JP5856138B2 - Power generation method using a Koma type water turbine that uses seawater - Google Patents

Power generation method using a Koma type water turbine that uses seawater Download PDF

Info

Publication number
JP5856138B2
JP5856138B2 JP2013273832A JP2013273832A JP5856138B2 JP 5856138 B2 JP5856138 B2 JP 5856138B2 JP 2013273832 A JP2013273832 A JP 2013273832A JP 2013273832 A JP2013273832 A JP 2013273832A JP 5856138 B2 JP5856138 B2 JP 5856138B2
Authority
JP
Japan
Prior art keywords
water
power generation
turbine
seawater
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013273832A
Other languages
Japanese (ja)
Other versions
JP2015117687A (en
Inventor
明子 佐賀
明子 佐賀
Original Assignee
明子 佐賀
明子 佐賀
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 明子 佐賀, 明子 佐賀 filed Critical 明子 佐賀
Priority to JP2013273832A priority Critical patent/JP5856138B2/en
Publication of JP2015117687A publication Critical patent/JP2015117687A/en
Application granted granted Critical
Publication of JP5856138B2 publication Critical patent/JP5856138B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/50Energy storage in industry with an added climate change mitigation effect

Description

本考案は河川の水や海から海水を取水し、水路や流水管を整備して海水等の流を作り出し、その水流を利用してコマ型水車により発電を行うもので、河川の水や海の海水を利用して、二酸化炭素を搬出しないで発電を行なうことに関するものである。 The present invention takes seawater from river water and the sea, creates a flow of seawater, etc. by developing waterways and flow pipes, and uses the water flow to generate electricity with a coma-type turbine. It is related to generating electricity without carrying out carbon dioxide using seawater.

水を利用した発電方法としては規模が大きいダム式による水力発電や小規模な発電としての小水力発電などにより発電が行われている。
海洋エネルギーの利用については、潮流や海流を利用した発電の実験や研究が行なわれ、実施されている。
大規模発電はダム式による発電により行われているが、これに反して水車などを利用した発電の小水力発電は規模的には小さく発電量が比較的少ない。
海洋エネルギーとされる海水を取水して水路を設置し流水管を整備して、発電に利用する方法は確立はされていないと思われる。
このようなことから、水流をより安定的に吸収して発電を行うための発電用コマ型水車を整備して海水を利用して発電を行うものである。
As a power generation method using water, power generation is performed by hydroelectric power generation by a large dam type or small hydropower generation as a small-scale power generation.
Regarding the use of ocean energy, experiments and research on power generation using tidal currents and ocean currents have been conducted and implemented.
Large-scale power generation is performed by dam-type power generation, but on the other hand, small hydropower generation using a water turbine is small in scale and generates a relatively small amount of power.
It has not been established how to take seawater, which is considered to be ocean energy, install a water channel, develop a water pipe, and use it for power generation.
For this reason, a power generation top type water turbine for generating power by absorbing water flow more stably is provided and power generation is performed using seawater.

特開2010−43616号公報JP 2010-43616 A 特開2012−26336号公報JP 2012-26336 A

潮流発電装置の実用化に関する調査研究 海上保安試験研究センターResearch on practical application of tidal current power generation equipment Japan Coastal Security Research Center

海洋エネルギーの利用については、潮流や海流を利用した発電の実験や研究、地域においては海洋温度差発電などが行われている。
水力発電において、多くの発電所では発電を行うために、一般的には発電用水車により発電を行う水車発電機により発電が行われている。
しかし、発電量という面において、水力発電に比較して、小水力発電による発電においては発電量が少ない。海は無限のダム湖のようなものであり、海水を利用して発電を行うためには安定した水流をどのような手段や方法により確立させるか、又、河川の水を発電に利用するためには、河川より取水した水の水流の安定化を図り、安定的発電の方法を構築することができるかが課題である。
As for the use of ocean energy, experiments and research on power generation using tidal currents and ocean currents, and ocean temperature difference power generation are being conducted in the region.
In hydroelectric power generation, in order to generate power at many power plants, power generation is generally performed by a turbine generator that generates power using a power generation turbine.
However, in terms of power generation, power generation by small hydropower generation is less than that by hydropower generation. The sea is like an endless dam lake. In order to generate power using seawater, what means and methods should be used to establish a stable water flow, and to use river water for power generation The challenge is whether to stabilize the water flow taken from the river and build a stable power generation method.

海水等を利用して発電を行うためには、持続的発電の方法の明確化と効率性を高めるため、発電コストの軽減化を可能とする方法などを明らかにし、発電に関する新たなる方法の確立をどのようにして図るかが課題である。  In order to generate power using seawater, etc., in order to clarify the method of sustainable power generation and improve efficiency, we will clarify methods that can reduce power generation costs and establish new methods for power generation. The challenge is how to achieve this.

海の海水や河川の水は二酸化炭素を排出しないで発電に利用できる最良の発電用エネルギーともいえる。特に海洋エネルギーである海の海水は無限に存在することから、発電に利用するには最も利用しやすいものと考えられる。
海水は水量的にも安定しており、水流を受けやすい形にした発電用コマ型水車等により、海水などの流れを利用して発電を行う方法である。水の深さや水路、流水管などを調整して水流をつくりだし、また、流水管内の海水等にゴミなどが混入しないようにして、流水管内を流れる海水などの流れる速度を速める工夫をして、コマ型水車等を数多く設置して、多くの発電施設の整備を行えば、安定的な発電と発電コストの軽減化を図ることが可能となる。
これまで未利用であった海水の再利用が図られることにつながる。
Sea water and river water can be said to be the best power generation energy that can be used for power generation without emitting carbon dioxide. In particular, ocean energy, which is ocean energy, exists indefinitely, and is considered to be the easiest to use for power generation.
Seawater is stable in terms of the amount of water, and is a method of generating power by using the flow of seawater or the like using a power generation top type water turbine or the like that is easily subjected to water flow. Adjust the water depth, water channel, flow pipe, etc. to create a water flow, and prevent debris from entering the sea water etc. in the water flow pipe, and devise to increase the flow speed of sea water flowing in the flow pipe, If a large number of Koma type turbines are installed and many power generation facilities are established, stable power generation and reduction of power generation costs can be achieved.
This will lead to the reuse of seawater that was previously unused.

発明の効果としては、これまで活用されている水車とは違う、より水流を受けやすくした発電用コマ型水車を利用した発電が可能となれば、未利用エネルギーである海水などの活用が図られ、環境面においても二酸化炭素を排出せず、恒久的発電が可能となる。
海の海水は無限大に存在し、安定していることから、コマ型水車等を利用した発電は発電量を大幅に増加させることにもつながり、地球温暖化対策に貢献することとなる。数多くの発電施設を整備して発電を可能とすればその効果が大きい。
そして、発電量を増加させ、発電コストを抑えることにより発電の低価格化を可能とする効果も期待できる。
As an effect of the invention, if it is possible to generate electricity using a coma-type turbine for power generation that is more susceptible to water flow, which is different from the turbines that have been used so far, the utilization of unutilized energy such as seawater can be achieved. In terms of the environment, carbon dioxide is not emitted and permanent power generation is possible.
Seawater in the ocean exists infinitely and is stable, so power generation using a Koma type water turbine will greatly increase the amount of power generation and contribute to global warming countermeasures. If a large number of power generation facilities are installed and power generation is possible, the effect will be great.
And the effect of enabling the price reduction of electric power generation by increasing electric power generation amount and suppressing electric power generation cost can also be expected.

海水利用の発電施設の平面図Plan view of power generation facility using seawater 海水利用の発電施設の断面図Cross section of power generation facility using seawater 発電用コマ型水車の平面図Top view of power generation top type turbine 発電用コマ型水車の断面図Cross section of power generation top type turbine 水利用の発電施設の平面図Top view of water-based power generation facility

以下、本発明の実施の形態を図1、図2、図3、図4、図5に基づいて説明する。 Hereinafter, embodiments of the present invention will be described with reference to FIGS. 1, 2, 3, 4 , and 5.

海水などを利用して発電を行うことは、水力発電や小水力発電などを参考とすれば、海水は量的にも安定していることから発電に利用することは十分可能である。
海水を利用する場合、海水利用の発電施設の平面図(図1)では、海から1取水口より海水を2取水管を通して、海水の流速を一定化させるための3流速調整槽に取水し、海水利用の発電施設の断面図(図2)で示すように、3流速調整槽から9発電施設までの傾斜で海水の流れを作り出し、その水流により、発電用コマ型水車の平面図(図3)及び発電用コマ型水車の断面図(図4)のような、10発電用コマ型水車を回転させることにより発電に利用しようとするものである。又、河川の水を利用する場合には水利用の発電施設の平面図(図5)のように、河川から1取水口より水を2取水管を通して取水し、3流速調整槽から9発電施設までの4水路や5流水管の傾斜で流速を速めて10発電用コマ型水車を回転させ発電に利用する。
The generation of power using seawater and the like is sufficiently possible to use for power generation because seawater is quantitatively stable with reference to hydropower and small hydropower.
In the case of using seawater, in the plan view of the power generation facility using seawater (Fig. 1), the seawater is taken from the seawater through the 1 water intake through the 2 water intake pipes into the 3 flow rate adjustment tanks for stabilizing the seawater flow velocity. As shown in the cross-sectional view of the power generation facility using seawater (Fig. 2), a flow of seawater is created at an inclination from the 3 flow rate adjustment tanks to the 9 power generation facilities, and the plan view of the power generation top type turbine (Fig. 3) ) And a cross-sectional view of the power generation top type water turbine (FIG. 4), it is intended to be used for power generation by rotating a 10 power generation top type water turbine. In addition, when using river water, as shown in the plan view of the power generation facility using water (Fig. 5), water is taken from one intake through the two intake pipes, and nine power generation facilities are installed from the three flow rate adjustment tanks. The speed of the flow is increased by the inclination of the four water channels and the five water pipes until the 10 power generation coma turbine is rotated and used for power generation.

安定的な水流をつくりだすため、海水利用の発電施設では、海水を2取水管より3流速調整槽に取水し、3流速調整槽から4水路や5流水管に流れる水量を調整することにより、水流を安定させ、4水路に傾斜や段差(図2−1の拡大図)をつけて、流速を速める工夫をして発電に必要な速さの水流を作りだす。
また、多くの海水を取水して発電に利用することは、同時に多くの海水の排水を行う必要があることから、17排水用水槽から6排水管により排水を行う。発電施設の横に7排水用側溝を整備して4水路よりあふれた海水等の排水を行う。
In order to create a stable water flow, in the power generation facility using seawater, the water flow is adjusted by taking the seawater from the 2 intake pipes into the 3 flow rate adjustment tank and adjusting the amount of water flowing from the 3 flow adjustment tank to the 4 channels and 5 flow pipes. Stabilize the four water channels with slopes and steps (enlarged view in Fig. 2-1), and create a water flow at the speed necessary for power generation by making efforts to increase the flow velocity.
In addition, taking a large amount of seawater and using it for power generation requires draining a large amount of seawater at the same time. 7 drainage gutters will be installed next to the power generation facility to drain the seawater overflowing from the 4 waterways.

発電に利用する水車の発電能力を高めるためには、発電用コマ型水車の平面図(図3)や発電用コマ型水車の断面図(図4)で示すように、水車がより多くの水流を受け、水車の本体部の回転力と、水車の回転軸の回転力を高める必要がある。
このような要件を満たすことを目指したものが発電用としてのコマ型水車であり、この10発電用コマ型水車を設置し発電に利用するものである。
発電用コマ型水車の特徴は発電用コマ型水車の平面図(図3)及び発電用コマ型水車の断面図(図4)で示すように、水車が水流を受ける部分を多くするために、11コマ型水車の羽根を水車の外側と内側にも設置し、その二段の羽根で水流を受けて先端部分の外側の羽根まで水流を受けるようにしたことである。そして、水車の回転を水車内部に設置した大・中・小の歯車により、歯車の回転数を増やし、12回転伝導軸に伝えるものである。
また、水車内部の歯車の設置部分には外側から海水が入らないように壁で仕切る。
水車の中に設置された歯車の回転については、発電用コマ型水車の断面図(図4)のように、14大歯車と15中歯車の歯車を噛み合わせて時計回りに、15中歯車と16小歯車を噛み合わせて反時計回りに、16小歯車と12回転伝導軸を噛み合わせて回転させる。
そして、その回転力を12回転伝導軸に伝えるものである。さらに、13回転伝導軸保護管内部の12回転伝導軸の回転力が下がらないようにして、9発電施設内に設置された8発電機にその回転力を伝え、8発電機を稼働させて発電を行うものである。
また、コマ型水車内部に設置される歯車の数については、コマ型水車の大きさにより、多くの歯車を設置したり、コマ型水車の二段の羽根を三段にするなどして回転力を高めるように工夫を行う。
コマ型水車を支えるために、(図1−1の拡大図)で示すように、13回転伝導軸保護管で10発電用コマ型水車を両側の18支柱で支える。また、流速を速めるため、4水路に段差つけて、11コマ型水車の羽根に水流が落下するようにして、羽根を回転しやすいようにする。10発電用コマ型水車と海水が接する部分については(図2−1)で示すように、13回転伝導軸保護管の下部の部分の11コマ型水車の羽根部分とする。これは、水中の羽根と海水の外の羽根が連動して安定した回転力を維持するためである。
このように、コマ型水車は、水流を受ける羽根を二段にして水車の回転力を高めることと、水車内部に歯車を設置し回転数を増やすようにしたことである。そして、水車内部の14大歯車、15中歯車、16小歯車の連結された歯車部分と12回転伝導軸とを連結、接続させて設置し、12回転伝導軸が13回転伝導軸保護管の内部を通り9発電施設内の8発電機にその回転を伝導する仕組みとなる。
コマ型水車は水流の落差の小さい所でも利用できるようにしたもので、発電に利用して回転力を高めるという点で通常の水車に比べ、コマ型水車の方が回転力が強く、速く回転することができるものである。
このように、海水を利用するコマ型水車による発電は河川の水を利用して行うことも可能であり、コマ型水車による発電は発電量を高め、恒久的かつ安定的な発電を可能とするものである。
In order to increase the power generation capacity of the water turbine used for power generation, as shown in the plan view of the power generation top type water turbine (FIG. 3) and the cross section of the power generation top type water turbine (FIG. 4), the water turbine has more water flow. Therefore, it is necessary to increase the rotational force of the main body of the turbine and the rotational force of the rotating shaft of the turbine.
A coma-type water turbine for power generation is aimed at satisfying such requirements, and this 10-power coma water turbine is installed and used for power generation.
As shown in the plan view of the power generation top type water turbine (FIG. 3) and the cross section of the power generation top type water turbine (FIG. 4), the characteristics of the power generation top type water turbine are as follows. The blades of the 11-frame type water wheel are also installed on the outside and inside of the water wheel so that the two-stage blades receive the water flow and receive the water flow up to the blades outside the tip. The rotation speed of the water wheel is increased by the large, medium and small gears installed inside the water wheel, and the rotation speed of the gear is increased and transmitted to the 12-rotation conduction shaft.
In addition, the installation portion of the gear inside the water turbine is partitioned by a wall so that seawater does not enter from the outside.
As for the rotation of the gears installed in the water wheel, as shown in the sectional view of the power generation top type water wheel (FIG. 4), the 14 large gears and the 15 middle gears mesh with each other in the clockwise direction, The 16 small gear is meshed with the 16 small gear and the 12 rotating transmission shafts and rotated counterclockwise.
The rotational force is transmitted to the 12-rotation conduction axis. Further, the rotational force of the 12-rotation transmission shaft inside the 13-rotation transmission shaft protection tube is not lowered, the rotational force is transmitted to the 8 generators installed in the 9 power generation facilities, and the 8 generators are operated to generate power. Is to do.
Also, regarding the number of gears installed inside the Koma type turbine, depending on the size of the Koma type turbine, many gears can be installed, or the two stages of blades of the Koma type turbine can be set in three stages to achieve a rotational force. Devise to increase
In order to support the top type water turbine, as shown in (enlarged view of FIG. 1-1), the 10 power generation top type water turbine is supported by 18 struts on both sides with a 13-rotation conduction shaft protection tube. Further, in order to increase the flow speed, a step is provided in the four water channels so that the water flow falls on the blades of the 11-frame type water turbine so that the blades can be easily rotated. As shown in FIG. 2A, the portion where the 10 power generation top type turbine and the seawater are in contact with each other is the blade portion of the 11 top type turbine, which is the lower part of the 13-rotation conduction shaft protective tube. This is because the blades under water and the blades outside the seawater work together to maintain a stable rotational force.
In this way, the top type water wheel is to increase the rotational force of the water wheel by providing two stages of blades that receive the water flow, and to increase the rotational speed by installing a gear in the water wheel. And the 14 large gears, the 15 middle gears, and the 16 small gears inside the water turbine are connected to and connected to the 12 rotation transmission shaft, and the 12 rotation transmission shaft is installed inside the 13 rotation transmission shaft protective tube. It is a mechanism to transmit the rotation to 8 generators in 9 power generation facilities.
The Koma type turbine is designed to be used even in places where the head of the water flow is small, and the Koma type turbine has a stronger rotational force than the normal turbine in that it is used for power generation to increase the rotational force. Is something that can be done.
In this way, power generation using the top water turbine that uses seawater can be performed using river water, and power generation using the top water turbine increases the amount of power generation, enabling permanent and stable power generation. Is.

発電施設の建設においては、ダム建設と比較し建設事業費は抑えることができ、設置場所については、ダム建設においては山間部などで立地場所を求めることが大変であるが、海水や水を利用したコマ型水車による発電を行うための発電施設の立地、建設場所は海岸に近い地域や比較的平地に近い河川の側など、発電施設建設においても、比較的容易に求めることが可能である。発電用コマ型水車を利用した発電施設を水路の両側に設置したりするなど、発電施設を整備し発電を行えば発電コストの抑制と発電量を増やすことができる。  In the construction of power generation facilities, the construction cost can be reduced compared to dam construction, and it is difficult to find the location in the mountainous area, etc. for the dam construction, but using seawater and water The location and construction location of the power generation facility for generating power using the Koma type water turbine can be obtained relatively easily even in the construction of the power generation facility such as the area close to the coast or the river side relatively close to the flat ground. For example, power generation facilities using power generation top-type turbines can be installed on both sides of the waterway, and power generation costs can be reduced and the amount of power generated can be increased by generating power generation facilities.

発電において、海や河川から海水や水を取水して発電に利用することは比較的容易に行うことができることから、コマ型水車による発電は一地点における発電量を増加させることが可能となり発電コストの軽減化を図ることができる。
また、送電面においてもダムなどの水力発電施設とは違い山間部ではなく比較的、平坦な平野部や海岸に近い地点に送電設備が設置されることが可能となる。
このように、海水を発電に利用することは、発電施設の立地場所や建設コストの面においても軽減化が図られ、安定的、恒久的発電が具体的に明確化することにもつながり電気料金の低価格化を推進し、産業上の利用の拡大を可能とすることができる。
In power generation, it is relatively easy to take seawater and water from the sea or river and use it for power generation. Can be reduced.
Also, in terms of power transmission, unlike hydroelectric power generation facilities such as dams, power transmission facilities can be installed not on mountainous areas but on relatively flat plains or points close to the coast.
In this way, the use of seawater for power generation reduces the location of the power generation facility and the construction cost, and also leads to a concrete clarification of stable and permanent power generation. It is possible to expand the industrial use by promoting the lowering of prices.

1 取水口
2 取水管
3 流速調整槽
4 水路
5 流水管
6 排水管
7 排水用側溝
8 発電機
9 発電施設
10 発電用コマ型水車
11 コマ型水車の羽根
12 回転伝導軸
13 回転伝導軸保護管
14 大歯車
15 中歯車
16 小歯車
17 排水用水槽
18 支柱
DESCRIPTION OF SYMBOLS 1 Intake port 2 Intake pipe 3 Flow rate adjustment tank 4 Water channel 5 Flowing water pipe 6 Drain pipe 7 Drain side gutter 8 Generator 9 Power generation facility 10 Power generation top piece turbine 11 Top blade type blade 12 Rotation conduction shaft 13 Rotation conduction shaft protection tube 14 Large gear 15 Medium gear 16 Small gear 17 Drainage tank 18 Prop

Claims (2)

海水や河川の水を発電に利用する方法として、海水や河川の水を取水口より流速調整槽に取水し水路や流水管に流れる水量を調整して、水路に傾斜や段差など落差をつけて、発電に必要な速さの水流を作りだし、そして、コマ型水車は発電に利用するために水車の羽根を外側と内側の二段にして羽が水流を受けやすくして、その水流を受けて水車を回転させ、水車内部に歯車を設置し、その大・中・小の歯車と回転伝導軸を連結させて、歯車から回転伝導軸へ回転を伝え、その回転を発電機等発電施設に伝えるようにした水車で、海水や水の流速を利用して発電を行うコマ型水車を利用した発電の方法の登録請求を行うものである。As a method of using seawater and river water for power generation, take the seawater and river water into the flow rate adjustment tank from the water inlet and adjust the amount of water flowing to the waterway and water pipe, and make a drop such as an inclination or a step in the waterway In order to generate water flow at a speed necessary for power generation, and the Koma type water turbine is used for power generation, the blades of the water turbine are arranged in two stages on the outside and inside to make the wings easy to receive the water flow. Rotate the water wheel, install a gear inside the water wheel, connect the large, medium, and small gears to the rotation transmission shaft, transmit the rotation from the gear to the rotation transmission shaft, and transmit the rotation to the power generation facility such as a generator. With such a water turbine, a registration request is made for a method of power generation using a top type water turbine that generates power using the flow rate of seawater or water. 海水や河川の水等の水流を利用して発電を行う水車の機能を高めるため、水車の羽根を二段にし、その二段の羽で水流を受けるようにし、水車内部に大・中・小の歯車を連結させた回転伝導軸を設置するもので、水車の形状は独楽(コマ)を横にした形で、この発電用コマ型水車は、羽の一段目の外側の羽で水流を受け、さらに水流を内側に引き込み内側の二段目の羽で水流を受けて水車の回転を速めるようにし、又、水車内部に設置した歯車の大歯車から中歯車に、中歯車から小歯車に回転を伝え、小歯車から回転伝導軸へと歯車を噛み合わせて回転伝導軸を回転させて、発電施設の発電機と連結させて発電を行う発電用コマ型水車の登録請求を行うものである。In order to enhance the function of a water turbine that generates electricity using water flow such as seawater or river water, the blades of the water turbine are made to have two stages, and the two-stage feathers receive the water flow. The turbine wheel is shaped like a spinning top (coma) on the side, and this power generation top-type water turbine receives water from the outer wings of the first wing. Further, the water flow is drawn inward so that the water flow is received by the second wing on the inner side to speed up the rotation of the water wheel. The transmission gear is engaged from the small gear to the rotating transmission shaft to rotate the rotating transmission shaft, and is connected to the generator of the power generation facility to make a registration request for a power generation top type turbine.
JP2013273832A 2013-12-17 2013-12-17 Power generation method using a Koma type water turbine that uses seawater Active JP5856138B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013273832A JP5856138B2 (en) 2013-12-17 2013-12-17 Power generation method using a Koma type water turbine that uses seawater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013273832A JP5856138B2 (en) 2013-12-17 2013-12-17 Power generation method using a Koma type water turbine that uses seawater

Publications (2)

Publication Number Publication Date
JP2015117687A JP2015117687A (en) 2015-06-25
JP5856138B2 true JP5856138B2 (en) 2016-02-09

Family

ID=53530626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013273832A Active JP5856138B2 (en) 2013-12-17 2013-12-17 Power generation method using a Koma type water turbine that uses seawater

Country Status (1)

Country Link
JP (1) JP5856138B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10259780A (en) * 1997-03-18 1998-09-29 Joji Harada Slide blade vertical water turbine, and power generating device thereby
JP2005351125A (en) * 2004-06-09 2005-12-22 Yasuhisa Choshoin Laterally long water turbine type water flow generator
JP2012077618A (en) * 2010-09-30 2012-04-19 Chen-Zhang Lin Circulation power generation device
CN102230438B (en) * 2011-06-08 2014-07-16 郭振家 Water conservancy channel and river channel combined type water wagon power generation
US20150014995A1 (en) * 2012-01-17 2015-01-15 Toshihisa Nishioka Marine power generating system and marine power generating method

Also Published As

Publication number Publication date
JP2015117687A (en) 2015-06-25

Similar Documents

Publication Publication Date Title
US20100289267A1 (en) Integrated power system combining tidal power generation and ocean current power generation
KR20100131078A (en) Float type hydraulic power generater
CN104373281A (en) Hydropower generator
US20140319840A1 (en) Hydroelectric system
KR20130016783A (en) Tidal current power plant
KR101363416B1 (en) Turbine-generator for small hydropower plant using treated water at sewage disposal plant and construction system structure
JP2009270491A (en) Ocean current power generating system in english channel
RU2347935C2 (en) In-channel river plant
JP5856138B2 (en) Power generation method using a Koma type water turbine that uses seawater
JP6078364B2 (en) Water current generator
CN102588187A (en) Variable geometry water turbine for ocean current energy power generation and method thereof
JP3171955U (en) Hydroelectric generator
JP2013068196A (en) Hydraulic power generation apparatus
JP3190459U (en) Power generation using power generation top type water turbines that use seawater and river flow
CN104389731A (en) Tide vertical type water flow power generation unit
KR20130114557A (en) Hydroelectric power generation apparatus using waterway
KR20130016782A (en) Turbine for tidal current power plant
SK287751B6 (en) Flow turbine with pivoted blades
JP5072052B1 (en) Small hydroelectric generator
CN201121554Y (en) Hydraulic turbogenerator
JP6274694B2 (en) Water-lift rotary power generator
KR20140061270A (en) Hydroelectric power generation apparatus using waterway
CN204253260U (en) Flow type hydraulic power generation device
CN204253262U (en) Portable minisize generating power by water current unit
JP5935114B2 (en) Power generator

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151201

R150 Certificate of patent or registration of utility model

Ref document number: 5856138

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250