JP2015117687A - Electric power generation method by block-type water turbine utilizing water flow such as sea water - Google Patents

Electric power generation method by block-type water turbine utilizing water flow such as sea water Download PDF

Info

Publication number
JP2015117687A
JP2015117687A JP2013273832A JP2013273832A JP2015117687A JP 2015117687 A JP2015117687 A JP 2015117687A JP 2013273832 A JP2013273832 A JP 2013273832A JP 2013273832 A JP2013273832 A JP 2013273832A JP 2015117687 A JP2015117687 A JP 2015117687A
Authority
JP
Japan
Prior art keywords
power generation
water
seawater
flow
gear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013273832A
Other languages
Japanese (ja)
Other versions
JP5856138B2 (en
Inventor
明子 佐賀
Akiko Saga
明子 佐賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2013273832A priority Critical patent/JP5856138B2/en
Publication of JP2015117687A publication Critical patent/JP2015117687A/en
Application granted granted Critical
Publication of JP5856138B2 publication Critical patent/JP5856138B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/50Energy storage in industry with an added climate change mitigation effect

Landscapes

  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

PROBLEM TO BE SOLVED: To perform new utilization of sea water for electric power generation under maximum activation of dynamical energy through water flow of sea water together with restriction of construction expenditure in order to perform power generation under utilization of sea water.SOLUTION: A flow velocity adjustment tank 3 is installed so as to make stable water flow of sea water, flow of sea water is made constant to arrange a water passage 4 and a water flowing pipe 5, water flow that flows in the water passage 4 and the water flowing pipe 5 is adjusted to stabilize water flow of sea water and then sea water can be applied to generate power. If flow speed required for generating power is generated, a power generation block-type water turbine 10 increasing its rotational force is installed, and power generation facilities are prepared at both sides of the water passage to generate power, it might become possible to perform stable power generation under utilization of sea water.

Description

本考案は海から海水を取水し、水路や流水管を整備して海水の流を作り出し、その水流を利用してコマ型水車により発電を行うもので、無限に存在する海の海水を利用して、二酸化炭素を搬出しないで発電を行なうことに関するものである。  The present invention takes seawater from the sea, creates a flow of seawater by developing waterways and flow pipes, and uses that water flow to generate electricity with a coma-type water turbine. The present invention relates to generating electricity without carrying out carbon dioxide.

水を利用した発電方法としては規模が大きいダム式による水力発電や小規模な発電としての小水力発電などにより発電が行われている。
海洋エネルギーの利用については、潮流や海流を利用した発電の実験や研究が行なわれ、実施されている。
大規模発電はダム式による発電により行われているが、これに反して水車などを利用した発電の小水力発電は規模的には小さく発電量が比較的少ない。
海洋エネルギーとされる海水を取水して水路を設置し流水管を整備して、発電に利用する方法は確立はされていないと思われる。
このようなことから、水流をより安定的に吸収して発電を行うための発電用コマ型水車を整備して海水を利用して発電を行うものである。
As a power generation method using water, power generation is performed by hydroelectric power generation by a large dam type or small hydropower generation as a small-scale power generation.
Regarding the use of ocean energy, experiments and research on power generation using tidal currents and ocean currents have been conducted and implemented.
Large-scale power generation is performed by dam-type power generation, but on the other hand, small hydropower generation using a water turbine is small in scale and generates a relatively small amount of power.
It has not been established how to take seawater, which is considered to be ocean energy, install a water channel, develop a water pipe, and use it for power generation.
For this reason, a power generation top type water turbine for generating power by absorbing water flow more stably is provided and power generation is performed using seawater.

特開2010−43616号公報JP 2010-43616 A 特開2012−26336号公報JP 2012-26336 A

潮流発電装置の実用化に関する調査研究 海上保安試験研究センターResearch on practical application of tidal current power generation equipment Japan Coastal Security Research Center

海洋エネルギーの利用については、潮流や海流を利用した発電の実験や研究、地域においては海洋温度差発電などが行われている。
水力発電において、多くの発電所では発電を行うために、一般的には発電用水車により発電を行う水車発電機により発電が行われている。
しかし、発電量という面において、水力発電に比較して、小水力発電による発電においては発電量が少ない。海は無限のダム湖のようなものであり、海水を利用して発電を行うためには安定した水流をどのような手段や方法により確立させるか、安定的発電の方法を構築することができるかが課題である。
As for the use of ocean energy, experiments and research on power generation using tidal currents and ocean currents, and ocean temperature difference power generation are being conducted in the region.
In hydroelectric power generation, in order to generate power at many power plants, power generation is generally performed by a turbine generator that generates power using a power generation turbine.
However, in terms of power generation, power generation by small hydropower generation is less than that by hydropower generation. The sea is like an endless dam lake, and in order to generate power using seawater, it is possible to establish a stable power generation method by using what means and methods to establish a stable water flow Is the problem.

海水等を利用して発電を行うためには、持続的発電の方法の明確化と効率性を高めるため、発電コストの軽減化を可能とする方法などを明らかにし、発電に関する新たなる方法の確立をどのようにして図るかが課題である。  In order to generate power using seawater, etc., in order to clarify the method of sustainable power generation and improve efficiency, we will clarify methods that can reduce power generation costs and establish new methods for power generation. The challenge is how to achieve this.

海の海水や河川の水は二酸化炭素を排出しないで発電に利用できる最良の発電用エネルギーともいえる。特に海洋エネルギーである海の海水は無限に存在することから、発電に利用するには最も利用しやすいものと考えられる。
海水は水量的にも安定しており、水流を受けやすい形にした発電用コマ型水車等により、海水などの流れを利用して発電を行う方法である。水の深さや水路、流水管などを調整して水流をつくりだし、また、流水管内の海水等にゴミなどが混入しないようにして、流水管内を流れる海水などの流れる速度を速める工夫をして、コマ型水車等を数多く設置して、多くの発電施設の整備を行えば、安定的な発電と発電コストの軽減化を図ることが可能となる。
これまで未利用であった海水の再利用が図られることにつながる。
Sea water and river water can be said to be the best power generation energy that can be used for power generation without emitting carbon dioxide. In particular, ocean energy, which is ocean energy, exists indefinitely, and is considered to be the easiest to use for power generation.
Seawater is stable in terms of the amount of water, and is a method of generating power by using the flow of seawater or the like using a power generation top type water turbine or the like that is easily subjected to water flow. Adjust the water depth, water channel, flow pipe, etc. to create a water flow, and prevent debris from entering the sea water etc. in the water flow pipe, and devise to increase the flow speed of sea water flowing in the flow pipe, If a large number of Koma type turbines are installed and many power generation facilities are established, stable power generation and reduction of power generation costs can be achieved.
This will lead to the reuse of seawater that was previously unused.

発明の効果としては、これまで活用されている水車とは違う、より水流を受けやすくした発電用コマ型水車を利用した発電が可能となれば、未利用エネルギーである海水などの活用が図られ、環境面においても二酸化炭素を排出せず、恒久的発電が可能となる。
海の海水は無限大に存在し、安定していることから、コマ型水車等を利用した発電は発電量を大幅に増加させることにもつながり、地球温暖化対策に貢献することとなる。数多くの発電施設を整備して発電を可能とすればその効果が大きい。
そして、発電量を増加させ、発電コストを抑えることにより発電の低価格化を可能とする効果も期待できる。
As an effect of the invention, if it is possible to generate electricity using a coma-type turbine for power generation that is more susceptible to water flow, which is different from the turbines that have been used so far, the utilization of unutilized energy such as seawater can be achieved. In terms of the environment, carbon dioxide is not emitted and permanent power generation is possible.
Seawater in the ocean exists infinitely and is stable, so power generation using a Koma type water turbine will greatly increase the amount of power generation and contribute to global warming countermeasures. If a large number of power generation facilities are installed and power generation is possible, the effect will be great.
And the effect of enabling the price reduction of electric power generation by increasing electric power generation amount and suppressing electric power generation cost can also be expected.

海水利用の発電施設の平面図Plan view of power generation facility using seawater 海水利用の発電施設の断面図Cross section of power generation facility using seawater 発電用コマ型水車の平面図Top view of power generation top type turbine 発電用コマ型水車の断面図Cross section of power generation top type turbine

以下、本発明の実施の形態を図1、図2、図3、図4に基づいて説明する。  Hereinafter, embodiments of the present invention will be described with reference to FIGS. 1, 2, 3, and 4.

海水などを利用して発電を行うことは、水力発電や小水力発電などを参考とすれば、海水は量的にも安定していることから発電に利用することは十分可能である。
海水を利用する場合、海水利用の発電施設の平面図(図1)では、海から1取水口より海水を2取水管を通して、海水の流速を一定化させるための3流速調整槽に取水し、海水利用の発電施設の断面図(図2)で示すように、3流速調整槽から9発電施設までの傾斜で海水の流れを作り出し、その水流により、発電用コマ型水車の平面図(図3)及び発電用コマ型水車の断面図(図4)のような、10発電用コマ型水車を回転させることにより発電に利用しようとするものである。
The generation of power using seawater and the like is sufficiently possible to use for power generation because seawater is quantitatively stable with reference to hydropower and small hydropower.
In the case of using seawater, in the plan view of the power generation facility using seawater (Fig. 1), the seawater is taken from the seawater through the 1 water intake through the 2 water intake pipes into the 3 flow rate adjustment tanks for stabilizing the seawater flow velocity. As shown in the cross-sectional view of the power generation facility using seawater (Fig. 2), a flow of seawater is created at an inclination from the 3 flow rate adjustment tanks to the 9 power generation facilities, and the plan view of the power generation top type turbine (Fig. 3) ) And a cross-sectional view of the power generation top type water turbine (FIG. 4), it is intended to be used for power generation by rotating a 10 power generation top type water turbine.

安定的な水流をつくりだすため、海水利用の発電施設では、海水を2取水管より3流速調整槽に取水し、3流速調整槽から4水路や5流水管に流れる水量を調整することにより、水流を安定させ、4水路に傾斜や段差(図2−1の拡大図)をつけて、流速を速める工夫をして発電に必要な速さの水流を作りだす。
また、多くの海水を取水して発電に利用することは、同時に多くの海水の排水を行う必要があることから、17排水用水槽から6排水管により排水を行う。発電施設の横に7排水用側溝を整備して4水路よりあふれた海水等の排水を行う。
In order to create a stable water flow, in the power generation facility using seawater, the water flow is adjusted by taking the seawater from the 2 intake pipes into the 3 flow rate adjustment tank and adjusting the amount of water flowing from the 3 flow adjustment tank to the 4 channels and 5 flow pipes. Stabilize the four water channels with slopes and steps (enlarged view in Fig. 2-1), and create a water flow at the speed necessary for power generation by making efforts to increase the flow velocity.
In addition, taking a large amount of seawater and using it for power generation requires draining a large amount of seawater at the same time. 7 drainage gutters will be installed next to the power generation facility to drain the seawater overflowing from the 4 waterways.

発電に利用する水車の発電能力を高めるためには、発電用コマ型水車の平面図(図3)や発電用コマ型水車の断面図(図4)で示すように、水車がより多くの水流を受け、水車の本体部の回転力と、水車の回転軸の回転力を高める必要がある。
このような要件を満たすことを目指したものが発電用としてのコマ型水車であり、この10発電用コマ型水車を設置し発電に利用するものである。
発電用コマ型水車の特徴は発電用コマ型水車の平面図(図3)及び発電用コマ型水車の断面図(図4)で示すように、水車が水流を受ける部分を多くするために、11コマ型水車の羽根を水車の外側と内側にも設置し、その二段の羽根で水流を受けて先端部分の外側の羽根まで水流を受けるようにしたことである。そして、水車の回転を水車内部に設置した大・中・小の歯車により、歯車の回転数を増やし、12回転伝導軸に伝えるものである。
また、水車内部の歯車の設置部分には外側から海水が入らないように壁で仕切る。
水車の中に設置された歯車の回転については、発電用コマ型水車の断面図(図4)のように、14大歯車と15中歯車の歯車を噛み合わせて時計回りに、15中歯車と16小歯車を噛み合わせて反時計回りに、16小歯車と12回転伝導軸を噛み合わせて回転させる。
そして、その回転力を12回転伝導軸に伝えるものである。さらに、13回転伝導軸保護管内部の12回転伝導軸の回転力が下がらないようにして、9発電施設内に設置された8発電機にその回転力を伝え、8発電機を稼働させて発電を行うものである。
また、コマ型水車内部に設置される歯車の数については、コマ型水車の大きさにより、多くの歯車を設置したり、コマ型水車の二段の羽根を三段にするなどして回転力を高めるように工夫を行う。
コマ型水車を支えるために、(図1−1の拡大図)で示すように、13回転伝導軸保護管で10発電用コマ型水車を両側の18支柱で支える。また、流速を速めるため、4水路に段差つけて、11コマ型水車の羽根に水流が落下するようにして、羽根を回転しやすいようにする。10発電用コマ型水車と海水が接する部分については(図2−1)で示すように、13回転伝導軸保護管の下部の部分の11コマ型水車の羽根部分とする。これは、水中の羽根と海水の外の羽根が連動して安定した回転力を維持するためである。
このように、コマ型水車は、水流を受ける羽根を二段にして水車の回転力を高めることと、水車内部に歯車を設置し回転数を増やすようにしたことである。そして、水車内部の14大歯車、15中歯車、16小歯車の連結された歯車部分と12回転伝導軸とを連結、接続させて設置し、12回転伝導軸が13回転伝導軸保護管の内部を通り9発電施設内の8発電機にその回転を伝導する仕組みとなる。
コマ型水車は水流の落差の小さい所でも利用できるようにしたもので、発電に利用して回転力を高めるという点で通常の水車に比べ、コマ型水車の方が回転力が強く、速く回転することができるものである。
このように、海水を利用するコマ型水車による発電は河川の水を利用して行うことも可能であり、コマ型水車による発電は発電量を高め、恒久的かつ安定的な発電を可能とするものである。
In order to increase the power generation capacity of the water turbine used for power generation, as shown in the plan view of the power generation top type water turbine (FIG. 3) and the cross section of the power generation top type water turbine (FIG. 4), the water turbine has more water flow. Therefore, it is necessary to increase the rotational force of the main body of the turbine and the rotational force of the rotating shaft of the turbine.
A coma-type water turbine for power generation is aimed at satisfying such requirements, and this 10-power coma water turbine is installed and used for power generation.
As shown in the plan view of the power generation top type water turbine (FIG. 3) and the cross section of the power generation top type water turbine (FIG. 4), the characteristics of the power generation top type water turbine are as follows. The blades of the 11-frame type water wheel are also installed on the outside and inside of the water wheel so that the two-stage blades receive the water flow and receive the water flow up to the blades outside the tip. The rotation speed of the water wheel is increased by the large, medium and small gears installed inside the water wheel, and the rotation speed of the gear is increased and transmitted to the 12-rotation conduction shaft.
In addition, the installation portion of the gear inside the water turbine is partitioned by a wall so that seawater does not enter from the outside.
As for the rotation of the gears installed in the water wheel, as shown in the sectional view of the power generation top type water wheel (FIG. 4), the 14 large gears and the 15 middle gears mesh with each other in the clockwise direction, The 16 small gear is meshed with the 16 small gear and the 12 rotating transmission shafts and rotated counterclockwise.
The rotational force is transmitted to the 12-rotation conduction axis. Further, the rotational force of the 12-rotation transmission shaft inside the 13-rotation transmission shaft protection tube is not lowered, the rotational force is transmitted to the 8 generators installed in the 9 power generation facilities, and the 8 generators are operated to generate power. Is to do.
Also, regarding the number of gears installed inside the Koma type turbine, depending on the size of the Koma type turbine, many gears can be installed, or the two stages of blades of the Koma type turbine can be set in three stages to achieve a rotational force. Devise to increase
In order to support the top type water turbine, as shown in (enlarged view of FIG. 1-1), the 10 power generation top type water turbine is supported by 18 struts on both sides with a 13-rotation conduction shaft protection tube. Further, in order to increase the flow speed, a step is provided in the four water channels so that the water flow falls on the blades of the 11-frame type water turbine so that the blades can be easily rotated. As shown in FIG. 2A, the portion where the 10 power generation top type turbine and the seawater are in contact with each other is the blade portion of the 11 top type turbine, which is the lower part of the 13-rotation conduction shaft protective tube. This is because the blades under water and the blades outside the seawater work together to maintain a stable rotational force.
In this way, the top type water wheel is to increase the rotational force of the water wheel by providing two stages of blades that receive the water flow, and to increase the rotational speed by installing a gear in the water wheel. And the 14 large gears, the 15 middle gears, and the 16 small gears inside the water turbine are connected to and connected to the 12 rotation transmission shaft, and the 12 rotation transmission shaft is installed inside the 13 rotation transmission shaft protective tube. It is a mechanism to transmit the rotation to 8 generators in 9 power generation facilities.
The Koma type turbine is designed to be used even in places where the head of the water flow is small, and the Koma type turbine has a stronger rotational force than the normal turbine in that it is used for power generation to increase the rotational force. Is something that can be done.
In this way, power generation using the top water turbine that uses seawater can be performed using river water, and power generation using the top water turbine increases the amount of power generation, enabling permanent and stable power generation. Is.

発電施設の建設においては、ダム建設と比較し建設事業費は抑えることができ、設置場所については、ダム建設においては山間部などで立地場所を求めることが大変であるが、海水や水を利用したコマ型水車による発電を行うための発電施設の立地、建設場所は海岸に近い地域や比較的平地に近い河川の側など、発電施設建設においても、比較的容易に求めることが可能である。発電用コマ型水車を利用した発電施設を水路の両側に設置したりするなど、発電施設を整備し発電を行えば発電コストの抑制と発電量を増やすことができる。  In the construction of power generation facilities, the construction cost can be reduced compared to dam construction, and it is difficult to find the location in the mountainous area, etc. for the dam construction, but using seawater and water The location and construction location of the power generation facility for generating power using the Koma type water turbine can be obtained relatively easily even in the construction of the power generation facility such as the area close to the coast or the river side relatively close to the flat ground. For example, power generation facilities using power generation top-type turbines can be installed on both sides of the waterway, and power generation costs can be reduced and the amount of power generated can be increased by generating power generation facilities.

発電において、海や河川から海水や水を取水して発電に利用することは比較的容易に行うことができることから、コマ型水車による発電は一地点における発電量を増加させることが可能となり発電コストの軽減化を図ることができる。
また、送電面においてもダムなどの水力発電施設とは違い山間部ではなく比較的、平坦な平野部や海岸に近い地点に送電設備が設置されることが可能となる。
このように、海水を発電に利用することは、発電施設の立地場所や建設コストの面においても軽減化が図られ、安定的、恒久的発電が具体的に明確化することにもつながり電気料金の低価格化を推進し、産業上の利用の拡大を可能とすることができる。
In power generation, it is relatively easy to take seawater and water from the sea or river and use it for power generation. Can be reduced.
Also, in terms of power transmission, unlike hydroelectric power generation facilities such as dams, power transmission facilities can be installed not on mountainous areas but on relatively flat plains or points close to the coast.
In this way, the use of seawater for power generation reduces the location of the power generation facility and the construction cost, and also leads to a concrete clarification of stable and permanent power generation. It is possible to expand the industrial use by promoting the lowering of prices.

1 取水口
2 取水管
3 流速調整槽
4 水路
5 流水管
6 排水管
7 排水用側溝
8 発電機
9 発電施設
10 発電用コマ型水車
11 コマ型水車の羽根
12 回転伝導軸
13 回転伝導軸保護管
14 大歯車
15 中歯車
16 小歯車
17 排水用水槽
18 支柱
DESCRIPTION OF SYMBOLS 1 Intake port 2 Intake pipe 3 Flow rate adjustment tank 4 Water channel 5 Flowing water pipe 6 Drain pipe 7 Drain side gutter 8 Generator 9 Power generation facility 10 Power generation top piece turbine 11 Top blade type blade 12 Rotation conduction shaft 13 Rotation conduction shaft protection tube 14 Large gear 15 Medium gear 16 Small gear 17 Drainage tank 18 Prop

Claims (2)

海水を発電に利用することは、海水は量的にも無限に存在していることから発電に利用するには最適であると考えられる。
これまでも河川の水を利用した小水力発電は行われているが、水力発電と比べれば発電量は比較的少ない。また、海水を利用した発電はこれまでは多くは行われてはいない。
このようなことから、海水を利用して発電を行うためには発電量を増大させることや、発電コストを安価に抑えることが可能となれば、海水を利用した発電を行うことが可能となる。そのためには、発電用の水車の回転力を高める必要がある。
このことから海水を発電に利用する方法として、海水を取水口より流速調整槽に取水し水路や流水管に流れる水量を調整して、水路に傾斜や段差をつけて、発電に必要な速さの水流を作りだす。そして、発電に利用するために、水流を受けやすくした、水車内部に歯車を設置して回転力を高めた水車により、その回転を発電機等発電施設に伝える。
このように海水の流速を利用して、水車内部に歯車を設置して回転力を高めることを可能とするコマ型水車を利用した発電の方法の登録請求を行うものである。
Use of seawater for power generation is considered optimal for use in power generation because seawater is infinite in quantity.
Small hydropower generation using river water has been carried out so far, but the amount of power generation is relatively small compared to hydropower generation. In addition, power generation using seawater has not been performed so far.
For this reason, in order to generate power using seawater, it is possible to increase the amount of power generation and to generate power using seawater if the power generation cost can be kept low. . For that purpose, it is necessary to increase the rotational force of the water turbine for power generation.
Therefore, as a method of using seawater for power generation, seawater is taken into the flow rate adjustment tank from the water inlet, the amount of water flowing through the waterway and water pipe is adjusted, the waterway is inclined and stepped, and the speed required for power generation Create a stream of water. Then, the rotation is transmitted to a power generation facility such as a generator by a water wheel that is easily received by a water flow and has a gear wheel installed in the water wheel to increase the rotational force.
In this way, a registration request is made for a method of power generation using a top-type water turbine that makes it possible to increase the rotational force by installing gears inside the water turbine using the flow velocity of seawater.
海水の水流を利用して発電を行うために、水車の機能を高める方法として、二段の羽根で水流を受ける部分と水車内部に歯車を設置し回転力を高める部分を一つの水車に整えることである。このことを可能とするための水車である発電用コマ型水車は、回転伝導軸の回転数を増やすために水車内部に設置した歯車の、大歯車から中歯車に、中歯車から小歯車に、そして、小歯車から回転伝導軸へと歯車を噛み合わせて、歯車から歯車に回転力を伝え、回転伝導軸の回転数を増やし、発電施設の発電機等にその回転力を伝えるようにした水車である。
このように水車の二段の羽根で水流をより受けやすくして、水車の内部に歯車を設置するという方法により、水車内部の歯車で回転数を高めて回転力を強めた、比較的落差の小さい所でも発電に利用でき、更に、発電施設の建設用地が比較的少なく、多くの発電施設の設置と発電量を増加させることを可能とすることができる発電用コマ型水車の登録請求を行うものである。
In order to generate power using the seawater flow, as a method of enhancing the function of the water turbine, a part that receives the water flow with two stages of blades and a part that increases the rotational force by installing a gear inside the water wheel are arranged in one turbine. It is. The power generation top type water wheel, which is a water wheel for enabling this, is a gear installed inside the water wheel to increase the number of rotations of the rotation conduction shaft, from the large gear to the middle gear, from the middle gear to the small gear, And the waterwheel which meshed the gear from the small gear to the rotation transmission shaft, transmitted the rotational force from the gear to the gear, increased the rotation speed of the rotation transmission shaft, and transmitted the rotational force to the generator etc. of the power generation facility. It is.
By making the water flow easier to receive with the two-stage blades of the water turbine and installing the gears inside the water wheel, the rotational speed is increased with the gears inside the water wheel and the rotational force is increased. Request for registration of power generation top type turbines that can be used for power generation even in small places, and that there are relatively few construction sites for power generation facilities, and it is possible to increase the number of power generation facilities installed and the amount of power generation. Is.
JP2013273832A 2013-12-17 2013-12-17 Power generation method using a Koma type water turbine that uses seawater Active JP5856138B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013273832A JP5856138B2 (en) 2013-12-17 2013-12-17 Power generation method using a Koma type water turbine that uses seawater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013273832A JP5856138B2 (en) 2013-12-17 2013-12-17 Power generation method using a Koma type water turbine that uses seawater

Publications (2)

Publication Number Publication Date
JP2015117687A true JP2015117687A (en) 2015-06-25
JP5856138B2 JP5856138B2 (en) 2016-02-09

Family

ID=53530626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013273832A Active JP5856138B2 (en) 2013-12-17 2013-12-17 Power generation method using a Koma type water turbine that uses seawater

Country Status (1)

Country Link
JP (1) JP5856138B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10259780A (en) * 1997-03-18 1998-09-29 Joji Harada Slide blade vertical water turbine, and power generating device thereby
JP2005351125A (en) * 2004-06-09 2005-12-22 Yasuhisa Choshoin Laterally long water turbine type water flow generator
JP2012077618A (en) * 2010-09-30 2012-04-19 Chen-Zhang Lin Circulation power generation device
WO2012167414A1 (en) * 2011-06-08 2012-12-13 Guo Zhenjia Combined type waterwheel power generation device used in water conservancy channel or river channel
WO2013108412A1 (en) * 2012-01-17 2013-07-25 Nishioka Toshihisa Marine power generating system and marine power generating method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10259780A (en) * 1997-03-18 1998-09-29 Joji Harada Slide blade vertical water turbine, and power generating device thereby
JP2005351125A (en) * 2004-06-09 2005-12-22 Yasuhisa Choshoin Laterally long water turbine type water flow generator
JP2012077618A (en) * 2010-09-30 2012-04-19 Chen-Zhang Lin Circulation power generation device
WO2012167414A1 (en) * 2011-06-08 2012-12-13 Guo Zhenjia Combined type waterwheel power generation device used in water conservancy channel or river channel
WO2013108412A1 (en) * 2012-01-17 2013-07-25 Nishioka Toshihisa Marine power generating system and marine power generating method

Also Published As

Publication number Publication date
JP5856138B2 (en) 2016-02-09

Similar Documents

Publication Publication Date Title
JP4787286B2 (en) Hydroelectric generator
KR20100131078A (en) Float type hydraulic power generater
US20160169208A1 (en) Air-cushioned small hydraulic power generating device
JP2008031879A (en) Hydraulic power generating apparatus
KR20130016783A (en) Tidal current power plant
US20140319840A1 (en) Hydroelectric system
Bhuyan World-wide status for harnessing ocean renewable resources
KR101363416B1 (en) Turbine-generator for small hydropower plant using treated water at sewage disposal plant and construction system structure
KR101256823B1 (en) Small hydro-power device
RU2347935C2 (en) In-channel river plant
JP2018013069A (en) Tide power generation system utilizing artificial pond/lake and natural bay or the like
JP6078364B2 (en) Water current generator
JP2013068196A (en) Hydraulic power generation apparatus
JP3171955U (en) Hydroelectric generator
JP5856138B2 (en) Power generation method using a Koma type water turbine that uses seawater
JP3190459U (en) Power generation using power generation top type water turbines that use seawater and river flow
CN104389731A (en) Tide vertical type water flow power generation unit
KR20150140057A (en) Water turbine and waterturbing genetator using the same
KR20130114557A (en) Hydroelectric power generation apparatus using waterway
CN207598414U (en) Tide and flow magnitude electricity generation system
JP5072052B1 (en) Small hydroelectric generator
JP2021152343A (en) Hydraulic power generation system usable for narrow-width, low-flow rate water channel
KR20140061204A (en) Hydroelectric power generation apparatus using waterway
CN201121554Y (en) Hydraulic turbogenerator
JP3186838U (en) Electric pump endless power generator.

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151201

R150 Certificate of patent or registration of utility model

Ref document number: 5856138

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250