JP5466472B2 - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP5466472B2
JP5466472B2 JP2009237049A JP2009237049A JP5466472B2 JP 5466472 B2 JP5466472 B2 JP 5466472B2 JP 2009237049 A JP2009237049 A JP 2009237049A JP 2009237049 A JP2009237049 A JP 2009237049A JP 5466472 B2 JP5466472 B2 JP 5466472B2
Authority
JP
Japan
Prior art keywords
mass
tube
fin
heat exchanger
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009237049A
Other languages
Japanese (ja)
Other versions
JP2011085290A (en
Inventor
大谷良行
恩田時伯
兒島洋一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UACJ Corp
Original Assignee
UACJ Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UACJ Corp filed Critical UACJ Corp
Priority to JP2009237049A priority Critical patent/JP5466472B2/en
Publication of JP2011085290A publication Critical patent/JP2011085290A/en
Application granted granted Critical
Publication of JP5466472B2 publication Critical patent/JP5466472B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Laminated Bodies (AREA)

Description

本発明は、空気と冷媒間で熱交換を行う熱交換器に関し、空気側の耐久寿命を向上させた、特にルームエアコンに用いる熱交換器に関する。 The present invention relates to a heat exchanger for exchanging heat between air and the refrigerant, thereby improving the air side of the service life, it relates to a heat exchanger used in the particular room air conditioner.

従来、ルームエアコンの熱交換器は、Cu製の押出し管を冷媒管とし、Al製フィン材と拡管接合されることにより作製されていた。近年、エアコンのリサイクルの観点からCu製の管をAl製に替える動きがある。Cuに比べAlは耐食性が劣るため、Al製の管を用いた場合には耐久寿命が問題となる。   Conventionally, a heat exchanger of a room air conditioner has been manufactured by using an extruded tube made of Cu as a refrigerant tube and expanding and joining with an Al fin material. In recent years, there has been a move to replace Cu tubes with Al from the viewpoint of recycling air conditioners. Since Al is inferior in corrosion resistance to Cu, durability life becomes a problem when an Al pipe is used.

特許文献1には、母材をAl材製とし、外表面はJIS規格H4080−A7072に規定するクラッド処理が施されることで保護被覆層を形成した冷媒管と、この冷媒管が挿通固着されるよう、JIS規格H4000−A1050又はA1100に規定するAl材製で、表面に電気絶縁層がプレコーティングされたフィン材とから成る熱交換器を備えたことを特徴とするアンモニア冷媒冷凍装置が記載されている。   In Patent Document 1, the base material is made of an Al material, and the outer surface is subjected to a clad treatment defined in JIS standard H4080-A7072, and the refrigerant pipe is inserted and fixed. As described above, an ammonia refrigerant refrigeration apparatus comprising a heat exchanger made of an Al material specified in JIS standard H4000-A1050 or A1100 and having a fin material whose surface is pre-coated with an electrical insulating layer is described. Has been.

この特許文献では、H4080−7072をクラッド処理した管とフィン材とを電気絶縁することで管の耐食性を向上させているが、フィン材に電気絶縁層がプレコーティングされているために、管とフィン材との接触部で隙間腐食が発生する虞がある。   In this patent document, the corrosion resistance of the pipe is improved by electrically insulating the pipe clad with H4080-7072 and the fin material, but since the electric insulation layer is pre-coated on the fin material, There is a risk of crevice corrosion occurring at the contact portion with the fin material.

特開2003−314974号公報JP 2003-314974 A

本発明の課題は、耐久寿命に優れたAl製熱交換器を提供することである。 An object of the present invention is to provide an Al-made heat exchanger excellent in durability life.

管材の耐食性を向上させるためには、管材よりも孔食電位の卑なAl又はAl合金を電気的に接合させ、犠牲防食作用によって管材を防食することが有用である。これには管材の外面に孔食電位の卑なAl又はAl合金をクラッドする手法があるが、それだけでは不十分である。本発明者らは、管材外面にクラッドしたAl又はAl合金よりも孔食電位の卑なフィン材を更に使用することで、管材の耐久寿命を大幅に向上できることを見出した。本発明は、この知見に基づきなすに至ったものである。   In order to improve the corrosion resistance of the pipe material, it is useful to electrically bond Al or Al alloy having a pitting potential lower than that of the pipe material and prevent the pipe material by sacrificial anticorrosive action. For this, there is a method of cladding Al or Al alloy having a pitting potential on the outer surface of the tube material, but that alone is not sufficient. The present inventors have found that the durability life of the pipe material can be greatly improved by further using a fin material having a pitting potential lower than that of Al or Al alloy clad on the outer surface of the pipe material. The present invention has been made based on this finding.

すなわち、本発明は請求項1において、Al合金からなる材と当該材の外面にAl又はAl合金からなるクラッド層とを備える管材と、Al合金からなるフィン材とを拡管接合した熱交換器であって、前記芯材より前記クラッド層の孔食電位が卑であり、かつ、前記フィン材が管材のクラッド層よりも孔食電位が卑であり、前記管材の芯材がSi0.2〜1.0mass%、Cu0.05〜0.7mass%、Mn0.3〜1.5mass%、Fe0.7mass%以下、ならびに、Mgを添加しない残部不可避不純物を含むAl合金からなり、前記管材のクラッド層が、純度99.0mass%以上の純Al、又は、Zn0.2〜2.5mass%と残部不可避不純物を含むAl−Zn合金のうちのいずれか一方からなり、前記フィン材がZn0.3〜3.0mass%と残部不可避不純物を含むAl−Zn合金からなること、を特徴とする熱交換器とした。 That is, the present invention according to claim 1, the heat exchange and tubing and a cladding layer made of Al or Al alloy on the outer surface of the core material and the core material of Al alloy, and a fin material of Al alloy pipe expansion joint a vessel, said a pitting potential of said cladding layer from the core material noble and pitting potential than the cladding layer of the fin material tube is Ri noble der core material of the tube material is Si0. 2 to 1.0 mass%, Cu 0.05 to 0.7 mass%, Mn 0.3 to 1.5 mass%, Fe 0.7 mass% or less, and an Al alloy containing the remaining inevitable impurities without adding Mg, The cladding layer is made of either pure Al having a purity of 99.0 mass% or more, or an Al-Zn alloy containing Zn 0.2 to 2.5 mass% and the balance inevitable impurities, and the fin There can consist Al-Zn alloy containing Zn0.3~3.0Mass% and the balance inevitable impurities and a heat exchanger according to claim.

発明は請求項において、フィン材がプレコーティングされた有機系親水性皮膜を表面に有するようにし、請求項において、フィン材がプレコーティングされた無機系親水性皮膜を表面に有するようにした。 According to a second aspect of the present invention, the fin material has an organic hydrophilic film pre-coated on the surface, and the third aspect of the invention has an inorganic hydrophilic film pre-coated with the fin material on the surface. did.

本発明係るAl製熱交換器は、耐久寿命に優れる。 Al-made heat exchanger according the present invention is excellent in durability life.

A.管材
本発明に用いる管材は、Al合金からなる芯材と、その外面に芯材よりも孔食電位の卑なAl又はAl合金のクラッド層とを備える。管材としては、押出し管が好適に用いられる。
A. Tubing used in the tube present invention comprises a core material of Al alloy and a cladding layer of the less noble Al or Al alloy pitting potential than the core material on its outer surface. As the pipe material, an extruded pipe is preferably used.

A−1.芯材
本発明に用いる管材における芯材のSi含有量は、0.2〜1.0mass%の範囲が望ましい。Siは、マトリックスに固溶したり金属間化合物を生成することによって、強度を向上させる元素である。さらに、Siの添加は芯材の電位を貴にして、芯材とクラッド層との電位差を大きくし、管材の耐久寿命を向上させる。このようなSi添加効果を得るためには、0.2mass%以上のSiの含有量とするのが望ましい。一方、過剰にSiが含有すると、単独で晶出したSiにより耐食性を低下させるおそれがある。この過剰なSiの含有による悪影響を回避するために、Si量の上限は1.0mass%とするのが望ましい。Siの含有量は0.3〜0.6mass%が更に望ましい。
A-1. Core material As for Si content of the core material in the pipe material used for this invention, the range of 0.2-1.0 mass% is desirable. Si is an element that improves the strength by forming a solid solution in a matrix or generating an intermetallic compound. Further, the addition of Si makes the potential of the core material noble, increases the potential difference between the core material and the clad layer, and improves the durable life of the tube material. In order to obtain such an Si addition effect, it is desirable that the Si content be 0.2 mass% or more. On the other hand, when Si contains excessively, there exists a possibility that corrosion resistance may fall by Si crystallized independently. In order to avoid the adverse effect due to the excessive Si content, the upper limit of the Si amount is preferably 1.0 mass%. The Si content is more preferably 0.3 to 0.6 mass%.

本発明に用いる管材の芯材のCu含有量は、0.05〜0.7mass%の範囲とするのが望ましい。Cuは孔食電位を貴にする働きがあり、クラッド層との孔食電位差が大きくなり犠牲防食作用を高めることができる。この効果を得るためには、Cu量を0.05mass%以上とするのが望ましい。一方、材料製造時の熱履歴によって、Al合金中にCu系金属間化合物が析出する。このCu系金属間化合物はカソード反応を促進させるため、腐食速度が増大する。したがって、Cu量の上限は0.7mass%とするのが望ましい。Cuの含有量は0.1〜0.5mass%が更に望ましい。   The Cu content of the core material of the tube material used in the present invention is desirably in the range of 0.05 to 0.7 mass%. Cu has a function of making the pitting corrosion potential noble, and the pitting corrosion potential difference with the clad layer is increased, so that the sacrificial anticorrosive action can be enhanced. In order to obtain this effect, it is desirable that the amount of Cu be 0.05 mass% or more. On the other hand, Cu-based intermetallic compounds are precipitated in the Al alloy due to the thermal history during material production. Since this Cu-based intermetallic compound promotes the cathode reaction, the corrosion rate increases. Therefore, it is desirable that the upper limit of the amount of Cu is 0.7 mass%. The Cu content is more preferably 0.1 to 0.5 mass%.

本発明に用いる管材の芯材のMn含有量は、0.3〜1.5mass%の範囲とするのが望ましい。MnはAl−Mn系金属間化合物として晶出又は析出して強度を向上させる元素である。また、Al−Mn系金属間化合物は、Feを取り込むために後述するFeによる耐食性阻害効果を抑制する働きがある。これらの効果を得るためには、0.3mass%以上のMnを添加するのが望ましい。但し、Mn量が1.5mass%を超えると、巨大な金属間化合物が晶出し、製造性を阻害するおそれがある。したがって、Mn量の上限は1.5mass%とするのが望ましい。Mnの含有量は0.8〜1.3mass%が更に望ましい。   The Mn content of the core material of the tube material used in the present invention is preferably in the range of 0.3 to 1.5 mass%. Mn is an element that crystallizes or precipitates as an Al—Mn intermetallic compound to improve the strength. In addition, the Al—Mn-based intermetallic compound functions to suppress the corrosion resistance-inhibiting effect of Fe, which will be described later, in order to incorporate Fe. In order to obtain these effects, it is desirable to add 0.3 mass% or more of Mn. However, if the amount of Mn exceeds 1.5 mass%, a huge intermetallic compound may be crystallized, which may hinder manufacturability. Therefore, it is desirable that the upper limit of the Mn amount is 1.5 mass%. The Mn content is more preferably 0.8 to 1.3 mass%.

本発明に用いる管材の芯材のFe含有量は、0.7mass%以下とするのが望ましい。Feは鋳造中にFe系金属間化合物として晶出し、耐食性を低下させるおそれがあるため、0.7mass%以下とするのが望ましい。0.4mass%以下とするのが更に望ましく、0.2mass%以下とするのが最も望ましい。   The Fe content of the core material of the tube material used in the present invention is desirably 0.7 mass% or less. Fe may be crystallized as an Fe-based intermetallic compound during casting and may reduce the corrosion resistance. Therefore, it is desirable that the Fe content be 0.7 mass% or less. More preferably, it is 0.4 mass% or less, and most preferably 0.2 mass% or less.

本発明に用いる管材の芯材には、不可避不純物としてMg、Cr、Ti、V、In、Sn等を含有しても良い。これらの元素は、全体で0.3mass%以下とされるのが望ましい。 The core material of the tube material used in the present invention may contain Mg, Cr, Ti, V, In, Sn, etc. as inevitable impurities. As for these elements, it is desirable that it is 0.3 mass% or less on the whole.

A−2.クラッド層
本発明に用いる管材外面には、管材の芯材よりも孔食電位の卑な純Al又はAl合金をクラッドしたクラッド層が設けられる。クラッド層の純Al又はAl合金は、管材の芯材よりも孔食電位が卑であるため犠牲防食作用によって管材の芯材を防食し、管材の耐久寿命を向上させることができる。
A-2. Cladding layer On the outer surface of the pipe used in the present invention, a clad layer clad with pure Al or Al alloy having a pitting potential lower than that of the core of the pipe is provided. The pure Al or Al alloy of the cladding layer has a lower pitting corrosion potential than the core material of the tube material, so that the core material of the tube material can be prevented by the sacrificial anticorrosive action, and the durable life of the tube material can be improved.

クラッド層の純Alに含有される不純物元素は、金属間化合物として晶出・析出し、カソード反応を促進するため、腐食速度を増大させる。このため、不純物元素が多いほど腐食速度が大きくなる。この作用を減じるためにはAl純度を高めることが効果的であり、Al純度99.0mass%以上が望ましく、99.5mass%以上が更に望ましく、99.9mass%以上が最も望ましい。   Impurity elements contained in the pure Al of the clad layer crystallize and precipitate as intermetallic compounds and promote the cathode reaction, thus increasing the corrosion rate. For this reason, the corrosion rate increases as the amount of impurity elements increases. In order to reduce this effect, it is effective to increase the Al purity. The Al purity is preferably 99.0 mass% or more, more preferably 99.5 mass% or more, and most preferably 99.9 mass% or more.

また、クラッド層にAl−Zn合金を用いることによって孔食電位を大幅に卑にし、大きな犠牲防食作用を得ることもできる。Znは孔食電位を卑にする働きがあり、管の芯材との孔食電位差が大きくなり、犠牲防食作用を高める。この効果を得るためには、Zn含有量が0.2mass%以上であることが望ましい。一方、Zn量が2.5mass%を超えると腐食速度が増大し、犠牲防食層の耐食性が劣化してしまう。したがって、Znの上限は2.5mass%であることが望ましい。Znの含有量は0.4〜1.9mass%が更に望ましい。   Further, by using an Al—Zn alloy for the cladding layer, the pitting potential can be greatly reduced and a great sacrificial anticorrosive action can be obtained. Zn has a function of lowering the pitting potential, increasing the difference in pitting potential from the core material of the tube, and enhancing the sacrificial anticorrosive action. In order to acquire this effect, it is desirable that Zn content is 0.2 mass% or more. On the other hand, if the amount of Zn exceeds 2.5 mass%, the corrosion rate increases and the corrosion resistance of the sacrificial anticorrosive layer is deteriorated. Therefore, it is desirable that the upper limit of Zn is 2.5 mass%. The Zn content is more preferably 0.4 to 1.9 mass%.

A−3.管材の作製
管材は以下のようにして作製される。まず、円筒状の芯材の外面にクラッド層となる皮材スリーブを被せて、組み合わせビレットを作製する。所望のクラッド層厚さになるように、皮材スリーブの厚さを選定する。次いで、組み合わせビレットを加熱炉で350℃〜600℃に均熱する。次いで、組み合わせビレットをダイスとラムノーズ間に狭持してコンテナ内に挿入し、ダイスとラムノーズを固定した状態で芯材内径より大きな外径をもつマンドレルを圧入し、芯材の内径を拡管して芯材と皮材間の空気を追い出す。更に、マンドレルを所定の位置に固定して、ホローシステムを前進させダイスを通して組み合わせビレットを押し出し、継ぎ目無しの中空管材とするものである。最後に、抽伸工程を経て所定の外径と内径を有するクラッド管を作製する。
これに代わって、押し出し成形によって芯材管を作製し、その外面にクラッド層を溶射によって形成してもよい。
A-3. Preparation of tube material Tube material is manufactured as follows. First, a combination billet is manufactured by covering the outer surface of a cylindrical core material with a skin sleeve serving as a cladding layer. The thickness of the skin sleeve is selected so as to obtain a desired cladding layer thickness. Next, the combined billet is soaked at 350 ° C. to 600 ° C. in a heating furnace. Next, sandwich the combination billet between the die and the ramnose and insert it into the container. With the die and the ramnose fixed, press-fit a mandrel with an outer diameter larger than the inner diameter of the core, and expand the inner diameter of the core Expel the air between the core and skin. Further, the mandrel is fixed at a predetermined position, the hollow system is advanced, the combination billet is pushed out through a die, and a seamless hollow tube material is obtained. Finally, a clad tube having a predetermined outer diameter and inner diameter is produced through a drawing process.
Alternatively, a core tube may be produced by extrusion and a cladding layer may be formed on the outer surface by thermal spraying.

B.フィン材
本発明に用いるフィン材の孔食電位は、管材外面のクラッド層の孔食電位よりも卑とされる。フィン材は、管材外面のクラッド層よりも孔食電位が卑であるため犠牲防食作用によって管材外面のクラッド層及び芯材を防食し、管材の耐久寿命を向上させることができる。Znは孔食電位を卑にする働きがあり、管材外面のクラッド層との孔食電位差が大きくなり、犠牲防食作用を高める。この効果を得るためには、Zn量を0.3mass%以上とするのが望ましい。一方、Zn量が3.0mass%を超えると腐食速度が増大し、犠牲防食層の耐食性が劣化してしまうため、Znの上限は3.0mass%とするのが望ましい。Znの含有量は0.5〜2.0mass%が更に望ましい。
B. Fin Material The pitting corrosion potential of the fin material used in the present invention is lower than the pitting corrosion potential of the cladding layer on the outer surface of the pipe material. Since the fin material has a lower pitting corrosion potential than the cladding layer on the outer surface of the tube material, the sacrificial anticorrosive action prevents the cladding layer and the core material on the outer surface of the tube material, thereby improving the durability of the tube material. Zn has a function of lowering the pitting corrosion potential, increasing the pitting corrosion potential difference with the cladding layer on the outer surface of the pipe material, and enhancing the sacrificial anticorrosion action. In order to obtain this effect, it is desirable that the Zn content be 0.3 mass% or more. On the other hand, if the amount of Zn exceeds 3.0 mass%, the corrosion rate increases and the corrosion resistance of the sacrificial anticorrosive layer is deteriorated. Therefore, the upper limit of Zn is preferably set to 3.0 mass%. The Zn content is more preferably 0.5 to 2.0 mass%.

本発明においてフィン材には、不可避不純物としてMg、Cr、Ti、V、In、Sn
等を含有しても良い。これらの元素は、全体で0.3mass%以下とされるのが望まし
い。
In the present invention, the fin material has Mg, Cr, Ti, V, In, Sn as inevitable impurities.
Etc. may be contained . As for these elements, it is desirable that it is 0.3 mass% or less on the whole.

B−1フィン材の作製
フィン材は、上記素材を用いて通常の半連続鋳造を行い、400〜600℃の温度で1〜10時間予備加熱を行い、熱間圧延を行なう。その後、冷間圧延によって所定の板厚まで圧延される。冷間圧延の途中又は冷間圧延後において、1〜2回程度の焼鈍工程を経ても良い。焼鈍工程は、通常はバッチ式の炉を用いて200〜500℃において1〜10時間の条件で行なわれるか、連続式の炉を用いて200〜500℃で行なわれる。これをプレス加工してフィン材を作製する。
Production of B-1 Fin Material The fin material is subjected to normal semi-continuous casting using the above material, pre-heated at a temperature of 400 to 600 ° C. for 1 to 10 hours, and hot rolled. Then, it is rolled to a predetermined plate thickness by cold rolling. In the middle of cold rolling or after cold rolling, an annealing process of about 1 to 2 times may be performed. The annealing step is usually performed at 200 to 500 ° C. for 1 to 10 hours using a batch furnace or at 200 to 500 ° C. using a continuous furnace. This is pressed to produce a fin material.

B−2.フィン材のプレコーティング
本発明におけるフィン材は、プレコーティングされた有機系又は無機系の親水性皮膜を表面に有することが望ましい。ルームエアコンの冷房運転時にフィン材表面に水滴が付着しフィン材間にブリッジが形成されると、フィン材間を通過する空気等の気体の抵抗が増大し冷却効率が低下する。親水性皮膜をプレコーティングすることによって、フィン材表面の接触角を非常に小さくし、水膜として流下させ水滴形成を防ぎ冷却効率の低下を防止できる。有機系又は無機系の親水性皮膜は、例えば有機系塗料又は無機系塗料を塗布しこれを乾燥することによって形成することができる。
B-2. Pre-coating of Fin Material The fin material in the present invention desirably has a pre-coated organic or inorganic hydrophilic film on the surface. When water droplets adhere to the surface of the fin material and a bridge is formed between the fin materials during the cooling operation of the room air conditioner, the resistance of a gas such as air passing between the fin materials increases and the cooling efficiency decreases. By pre-coating the hydrophilic film, the contact angle on the surface of the fin material can be made extremely small and flow down as a water film to prevent the formation of water droplets and prevent the cooling efficiency from being lowered. The organic or inorganic hydrophilic film can be formed, for example, by applying an organic paint or an inorganic paint and drying it.

有機系塗料としては、ポリビニルアルコール、カルボキシメチルセルロース等のセルロース系樹脂;アクリルアミド、アクリル酸、アクリル酸エステル等を主体としたアクリル系樹脂;エポキシ系樹脂;が適しており、これらの単独ポリマー、2種以上の混合物、又はこれらの共重合体であってもよい。また、これらの樹脂は自己架橋型のものであってもよく、必要に応じてヘキサブチロールメラミン、ヘキサブチロールメチルメラミンなどのメラミン化合物、エポキシ基を含有する化合物、ブチロール基を付加させた尿素又はイソシアナート基を有する化合物といった硬化剤が添加されていてもよい。なお、有機系塗料の溶媒としては、各成分を溶解又は分散できるものであれば特に制限されるものではなく、例えば水等の水性溶媒、アセトン等のケトン系溶媒、エタノール等のアルコール系溶媒等の溶媒を用いることができる。その中でも水性溶媒が望ましく、水が特に望ましい。塗料溶液中の塗料成分の濃度は、通常、5〜40wt%である。   Suitable organic paints include cellulose resins such as polyvinyl alcohol and carboxymethylcellulose; acrylic resins mainly composed of acrylamide, acrylic acid, acrylate esters, etc .; epoxy resins; A mixture of the above or a copolymer thereof may be used. In addition, these resins may be of a self-crosslinking type, and if necessary, melamine compounds such as hexabutyrol melamine and hexabutyrol methyl melamine, compounds containing an epoxy group, urea to which a butyrol group is added. Alternatively, a curing agent such as a compound having an isocyanate group may be added. The solvent of the organic coating is not particularly limited as long as each component can be dissolved or dispersed. For example, an aqueous solvent such as water, a ketone solvent such as acetone, an alcohol solvent such as ethanol, etc. These solvents can be used. Among these, an aqueous solvent is desirable, and water is particularly desirable. The concentration of the paint component in the paint solution is usually 5 to 40 wt%.

一方、親水性皮膜の形成に使用される無機系塗料としては、水ガラス、コロイダルシリカ等を主体とする無機系塗料;これらとアクリル樹脂又はポリビニルアルコール等の混合塗料が用いられる。また、ジルコニウム酸等の金属架橋剤が添加されたものであってもよい。なお、無機系塗料の溶媒としては、各成分を溶解又は分散できるものであれば特に制限されるものではなく、例えば水等の水性溶媒、アセトン等のケトン系溶媒、エタノール等のアルコール系溶媒等の溶媒を用いることができる。その中でも水性溶媒が望ましく、水が特に望ましい。塗料溶液中の塗料成分の濃度は、通常、5〜40wt%である。   On the other hand, as the inorganic paint used for forming the hydrophilic film, an inorganic paint mainly composed of water glass, colloidal silica or the like; and a mixed paint such as acrylic resin or polyvinyl alcohol is used. Moreover, a metal cross-linking agent such as zirconium acid may be added. The solvent for the inorganic coating is not particularly limited as long as each component can be dissolved or dispersed. For example, an aqueous solvent such as water, a ketone solvent such as acetone, an alcohol solvent such as ethanol, etc. These solvents can be used. Among these, an aqueous solvent is desirable, and water is particularly desirable. The concentration of the paint component in the paint solution is usually 5 to 40 wt%.

有機系塗料や無機系塗料のプレコーティング方法としては、フィン材の基板であるアルミニウム合金薄板の表面に、下地処理としてクロメート処理やベイマイト処理などを行って耐食性皮膜(下地皮膜)を形成した後、その耐食性皮膜上に有機系又は無機系の塗料溶液を塗装・焼付けする方法、或いは、耐食性皮膜を設けたアルミニウム合金薄板を有機系又は無機系の塗料溶液中に浸漬する方法が挙げられる。塗装・焼付け方法における焼付条件は、通常、140〜300℃で5〜60秒間焼き付け、室温で乾燥させるものである。一方、浸漬方法では、30℃〜溶媒の沸点附近で10〜200秒間浸漬し、室温で乾燥させるものである。   As a pre-coating method for organic paints and inorganic paints, after forming a corrosion-resistant film (undercoat) on the surface of the aluminum alloy thin plate that is the fin material substrate by performing chromate treatment or boehmite treatment as the undercoat, Examples thereof include a method of coating and baking an organic or inorganic coating solution on the corrosion resistant coating, or a method of immersing an aluminum alloy thin plate provided with a corrosion resistant coating in an organic or inorganic coating solution. The baking conditions in the coating / baking method are usually baking at 140 to 300 ° C. for 5 to 60 seconds and drying at room temperature. On the other hand, the dipping method involves dipping for 10 to 200 seconds at 30 ° C. to near the boiling point of the solvent and drying at room temperature.

C.熱交換器の作製
本発明に係る熱交換器は、上述の管材とフィン材とを接合することによって得られる。フィン材は打ち抜き加工、バーリング加工、チューブ挿入を行い、管材とフィン材と組み合わせて、たとえば、拡管用の治具を管材内部に押し込み、液圧拡管によって管材径を広げフィンと密着させ接合する。
C. Production of Heat Exchanger A heat exchanger according to the present invention is obtained by joining the above-described tube material and fin material. The fin material is punched, burring processed, and inserted into a tube. In combination with the tube material and the fin material, for example, a tube expansion jig is pushed into the tube material, the diameter of the tube material is expanded by hydraulic expansion, and the fin material is in close contact with the fin.

以下に、本発明例と比較例に基づいて本発明の実施の形態を具体的に説明する。   Embodiments of the present invention will be specifically described below based on the present invention examples and comparative examples.

本発明例1〜12及び比較例1〜9
表1に、本発明に係る管材を用いた熱交換器の成分を示す。フィン材の成分及び親水性皮膜についても併せて示す。管材のクラッド層は純Al又はAl−Zn合金であり、表1に示す成分の他に不可避不純物を含有する。管材の芯材も、表1に示す成分を含有するAl合金である。フィン材は、表1に示す成分を含有するAl−Zn合金である。
Invention Examples 1-12 and Comparative Examples 1-9
Table 1 shows the components of the heat exchanger using the pipe according to the present invention. The components of the fin material and the hydrophilic film are also shown. The cladding layer of the pipe material is pure Al or Al—Zn alloy, and contains inevitable impurities in addition to the components shown in Table 1. The core material of the tube material is also an Al alloy containing the components shown in Table 1. The fin material is an Al—Zn alloy containing the components shown in Table 1.

Figure 0005466472
Figure 0005466472

管材は以下のようにして作製した。表1に示す芯材の円筒上の外面にクラッド層となる純Al又はAl−Zn合金の皮材スリーブを被せ、組み合わせビレットを作製した。次いで、これを加熱炉により350℃〜600℃に均熱する。この組み合わせビレットをダイスとラムノーズ間に狭持してコンテナ内に挿入し、ダイスとラムノーズを固定した状態で、芯材内径より大きな外径をもつマンドレルを圧入し、芯材の内径を拡管して芯材と皮材間の空気を追い出した。マンドレルを所定の位置に固定して、ホローシステムを前進させダイスを通して組み合わせビレットを押し出し、継ぎ目無しの中空管材を作製した。次いで、抽伸工程を経て外径φ8mm、内径φ6mm、クラッド率10%のクラッド管を作製した。   The pipe material was produced as follows. A pure billet made of pure Al or Al—Zn alloy serving as a cladding layer was placed on the outer surface of the core cylinder shown in Table 1 to produce a combined billet. Next, this is soaked in a heating furnace to 350 to 600 ° C. Hold this combination billet between the die and the ram nose and insert it into the container. With the die and the ram nose fixed, press-fit a mandrel with an outer diameter larger than the inner diameter of the core and expand the inner diameter of the core. The air between the core and skin was expelled. The mandrel was fixed in place, the hollow system was advanced and the combined billet was extruded through a die to produce a seamless hollow tube material. Subsequently, a cladding tube having an outer diameter of 8 mm, an inner diameter of 6 mm, and a cladding rate of 10% was produced through a drawing process.

上記のようにして作製した管材を用いて、これをフィン材と組み合わせ、管材を液圧拡管し実際の熱交換器に似せたコアを形成した。この熱交換器ミニコアを用い以下の評価を行なった。   Using the pipe material produced as described above, this was combined with a fin material, and the pipe material was hydraulically expanded to form a core resembling an actual heat exchanger. The following evaluation was performed using this heat exchanger mini-core.

(1)自然電位
上記のようにして作製した熱交換器ミニコアの各部位の自然電位を測定した。測定方法は、ASTM G69に準じて行った。溶液は、5%NaClに酸化剤として1M Hが含まれているために、この際に測定される自然電位は孔食電位とほぼ同じ値を示すと考えられる。結果を表2に示す。
(1) Natural potential The natural potential of each part of the heat exchanger mini-core produced as described above was measured. The measurement method was performed according to ASTM G69. Since the solution contains 1M H 2 O 2 as an oxidizing agent in 5% NaCl, it is considered that the natural potential measured at this time shows almost the same value as the pitting corrosion potential. The results are shown in Table 2.

Figure 0005466472
Figure 0005466472

表2の測定値から、芯材とクラッド層の自然電位差、及び、クラッド層とフィン材の自然電位差を算出した。結果を表3に示す。ここで、芯材とクラッド層の自然電位差とは、表2に示す芯材の自然電位から同表に示すクラッド層の自然電位を引き算したものである。クラッド層とフィン材の自然電位差とは、表2に示すクラッド層の自然電位から同表に示すフィン材の自然電位を引き算したものである。   From the measured values in Table 2, the natural potential difference between the core material and the clad layer and the natural potential difference between the clad layer and the fin material were calculated. The results are shown in Table 3. Here, the natural potential difference between the core material and the clad layer is obtained by subtracting the natural potential of the clad layer shown in the same table from the natural potential of the core material shown in Table 2. The natural potential difference between the clad layer and the fin material is obtained by subtracting the natural potential of the fin material shown in the table from the natural potential of the clad layer shown in Table 2.

Figure 0005466472
Figure 0005466472

比較例1では、芯材よりもクラッド層の自然電位の方が貴であり、比較例2では、クラッド層よりもフィン材の自然電位の方が貴であり、その他の例では、フィン材<クラッド層<芯材の順番に自然電位が貴になった。   In Comparative Example 1, the natural potential of the clad layer is more noble than the core material, in Comparative Example 2, the natural potential of the fin material is noble than the clad layer, and in other examples, the fin material < The natural potential became noble in the order of cladding layer <core material.

(2)腐食試験
作製した熱交換器ミニコアを用い、JIS H8601に準じるCASS試験を2000時間行なった。試験後、コアのフィンを除去し、チューブに付着した腐食生成物を濃硝酸とリン酸−クロム酸混液で除去した後に、フィン下の管の腐食深さを焦点深度法にて測定した。結果を表4に示す。腐食深さが0.40mm未満のものを合格とし、0.40mm以上を不合格とした。
(2) Corrosion test Using the produced heat exchanger mini-core, a CASS test according to JIS H8601 was conducted for 2000 hours. After the test, the core fin was removed, and the corrosion product adhering to the tube was removed with concentrated nitric acid and phosphoric acid-chromic acid mixed solution, and then the corrosion depth of the tube under the fin was measured by the depth of focus method. The results are shown in Table 4. The corrosion depth of less than 0.40 mm was accepted, and 0.40 mm or more was rejected.

Figure 0005466472
Figure 0005466472

表4から明らかなように、本発明例1〜12では、用いた管材の芯材が請求項1に記載の成分条件を満たすので、管材の腐食深さがいずれも0.40mm未満であり、管材の耐食性が合格であった。 As is clear from Table 4, in the present invention Examples 1 to 12, the core material used tube material satisfying the component conditions according to claim 1, both the corrosion depth of the tube is less than 0.40 mm, The corrosion resistance of the pipe material was acceptable.

比較例1では、管材において芯材よりもクラッド層の自然電位の方が貴であるため腐食深さが深く、管材の耐腐食性に劣った。
比較例2では、管材のクラッド層よりもフィン材の自然電位の方が貴であるため腐食深さが深く、管材の耐腐食性に劣った。
比較例3では、芯材のSi含有量が少な過ぎたために、芯材とクラッド層との電位差が小さくなり過ぎた。その結果、腐食深さが深く、管材の耐腐食性に劣った。
比較例4では、芯材のSi含有量が多過ぎたために、多量のSiが晶出した。その結果、腐食深さが深く、管材の耐腐食性に劣った。
比較例5では、芯材のFe含有量が多過ぎたために、多量のFe系金属間化合物が晶出した。その結果、腐食深さが深く、管材の耐腐食性に劣った。
比較例6では、芯材のCu含有量が少な過ぎたために、芯材とクラッド層との電位差が小さ過ぎた。その結果、腐食深さが深く、管材の耐腐食性に劣った。
比較例7では、芯材のCu含有量が多過ぎたために、多量のCu系金属間化合物が析出した。その結果、腐食深さが深く、管材の耐腐食性に劣った。
比較例8では、芯材のMn含有量が少な過ぎたために、Feの耐食性阻害効果の抑制が十分でなかった。その結果、腐食深さが深く、管材の耐腐食性に劣った。
比較例9では、芯材のMn含有量が多過ぎたために、多量のMn系金属間化合物が析出した。その結果、腐食深さが深く、管材の耐腐食性に劣った。
In Comparative Example 1, since the natural potential of the clad layer was more noble than the core material in the pipe material, the corrosion depth was deep and the pipe material was inferior in corrosion resistance.
In Comparative Example 2, the natural potential of the fin material was more noble than the cladding layer of the tube material, so the corrosion depth was deep and the tube material was inferior in corrosion resistance.
In Comparative Example 3, since the Si content of the core material was too small, the potential difference between the core material and the cladding layer was too small. As a result, the corrosion depth was deep and the pipe material was inferior in corrosion resistance.
In Comparative Example 4, a large amount of Si crystallized because the Si content of the core material was too large. As a result, the corrosion depth was deep and the pipe material was inferior in corrosion resistance.
In Comparative Example 5, a large amount of Fe-based intermetallic compound was crystallized because the Fe content in the core was too high. As a result, the corrosion depth was deep and the pipe material was inferior in corrosion resistance.
In Comparative Example 6, since the Cu content of the core material was too small, the potential difference between the core material and the cladding layer was too small. As a result, the corrosion depth was deep and the pipe material was inferior in corrosion resistance.
In Comparative Example 7, a large amount of Cu-based intermetallic compound was precipitated because the Cu content in the core material was too large. As a result, the corrosion depth was deep and the pipe material was inferior in corrosion resistance.
In Comparative Example 8, since the Mn content of the core material was too small, the effect of inhibiting the corrosion resistance of Fe was not sufficient. As a result, the corrosion depth was deep and the pipe material was inferior in corrosion resistance.
In Comparative Example 9, a large amount of Mn-based intermetallic compound was precipitated because the core material contained too much Mn. As a result, the corrosion depth was deep and the pipe material was inferior in corrosion resistance.

本発明例13〜22及び比較例10〜13
表5に、本発明に係る熱交換器に用いたフィン材の成分を示す。管材の成分についても併せて示す。
Invention Examples 13-22 and Comparative Examples 10-13
Table 5 shows the components of the fin material used in the heat exchanger according to the present invention. It also shows about the component of a pipe material.

Figure 0005466472
Figure 0005466472

フィン材の作製では、Al鋳塊の両面を10mmずつ面削し、総厚さが550mmとなるようにした。次いで、500℃で6時間の予備加熱を行い、熱間圧延により板厚5mmまで圧延し、更に板厚0.1mmまで冷間圧延を行い、350℃で3時間の最終焼鈍を施した。このようにして、所定のZn含有量のAl基材を得、これをコルゲート加工してフィン材を成形した。   In the production of the fin material, both sides of the Al ingot were chamfered by 10 mm so that the total thickness was 550 mm. Next, preheating was performed at 500 ° C. for 6 hours, hot rolling to a plate thickness of 5 mm, cold rolling to a plate thickness of 0.1 mm, and final annealing at 350 ° C. for 3 hours. In this manner, an Al base material having a predetermined Zn content was obtained, and this was corrugated to form a fin material.

親水性皮膜を塗布する場合には、Al基材に脱脂処理を施した後、水洗、乾燥を行なった。その後、塗布型クロメート液を基材表面に塗布し、焼付け乾燥を行なった。このようにして基材表面に塗布型クロメート皮膜を形成した後、その塗布型クロメート皮膜上に有機系塗料としてアクリル系塗料、或いは、無機系塗料として水ガラス系塗料を塗布し、プレコーティングフィン材とした。なお、有機系塗料の溶媒は水性溶媒であり、塗料溶液中の塗料成分の濃度は、20wt%であった。一方、無機系塗料の溶媒は水性溶媒であり、塗料溶液中の塗料成分の濃度は、20wt%であった。コーティング方法としては、有機系塗料、無機系塗料のいずれの場合にも浸漬法を採用し、25℃の塗料中に60秒間浸漬し、室温で乾燥した。   In the case of applying a hydrophilic film, the Al substrate was degreased, washed with water and dried. Thereafter, a coating type chromate solution was applied to the surface of the base material, and baked and dried. After forming a coatable chromate film on the substrate surface in this way, an acrylic paint as an organic paint or a water glass paint as an inorganic paint is applied onto the coatable chromate film, and a pre-coating fin material It was. The solvent of the organic paint was an aqueous solvent, and the concentration of the paint component in the paint solution was 20 wt%. On the other hand, the solvent of the inorganic coating material was an aqueous solvent, and the concentration of the coating component in the coating solution was 20 wt%. As a coating method, an immersion method was employed in both cases of organic paints and inorganic paints, soaked in a paint at 25 ° C. for 60 seconds, and dried at room temperature.

上記のようにして作製したフィンを用いて、これを管材と組み合わせ、管材を液圧拡管し実際の熱交換器に似せたコアを形成した。この熱交換器ミニコアを用い実施例1と同様にして、熱交換器ミニコアの各部位の自然電位を測定した。結果を表6に示す。   Using the fins produced as described above, this was combined with a pipe, and the pipe was hydraulically expanded to form a core resembling an actual heat exchanger. Using this heat exchanger minicore, the natural potential of each part of the heat exchanger minicore was measured in the same manner as in Example 1. The results are shown in Table 6.

Figure 0005466472
Figure 0005466472

表6の測定値から、芯材とクラッド層の自然電位差、及び、クラッド層とフィン材の自然電位差を算出した。結果を表7に示す。比較例10では、熱交換器に用いた管材の芯材よりもクラッド層の自然電位の方が貴であり、比較例11では、クラッド層よりもフィン材の自然電位の方が貴であり、その他の例では、フィン材<クラッド層<芯材の順番に自然電位が貴になった。   From the measured values in Table 6, the natural potential difference between the core material and the clad layer and the natural potential difference between the clad layer and the fin material were calculated. The results are shown in Table 7. In Comparative Example 10, the natural potential of the cladding layer is more noble than the core material of the tube used in the heat exchanger, and in Comparative Example 11, the natural potential of the fin material is more noble than the cladding layer, In other examples, the natural potential became noble in the order of fin material <cladding layer <core material.

Figure 0005466472
Figure 0005466472

作製した熱交換器ミニコアを用い、上記管材の場合と同様にしてJIS H8601に準じるCASS試験を2000時間行なった。結果を表8に示す。腐食深さが0.40mm未満のものを合格とし、0.40mm以上を不合格とした。   Using the produced heat exchanger mini-core, a CASS test according to JIS H8601 was performed for 2000 hours in the same manner as in the case of the above-described pipe material. The results are shown in Table 8. The corrosion depth of less than 0.40 mm was accepted, and 0.40 mm or more was rejected.

Figure 0005466472
Figure 0005466472

表8から明らかなように、本発明例13〜22では、用いたフィン材が請求項1に記載の成分条件を満たすので、管材の腐食深さがいずれも0.40mm未満であり、管材の耐食性が合格であった。 Table 8 As is apparent, the present invention examples 13 to 22, since the fin material using satisfies the component conditions according to claim 1, both the corrosion depth of the tube is less than 0.40 mm, the tubing Corrosion resistance was acceptable.

比較例10では、管材において芯材よりもクラッド層の自然電位の方が貴であるため腐食深さが深く、管材の耐腐食性に劣った。
比較例11では、管材のクラッド層よりもフィン材の自然電位の方が貴であるため腐食深さが深く、管材の耐腐食性に劣った。
比較例12では、フィン材のZn含有量が少な過ぎたために、犠牲防食効果が不十分となった。その結果、腐食深さが深く、管材の耐腐食性に劣った。
比較例13では、フィン材のZn含有量が多過ぎたために、腐食速度が増大した。その結果、腐食深さが深く、管材の耐腐食性に劣った。
In Comparative Example 10, since the natural potential of the clad layer was more noble than the core material in the pipe material, the corrosion depth was deep and the corrosion resistance of the pipe material was inferior.
In Comparative Example 11, the natural potential of the fin material was more noble than the cladding layer of the tube material, so the corrosion depth was deep and the tube material was inferior in corrosion resistance.
In Comparative Example 12, the sacrificial anticorrosive effect was insufficient because the Zn content of the fin material was too small. As a result, the corrosion depth was deep and the pipe material was inferior in corrosion resistance.
In Comparative Example 13, the corrosion rate increased because the Zn content of the fin material was excessive. As a result, the corrosion depth was deep and the pipe material was inferior in corrosion resistance.

このように本発明によって、耐久寿命に優れたAl製熱交換器を提供できる。
This way the present invention can provide an Al-made heat exchanger excellent in durability life.

Claims (3)

Al合金からなる材と当該材の外面にAl又はAl合金からなるクラッド層とを備える管材と、Al合金からなるフィン材とを拡管接合した熱交換器であって、
前記芯材より前記クラッド層の孔食電位が卑であり、かつ、前記フィン材が管材のクラッド層よりも孔食電位が卑であり、
前記管材の芯材がSi0.2〜1.0mass%、Cu0.05〜0.7mass%、Mn0.3〜1.5mass%、Fe0.7mass%以下、ならびに、Mgを添加しない残部不可避不純物を含むAl合金からなり、
前記管材のクラッド層が、純度99.0mass%以上の純Al、又は、Zn0.2〜2.5mass%と残部不可避不純物を含むAl−Zn合金のうちのいずれか一方からなり、
前記フィン材がZn0.3〜3.0mass%と残部不可避不純物を含むAl−Zn合金からなること、を特徴とする熱交換器。
A tubing and a core material and a cladding layer made of Al or Al alloy on the outer surface of the core material made of Al alloy, a heat exchanger tube expansion joining the fin material of Al alloy,
The pitting potential of said cladding from the core material is less noble, and pitting potential than the cladding layer of the fin material tube is Ri noble der,
The core material of the tube material contains Si 0.2 to 1.0 mass%, Cu 0.05 to 0.7 mass%, Mn 0.3 to 1.5 mass%, Fe 0.7 mass% or less, and the remainder of inevitable impurities without adding Mg. Made of Al alloy,
The cladding layer of the tube material is made of either pure Al having a purity of 99.0 mass% or more, or an Al-Zn alloy containing Zn 0.2 to 2.5 mass% and the balance unavoidable impurities,
The heat exchanger, wherein the fin material is made of an Al-Zn alloy containing 0.3 to 3.0 mass% of Zn and the balance inevitable impurities .
前記フィン材がプレコーティングされた有機系親水性皮膜を表面に有する、請求項1に記載の熱交換器。 The heat exchanger according to claim 1, which has an organic hydrophilic film precoated with the fin material on the surface . 前記フィン材がプレコーティングされた無機系親水性皮膜を表面に有する、請求項1に記載の熱交換器。 The heat exchanger according to claim 1, which has an inorganic hydrophilic film precoated with the fin material on the surface .
JP2009237049A 2009-10-14 2009-10-14 Heat exchanger Active JP5466472B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009237049A JP5466472B2 (en) 2009-10-14 2009-10-14 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009237049A JP5466472B2 (en) 2009-10-14 2009-10-14 Heat exchanger

Publications (2)

Publication Number Publication Date
JP2011085290A JP2011085290A (en) 2011-04-28
JP5466472B2 true JP5466472B2 (en) 2014-04-09

Family

ID=44078367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009237049A Active JP5466472B2 (en) 2009-10-14 2009-10-14 Heat exchanger

Country Status (1)

Country Link
JP (1) JP5466472B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011115133A1 (en) * 2010-03-16 2011-09-22 古河スカイ株式会社 Expanded tube-to-tubesheet joint type heat exchanger, and tube material and fin material for heat exchanger
JP5498229B2 (en) * 2010-03-31 2014-05-21 株式会社Uacj Aluminum alloy flat tube for heat exchanger and aluminum alloy heat exchanger
JP5554119B2 (en) * 2010-03-31 2014-07-23 株式会社Uacj Aluminum alloy flat tube for heat exchanger and aluminum alloy heat exchanger
JP6262930B2 (en) * 2012-03-28 2018-01-17 三菱アルミニウム株式会社 Aluminum alloy clad material for heat exchanger
JP2013204077A (en) * 2012-03-28 2013-10-07 Mitsubishi Alum Co Ltd Aluminum alloy clad material for heat exchanger
JP5885572B2 (en) * 2012-04-19 2016-03-15 株式会社Uacj Aluminum alloy clad tube for brazing and heat exchanger applying the aluminum alloy clad tube

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09203597A (en) * 1996-01-25 1997-08-05 Zexel Corp Laminated type heat exchanger
JPH09316577A (en) * 1996-05-30 1997-12-09 Furukawa Electric Co Ltd:The Brazing sheet for refrigerant passage member for heat exchanger
JPH101733A (en) * 1996-06-13 1998-01-06 Furukawa Electric Co Ltd:The Brazing sheet made of aluminum alloy
JP2000312938A (en) * 1999-04-30 2000-11-14 Showa Alum Corp Manufacture of heat exchanger
JP3890908B2 (en) * 2001-03-16 2007-03-07 日本軽金属株式会社 Organic hydrophilic coating composition and aluminum material for heat exchanger having hydrophilic film
JP2004035924A (en) * 2002-07-01 2004-02-05 Nippon Parkerizing Co Ltd Fin material made of aluminum and alloy thereof for heat exchanger and method of producing the same
JP2006037137A (en) * 2004-07-23 2006-02-09 Denso Corp Highly corrosion resistant aluminum clad material for heat exchanger
JP5089232B2 (en) * 2007-04-20 2012-12-05 古河スカイ株式会社 Method for producing three-layer clad aluminum tube and aluminum internally grooved tube

Also Published As

Publication number Publication date
JP2011085290A (en) 2011-04-28

Similar Documents

Publication Publication Date Title
JP5049488B2 (en) Method for producing aluminum alloy brazing sheet
JP5466472B2 (en) Heat exchanger
JP4825507B2 (en) Aluminum alloy brazing sheet
CN104105804B (en) High corrosion-resistant aluminium alloy brazing sheet material and the runner formation part using it
JP4822277B2 (en) Aluminum alloy brazing sheet for heat exchanger tubes with excellent brazing and corrosion resistance and heat exchanger tubes with excellent corrosion resistance
WO2014065355A1 (en) Aluminum alloy brazing sheet for fin, heat exchanger, and method for producing heat exchanger
JP2012513539A5 (en)
JP6315365B2 (en) Brazing sheet for heat exchanger and method for producing the same
JP5629113B2 (en) Aluminum alloy brazing sheet excellent in brazing and corrosion resistance, and heat exchanger using the same
JP5850827B2 (en) Tube expansion heat exchanger, heat exchanger tube and fin material
JP5101812B2 (en) High corrosion resistance tube for heat exchanger, heat exchanger and method for producing the same
JPH11335764A (en) Manufacture of high strength aluminum extruding alloy for heat exchanger, excellent in extrudability, and high strength aluminum alloy extruded material for heat exchanger
JP6039218B2 (en) Manufacturing method of aluminum alloy flat tube for heat exchanger and manufacturing method of heat exchanger core
JP6968598B2 (en) Manufacturing method of aluminum alloy heat exchanger with excellent corrosion resistance and aluminum alloy heat exchanger
JP6738667B2 (en) Aluminum alloy heat exchanger excellent in corrosion resistance in atmospheric environment and method of manufacturing aluminum alloy heat exchanger
JP2016182616A (en) Aluminum alloy cladding material and manufacturing method of the same
JP2000212668A (en) Aluminum alloy extruded tube for heat exchanger excellent in corrosion resistance
JP5416439B2 (en) Aluminum alloy brazed body, heat treatment method thereof, and heat exchanger
JP4263160B2 (en) Aluminum alloy clad material and heat exchanger tube and heat exchanger using the same
JP5877739B2 (en) Aluminum alloy flat tube for heat exchanger and method for producing the same, heat exchanger core and method for producing the same
CN102146543A (en) Aluminum alloy extrusion material for a connector which is excellent in extrusion property and sacrificial anode property
JP2018053279A (en) Aluminum alloy clad material and manufacturing method therefor
JP2000212667A (en) Aluminum alloy extruded tube for heat exchanger excellent in corrosion resistance
JP4347145B2 (en) Aluminum alloy extruded tube and heat exchanger for heat exchanger
JP6738666B2 (en) Aluminum alloy heat exchanger excellent in corrosion resistance in atmospheric environment and method of manufacturing aluminum alloy heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130815

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131010

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140124

R150 Certificate of patent or registration of utility model

Ref document number: 5466472

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150