JP5850827B2 - Tube expansion heat exchanger, heat exchanger tube and fin material - Google Patents

Tube expansion heat exchanger, heat exchanger tube and fin material Download PDF

Info

Publication number
JP5850827B2
JP5850827B2 JP2012505706A JP2012505706A JP5850827B2 JP 5850827 B2 JP5850827 B2 JP 5850827B2 JP 2012505706 A JP2012505706 A JP 2012505706A JP 2012505706 A JP2012505706 A JP 2012505706A JP 5850827 B2 JP5850827 B2 JP 5850827B2
Authority
JP
Japan
Prior art keywords
tube
mass
heat exchanger
fin
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012505706A
Other languages
Japanese (ja)
Other versions
JPWO2011115133A1 (en
Inventor
良行 大谷
良行 大谷
時伯 恩田
時伯 恩田
洋一 兒島
洋一 兒島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UACJ Corp
Original Assignee
UACJ Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UACJ Corp filed Critical UACJ Corp
Priority to JP2012505706A priority Critical patent/JP5850827B2/en
Publication of JPWO2011115133A1 publication Critical patent/JPWO2011115133A1/en
Application granted granted Critical
Publication of JP5850827B2 publication Critical patent/JP5850827B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/053Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with zinc as the next major constituent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/02Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings
    • F28F19/06Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings of metal

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

本発明は、フィンに形成した孔に管を挿入した後、管を拡径してフィンと接触させ、主にフィンを介して空気と管内に流通する冷媒間で熱交換を行う拡管接合型熱交換器、ならびに、これに用いる管材及びフィン材に関するものであり、特にルームエアコン等に用いる熱交換器の外部耐食性向上に関するものである。   The present invention relates to an expansion joint type heat which inserts a pipe into a hole formed in a fin and then expands the diameter of the pipe to bring it into contact with the fin and exchanges heat mainly between the air and the refrigerant circulating in the pipe through the fin. The present invention relates to an exchanger, and pipe materials and fin materials used therefor, and particularly relates to an improvement in external corrosion resistance of a heat exchanger used in a room air conditioner or the like.

従来、ルームエアコンの熱交換器は、CuまたはCu合金製(以下、Cu製とする。)の押出管を冷媒等を通す熱交換管とし、Al製フィン材と拡管接合されることにより作製されていた。近年、エアコンの製造コストやリサイクルの観点からCu製の管をAl製に替える動きがある。しかし、Cu製の管に比べAl製の管を用いた場合には耐食性が問題となる。   Conventionally, a heat exchanger of a room air conditioner is manufactured by using an extruded tube made of Cu or Cu alloy (hereinafter referred to as Cu) as a heat exchange tube through which a refrigerant or the like passes, and being expanded and joined to an Al fin material. It was. In recent years, there has been a move to replace Cu pipes with Al from the viewpoint of manufacturing costs and recycling of air conditioners. However, corrosion resistance becomes a problem when an Al tube is used as compared with a Cu tube.

通常、Alの腐食形態は孔食である。孔食は局部的に腐食孔が発生するため、適切な防食処理を行わなかった場合、早期に貫通孔となる。孔食の進行を抑制するためには、通常、防食したいAl部材より孔食電位の卑なAl部材を電気的に接合させ、孔食電位の卑なAl部材の犠牲防食作用によって防食する方法がとられる。
特許文献1には、熱交換管および熱交換管にろう付されたフィンを備えた熱交換器において、熱交換管外周面の表層部の電位をA、熱交換管における表層部を除いた部分の電位をB、フィンの電位をC、熱交換管とフィンとのろう付部に形成されているフィレットの電位をDとした場合、これらの電位が、電位的にA≦C≦D<Bとなっている熱交換器が提案されている。
Usually, the corrosion form of Al is pitting corrosion. Since pitting corrosion occurs locally, if a suitable anticorrosion treatment is not performed, it becomes a through hole at an early stage. In order to suppress the progress of pitting corrosion, there is usually a method in which an Al member having a lower pitting corrosion potential is electrically joined than an Al member to be anticorrosion, and the anticorrosion action is performed by the sacrificial anticorrosive action of the Al member having a lower pitting corrosion potential. Be taken.
In Patent Document 1, in the heat exchanger having fins brazed to the heat exchange pipe and the heat exchange pipe, the potential of the surface layer part of the outer surface of the heat exchange pipe is A, and the part excluding the surface layer part of the heat exchange pipe Where B is the potential of the fin, C is the potential of the fin, and D is the potential of the fillet formed at the brazed portion between the heat exchange tube and the fin, these potentials are A ≦ C ≦ D <B A heat exchanger has been proposed.

特許文献2には、放熱フィンの自然電位がチューブの自然電位に対し、30〜140mV低いことを特徴とするアルミニウム製熱交換器が提案されている。   Patent Document 2 proposes an aluminum heat exchanger characterized in that the natural potential of the radiating fin is 30 to 140 mV lower than the natural potential of the tube.

特開2004−170061号公報JP 2004-170061 A 特開2000−274980号公報JP 2000-274980 A

特許文献1及び2は、何れも、ろう付接合型の熱交換器である。本発明者らは、拡管接合型の熱交換器での寿命向上を検討するに当たって、特許文献1や2の技術についても検討したが、拡管接合型の熱交換器では、チューブとフィンの電位の関係を特許文献1や2に記載されている通りにしても、寿命が必ずしも十分に長くならない場合があることが分かった。これは、以下の理由によるものと考えられる。
一般に家庭用エアコンに用いられる拡管接合型の熱交換器は、従来、アルミニウムフィンと銅管とで構成されている。銅はアルミニウムよりも電位が貴であるので、アルミニウムフィンと銅管の電位バランスを考慮しなくてもアルミニウムフィンが必然的に犠牲防食作用を果たしていた。近年、銅管に代わって、アルミニウム管が採用されるようになった。アルミニウム管は、銅管よりも腐食されやすく、かつ孔食によって貫通孔が形成されやすいという性質を有しているので、熱交換器の寿命を延ばすためにアルミニウム管に孔食が形成されるのを防ぐ技術が必要である。従来のアルミニウムフィンと銅管の組合せでの設計思想を適用すれば、アルミニウムフィンにZnを添加してフィンの電位を卑化すればよいが、その場合、アルミニウムフィンのみが腐食してアルミニウムフィンとアルミニウム管との電気的接続が断たれると、アルミニウム管の腐食が一気に進行してアルミニウム管に貫通孔が形成されてしまうという問題が発生する。このように、従来の熱交換器の電位の関係に類似させるように電位を設定しても熱交換器の寿命を延ばすことは難しい。これに対して、一般に自動車用熱交換器として用いられる、主要な部材が全てアルミニウムからなるろう付接合型の熱交換器では、電位的に類似した部材間の防食メカニズムの思想があった。それは、ろう付工程では約600℃でろう材を流動させ、同時に各種元素の拡散が生じるため、Siを含有する高電位のろう材層(フィレット)がフィンとチューブの界面に存在するため、フィレットと各部材とのバランスを考慮することが必要であったからである。このように、拡管接合型の熱交換器とろう付接合型の熱交換器とは、電位バランスについての設計思想が異なっており、ろう付接合型の熱交換器での電位バランスの考え方を拡管接合型の熱交換器にそのまま適用することはできない。
Patent Documents 1 and 2 are both brazed joint type heat exchangers. The inventors of the present invention have also studied the techniques of Patent Documents 1 and 2 in studying the improvement in the life of the tube expansion type heat exchanger. However, in the tube expansion type heat exchanger, the potential of the tube and the fin is reduced. It has been found that even if the relationship is as described in Patent Documents 1 and 2, the lifetime may not always be sufficiently long. This is considered to be due to the following reasons.
2. Description of the Related Art Conventionally, a tube expansion type heat exchanger used for a home air conditioner is conventionally composed of an aluminum fin and a copper tube. Since copper has a higher potential than aluminum, aluminum fins inevitably have a sacrificial anticorrosion effect without considering the potential balance between the aluminum fins and the copper tube. In recent years, aluminum tubes have been adopted instead of copper tubes. Aluminum pipes are more easily corroded than copper pipes and have the property that through holes are easily formed by pitting corrosion. Therefore, pitting corrosion is formed in the aluminum pipe to extend the life of the heat exchanger. Technology to prevent this is necessary. If the design concept of the conventional combination of aluminum fins and copper pipes is applied, Zn can be added to the aluminum fins to lower the potential of the fins. When the electrical connection with the aluminum tube is broken, the corrosion of the aluminum tube proceeds at a stretch and a problem arises that a through hole is formed in the aluminum tube. Thus, it is difficult to extend the life of the heat exchanger even if the potential is set so as to be similar to the relationship of the potential of the conventional heat exchanger. On the other hand, in a brazed joint type heat exchanger in which the main members are all made of aluminum, which is generally used as a heat exchanger for automobiles, there is a concept of an anticorrosion mechanism between members similar in potential. In the brazing process, the brazing material flows at about 600 ° C., and at the same time, diffusion of various elements occurs. Therefore, a high-potential brazing material layer (fillet) containing Si exists at the interface between the fin and the tube. This is because it was necessary to take into account the balance between the members and each member. In this way, the design philosophy of potential balance is different between the tube expansion type heat exchanger and the brazing type heat exchanger, and the concept of potential balance in the brazing type heat exchanger is expanded. It cannot be applied as it is to a junction type heat exchanger.

本発明はこのような事情に鑑みてなされたものであり、寿命を向上させることができる拡管接合型熱交換器と、これに用いる管材及びフィン材を提供するものである。   This invention is made | formed in view of such a situation, and provides the pipe expansion type heat exchanger which can improve a lifetime, and the pipe material and fin material which are used for this.

本発明における請求項1に記載の発明は、Znの溶射及び拡散熱処理によって形成されたZn拡散層を外面に有し且つアルミニウム合金からなる管と、Zn、In、およびSnからなる群から選ばれる少なくとも一種を含有しアルミニウム合金からなるフィンとを拡管接合した拡管接合型熱交換器であって、フィンの孔食電位が、前記Zn拡散層の表面Zn濃度の2/3のZn濃度を有する部位の孔食電位よりも貴であり、且つ前記表面Zn濃度の1/3のZn濃度を有する部位の孔食電位よりも卑である拡管接合型熱交換器である。   The invention according to claim 1 of the present invention is selected from the group consisting of a tube made of an aluminum alloy having a Zn diffusion layer formed by thermal spraying and diffusion heat treatment of Zn on the outer surface, and Zn, In, and Sn. A tube expansion type heat exchanger in which at least one kind and a fin made of an aluminum alloy are expanded and joined, wherein the pitting corrosion potential of the fin has a Zn concentration of 2/3 of the surface Zn concentration of the Zn diffusion layer It is a tube expansion type heat exchanger that is nobler than the pitting corrosion potential of the region and lower than the pitting corrosion potential of a portion having a Zn concentration of 1/3 of the surface Zn concentration.

本発明者らは、拡管接合型熱交換器の寿命を向上させるために、表面にZnを拡散させた管の電位とフィンの電位との関係について検討を行っていたところ、単に、特許文献1のように、管の表面電位≦フィンの電位<管のZnが拡散していない部分の電位のような関係にするだけでは、拡管接合型熱交換器の寿命が十分に高まらないことを見出した。そこで、本発明者らは、管に拡散しているZnの濃度に着目し、フィンの孔食電位が管の表面Zn濃度の2/3のZn濃度を有する部位の孔食電位よりも貴にし、かつ管の表面Zn濃度の1/3のZn濃度を有する部位の孔食電位よりも卑であるように、フィンの孔食電位を設定したところ、熱交換器の寿命を大きく向上させることができることが実験的に確認され、本発明の完成に到った。寿命を大きく向上させることができた理由としては、上記のようにフィンと管の孔食電位を設定することによって、最初にチューブの表層を優先腐食させ、次にフィンとの電気的接触が断たれる前にフィンで犠牲防食しながらチューブの腐食を食い止め、最後にチューブだけになった場合でもZnの拡散していない中心部に対してZn拡散部分を腐食させることで、管に貫通孔が発生するまで時間を長くすることができたためであると考えられる。   In order to improve the lifetime of the tube-splicing heat exchanger, the present inventors have studied the relationship between the potential of a tube in which Zn is diffused on the surface and the potential of a fin. As described above, it has been found that the life of the tube-expanded junction heat exchanger cannot be sufficiently increased simply by making the relationship such as the surface potential of the tube ≦ the potential of the fin <the potential of the portion where the Zn of the tube is not diffused. . Therefore, the present inventors pay attention to the concentration of Zn diffusing into the tube, and make the pitting corrosion potential of the fins nobler than the pitting corrosion potential of the portion having a Zn concentration that is 2/3 of the surface Zn concentration of the tube. And, when the pitting corrosion potential of the fin is set so as to be lower than the pitting corrosion potential of the portion having a Zn concentration of 1/3 of the surface Zn concentration of the tube, the life of the heat exchanger can be greatly improved. It was confirmed experimentally that the present invention was completed. The reason for the significant improvement in the service life is that by setting the pitting corrosion potential of the fin and the tube as described above, the tube surface layer is first preferentially corroded, and then the electrical contact with the fin is interrupted. While sacrificing with fins before sagging, corrosion of the tube is stopped, and even when only the tube is finally formed, the Zn diffusion portion is corroded with respect to the central portion where Zn is not diffused, so that a through hole is formed in the tube. This is considered to be because the time was able to be extended until it occurred.

本発明における請求項2に記載の発明は、請求項1に記載の熱交換器において、前記管は、Si:0.05〜1.0mass%、Cu:0.05〜0.7mass%、Mn:0.3〜1.5mass%、Fe:0.7mass%以下を含有し、残部Al及び不可避的不純物である組成を有し、前記表面Zn濃度は、0.5〜10.0mass%であり、前記Zn拡散層は、厚さが150〜400μmである請求項1に記載の熱交換器である。
本発明における請求項3に記載の発明は、Siの含有量が0.2〜1.0mass%である請求項2に記載の熱交換器である。
本発明における請求項4に記載の発明は、前記管の内面に溝が形成されていることを特徴とする請求項1に記載の熱交換器である。
本発明における請求項5に記載の発明は、前記フィンは、Zn:0.3〜3.0mass%、In:0.001〜0.1mass%、Sn:0.001〜0.1mass%のうち少なくとも一種を含有し、残部Al及び不可避的不純物からなるアルミニウム合金である請求項1に記載の熱交換器である。このような組合せの場合に、熱交換器としての耐久性が特に高まるからである。
Invention of Claim 2 in this invention WHEREIN: The heat exchanger of Claim 1 WHEREIN: The said pipe | tube is Si: 0.05-1.0mass%, Cu: 0.05-0.7mass%, Mn : 0.3 to 1.5 mass%, Fe: 0.7 mass% or less, the balance is Al and inevitable impurities, the surface Zn concentration is 0.5 to 10.0 mass% 2. The heat exchanger according to claim 1, wherein the Zn diffusion layer has a thickness of 150 to 400 μm.
Invention of Claim 3 in this invention is a heat exchanger of Claim 2 whose content of Si is 0.2-1.0 mass%.
A fourth aspect of the present invention is the heat exchanger according to the first aspect, wherein a groove is formed on the inner surface of the pipe.
In the invention according to claim 5 of the present invention, the fin is made of Zn: 0.3 to 3.0 mass%, In: 0.001 to 0.1 mass%, Sn: 0.001 to 0.1 mass%. The heat exchanger according to claim 1, wherein the heat exchanger is an aluminum alloy containing at least one kind and the balance Al and inevitable impurities. This is because the durability as a heat exchanger is particularly enhanced in such a combination.

本発明における請求項6に記載の発明は、請求項1〜5の何れか1つに記載の熱交換器において、前記フィンが、有機系親水性皮膜もしくは無機系親水性皮膜を表面に有する熱交換器である。この場合、熱交換器の熱交換性能が特に高まる。   According to a sixth aspect of the present invention, in the heat exchanger according to any one of the first to fifth aspects, the fin has an organic hydrophilic film or an inorganic hydrophilic film on its surface. It is an exchanger. In this case, the heat exchange performance of the heat exchanger is particularly enhanced.

また、本発明における請求項7に記載の発明は、請求項1の熱交換器の製造に用いる熱交換器用管材であって、前記管材が、Znの溶射及び拡散熱処理によって形成されたZn拡散層を外面に有し、Si:0.05〜1.0mass%、Cu:0.05〜0.7mass%、Mn:0.3〜1.5mass%、Fe:0.7mass%以下を含有し、残部Al及び不可避的不純物である組成を有するアルミニウム合金からなり、前記表面Zn濃度は、0.5〜10.0mass%であり、前記Zn拡散層は、厚さが150〜400μmである熱交換器用管材である。この管材を用いると熱交換器としての寿命がさらに向上できる。
また、本発明における請求項8に記載の発明は、Siの含有量が0.2〜1.0mass%である請求項7に記載の熱交換器用管材である。
The invention according to claim 7 of the present invention is a heat exchanger tube material used for manufacturing the heat exchanger according to claim 1, wherein the tube material is formed by Zn spraying and diffusion heat treatment. On the outer surface, Si: 0.05 to 1.0 mass%, Cu: 0.05 to 0.7 mass%, Mn: 0.3 to 1.5 mass%, Fe: 0.7 mass% or less, It is made of an aluminum alloy having a composition that is the balance Al and inevitable impurities, the surface Zn concentration is 0.5 to 10.0 mass%, and the Zn diffusion layer has a thickness of 150 to 400 μm. Tube material. When this tube material is used, the life as a heat exchanger can be further improved.
Moreover, invention of Claim 8 in this invention is a pipe material for heat exchangers of Claim 7 whose content of Si is 0.2-1.0 mass%.

また、本発明における請求項9に記載の発明は、請求項1の熱交換器の製造に用いる熱交換器用フィン材であって、前記フィン材は、Zn:0.3〜3.0mass%、In:0.001〜0.1mass%、Sn:0.001〜0.1mass%のうち少なくとも一種を含有し、残部Al及び不可避的不純物である組成を有するアルミニウム合金からなる熱交換器用フィン材である。このフィン材を用いると熱交換器としての寿命がさらに向上できる。また、本発明における請求項10に記載の発明は、請求項9に記載の熱交換器用フィン材において前記フィン材が、有機系親水性皮膜もしくは無機系親水性皮膜を表面に有する熱交換器用フィン材である。   The invention according to claim 9 of the present invention is a fin material for a heat exchanger used for manufacturing the heat exchanger of claim 1, wherein the fin material is Zn: 0.3 to 3.0 mass%, It is a fin material for heat exchangers composed of an aluminum alloy containing at least one of In: 0.001 to 0.1 mass%, Sn: 0.001 to 0.1 mass%, and the balance being Al and inevitable impurities. is there. When this fin material is used, the life as a heat exchanger can be further improved. The invention according to claim 10 of the present invention is the fin for heat exchanger according to claim 9, wherein the fin material has an organic hydrophilic film or an inorganic hydrophilic film on the surface. It is a material.

管の肉厚方向に対するZn濃度分布及び孔食電位分布を模式的に示した説明図である。It is explanatory drawing which showed typically Zn concentration distribution with respect to the thickness direction of a pipe | tube, and pitting corrosion potential distribution. 孔食電位の定義を説明するための、電流密度と電極電位との関係を示すグラフである。It is a graph which shows the relationship between a current density and electrode potential for demonstrating the definition of a pitting corrosion potential.

以下、本発明の実施形態について説明する。   Hereinafter, embodiments of the present invention will be described.

///////////////////////////////////////////////////////
1.拡管接合型熱交換器
1−1.管
1−1−1.組成
1−1−2.Zn拡散層
1−1−3.管の製造方法
1−2.フィン
1−2−1.組成
1−2−2.フィンの製造方法
1−2−3.フィンのプレコーティング
1−3.各部材の孔食電位
2.拡管接合型熱交換器の製造方法
///////////////////////////////////////////////////////
////////////////////////////////////////////////// /////
1. 1. Expansion joint type heat exchanger 1-1. Tube 1-1-1. Composition 1-1-2. Zn diffusion layer 1-1-3. Manufacturing method of tube 1-2. Fin 1-2-1. Composition 1-2-2. Manufacturing method of fin 1-2-3. Pre-coating of fins 1-3. 1. Pitting potential of each member Manufacturing method of expansion joint type heat exchanger
////////////////////////////////////////////////// /////

1.拡管接合型熱交換器
本発明の一実施形態の拡管接合型熱交換器は、Znの溶射及び拡散熱処理によって形成されたZn拡散層を外面に有し且つアルミニウム合金からなる管と、Zn、In、及びSnからなる群から選ばれる少なくとも一種を含有しアルミニウム合金からなるフィンとを拡管接合した拡管接合型熱交換器である。該フィンの孔食電位は、前記Zn拡散層の表面Zn濃度の2/3のZn濃度を有する部位の孔食電位よりも貴であり、且つ前記表面Zn濃度の1/3のZn濃度を有する部位の孔食電位よりも卑である。
以下、各構成要素について詳細に説明する。
1. Expanded Joining Type Heat Exchanger An expanded tube joining type heat exchanger according to an embodiment of the present invention includes a tube having a Zn diffusion layer formed by thermal spraying and diffusion heat treatment of Zn on an outer surface and made of an aluminum alloy, Zn, In And an expansion joint type heat exchanger in which at least one selected from the group consisting of Sn and an fin made of an aluminum alloy is expanded and joined. The pitting corrosion potential of the fin is nobler than the pitting corrosion potential of a portion having a Zn concentration of 2/3 of the surface Zn concentration of the Zn diffusion layer, and has a Zn concentration of 1/3 of the surface Zn concentration. It is lower than the pitting potential of the part.
Hereinafter, each component will be described in detail.

1−1.管
上記の管は、Znの溶射及び拡散熱処理によって形成されたZn拡散層を外面に有し且つアルミニウム合金からなる。上記の管には、通常の押出管、コンフォーム押出管、ポートフォール管のいずれもが好適に用いられる。
1-1. Tube The tube described above has a Zn diffusion layer formed by thermal spraying of Zn and diffusion heat treatment on the outer surface, and is made of an aluminum alloy. As the above-mentioned tube, any of an ordinary extruded tube, a conform extruded tube, and a portfall tube is preferably used.

1−1−1.組成
アルミニウム合金とは、Alを主成分とする合金である。アルミニウム合金中のAlの含有量は、例えば、90〜99.9mass%である。Alの含有量は、例えば、90、91、92、93、94、95、96、97、98、99、99.5又は99.9mass%である。Alの含有量は、ここで例示した数値の何れか2つの範囲内であってもよい。合金系として、JIS3003、3004等に代表される3000系合金やJIS6061、6063等に代表される6000系合金が好適に用いられる。
1-1-1. Composition An aluminum alloy is an alloy containing Al as a main component. The content of Al in the aluminum alloy is, for example, 90 to 99.9 mass%. The Al content is, for example, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 99.5, or 99.9 mass%. The Al content may be in any two of the numerical values exemplified here. As the alloy system, a 3000 series alloy typified by JIS 3003, 3004 or the like and a 6000 series alloy typified by JIS 6061, 6063 or the like are preferably used.

Si含有量は、0.05〜1.0mass%の範囲が望ましい。Siは、Alに固溶したり金属間化合物を生成したりすることによって、強度を向上させる元素である。さらに、Siの添加はAlの電位を貴にして、Zn拡散層とZnの拡散していない管中心部側との孔食電位差を大きくし、管の耐久寿命を向上させる。Siの含有量が0.05ss%以上(好ましくは、0.2mass%以上)の場合、このようなSi添加効果を十分に得ることができる。また、Si含有量が多すぎると、加工性が低下するため曲げ等の加工時にわれが発生する可能性があるが、1.0mass%以下であれば、そのようなおそれがない。したがって、Siの含有量は0.05〜1.0mass%とする。更に望ましいSiの含有量は0.05〜0.6mass%である。   The Si content is desirably in the range of 0.05 to 1.0 mass%. Si is an element that improves the strength by dissolving in Al or generating an intermetallic compound. Further, the addition of Si makes the potential of Al noble, increases the pitting corrosion potential difference between the Zn diffusion layer and the tube center portion where Zn is not diffused, and improves the durable life of the tube. When the Si content is 0.05 ss% or more (preferably 0.2 mass% or more), such an Si addition effect can be sufficiently obtained. Further, if the Si content is too large, the workability is lowered, and thus cracking may occur during processing such as bending, but if it is 1.0 mass% or less, there is no such fear. Therefore, the Si content is set to 0.05 to 1.0 mass%. A more desirable Si content is 0.05 to 0.6 mass%.

Cu含有量は、0.05〜0.7mass%の範囲とするのが望ましい。Cuは孔食電位を貴にする働きがあり、Zn拡散層とZnの拡散していない管中央部との孔食電位差を大きくし、犠牲防食作用を高めることができる。この効果を得るためには、Cu量を0.05mass%以上とするのが望ましい。また、Cu含有量が多すぎると、材料製造時の熱履歴によって、アルミニウム合金中にCu系金属間化合物が析出する場合があり、このCu系金属間化合物はカソード反応を促進させるため、腐食速度を増大させる場合がある。この現象は、Cu量が0.7mass%以下の場合には生じにくい。したがって、Cu量の含有量は0.05〜0.7mass%とするのが望ましい。更に望ましいCuの含有量は0.1〜0.5mass%である。   The Cu content is preferably in the range of 0.05 to 0.7 mass%. Cu has a function of making the pitting corrosion potential noble, can increase the pitting corrosion potential difference between the Zn diffusion layer and the central portion of the tube where Zn is not diffused, and can enhance the sacrificial anticorrosive action. In order to obtain this effect, it is desirable that the amount of Cu be 0.05 mass% or more. Also, if the Cu content is too high, Cu-based intermetallic compounds may precipitate in the aluminum alloy due to the thermal history during material production, and this Cu-based intermetallic compound promotes the cathode reaction, so the corrosion rate. May be increased. This phenomenon hardly occurs when the amount of Cu is 0.7 mass% or less. Therefore, the content of Cu is desirably 0.05 to 0.7 mass%. A more desirable Cu content is 0.1 to 0.5 mass%.

Mn含有量は、0.3〜1.5mass%の範囲とするのが望ましい。MnはAl−Mn系金属間化合物として晶出又は析出して強度を向上させる元素である。また、Al−Mn系金属間化合物は、生成する際にFeを取り込む。Al−Fe系金属間化合物よりもAl−Fe−Mn系金属間化合物の方が、カソード反応が不活性であり、Feによる耐食性阻害の影響を抑制する働きがある。Mnの含有量が0.3mass%以上の場合、このようなMn添加効果を十分に得ることができる。Mn含有量が多すぎると、巨大な金属間化合物が晶出し、押出加工性を阻害するおそれがあるが、Mn含有量が1.5mass%以下であれば、このようなおそれがない。したがって、Mn量の添加量は0.3〜1.5mass%とするのが望ましい。更に望ましいMnの含有量は0.8〜1.3mass%である。   The Mn content is desirably in the range of 0.3 to 1.5 mass%. Mn is an element that crystallizes or precipitates as an Al—Mn intermetallic compound to improve the strength. Moreover, the Al—Mn intermetallic compound takes in Fe when it is generated. The Al—Fe—Mn intermetallic compound is more inactive in the cathode reaction than the Al—Fe intermetallic compound, and has a function of suppressing the influence of corrosion resistance inhibition by Fe. When the Mn content is 0.3 mass% or more, such a Mn addition effect can be sufficiently obtained. If the Mn content is too large, a huge intermetallic compound may be crystallized and the extrusion processability may be impaired. However, if the Mn content is 1.5 mass% or less, there is no such fear. Therefore, it is desirable that the amount of Mn added is 0.3 to 1.5 mass%. A more desirable Mn content is 0.8 to 1.3 mass%.

上記のアルミニウム合金に含まれるFeの含有量が多すぎると、鋳造中にFe系金属間化合物として晶出し、耐食性を低下させるおそれがあるが、Fe含有量が0.7mass%以下の場合にはこのようなおそれがない。従って、Fe含有量は、0.7mass%以下が望ましく、0.4mass%以下とするのが更に望ましく、0.2mass%以下とするのがさらに望ましい。   If the content of Fe contained in the aluminum alloy is too large, it may crystallize out as an Fe-based intermetallic compound during casting and reduce the corrosion resistance. However, if the Fe content is 0.7 mass% or less, There is no such fear. Therefore, the Fe content is preferably 0.7 mass% or less, more preferably 0.4 mass% or less, and further preferably 0.2 mass% or less.

上記のアルミニウム合金には、強度や耐食性向上を目的として、Mg、Cr、Ti、V、In、Sn等が含有されていても良い。これらの元素は、全体で0.3mass%以下とされるのが望ましい。   The aluminum alloy may contain Mg, Cr, Ti, V, In, Sn, etc. for the purpose of improving strength and corrosion resistance. As for these elements, it is desirable that it is 0.3 mass% or less on the whole.

上記のアルミニウム合金には、上記成分以外には残部がAlと不可避的不純物からなる。不可避的不純物となる成分は、おのおの0.05mass%以下で、かつ総量で0.15mass%以下であることが望ましい。   In the aluminum alloy described above, the balance is made of Al and inevitable impurities in addition to the above components. Ingredients that are inevitable impurities are each preferably 0.05 mass% or less, and the total amount is preferably 0.15 mass% or less.

1−1−2.Zn拡散層
アルミニウム合金からなる管には、その外面にZn溶射した後、Zn拡散熱処理を施すことにより、Znの拡散した層(Zn拡散層)が設けられる。Zn拡散層は、管のZnが拡散していない部分よりも孔食電位が卑であるため犠牲防食作用によって管を防食し、管の耐久寿命を向上させることができる。
1-1-2. Zn diffusion layer A pipe made of an aluminum alloy is provided with a Zn diffused layer (Zn diffusion layer) by performing Zn diffusion heat treatment after spraying Zn on the outer surface thereof. Since the Zn diffusion layer has a lower pitting corrosion potential than the portion of the tube where Zn is not diffused, it can prevent the tube by sacrificial anticorrosive action and improve the durable life of the tube.

管には、純ZnまたはZn−Al合金によるZn溶射後、400〜550℃で30分〜10時間のZn拡散処理を施す。Zn溶射量は5〜20g/mが望ましく、Zn拡散熱処理は、熱処理時間(h)=−0.0625×熱処理温度(℃)+R、但し、30≦R≦36の数式を満たす熱処理時間、温度が望ましい。Zn拡散処理によりZnが表面から板厚方向に拡散した深さ(以後、Zn拡散距離と呼ぶ。)が短すぎると早期にZn層が腐食して無くなり、犠牲防食効果が消失してしまう。一方、Zn拡散距離が長すぎると板厚方向の単位距離あたりの電位変化が小さくなり、犠牲防食作用が十分に働かないため孔食が進行してしまう。Zn拡散距離が150〜400μmの場合には、犠牲防食効果が適切に得られるので、望ましい。The tube is subjected to Zn diffusion treatment at 400 to 550 ° C. for 30 minutes to 10 hours after Zn spraying with pure Zn or Zn—Al alloy. Zn spraying amount is desirably 5 to 20 g / m 2 , and Zn diffusion heat treatment is heat treatment time (h) = − 0.0625 × heat treatment temperature (° C.) + R, provided that the heat treatment time satisfying the formula of 30 ≦ R ≦ 36, Temperature is desirable. If the depth at which Zn is diffused in the thickness direction from the surface by the Zn diffusion treatment (hereinafter referred to as Zn diffusion distance) is too short, the Zn layer is corroded at an early stage and the sacrificial anticorrosive effect is lost. On the other hand, if the Zn diffusion distance is too long, the potential change per unit distance in the plate thickness direction becomes small, and the sacrificial anticorrosive action does not work sufficiently, so that pitting corrosion proceeds. A Zn diffusion distance of 150 to 400 μm is desirable because a sacrificial anticorrosive effect can be obtained appropriately.

入熱によるZn拡散処理によって、表面Zn濃度を調整することができる。表面Zn濃度が、高すぎると早期にZn拡散層が無くなる恐れがあり、表面Zn濃度が低すぎると、犠牲防食作用が有効に働かない恐れがある。表面Zn濃度が0.5〜10.0mass%の場合には、犠牲防食効果が適切に得られるので、望ましい。   The surface Zn concentration can be adjusted by Zn diffusion treatment by heat input. If the surface Zn concentration is too high, the Zn diffusion layer may disappear at an early stage, and if the surface Zn concentration is too low, the sacrificial anticorrosive action may not work effectively. A surface Zn concentration of 0.5 to 10.0 mass% is desirable because a sacrificial anticorrosive effect can be obtained appropriately.

1−1−3.管の製造方法
上記の管は、上記組成のアルミニウム合金鋳塊を通常の方法にて350〜600℃に加熱して押出した後にZn溶射及びZn拡散処理を行うか、または前記押出し加工後に抽伸加工を行い、Zn溶射及びZn拡散処理を行うことにより製造される。この後、熱交換効率を向上させるため、管は、押出し加工時に内面に溝を形成するか、押出し加工後に転造加工等を施し、内面に溝(例:直線溝またはらせん溝)を形成しても良い。
1-1-3. Manufacturing method of pipe The above-mentioned pipe is subjected to Zn spraying and Zn diffusion treatment after heating and extruding an aluminum alloy ingot having the above composition to 350 to 600 ° C. by a usual method, or drawing after the extrusion processing It is manufactured by performing Zn spraying and Zn diffusion treatment. After this, in order to improve the heat exchange efficiency, the tube is formed with a groove on the inner surface at the time of extrusion processing, or is subjected to rolling processing after the extrusion processing to form a groove (eg, a straight groove or a spiral groove) on the inner surface. May be.

1−2.フィン
上記フィンの孔食電位は、上記Znが拡散した管表面のZn濃度の2/3のZn濃度を有する部位の孔食電位よりも貴とし、前記管の表面Zn濃度の1/3のZn濃度を有する部位より卑とする。腐食の初期段階において、フィン材は、高濃度にZnを含有する管表面の孔食電位よりも貴であるため、管表面の犠牲防食作用によって防食される。管の腐食が進行し、管の高濃度にZnが拡散した層が腐食、消失し、フィン材の孔食電位が管よりも卑になると、フィン材の犠牲防食作用によって管が防食される。この一連の働きによって、管およびフィン、つまりは熱交換器の耐食性を向上させることができる。
1-2. Fin The pitting corrosion potential of the fin is nobler than the pitting corrosion potential of a portion having a Zn concentration of 2/3 of the Zn concentration on the tube surface where the Zn diffuses, and Zn is 1/3 of the surface Zn concentration of the tube. Make it more base than the part with concentration. In the initial stage of corrosion, the fin material is nobler than the pitting corrosion potential of the tube surface containing Zn at a high concentration, and thus is prevented by the sacrificial anticorrosive action on the tube surface. When the corrosion of the tube progresses, the layer in which Zn diffuses to a high concentration of the tube corrodes and disappears, and the pitting corrosion potential of the fin material becomes lower than that of the tube, the tube is protected by the sacrificial anticorrosive action of the fin material. This series of actions can improve the corrosion resistance of the tubes and fins, that is, the heat exchanger.

1−2−1.組成
フィンに上記作用を発現させるために、フィンには、Zn、In、及びSnからなる群から選ばれる少なくとも一種を含有するアルミニウム合金であればよいが、Znを含有するアルミニウム合金が最も望ましい。Zn、In、及びSnは孔食電位を卑にする働きがあり、これらの元素が拡散した部位と拡散していない部位との孔食電位差が大きくなり、犠牲防食作用を高める。
この効果を得るためには、Zn含有量を0.3mass%以上とするのが望ましい。一方、Zn含有量が多すぎるとフィン材自体の腐食速度が増大し、管に対する犠牲防食作用が不十分になる場合があるが、Zn含有量が3.0mass%以下であれば犠牲防食作用が十分に得られる。従って、Zn含有量の上限は3.0mass%とするのが望ましい。更に望ましいZnの含有量は0.5〜2.0mass%である。Znの代わりに又はZnに加えて、Zn以外の孔食電位を卑化させる元素であるIn又はSnを含有させてもよい。これらは、In:0.001〜0.1mass%、Sn:0.001〜0.1mass%含有されるのが望ましい。
1-2-1. Composition In order for the fin to exhibit the above-described action, the fin may be an aluminum alloy containing at least one selected from the group consisting of Zn, In, and Sn, but an aluminum alloy containing Zn is most desirable. Zn, In, and Sn have a function of lowering the pitting corrosion potential, and the difference in pitting corrosion potential between the site where these elements are diffused and the region where these elements are not diffused is increased, thereby enhancing the sacrificial anticorrosive action.
In order to obtain this effect, the Zn content is preferably set to 0.3 mass% or more. On the other hand, if the Zn content is too high, the corrosion rate of the fin material itself increases, and the sacrificial anticorrosive action on the tube may be insufficient. However, if the Zn content is 3.0 mass% or less, the sacrificial anticorrosive action is obtained. Fully obtained. Therefore, the upper limit of the Zn content is desirably set to 3.0 mass%. A more desirable Zn content is 0.5 to 2.0 mass%. Instead of Zn or in addition to Zn, In or Sn, which is an element that lowers the pitting potential other than Zn, may be contained. These are preferably contained in In: 0.001 to 0.1 mass% and Sn: 0.001 to 0.1 mass%.

上記のフィンには、高強度化を目的として、Si、Fe、Mn、Cu等を添加しても良い。これらの元素は、それぞれ、Si:1.0mass%以下、Fe:0.7mass%以下、Mn:1.5mass%以下、Cu:0.3mass%以下とするのが望ましい。   Si, Fe, Mn, Cu, or the like may be added to the fins for the purpose of increasing strength. These elements are preferably Si: 1.0 mass% or less, Fe: 0.7 mass% or less, Mn: 1.5 mass% or less, and Cu: 0.3 mass% or less, respectively.

さらに、上記のフィンには、強度や耐食性向上を目的として、Mg、Cr、Ti、V等が含有されても良い。これらの元素は、全体で0.3mass%以下とするのが望ましい。   Furthermore, the fins described above may contain Mg, Cr, Ti, V, etc. for the purpose of improving strength and corrosion resistance. These elements are preferably not more than 0.3 mass% in total.

上記のフィンには、上記成分以外には残部がAlと不可避的不純物からなる。不可避的不純物となる成分は、おのおの0.05mass%以下で、かつ総量で0.15mass%以下であることが望ましい。   In addition to the above components, the balance of the fin is made of Al and inevitable impurities. Ingredients that are inevitable impurities are each preferably 0.05 mass% or less, and the total amount is preferably 0.15 mass% or less.

1−2−2.フィンの製造方法
フィンは、上記組成の素材を用いて通常の半連続鋳造を行い、400〜600℃の温度で1〜10時間予備加熱を行い、熱間圧延を行なう。その後、冷間圧延によって所定の板厚まで圧延される。冷間圧延の途中又は冷間圧延後において、1〜2回程度の焼鈍工程を経ても良い。焼鈍工程は、通常はバッチ式の炉を用いて200〜500℃で1〜10時間加熱されるか、連続式の炉を用いて200〜550℃で5〜60分加熱される。これをプレス加工してフィンを作製する。
1-2-2. Manufacturing method of a fin A fin performs normal semi-continuous casting using the raw material of the said composition, preheats at the temperature of 400-600 degreeC for 1 to 10 hours, and performs hot rolling. Then, it is rolled to a predetermined plate thickness by cold rolling. In the middle of cold rolling or after cold rolling, an annealing process of about 1 to 2 times may be performed. An annealing process is normally heated at 200-500 degreeC for 1 to 10 hours using a batch type furnace, or is heated at 200-550 degreeC for 5 to 60 minutes using a continuous type furnace. This is pressed to produce fins.

1−2−3.フィンのプレコーティング
上記フィンは、有機系又は無機系の親水性皮膜を表面にプレコートすることにより、熱交換器の熱交換効率を向上させることができる。ルームエアコンの冷房運転時にフィン表面に水滴が付着しフィン間に水滴のブリッジが形成されると、フィン間を通過する空気等の冷却気体の抵抗が増大し冷却効率が低下する。親水性皮膜をプレコーティングすることによって、フィン表面の接触角を小さくし、水膜として流下させて水滴形成を防ぐことにより、冷却効率の低下を防止できる。有機系又は無機系の親水性皮膜は、例えば有機系塗料又は無機系塗料を塗布し、これを乾燥することによって形成することができる。
1-2-3. Pre-coating of fins The fins can improve the heat exchange efficiency of the heat exchanger by pre-coating an organic or inorganic hydrophilic film on the surface. When water droplets adhere to the fin surface during the cooling operation of the room air conditioner and a water droplet bridge is formed between the fins, the resistance of a cooling gas such as air passing between the fins increases and the cooling efficiency decreases. By pre-coating the hydrophilic film, the contact angle of the fin surface is reduced, and the film is allowed to flow down as a water film to prevent the formation of water droplets, thereby preventing a decrease in cooling efficiency. The organic or inorganic hydrophilic film can be formed, for example, by applying an organic paint or an inorganic paint and drying it.

有機系塗料としては、ポリビニルアルコール、カルボキシメチルセルロース等のセルロース系樹脂、アクリルアミド、アクリル酸、アクリル酸エステル等を主体としたアクリル系樹脂、エポキシ系樹脂等が適しており、これらの単独ポリマー、2種以上の混合物、又はこれらの共重合体であってもよい。また、これらの樹脂は自己架橋型のものであってもよく、必要に応じてヘキサブチロールメラミン、ヘキサブチロールメチルメラミンなどのメラミン化合物、エポキシ基を含有する化合物、ブチロール基を付加させた尿素又はイソシアナート基を有する化合物といった硬化剤が添加されていてもよい。なお、有機系塗料の溶媒としては、各成分を溶解又は分散できるものであれば特に制限されるものではなく、例えば水等の水性溶媒、アセトン等のケトン系溶媒、エタノール等のアルコール系溶媒等の溶媒を用いることができる。その中でも水性溶媒が望ましく、水が特に望ましい。塗料溶液中の塗料成分の濃度は、通常、5〜40wt%である。   Suitable organic paints include cellulose resins such as polyvinyl alcohol and carboxymethyl cellulose, acrylic resins mainly composed of acrylamide, acrylic acid, acrylate esters, etc., epoxy resins, and the like. A mixture of the above or a copolymer thereof may be used. In addition, these resins may be of a self-crosslinking type, and if necessary, melamine compounds such as hexabutyrol melamine and hexabutyrol methyl melamine, compounds containing an epoxy group, urea to which a butyrol group is added. Alternatively, a curing agent such as a compound having an isocyanate group may be added. The solvent of the organic coating is not particularly limited as long as each component can be dissolved or dispersed. For example, an aqueous solvent such as water, a ketone solvent such as acetone, an alcohol solvent such as ethanol, etc. These solvents can be used. Among these, an aqueous solvent is desirable, and water is particularly desirable. The concentration of the paint component in the paint solution is usually 5 to 40 wt%.

一方、親水性皮膜の形成に使用される無機系塗料としては、水ガラス、コロイダルシリカ等を主体とする無機系塗料、あるいはそれらとアクリル樹脂又はポリビニルアルコール等の混合塗料が用いられる。また、ジルコニウム酸等の金属架橋剤が添加されたものであってもよい。なお、無機系塗料の溶媒としては、各成分を溶解又は分散できるものであれば特に制限されるものではなく、例えば水等の水性溶媒、アセトン等のケトン系溶媒、エタノール等のアルコール系溶媒等の溶媒を用いることができる。その中でも水性溶媒が望ましく、水が特に望ましい。塗料溶液中の塗料成分の濃度は、通常、5〜40wt%である。   On the other hand, as the inorganic paint used for forming the hydrophilic film, an inorganic paint mainly composed of water glass, colloidal silica, or a mixed paint such as acrylic resin or polyvinyl alcohol is used. Moreover, a metal cross-linking agent such as zirconium acid may be added. The solvent for the inorganic coating is not particularly limited as long as each component can be dissolved or dispersed. For example, an aqueous solvent such as water, a ketone solvent such as acetone, an alcohol solvent such as ethanol, etc. These solvents can be used. Among these, an aqueous solvent is desirable, and water is particularly desirable. The concentration of the paint component in the paint solution is usually 5 to 40 wt%.

有機系塗料や無機系塗料のプレコーティング方法について説明する。まず、フィンの基板であるアルミニウム合金薄板の表面に、下地処理としてクロメート処理やベイマイト処理などを行って耐食性のある下地皮膜を形成する。該下地皮膜は塗料の密着性を向上させる。その後、その下地皮膜上に有機系又は無機系の塗料溶液を塗装・焼付けする方法、或いは、下地皮膜を設けたアルミニウム合金薄板を有機系又は無機系の塗料溶液中に浸漬する方法がある。塗装・焼付け方法における焼付条件は、通常、140〜300℃で5〜60秒間焼き付け、室温で乾燥させる。一方、浸漬方法では、30℃〜溶媒の沸点附近で10〜200秒間浸漬し、室温で乾燥させる。   A pre-coating method for organic paints and inorganic paints will be described. First, a chromate treatment, a boehmite treatment, or the like is performed on the surface of an aluminum alloy thin plate that is a fin substrate to form a corrosion-resistant ground coating. The undercoat improves the adhesion of the paint. Thereafter, there are a method of coating and baking an organic or inorganic coating solution on the base coating, or a method of immersing an aluminum alloy thin plate provided with the base coating in an organic or inorganic coating solution. The baking conditions in the painting / baking method are usually baking at 140 to 300 ° C. for 5 to 60 seconds and drying at room temperature. On the other hand, in the dipping method, dipping is performed at 30 ° C. to near the boiling point of the solvent for 10 to 200 seconds and dried at room temperature.

1−3.各部材の孔食電位
孔食電位の異なる部材が電気的に接合されている場合、犠牲防食作用により孔食電位の卑な部材から優先的に溶解し、孔食電位の貴な部材の腐食が抑制される。本実施形態において、管の表面にZnを溶射し、肉厚方向へ拡散処理を行うことにより、孔食電位を、(Znが拡散している管表面)<(フィン)<(管のZnの拡散していない部位)とする。それにより、腐食の初期は、管表面のZn拡散層によって、管の肉厚方向への腐食およびフィンの腐食が抑制され、Zn拡散層がなくなるまで腐食が進行した場合には、フィンによって管の孔食が抑制される。
1-3. Pitting corrosion potential of each member When members with different pitting corrosion potentials are electrically joined, the sacrificial anti-corrosion action preferentially dissolves from the base member with the pitting corrosion potential, and the corrosion of the noble corrosion potential member It is suppressed. In this embodiment, by spraying Zn on the surface of the tube and performing a diffusion treatment in the thickness direction, the pitting corrosion potential is (the surface of the tube where Zn is diffused) <(fin) <(the Zn of the tube). Non-diffused part). Therefore, at the initial stage of corrosion, the Zn diffusion layer on the tube surface suppresses corrosion in the thickness direction of the tube and the corrosion of the fins. Pitting corrosion is suppressed.

このような作用によって、拡管接合型熱交換器の耐食性はある程度向上するが、十分ではない。後述する実施例に示すように、孔食電位の関係が(Znが拡散している管表面)<(フィン)<(管のZnの拡散していない部位)となっている場合でも、管やフィンが激しく腐食してしまう場合がある。本発明者らは、この腐食を抑える手段を検討し、フィンの孔食電位が管の表面Zn濃度の2/3のZn濃度を有する部位の孔食電位よりも貴にし、かつ管の表面Zn濃度の1/3のZn濃度を有する部位の孔食電位よりも卑であるように、フィンの孔食電位を設定したところ、拡管接合型熱交換器の耐食性が大きく向上することが実験的に確認された。   Such an action improves the corrosion resistance of the tube expansion heat exchanger to some extent, but it is not sufficient. As shown in the examples described later, even when the relationship between the pitting corrosion potential is (the surface of the tube where Zn is diffused) <(fin) <(the portion where the Zn is not diffused), Fins may corrode severely. The present inventors have examined a means for suppressing this corrosion, and made the pitting corrosion potential of the fin nobler than the pitting corrosion potential of the portion having a Zn concentration of 2/3 of the surface Zn concentration of the tube, and the surface Zn of the tube. When the pitting corrosion potential of the fin is set so that it is lower than the pitting corrosion potential of the portion having the Zn concentration of 1/3 of the concentration, it is experimentally shown that the corrosion resistance of the pipe expansion heat exchanger is greatly improved. confirmed.

管の肉厚方向のZn濃度と孔食電位の分布の模式図を図1に示す。孔食電位は、Zn濃度に対して線形的に変化することが知られているので、管表面でのZn濃度及び孔食電位と、Znの拡散がない部位の厚さと孔食電位を測定すれば、Znの濃度が管表面のZn濃度の2/3である部位の孔食電位と、Znの濃度が管表面のZn濃度の1/3である部位の孔食電位を近似的に算出することができる。各部位での孔食電位を正確に測定するには、ある条件でZn拡散処理を施した管のZn濃度分布と各濃度での孔食電位を非破壊検査によって測定すればよい。フィンの孔食電位がそれら表面Zn濃度の1/3〜2/3の部位の電位の間になるように、フィンの合金成分を調整するのである。   A schematic diagram of the distribution of Zn concentration and pitting potential in the thickness direction of the tube is shown in FIG. Since the pitting corrosion potential is known to change linearly with respect to the Zn concentration, the Zn concentration and pitting corrosion potential on the tube surface, the thickness of the portion where Zn does not diffuse, and the pitting corrosion potential are measured. For example, the pitting corrosion potential at a site where the Zn concentration is 2/3 of the Zn concentration on the tube surface and the pitting corrosion potential at a site where the Zn concentration is 1/3 of the Zn concentration on the tube surface are approximately calculated. be able to. In order to accurately measure the pitting potential at each part, the Zn concentration distribution of the tube subjected to Zn diffusion treatment under a certain condition and the pitting potential at each concentration may be measured by nondestructive inspection. The alloy component of the fin is adjusted so that the pitting corrosion potential of the fin is between the potentials of 1/3 to 2/3 of the surface Zn concentration.

2.拡管接合型熱交換器の製造方法
上記の拡管接合型熱交換器は、管材とフィン材とを接合することによって得られる。フィン材は打ち抜き、成形加工を行い、管材を挿入する孔にバーリング加工を施した後、該孔に管材を挿入する。その後、拡管用の治具を管材内部に押し込み機械的に拡管するか、または管内部に水等による圧力を付与する液圧拡管によって管径を広げフィンと密着させ接合する。
2. Manufacturing method of tube expansion type heat exchanger The above tube expansion type heat exchanger is obtained by bonding a tube material and a fin material. The fin material is punched and molded, and after burring is performed on the hole into which the tube material is inserted, the tube material is inserted into the hole. Thereafter, a tube expansion jig is pushed into the tube material and expanded mechanically, or the tube diameter is expanded by a hydraulic expansion tube that applies water or the like inside the tube, and the tube is brought into close contact with the fin.

拡管接合型熱交換器の製造に用いる熱交換器用管材の構成や製造方法は、上記の「1−1.管」の項で説明した通りである。この管材は、Si:0.05〜1.0mass%、Cu:0.05〜0.7mass%、Mn:0.3〜1.5mass%、Fe:0.7mass%以下を含有し、残部Al及び不可避的不純物である組成を有するアルミニウム合金からなり、好ましくは、Znの溶射及び拡散熱処理によって形成されたZn拡散層を外面に有し、表面Zn濃度は、0.5〜10.0mass%であり、前記Zn拡散層は、厚さが150〜400μmであるものである。   The configuration and the manufacturing method of the heat exchanger tube material used for the manufacture of the expansion joint type heat exchanger are as described in the above section “1-1. This pipe material contains Si: 0.05 to 1.0 mass%, Cu: 0.05 to 0.7 mass%, Mn: 0.3 to 1.5 mass%, Fe: 0.7 mass% or less, and the balance is Al. And an aluminum alloy having a composition which is an unavoidable impurity, and preferably has a Zn diffusion layer formed on the outer surface by thermal spraying of Zn and a diffusion heat treatment, and the surface Zn concentration is 0.5 to 10.0 mass%. The Zn diffusion layer has a thickness of 150 to 400 μm.

また、拡管接合型熱交換器の製造に用いる熱交換器用フィン材の構成や製造方法は、上記の「1−2.フィン」の項で説明した通りである。このフィン材は、好ましくは、Zn:0.3〜3.0mass%、In:0.001〜0.1mass%、Sn:0.001〜0.1mass%のうち少なくとも一種を含有し、残部Al及び不可避的不純物である組成を有するAl−Zn合金からなるものである。   Moreover, the structure and manufacturing method of the fin material for heat exchangers used for manufacture of a pipe expansion joining type heat exchanger are as having demonstrated in the above-mentioned "1-2. Fins." This fin material preferably contains at least one of Zn: 0.3 to 3.0 mass%, In: 0.001 to 0.1 mass%, Sn: 0.001 to 0.1 mass%, and the balance Al. And an Al—Zn alloy having a composition which is an inevitable impurity.

以下に、実施例1〜21及び比較例1〜8について説明する。   Examples 1 to 21 and Comparative Examples 1 to 8 will be described below.

///////////////////////////////////
1.ミニコアの製造方法
2.ミニコアの評価
(1)孔食電位の測定
(2)腐食試験
///////////////////////////////////
///////////////////////////////////
1. 1. Manufacturing method of mini-core Evaluation of mini-core (1) Measurement of pitting corrosion potential (2) Corrosion test
///////////////////////////////////

1.ミニコアの製造方法
表1に示す組成及び構成を有する管材を、表2に示す組成を有するフィン材の穴部に挿入し、管材を液圧拡管することによって、実際の熱交換器に似せたコア(以後、ミニコアと呼ぶ。)を形成した。実施例1〜21及び比較例1〜8のミニコアは、表3に示す種類の管材とフィン材から形成された管とフィンを有している。また、親水性皮膜によるプレコートの有無と種類も表3に示した。なお、表1及び表2に記載の各組成は、残部がAlと不可避的不純物からなる。
1. Manufacturing method of mini-core A core resembling an actual heat exchanger by inserting a pipe material having the composition and configuration shown in Table 1 into a hole of a fin material having the composition shown in Table 2 and hydraulically expanding the pipe material (Hereinafter referred to as a mini-core). The mini cores of Examples 1 to 21 and Comparative Examples 1 to 8 have tubes and fins formed from the types of tube materials and fin materials shown in Table 3. Table 3 also shows the presence and type of pre-coating with a hydrophilic film. In addition, each composition of Table 1 and Table 2 consists of Al and an inevitable impurity with the remainder.

表1に示す管材は、以下のようにして作製した。表1に示す組成の円筒状のビレットを作製し、520℃以下に加熱して押出し、素管とした。次いで、得られた素管材に抽伸加工を行い、外径φ8mm、内径φ6mmの管材を作製した。その後、Znを溶射し、Zn拡散処理を行った。Zn拡散処理後の管の表面Zn濃度およびZn拡散距離をEPMAによって分析した。分析結果を表1に示した。   The pipe materials shown in Table 1 were produced as follows. A cylindrical billet having the composition shown in Table 1 was prepared, heated to 520 ° C. or less, and extruded to obtain a blank tube. Subsequently, the obtained raw pipe material was subjected to a drawing process to produce a pipe material having an outer diameter of φ8 mm and an inner diameter of φ6 mm. Thereafter, Zn was sprayed and Zn diffusion treatment was performed. The surface Zn concentration and Zn diffusion distance of the tube after the Zn diffusion treatment were analyzed by EPMA. The analysis results are shown in Table 1.

表2に示すフィン材は、以下のようにして作製した。まず、通常の半連続鋳造法により製造した、表2に示す組成の鋳塊の両面を10mmずつ面削した。次いで、500℃で6時間の予備加熱を行い、熱間圧延により板厚5mmまで圧延し、更に板厚0.4mmまで冷間圧延を行い、350℃で3時間の中間焼鈍を施したのち、冷間圧延にて0.15mmのフィン材を作製した。   The fin material shown in Table 2 was produced as follows. First, both sides of an ingot of the composition shown in Table 2 manufactured by a normal semi-continuous casting method were chamfered by 10 mm each. Next, preheating at 500 ° C. for 6 hours, hot rolling to a sheet thickness of 5 mm, further cold rolling to a sheet thickness of 0.4 mm, and intermediate annealing at 350 ° C. for 3 hours, A fin material of 0.15 mm was produced by cold rolling.

2.ミニコアの評価
以下の方法により、実施例1〜21及び比較例1〜8のミニコアの評価を行った。
2. Evaluation of minicore The minicore of Examples 1-21 and Comparative Examples 1-8 was evaluated by the following method.

(1)孔食電位の測定
上記のようにして作製したミニコアの各部位の孔食電位を測定した。孔食電位は、以下の方法で測定した。3電極型セルを用い、動電位法における分極曲線の測定を室温で電位掃引速度20mV/minにて行った。アノード分極曲線の測定には、予め窒素ガスを吹き込み十分に脱気を行った5%NaCl水溶液を試験液に用いた。試験電極は供試材を所定の大きさに切り出し、露出部分1×1cmを残し、シール及びエポキシ樹脂で被覆し使用した。対極には白金電極を、参照電極には飽和KCl溶液中の銀・塩化銀電極(Ag/AgCl)を用いた。アノード分極曲線の一例を図2に示す。図2のアノード分極曲線において、アノード電流密度が急激に上昇したときの電位を孔食電位とした。
測定結果を表4に示す。表1中、(1)管表面、(2)Znの拡散していない管、及び(3)フィンの孔食電位は実測したものである。それ以外の値は、(1)〜(3)の実測値および表1のデータに基づいて算出したものである。
(1) Measurement of pitting corrosion potential The pitting corrosion potential of each part of the mini-core produced as described above was measured. The pitting potential was measured by the following method. Using a three-electrode cell, the polarization curve in the dynamic potential method was measured at room temperature at a potential sweep rate of 20 mV / min. For the measurement of the anodic polarization curve, a 5% NaCl aqueous solution, which was previously deaerated by blowing nitrogen gas, was used as a test solution. The test electrode was used by cutting the test material into a predetermined size, leaving an exposed portion of 1 × 1 cm 2 and covering with a seal and an epoxy resin. A platinum electrode was used as the counter electrode, and a silver / silver chloride electrode (Ag / AgCl) in a saturated KCl solution was used as the reference electrode. An example of the anodic polarization curve is shown in FIG. In the anodic polarization curve of FIG. 2, the potential when the anode current density rapidly increased was defined as the pitting corrosion potential.
Table 4 shows the measurement results. In Table 1, (1) the tube surface, (2) the tube where Zn is not diffused, and (3) the pitting corrosion potential of the fin are measured. The other values are calculated based on the actually measured values (1) to (3) and the data in Table 1.

実施例1〜21では、フィンの孔食電位は、Zn濃度が管表面の濃度の2/3である部位の孔食電位よりも貴であり、Zn濃度が管表面の濃度の1/3である部位の孔食電位よりも卑である。比較例1〜8では、フィンの孔食電位は、Zn濃度が管表面の濃度の2/3である部位の孔食電位よりも卑であるか、Zn濃度が管表面の濃度の1/3である部位の孔食電位よりも貴であった。   In Examples 1 to 21, the pitting corrosion potential of the fin is nobler than the pitting corrosion potential of the portion where the Zn concentration is 2/3 of the tube surface concentration, and the Zn concentration is 1/3 of the tube surface concentration. It is lower than the pitting potential of a certain part. In Comparative Examples 1 to 8, the pitting corrosion potential of the fin is lower than the pitting corrosion potential at the site where the Zn concentration is 2/3 of the tube surface concentration, or the Zn concentration is 1/3 of the tube surface concentration. It was more noble than the pitting potential of the part.

(2)腐食試験
作製したミニコアを用い、JISのH8601に準じるCASS試験を2000時間行なった。試験後、ミニコアのフィンを取り去り、チューブに付着した腐食生成物を濃硝酸とリン酸−クロム酸混液で除去した後に、フィン下の管の腐食深さを焦点深度法にて測定した。結果を表5に示す。腐食深さが0.40mm未満のものを合格とし、0.40mm以上を不合格とした。
(2) Corrosion test Using the prepared mini-core, a CASS test according to JIS H8601 was conducted for 2000 hours. After the test, the fins of the mini-core were removed, and the corrosion products adhering to the tube were removed with concentrated nitric acid and phosphoric acid-chromic acid mixed solution, and then the corrosion depth of the tube under the fin was measured by the depth of focus method. The results are shown in Table 5. The corrosion depth of less than 0.40 mm was accepted, and 0.40 mm or more was rejected.

表5から明らかなように、実施例1〜21では管の腐食深さがいずれも0.40mm未満であり、管の耐食性が合格であった。また、フィンの腐食は、せいぜい軽微なものであるので、フィンの耐食性も合格であった。一方、比較例1、2、4では、管の腐食深さが深かった。また、比較例5では、フィンが激しく腐食し、管の腐食深さが深かった。比較例3、6、7、8では、フィンが非常に激しく腐食し、管の腐食深さが深かった。   As is apparent from Table 5, in Examples 1 to 21, the corrosion depth of the pipes was less than 0.40 mm, and the corrosion resistance of the pipes was acceptable. Further, since the corrosion of the fins is minimal, the corrosion resistance of the fins was also acceptable. On the other hand, in Comparative Examples 1, 2, and 4, the corrosion depth of the pipe was deep. Moreover, in the comparative example 5, the fin corroded violently and the corrosion depth of the pipe | tube was deep. In Comparative Examples 3, 6, 7, and 8, the fins corroded violently, and the corrosion depth of the pipe was deep.

これらの結果より、フィンの孔食電位がZn濃度が管表面の濃度の2/3である部位の孔食電位よりも貴であり、かつZn濃度が管表面の濃度の1/3である部位の孔食電位よりも卑である場合には、管の耐食性とフィンの耐食性がどちらも高く、従って、フィンの孔食電位を上記範囲内にすることによって、熱交換器の耐食性を向上させることができることが分かった。   From these results, the pitting corrosion potential of the fin is more noble than the pitting corrosion potential of the region where the Zn concentration is 2/3 of the tube surface concentration, and the region where the Zn concentration is 1/3 of the tube surface concentration If it is lower than the pitting corrosion potential of the pipe, both the corrosion resistance of the pipe and the corrosion resistance of the fin are both high, and therefore the corrosion resistance of the heat exchanger is improved by keeping the pitting corrosion potential of the fin within the above range. I found out that

Claims (7)

Znの溶射及び拡散熱処理によって形成されたZn拡散層を外面に有し且つアルミニウム合金からなる管と、Znを含有するアルミニウム合金からなるフィンとを拡管接合する工程を備える拡管接合型熱交換器の製造方法であって、フィンの孔食電位が、前記Zn拡散層の表面Zn濃度の2/3のZn濃度を有する部位の孔食電位よりも貴であり、且つ前記表面Zn濃度の1/3のZn濃度を有する部位の孔食電位よりも卑であり、
前記管は、その組成が、Si:1.34mass%以下、Fe:0.9mass%以下、Cu:0.93mass%以下、Mn:0.24〜1.74mass%、Mg、Cr、Ti、V、In、及びSnの合計:0.3mass%以下、残部Alと不可避不純物であり、
前記管は、表面Zn濃度が0.1〜12.4mass%であり、
前記管は、Zn拡散層の厚さが80〜500μmの範囲であり、
前記フィンは、その組成が、Zn:0.3〜4.14mass%、In:0.1mass%以下、Sn:0.1mass%以下、Si:1.0mass%以下、Fe:0.7mass%以下、Mn:1.5mass%以下、Cu:0.3mass%以下、Mg、Cr、Ti、及びVの合計:0.3mass%以下、残部Alと不可避的不純物である拡管接合型熱交換器の製造方法
An expansion joint type heat exchanger comprising a step of expanding and joining a pipe made of an aluminum alloy and a fin made of an aluminum alloy containing Zn and having a Zn diffusion layer formed by Zn spraying and diffusion heat treatment on the outer surface . In the manufacturing method , the pitting corrosion potential of the fin is nobler than the pitting corrosion potential of a portion having a Zn concentration that is 2/3 of the surface Zn concentration of the Zn diffusion layer, and 1/3 of the surface Zn concentration. It is lower than the pitting corrosion potential of the part having the Zn concentration of
The tube, its composition, Si: 1.34mass% or less, Fe: 0.9 1 mass% or less, Cu: 0.93mass% or less, Mn: 0.24~1.74mass%, Mg, Cr, Ti , V, In, and Sn: 0.3 mass% or less, balance Al and inevitable impurities,
The tube has a surface Zn concentration of 0.1 to 12.4 mass%,
The tube has a Zn diffusion layer thickness in the range of 80-500 μm,
The fin has a composition of Zn: 0.3 to 4.14 mass%, In: 0.1 mass% or less, Sn: 0.1 mass% or less, Si: 1.0 mass% or less, Fe: 0.7 mass% or less , Mn: 1.5 mass% or less, Cu: 0.3 mass% or less, total of Mg, Cr, Ti, and V: 0.3 mass% or less, manufacture of the expansion junction type heat exchanger which is the balance Al and inevitable impurities Way .
前記管は、Si:0.05〜1.0mass%、Cu:0.05〜0.7mass%、Mn:0.3〜1.5mass%、Fe:0.7mass%以下であり、前記表面Zn濃度は、0.5〜10.0mass%であり、前記Zn拡散層は、厚さが150〜400μmである請求項1に記載の熱交換器の製造方法The tube is made of Si: 0.05 to 1.0 mass%, Cu: 0.05 to 0.7 mass%, Mn: 0.3 to 1.5 mass%, Fe: 0.7 mass% or less, and the surface Zn 2. The method of manufacturing a heat exchanger according to claim 1, wherein the concentration is 0.5 to 10.0 mass%, and the Zn diffusion layer has a thickness of 150 to 400 μm. 前記管は、Si:0.2〜1.0mass%である請求項2に記載の熱交換器の製造方法The said pipe | tube is Si: 0.2-1.0mass%, The manufacturing method of the heat exchanger of Claim 2. 前記管の内面に溝が形成されていることを特徴とする請求項1に記載の熱交換器の製造方法The method for manufacturing a heat exchanger according to claim 1, wherein a groove is formed on an inner surface of the tube. 前記フィンは、Zn:0.3〜3.0mass%である請求項1に記載の熱交換器の製造方法The method for manufacturing a heat exchanger according to claim 1, wherein the fin is Zn: 0.3 to 3.0 mass%. 前記フィンは、有機系親水性皮膜もしくは無機系親水性皮膜を表面に有する請求項1〜5の何れか1つに記載の熱交換器の製造方法The said fin has a manufacturing method of the heat exchanger as described in any one of Claims 1-5 which has an organic-type hydrophilic membrane | film | coat or an inorganic-type hydrophilic membrane | film | coat on the surface. 前記フィンは、Mn:0.88〜0.93mass%である請求項1〜6の何れか1つに記載の熱交換器の製造方法 The said fin is Mn: 0.88-0.93 mass%, The manufacturing method of the heat exchanger as described in any one of Claims 1-6
JP2012505706A 2010-03-16 2011-03-15 Tube expansion heat exchanger, heat exchanger tube and fin material Expired - Fee Related JP5850827B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012505706A JP5850827B2 (en) 2010-03-16 2011-03-15 Tube expansion heat exchanger, heat exchanger tube and fin material

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010059114 2010-03-16
JP2010059114 2010-03-16
JP2012505706A JP5850827B2 (en) 2010-03-16 2011-03-15 Tube expansion heat exchanger, heat exchanger tube and fin material
PCT/JP2011/056099 WO2011115133A1 (en) 2010-03-16 2011-03-15 Expanded tube-to-tubesheet joint type heat exchanger, and tube material and fin material for heat exchanger

Publications (2)

Publication Number Publication Date
JPWO2011115133A1 JPWO2011115133A1 (en) 2013-06-27
JP5850827B2 true JP5850827B2 (en) 2016-02-03

Family

ID=44649217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012505706A Expired - Fee Related JP5850827B2 (en) 2010-03-16 2011-03-15 Tube expansion heat exchanger, heat exchanger tube and fin material

Country Status (2)

Country Link
JP (1) JP5850827B2 (en)
WO (1) WO2011115133A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5877739B2 (en) * 2012-03-15 2016-03-08 株式会社Uacj Aluminum alloy flat tube for heat exchanger and method for producing the same, heat exchanger core and method for producing the same
JP6633359B2 (en) * 2015-11-18 2020-01-22 株式会社栗本鐵工所 Pseudo-alloy-coated member, aluminum alloy for pseudo-alloy coating, and aluminum alloy wire for pseudo-alloy coating
JP6204450B2 (en) * 2015-12-25 2017-09-27 株式会社Uacj Aluminum alloy flat tube for heat exchanger and method for producing the same, heat exchanger core and method for producing the same
JP2023018399A (en) * 2021-07-27 2023-02-08 Maアルミニウム株式会社 Aluminum alloy fin material and heat exchanger and method for producing aluminum alloy fin material

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH093580A (en) * 1995-06-20 1997-01-07 Showa Alum Corp Heat exchanger made of aluminum alloy, excellent in corrosion resistance
JPH10306337A (en) * 1997-04-30 1998-11-17 Furukawa Electric Co Ltd:The Fin material for mechanical caulking type heat exchanger
JP2000169926A (en) * 1998-12-04 2000-06-20 Furukawa Electric Co Ltd:The Fin material for mechanical caulking type heat exchanger
JP2004170061A (en) * 2002-10-30 2004-06-17 Showa Denko Kk Heat exchanger, pipe material and fin material of heat exchanger and manufacturing method of heat exchanger
JP2004176178A (en) * 2002-11-12 2004-06-24 Showa Denko Kk Aluminum pipe and method for manufacturing the same
JP2007071526A (en) * 2005-08-09 2007-03-22 Kobelco & Materials Copper Tube Inc Heat exchanger with corrosion resistant coating, and latent heat recovery type water heater
JP2007528297A (en) * 2004-01-09 2007-10-11 昭和電工株式会社 HEAT EXCHANGER, MANUFACTURING METHOD THEREOF, AND HEAT EXCHANGER TUBE
JP2008208416A (en) * 2007-02-26 2008-09-11 Furukawa Sky Kk Extruded material of aluminum alloy used for heat exchanger using natural refrigerant
JP2008266738A (en) * 2007-04-20 2008-11-06 Furukawa Sky Kk Three-layer clad aluminum tube, and method for manufacturing internally grooved tube made of aluminum
JP2011085290A (en) * 2009-10-14 2011-04-28 Furukawa-Sky Aluminum Corp Heat exchanger, and pipe material and fin material for the heat exchanger

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH093580A (en) * 1995-06-20 1997-01-07 Showa Alum Corp Heat exchanger made of aluminum alloy, excellent in corrosion resistance
JPH10306337A (en) * 1997-04-30 1998-11-17 Furukawa Electric Co Ltd:The Fin material for mechanical caulking type heat exchanger
JP2000169926A (en) * 1998-12-04 2000-06-20 Furukawa Electric Co Ltd:The Fin material for mechanical caulking type heat exchanger
JP2004170061A (en) * 2002-10-30 2004-06-17 Showa Denko Kk Heat exchanger, pipe material and fin material of heat exchanger and manufacturing method of heat exchanger
JP2004176178A (en) * 2002-11-12 2004-06-24 Showa Denko Kk Aluminum pipe and method for manufacturing the same
JP2007528297A (en) * 2004-01-09 2007-10-11 昭和電工株式会社 HEAT EXCHANGER, MANUFACTURING METHOD THEREOF, AND HEAT EXCHANGER TUBE
JP2007071526A (en) * 2005-08-09 2007-03-22 Kobelco & Materials Copper Tube Inc Heat exchanger with corrosion resistant coating, and latent heat recovery type water heater
JP2008208416A (en) * 2007-02-26 2008-09-11 Furukawa Sky Kk Extruded material of aluminum alloy used for heat exchanger using natural refrigerant
JP2008266738A (en) * 2007-04-20 2008-11-06 Furukawa Sky Kk Three-layer clad aluminum tube, and method for manufacturing internally grooved tube made of aluminum
JP2011085290A (en) * 2009-10-14 2011-04-28 Furukawa-Sky Aluminum Corp Heat exchanger, and pipe material and fin material for the heat exchanger

Also Published As

Publication number Publication date
WO2011115133A1 (en) 2011-09-22
JPWO2011115133A1 (en) 2013-06-27

Similar Documents

Publication Publication Date Title
JP6186239B2 (en) Aluminum alloy heat exchanger
JP5873343B2 (en) High corrosion resistance aluminum alloy brazing sheet and flow path forming part of automobile heat exchanger using the same
WO2010150727A1 (en) Heat exchanger made from aluminum alloy, and process for production of coolant passage tube for use in the heat exchanger
EP2921566B1 (en) Aluminum alloy clad material and heat exchanger provided with tube that is molded from aluminum alloy clad material
US10508325B2 (en) Corrosion-resistant aluminum alloy for heat exchanger
JP6105561B2 (en) Aluminum alloy inner surface grooved heat transfer tube
JP6132330B2 (en) Aluminum alloy clad material and heat exchanger assembled with a tube formed from the clad material
JP5850827B2 (en) Tube expansion heat exchanger, heat exchanger tube and fin material
JP5466472B2 (en) Heat exchanger
JP2015014035A (en) Heat exchanger brazing sheet and method for producing the same
JP2008280544A (en) Fin material excellent in strength, sacrificial anode effect and corrosion resistance, and heat exchanger
JP2010156002A (en) Copper alloy tube, method for manufacturing the same, and heat pump water heater
JP2014205876A (en) Heat exchanger made of aluminum alloy, and method of manufacturing the same
JP5635806B2 (en) Aluminum alloy extruded material for connectors with excellent extrudability and sacrificial anode properties
JPS593531B2 (en) Corrosion-resistant copper alloy and heat exchanger using it
JP5416439B2 (en) Aluminum alloy brazed body, heat treatment method thereof, and heat exchanger
JP2017226880A (en) Aluminum alloy-made heat exchanger excellent in corrosion resistance in air environment and manufacturing method of aluminum alloy-made heat exchanger
JP6307331B2 (en) Aluminum alloy fin material for heat exchanger excellent in room temperature strength, high temperature strength and corrosion resistance after brazing heat and method for producing the same
JP2000212667A (en) Aluminum alloy extruded tube for heat exchanger excellent in corrosion resistance
JP4347145B2 (en) Aluminum alloy extruded tube and heat exchanger for heat exchanger
JP6235246B2 (en) Aluminum alloy material for tubes and brazed heat exchanger
JP5552181B2 (en) Aluminum alloy clad material
JP6518804B2 (en) Method of manufacturing aluminum alloy pipe for heat exchanger
JP4174644B2 (en) Aluminum alloy extruded tube for heat exchangers with excellent corrosion resistance
JPS6311598B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150915

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151008

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151102

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151201

R150 Certificate of patent or registration of utility model

Ref document number: 5850827

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees