組成から、X値についても求めた(表2)。
表2において、X値が、0.08以上0.25以下の場合を「○」、特に0.10以上0.23以下の場合を「◎」と示し、0.08未満や0.25超の場合を「×」と示している。
Moreover, it calculated | required also about X value from the component composition of Ca additive and a heat insulating material (Table 2).
In Table 2, a case where the X value is 0.08 or more and 0.25 or less is indicated by “◯”, particularly a case where the X value is 0.10 or more and 0.23 or less is indicated by “◎”, and is less than 0.08 or more than 0.25. In this case, “×” is shown.

鋳込み終了後、鋳型内の溶鋼が完全に凝固完了するまで、鋳型を静置した。そして溶鋼が完全に凝固してから、常法により、凝固した鋼塊を脱型し、その後、約1300℃まで加熱し熱間鍛造を施して、断面直径150〜700mmの鍛造品に仕上げた。
この様にして得られた鍛造品を用い、下記の介在物の形態や疲労特性を評価した。
After casting, the mold was allowed to stand until the molten steel in the mold was completely solidified. Then, after the molten steel was completely solidified, the solidified steel ingot was demolded by a conventional method, and then heated to about 1300 ° C. to perform hot forging to finish a forged product having a cross-sectional diameter of 150 to 700 mm.
Using the forged product thus obtained, the following inclusions and fatigue characteristics were evaluated.

(介在物の組成および個数の評価)
得られた鍛造品の上部相当位置(全長を100%としたときの底面からの距離が70〜100%の範囲内の位置、鋼材上部)と、底部相当位置(全長を100%としたときの底面からの距離が0〜20%の範囲内の位置、鋼材底部)の、軸中心に垂直な断面(それぞれの位置において切り捨てた端材の切断面)において、軸中心から半径(R)方向に向かってR/3位置から小片をそれぞれ切り出し、研磨後、EPMAによる介在物の組成分析(観察視野サイズは100mm2、視野数は1視野/部位)を行った(EPMA装置および測定条件は下記の通りである)。
(Evaluation of composition and number of inclusions)
The upper equivalent position of the obtained forged product (position within the range of 70 to 100% of the distance from the bottom when the total length is 100%, the steel upper part) and the bottom equivalent position (when the total length is 100%) In the cross section perpendicular to the axis center (cut surface of the end material discarded at each position) of the distance within the range of 0 to 20% from the bottom surface (steel bottom), in the radius (R) direction from the axis center Small pieces were cut out from the R / 3 position toward each other, and after polishing, composition analysis of inclusions was performed by EPMA (observation field size is 100 mm 2 , number of fields is 1 field / site) (EPMA apparatus and measurement conditions are as follows) Street).

そして全視野において、介在物長径が5μm以上である、
(i)介在物の全数、および
(ii)CaO含有量が5質量%以上45質量%以下である酸化物系介在物の個数
を求めた。
And in the entire visual field, the inclusion major axis is 5 μm or more,
(I) The total number of inclusions and (ii) the number of oxide inclusions having a CaO content of 5% by mass or more and 45% by mass or less were determined.

そして、[100×上記(ii)/上記(i)](%)を計算して、鋼断面において観察される全介在物数に占める、CaO含有量が5質量%以上45質量%以下である酸化物系介在物数の割合を求めた。   Then, [100 × (ii) / (i)] (%) is calculated, and the CaO content in the total number of inclusions observed in the steel cross section is 5% by mass or more and 45% by mass or less. The ratio of the number of oxide inclusions was determined.

(EPMA装置および測定条件について)
メーカー:日本電子株式会社
型番:JXA−8900RL
加速電圧:15kV
ビーム電流:1.7×10-9
ビーム径:1μm
尚、酸化物と、酸素以外の非金属元素(例えば、N、S等)を含む複合介在物については、上記EPMAで酸化物系介在物を20質量%以上含有するものを、酸化物系介在物と認定した。
(EPMA device and measurement conditions)
Manufacturer: JEOL Ltd. Model: JXA-8900RL
Acceleration voltage: 15 kV
Beam current: 1.7 × 10 -9 A
Beam diameter: 1μm
For composite inclusions containing oxides and non-metallic elements other than oxygen (for example, N, S, etc.), those containing 20 mass% or more of oxide inclusions in the above EPMA are used as oxide inclusions. Certified as a thing.

更に、鋼材底部における軸中心部(OR)の最大介在物の長径も測定した。
これらの結果を表2に示す。表2において、上記割合が5%以上の場合を「○」とし、特に7.5%以上の場合を「◎」と評価した。また、上記割合が5%未満の場合を「×」と評価した。また、上記最大介在物の長径が100μm以下の場合を合格とした。
Furthermore, the major axis of the maximum inclusion at the shaft center (OR) at the bottom of the steel material was also measured.
These results are shown in Table 2. In Table 2, a case where the ratio was 5% or more was evaluated as “◯”, and a case where the ratio was 7.5% or more was evaluated as “「 ”. Moreover, the case where the said ratio was less than 5% was evaluated as "x". Moreover, the case where the long diameter of the said largest inclusion was 100 micrometers or less was set as the pass.

(引張強度の測定)
得られた鍛造品(丸棒)の鋼材上部のR/3部、および鋼材底部のR/3部から、φ6mm×ゲージ長さ30mmの引張試験片(試験片の長手方向は、鍛造品の軸方向から45度傾斜)を各部位1本ずつ採取し、常温にて引張試験(JIS Z 2204、2241)を実施した。
(Measurement of tensile strength)
From the R / 3 part at the top of the steel material of the forged product (round bar) and the R / 3 part at the bottom of the steel material, a tensile test piece of φ6 mm × gauge length 30 mm (the longitudinal direction of the test piece is the axis of the forged product) One portion of each part was collected at 45 ° from the direction, and a tensile test (JIS Z 2204, 2241) was performed at room temperature.

(疲労特性の評価)
得られた鍛造品(丸棒)の鋼材上部のR/3部位置、および鋼材底部のR/3部位置から、下記の試験片をそれぞれ採取し、下記の条件にて疲労試験を実施した。
(Evaluation of fatigue characteristics)
From the R / 3 part position at the top of the steel material and the R / 3 part position at the bottom of the steel material of the obtained forged product (round bar), the following test pieces were sampled and subjected to fatigue tests under the following conditions.

〔疲労試験の条件〕
試験片:直径10mm平滑試験片
(試験片の長手方向は、鍛造品の軸方向から45度傾斜)
試験方法:回転曲げ疲労試験(応力比=−1,回転数:3600rpm)
疲労強度評価方法:階差法
階差応力:20MPa
試験片本数:各5本
各試験片の疲労強度=(破断応力)−(階差応力)
そして、疲労限度の指標として、耐久限度比(疲労強度σ/引張強度σ)を求めた。
[Fatigue test conditions]
Test piece: 10 mm diameter smooth test piece
(The longitudinal direction of the specimen is inclined 45 degrees from the axial direction of the forged product)
Test method: Rotating bending fatigue test (stress ratio = -1, rotation speed: 3600 rpm)
Fatigue strength evaluation method: Difference method Difference stress: 20 MPa
Number of specimens: 5 each Fatigue strength of each specimen = (breaking stress)-(step stress)
Then, a durability limit ratio (fatigue strength σ w / tensile strength σ B ) was determined as an index of fatigue limit.

この疲労試験を5本の試験片で行って、まず、鋼材上部のR/3部位置における耐久限度比の平均値を求め、更に、5本の試験片における耐久限度比の前記平均値と最小値との差を求めて、鍛造品の半径方向の疲労特性のバラツキを評価した。この結果を表2に示す。表2において、前記平均値と最小値との差が0.025以下の場合を「○」(バラツキが小さい。特に半径方向のバラツキが小さい)と評価し、0.025超の場合を「×」と評価した。   This fatigue test is performed on five test pieces, and first, the average value of the endurance limit ratio at the R / 3 part position of the upper part of the steel material is obtained, and further, the average value and the minimum of the endurance limit ratio in the five test pieces are obtained. The difference from the value was obtained, and the variation in the fatigue characteristics in the radial direction of the forged product was evaluated. The results are shown in Table 2. In Table 2, the case where the difference between the average value and the minimum value is 0.025 or less is evaluated as “◯” (the variation is small. The variation in the radial direction is particularly small), and the case where it exceeds 0.025 is evaluated as “× ".

また、5本の試験片を用いて求めた鋼材上部のR/3部位置における耐久限度比の平均値「ETOP」と、5本の試験片を用いて求めた鋼材底部のR/3部位置における耐久限度比の平均値「EBOT」の比(ETOP/EBOT)を求めた。この結果を表2に示す。表2において、ETOP/EBOTが0.90以上1.07以下の場合を「○」と評価し、0.90未満または1.07超の場合を「×」と評価した。 In addition, the average value “E TOP ” of the durability limit ratio at the R / 3 part position of the upper part of the steel obtained using the five test pieces and the R / 3 part of the steel part obtained using the five test pieces The ratio (E TOP / E BOT ) of the average value “E BOT ” of the endurance limit ratio at the position was determined. The results are shown in Table 2. In Table 2, the case where E TOP / E BOT was 0.90 or more and 1.07 or less was evaluated as “◯”, and the case where it was less than 0.90 or more than 1.07 was evaluated as “x”.

Figure 0005856485
Figure 0005856485

表2より次のように考察することができる。即ち、No.1〜11は、本発明で規定する方法で製造し、鋼中の介在物が規定を満たすものであるため、鍛造品の半径方向の疲労特性のバラツキが抑制されていると共に、高さ方向の疲労特性のバラツキも抑制されている。   From Table 2, it can be considered as follows. That is, no. Nos. 1 to 11 are manufactured by the method specified in the present invention, and the inclusions in the steel satisfy the specifications. Therefore, the variation in the fatigue characteristics in the radial direction of the forged product is suppressed, and the height direction Variations in fatigue characteristics are also suppressed.

これに対し、No.12〜28は、本発明で規定する条件(特には、条件b、条件cのうちの1以上)で製造していないため、CaO含有量が5質量%以上45質量%以下である酸化物系介在物を十分確保できず、疲労特性にバラツキが生じる結果となった。   In contrast, no. 12 to 28 are not manufactured under the conditions defined in the present invention (in particular, one or more of condition b and condition c), so that the CaO content is 5% by mass or more and 45% by mass or less. The inclusions could not be secured sufficiently, resulting in variations in fatigue characteristics.

表2の結果を用いて整理した、規定の介在物(CaO含有量が5質量%以上45質量%以下である酸化物系介在物)の割合と、耐久限度比の最小値と平均値との差との関係を、図1に示す。この図1より、上記CaO含有酸化物系介在物の割合を5%以上とすることによって、鋼材上部におけるR/3部の、耐久限度比の最小値と平均値との差を0.025以下と小さくできることがわかる。また、表2の結果を用いて整理した、規定の介在物(CaO含有量が5質量%以上45質量%以下である酸化物系介在物)の割合とETOP/EBOTとの関係を図2に示す。この図2より、上記CaO含有酸化物系介在物の割合を5%以上とすることによって、ETOP/EBOTを確実に0.90以上1.07以下の範囲内にでき、鋼材上部と鋼材底部の疲労特性のバラツキをも低減できることがわかる。 The ratio of specified inclusions (oxide inclusions with a CaO content of 5 mass% or more and 45 mass% or less), the minimum value and the average value of the endurance limit ratio, arranged using the results of Table 2 The relationship with the difference is shown in FIG. From FIG. 1, by setting the ratio of the CaO-containing oxide inclusions to 5% or more, the difference between the minimum value and the average value of the R / 3 part R / 3 part in the upper part of the steel material is 0.025 or less. It can be seen that it can be made smaller. In addition, the relationship between the ratio of specified inclusions (oxide inclusions having a CaO content of 5% by mass or more and 45% by mass or less) and E TOP / E BOT arranged using the results of Table 2 is shown. It is shown in 2. From FIG. 2, by setting the ratio of the CaO-containing oxide inclusions to 5% or more, E TOP / E BOT can be reliably within the range of 0.90 or more and 1.07 or less. It can be seen that variations in the fatigue characteristics of the bottom can also be reduced.

Claims (2)

C:0.2〜0.6%(「質量%」の意味。化学成分について以下同じ)、
Si:0.05〜0.50%、
Mn:0.20〜1.5%、
Ni:0.10〜3.50%、
Cr:0.9〜4%、
Mo:0.10〜0.70%、
V:0.01〜0.20%、
Al:0.005〜0.10%、
S:0.008%以下(0%を含まない)、
Ti:0.005%以下(0%を含まない)、および
Total O:0.0025%以下(0%を含まない)を満たし、
残部が鉄及び不可避不純物からなるものであって、
鋼断面において観察される全介在物数に占める、CaO含有量が5質量%以上45質量%以下である酸化物系介在物数の割合が、5%以上であり、かつ、
鋼断面において観察される最大介在物の長径が100μm以下であることを特徴とする鍛造品
C: 0.2 to 0.6% (meaning “mass%”; the same applies to chemical components),
Si: 0.05 to 0.50%,
Mn: 0.20 to 1.5%,
Ni: 0.10 to 3.50%,
Cr: 0.9 to 4%,
Mo: 0.10 to 0.70%,
V: 0.01-0.20%,
Al: 0.005 to 0.10%,
S: 0.008% or less (excluding 0%),
Satisfying Ti: 0.005% or less (excluding 0%) and Total O: 0.0025% or less (excluding 0%),
The balance consists of iron and inevitable impurities,
The ratio of the number of oxide inclusions having a CaO content of 5% by mass or more and 45% by mass or less in the total number of inclusions observed in the steel cross section is 5% or more, and
A forged product characterized in that the longest inclusions observed in the steel cross section have a major axis of 100 μm or less.
請求項1に記載の鍛造品を製造する方法であって、溶鋼を鋳型に注入管を介して下方から装入することにより鋳塊を製造する下注ぎ造塊方法を行うに際し、
前記鋳型内の溶鋼に該溶鋼の浴面を被覆するための被覆材を添加した後、保温材を添加し、かつ、必要に応じてCa添加剤を保温材を添加する前又は保温材と同時に添加することとし、
前記保温材と必要に応じて添加するCa添加剤は、
前記浴面の表面積に対する合計Ca換算添加量が0.35kg/m2〜10kg/m2を満たすように添加すると共に、
下記式(1)で示されるX値が0.08〜0.25を満たすように添加することを特徴とする鍛造品の製造方法。
X値=[%Ca]/([%Al]+3[%Fe23]+2[%SiO2]+2[%Mn
2]+[%S]) …(1)
(上記式(1)において、[%Ca]は、保温材中の全成分量に対する、Ca添加剤および保温材に含まれる合計Ca量の割合(モル%)を示し、[%Al]、[%Fe23]、[%SiO2][%MnO2]および[%S]は、それぞれ保温材中の各含有量(モル%)を示す。)
A method for producing a forged product according to claim 1, wherein the ingot casting method for producing an ingot by inserting molten steel into the mold from below through an injection tube is performed.
After the coating material for coating the molten steel bath surface is added to the molten steel in the mold, a heat insulating material is added, and if necessary, before adding the heat insulating material or simultaneously with the heat insulating material. To add,
The heat-retaining material and the Ca additive to be added as necessary are:
With total Ca in terms of amount to the surface area of the bath surface is added so as to satisfy the 0.35kg / m 2 ~10kg / m 2 ,
A method for producing a forged product , wherein the X value represented by the following formula (1) is added so as to satisfy 0.08 to 0.25.
X value = [% Ca] / ([% Al] +3 [% Fe 2 O 3 ] +2 [% SiO 2 ] +2 [% Mn
O 2 ] + [% S]) (1)
(In the above formula (1), [% Ca] represents the ratio (mol%) of the total amount of Ca contained in the Ca additive and the heat insulating material with respect to the total amount of the components in the heat insulating material, [% Al], [ % Fe 2 O 3 ], [% SiO 2 ], [% MnO 2 ], and [% S] represent the respective contents (mol%) in the heat insulating material.)
JP2012003604A 2012-01-11 2012-01-11 Forged product and manufacturing method thereof Expired - Fee Related JP5856485B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012003604A JP5856485B2 (en) 2012-01-11 2012-01-11 Forged product and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012003604A JP5856485B2 (en) 2012-01-11 2012-01-11 Forged product and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2013142180A JP2013142180A (en) 2013-07-22
JP5856485B2 true JP5856485B2 (en) 2016-02-09

Family

ID=49038921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012003604A Expired - Fee Related JP5856485B2 (en) 2012-01-11 2012-01-11 Forged product and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5856485B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103409699B (en) * 2013-09-06 2017-05-10 陕西华威锻压有限公司 Steel forging with ultra-high strength and ultra-high low-temperature impact on box body of fracturing pump valve and manufacturing method of steel forging

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003145250A (en) * 2001-11-14 2003-05-20 Daido Steel Co Ltd Method for manufacturing purified steel
JP4606321B2 (en) * 2005-12-26 2011-01-05 株式会社神戸製鋼所 High cleanliness steel with excellent fatigue strength
JP5138991B2 (en) * 2007-06-28 2013-02-06 株式会社神戸製鋼所 Machine structural steel with excellent machinability
JP2009173961A (en) * 2008-01-22 2009-08-06 Kobe Steel Ltd Steel for forging and forged product obtained by using the same
JP2009174033A (en) * 2008-01-28 2009-08-06 Kobe Steel Ltd Steel for machine structure having excellent machinability

Also Published As

Publication number Publication date
JP2013142180A (en) 2013-07-22

Similar Documents

Publication Publication Date Title
JP5935944B2 (en) Low oxygen clean steel and low oxygen clean steel products
JP4964211B2 (en) Forged product and crankshaft manufactured from the forged product
JP4150054B2 (en) FORGING STEEL, PROCESS FOR PRODUCING THE SAME AND FORGED PRODUCT
JP5374062B2 (en) Forging steel, forged steel, and crankshaft
JP5950306B2 (en) Fe-Ni-Cr alloy superior in sulfuric acid corrosion resistance, intergranular corrosion resistance and surface properties, and method for producing the same
JP6314911B2 (en) Manufacturing method of high cleanliness steel
JP5919000B2 (en) Manufacturing method of steel for forging
JP5277556B2 (en) Method for producing Ti-containing ultra-low carbon steel and method for producing Ti-containing ultra-low carbon steel slab
JP6569694B2 (en) Manufacturing method of high cleanliness steel
JP2007063589A (en) Steel bar or wire rod
CN106011688B (en) High Mn content Fe-Cr-Ni alloy and its manufacturing method
JP4606321B2 (en) High cleanliness steel with excellent fatigue strength
JP5452253B2 (en) Forged steel and crankshaft
CN111936654B (en) Ferritic stainless steel having excellent ridging resistance
JP4280163B2 (en) Low carbon steel sheet, low carbon steel slab and method for producing the same
US20120261085A1 (en) Extremely low carbon steel plate excellent in surface characteristics, workability, and formability and a method of producing extremely low carbon cast slab
WO2009123272A1 (en) Steel-making method for titanium-containing ultralow carbon steel and method for manufacturing titanium-containing ultralow carbon steel slab
JP2010236030A (en) Method for refining molten steel
JP5856485B2 (en) Forged product and manufacturing method thereof
JP5443331B2 (en) Forged steel and assembled crankshaft
JP4160103B1 (en) Steel ingot for forging
JP5089267B2 (en) Integrated crankshaft
CN113913676A (en) Metallurgy method for improving morphology of as-cast sulfide of medium-carbon high-sulfur free-cutting steel
JP5797461B2 (en) Stainless steel and manufacturing method thereof
JP2016196031A (en) Method for producing continuously cast slab

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151211

R150 Certificate of patent or registration of utility model

Ref document number: 5856485

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees