JP5846944B2 - 活性汚泥等を活性化する粒状ゲル担体とその製造方法および排水処理方法 - Google Patents

活性汚泥等を活性化する粒状ゲル担体とその製造方法および排水処理方法 Download PDF

Info

Publication number
JP5846944B2
JP5846944B2 JP2012019463A JP2012019463A JP5846944B2 JP 5846944 B2 JP5846944 B2 JP 5846944B2 JP 2012019463 A JP2012019463 A JP 2012019463A JP 2012019463 A JP2012019463 A JP 2012019463A JP 5846944 B2 JP5846944 B2 JP 5846944B2
Authority
JP
Japan
Prior art keywords
activated sludge
granular gel
gel carrier
carrier
sugarcane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012019463A
Other languages
English (en)
Other versions
JP2013154335A (ja
Inventor
正夫 高梨
正夫 高梨
晃 岩田
晃 岩田
Original Assignee
浅野テクノロジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浅野テクノロジー株式会社 filed Critical 浅野テクノロジー株式会社
Priority to JP2012019463A priority Critical patent/JP5846944B2/ja
Publication of JP2013154335A publication Critical patent/JP2013154335A/ja
Application granted granted Critical
Publication of JP5846944B2 publication Critical patent/JP5846944B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Treatment Of Biological Wastes In General (AREA)
  • Activated Sludge Processes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

本発明は、活性汚泥法等による排水処理に適用され、活性汚泥等の中の微生物を活性化し、硝化促進と汚泥の凝集性を良くすることができる担体に関する技術である。
生物学的な排水処理として、従来から活性汚泥法による処理方法が多く用いられている(たとえば、特許文献1、特許文献2)。活性汚泥法は、曝気槽内の活性汚泥に必要な空気を送り込み、微生物が排水中の有機汚濁物質を生物分解することで、排水を浄化するものである。
曝気槽で処理された排水は、活性汚泥とともに沈殿槽に送られる。沈殿槽では、増殖した活性汚泥等が沈降し、浄化された水が上澄みとなる。沈殿槽に沈降した活性汚泥は、曝気槽の活性汚泥濃度を保つために、一部が曝気槽に返送され、余剰分は余剰汚泥として汚泥処理される。上澄水はさらに砂濾過処理や消毒処理を経て浄化水として放流される。あるいは、再利用水として、さらにオゾン酸化や活性炭吸着等の高度処理が加えられたりする。
また、窒素除去を行う場合には、活性汚泥中の従属栄養細菌が溶存酸素のない嫌気的条件下で脱窒素が発揮され、排水中の硝酸性窒素や亜硝酸性窒素等の酸化態窒素から窒素が除去される。脱窒素細菌は、活性汚泥に含まれているものを利用することもあるが、屎尿処理場等の脱窒素槽液を使用することもある。
以上のことから、本発明において「活性汚泥等」とは、排水処理に用いられる微生物群を含有するもの全体を指し、これには活性汚泥や脱窒素槽液が含まれるものとする。
一般に、排水処理においては、流量負荷(排水量)や、BOD負荷(排水のBOD量)の変動が起こるが、これらの変動の影響を可能な限り取り込み、安定した排水処理ができることが重要である。しかるに、上記の活性汚泥法では、季節変動等で一時期、計画処理量に対して処理水量が極端に減少した場合や、BOD負荷が低下した場合、曝気槽内での適正な活性汚泥濃度の確保が困難となり、活性汚泥の生物分解度の低下などにより、安定した排水処理という目的の達成ができなくなる、という問題がある。
また、特許文献3のように、活性汚泥と担体を併用する方法がある。ここでは、有機性廃液の生物処理方法において、曝気槽内に活性汚泥とスポンジ状の吸水性微生物固定化担体を投入し、曝気槽内で、好気性生物処理工程と膜分離工程を同時に行い、該膜分離工程に用いる分離膜の洗浄を行ないつつ、処理液を得る方法である。この方法によれば、大量の排水を迅速に処理することができる。
しかしながら、この方法では、負荷変動による担体表面の生物膜剥離や一部破損した担体が槽外に流出し、次工程での処理に障害が懸念されるという問題がある。
また、従属栄養細菌による汚水処理においては、炭素源が必要で、従来は、メチルアルコールを炭素源として排水中に添加していた。
しかしながら、メチルアルコールを添加した場合、これらの一部が分解されずに処理水に残留し、処理水のBOD値を大きくしてしまうという問題があった。
一般に、活性汚泥等には、多様な微生物や細菌がいるので、成分の偏った有機汚濁物質を含む同じ排水を続けて処理していると、その汚濁物質に必要ではない微生物が死滅してしまうことも起こる。その後、これら死滅した微生物であれば処理できる有機汚濁物質等が入ってきても、処理できないという問題も起こる。
特開2001−145894 特開2008−142632 特開2001−62477
本発明は、このような問題の解決を図ったもので、活性汚泥等に含まれる多様な微生物群を活性化することができ、排水中の有機汚濁物質の増加・減少に対応して安定した排水処理ができ、汚泥発生量も従来法と変わらず硝化促進ができる粒状ゲル担体とその製造方法及びこの粒状ゲル担体を使用した排水処理方法とを提供することを目的としている。
上記の目的を達成するために本発明の活性汚泥を活性化する粒状ゲル担体は、サトウキビの植物抽出成分をアルギン酸カルシウムの粒状ゲルに固定化したことを特徴としている。前記植物抽出成分に、さらに、窒素化合物及び/又はリン化合物を添加してもよい。サトウキビの黒色植物抽出成分は、処理水のBODや色度が高くなるので固定化前に除去されたものであることが望ましい。
上記の目的を達成するために本発明の活性汚泥を活性化する粒状ゲル担体の製造方法は、一般的に溶解したアルギン酸ナトリウム溶液に固定化対象物を添加する工程に対して、固定化対象物のサトウキビからの植物抽出液にアルギン酸ナトリウムを添加して溶解する工程と、該アルギン酸ナトリウムを添加した溶液を、塩化カルシウム溶液中に滴下してアルギン酸カルシウムのゲル状体を形成する工程と、を有することを特徴としている。
サトウキビの植物抽出液を使用する場合は、前記サトウキビからの抽出液に活性炭を入れて、活性炭に植物抽出液中のリグニン様黒色物質を吸着させる工程と、リグニン様黒色物質が吸着された前記活性炭を含むサトウキビの抽出液をフィルターで濾して前記活性炭を除去する工程と、を含むことが望ましい。
本発明の排水処理方法は、有機汚濁物質を含む排水中に活性汚泥を投入して行う排水処理方法において、上記のいずれかの活性汚泥を活性化する担体を投入することを特徴としている。
本発明の活性汚泥を活性化する粒状ゲル担体は、単独では植物抽出成分が溶液中に溶出することはなく、長期間安定しており、活性汚泥等と接触すると、活性汚泥等に含まれる多様な微生物群により粒状ゲル担体中の高BOD成分が徐々に生物分解され、多様な微生物群を活性化させ、安定した水処理ができる。また、本発明の粒状ゲル担体は、そのすべてが生物分解によって完全に消滅し、処理された水のBOD値を上げることもない。また、汚泥の発生も最小限に抑えることができる。
添加されたサトウキビの抽出液には、糖類は勿論、カルシウム、カリウムなどのミネラル分や、各種アミノ酸等の多くの栄養物が含まれているので、多様な微生物の餌となり活性汚泥等の微生物群を増殖させる(活性化する)ことができる。
従来は、脱窒素細菌の窒素除去工程で必要な炭素源としてメタノールを使用していたが、過剰のメタノールが残留すると処理水のBODが高くなる問題がある。この問題に対し、本発明の粒状ゲル担体はメタノールの代替物質として使用できる。すなわち、脱窒素細菌が必要とする炭素源を粒状ゲル担体から必要なだけ取り込むことができるため、安定した窒素除去ができる。粒状ゲル担体から植物抽出成分が溶出することがないので、処理水のBODを高くする問題が解消される。
サトウキビの植物抽出液には、黒褐色のリグニン様物質が含まれている。このリグニン様物質は、通常では、生物分解ができないので、排水処理をしても、処理された水が茶色に着色する。そのため、従来、サトウキビの植物抽出液を水処理に利用する場合は、処理水のBODや色度が高くならないように、使用濃度を制限する必要があった。これに対し、本発明の粒状ゲル担体では、活性炭でリグニン様物質を事前に除去するので、サトウキビの植物抽出液のBOD値を高くすることができ、高BOD含有粒状ゲルの固定化ができる。
本発明の粒状ゲル担体の製造方法を説明する図である。 サトウキビの植物抽出液の成分表の例である。 本発明の粒状ゲル担体による窒素除去の試験結果を示す表である。 本発明の粒状ゲル担体による水処理の試験結果を示す表である。
以下に、本発明の活性汚泥を活性化する粒状ゲル担体の製造方法を説明する。
図1は、本発明の粒状ゲル担体を製造する工程を示す図である。まず、サトウキビから糖蜜と称する濃縮された植物抽出液を以下のようにして製造する。収穫したサトウキビの茎を細かく砕いて汁を搾り、その汁の不純物を沈殿させて、上澄み液を取り出してフィルターで濾過し、煮詰める。煮詰めた液を沈殿させ、フィルターで濾過してさらに煮詰めて濃縮することを何回か繰り返す。その結果、黒褐色で粘度の高い液体状の糖蜜を得る。この液体は、糖分の他にカルシウム、カリウムなどのミネラル分や、各種アミノ酸などの有用な成分を多く含んでいる。
なお、このような濃縮されたサトウキビの糖蜜は、黒糖の製造過程で製造される中間製品をそのまま転用することができる。
図2は、上記5回濃縮されたサトウキビの糖蜜の成分表の例である。表中の炭水化物は、糖類であり、ここには黒褐色の色素であるリグニン様物質が含まれている。また、カリウムが多いのが特徴である。たんぱく質には、窒素化合物やリン化合物としての多様なアミノ酸が含まれている。
上記の糖蜜は、粘度が高いので、水で希釈する。ここで、希釈された糖蜜の溶液を「サトウキビの植物抽出液」ということにし、その有効成分を「植物抽出成分」と言うことにする。実施例では150gの糖蜜(上記の5回濃縮された抽出液)に水を加えて溶解し、3リットルの5重量%サトウキビの植物抽出液とする。希釈後の植物成分のBOD値は、1,000mg/l以上、10,000mg/l以下とする。
なお、上記では5回濃縮した糖蜜を希釈してサトウキビの植物抽出液としたが、濃縮の回数やBOD値は上記に限定されずに、任意である。また、サトウキビの絞り汁から糖蜜を経由しないで直接所定のBOD値の植物抽出液を得ることも可能である。
このサトウキビの植物抽出液は、リグニン様物質を含んでいるので、黒褐色をしている。リグニン様物質は、炭水化物ではあるが、難生物分解物質である。そのため、処理水が褐色になり所定の水質を得るためには、さらに水を加えて希釈しなければならない。すなわち、リグニン様物質を含むサトウキビの植物抽出液を使用する場合は、処理水質を考慮しながら処理前に使用するサトウキビの植物抽出液の濃度を設定する必要がある。
そこで、上記植物抽出成分のBOD値が、1,000mg/l以上、10,000mg/l以下に希釈したサトウキビの植物抽出液に、粉末状の活性炭を投入する。実施例では、22.5gの活性炭を投入した。投入された活性炭にリグニン様物質が吸着される。この液をフィルターで濾過すると、ほぼ無色透明な液体となり、フィルターには粉末状の活性炭が付着する。濾し取られた活性炭は、堆肥等の土壌改良材として利用することができる。
濾過されたサトウキビの植物抽出液に、1〜1.5重量%濃度のアルギン酸ナトリウムを溶解する。実施例では、45gの粉末アルギン酸ナトリウムを投入し、1.5重量%の濃度にした。溶解したアルギン酸ナトリウム溶液にサトウキビの植物抽出液を溶解させてもよいが、サトウキビの植物抽出液が希釈されることになり、また、均一溶解に時間がかかることからサトウキビの植物抽出液にアルギン酸ナトリウムの粉末を投入する方が望ましい。
このようにしてできたサトウキビの植物抽出液にアルギン酸ナトリウムを溶解した液体を、サイホン方式によって、塩化カルシウム液に滴下する。すると、アルギン酸ナトリウムは化学変化を起こしてアルギン酸カルシウムとなり、ゲル化して小球状の担体になる。球の直径は任意でよいが、アルギン酸ナトリウムの溶解濃度が高いと、粒径は大きくなり、低いと小さくなる。また、通常は、サイホン管の径が一定なので、均等な粒径の担体を得ることができる。
このゲル状の担体は、アルギン酸カルシウムゲル中に、高BODのサトウキビの植物抽出成分を含有したものである。この粒状ゲル担体は、かさ密度が1.02g/mで水よりも若干重いため、水面に浮上せずエアーレーションによる流動性がよい。また、市水で湿潤させ、冷蔵又は真空パックにより乾燥や細菌増殖を防ぐことで、長期間保存ができる。
使用方法は、たとえば、以下のようにする。
この担体を排水中に投下する。投下量は反応槽有効容量の1重量%を基準とし、活性汚泥濃度(MLSS)により適宜増減する。粒状ゲル担体は活性汚泥と混合し、活性汚泥の微生物が粒状ゲル担体に付着する。
粒状ゲル担体がサトウキビの植物抽出液を含むアルギン酸カルシウムのゲルであり、ともに有機物が主成分であるため、活性汚泥の多様な微生物にとっては、良好な餌となり、多様な微生物が活性化する。担体中の高BOD成分は、活性汚泥中の微生物群に関与されなければ、自ら排水中に溶出することはない。
本発明の粒状ゲル担体は、生物分解しないプラスチックや繊維等を一切含んでいない。そのため、本発明の粒状ゲル担体は、微生物からの活発な生物分解作用を受け、徐々にその径が小さくなり、やがてなくなり、BODの汚泥転換率も従来の活性汚泥法と変わらない。消滅した粒状ゲル担体の補充は、活性汚泥等の凝集沈降性や処理性能をみて必要に応じて行えばよい。活性汚泥等のない水槽でのエアーレーションでは、消滅することなく半年以上流動している。
通常、担体と言う場合、製造時に微生物を混入させるものが多いが、本発明の粒状ゲル担体は、微生物を一切混入せずに製造している。しかし、この粒状ゲル担体を活性汚泥等に混入すると、活性汚泥等中の微生物が本発明の粒状ゲル担体に取り付くので、通常の担体と同様のものになる。
通常の排水中の有機汚濁物質には窒素やリンが含まれている。安定した生物処理を継続するためには、BODに対して適度な窒素やリンの含有が必要である(通常、BOD:N:P=100:5:1といわれる)。そのため、本発明の粒状ゲル担体には、必要に応じて窒素化合物及び/又はリン化合物を添加することが望ましい。
窒素除去に関与する脱窒素細菌の増殖には、炭素以外の栄養源が必要であるが、本発明の担体には各種のアミノ酸が含まれているので脱窒素細菌をも確保しておくことができる。
サトウキビの抽出液は、予め、活性炭で黒褐色のリグニン様物質を除去しているので、処理水にはリグニン様物質が含まれず、処理水を希釈する必要がない。また、リグニン様物質がないので、サトウキビからの植物抽出液の濃度を濃くしてゲル担体のBOD値を高くすることができる。
また、排水中の窒素濃度やリン濃度が高く、本発明の担体に含まれるサトウキビに含まれるアミノ酸だけでは不足する場合は、サトウキビの抽出液に、適宜、窒素化合物やリン化合物を添加してもよい。
〔実験例1〕
本発明の粒状ゲル担体による窒素除去試験として、以下の実験を行った。
実験方法
脱窒素細菌を含む液として、屎尿処理場の脱窒素槽液を使用し、脱窒素槽液1リットルを硝化液原水4リットルで希釈し、この液に5重量%の粒状ゲル担体を投入した。これを機械攪拌し、20時間経過後の水質を分析した結果が、図3の表である。
図3に示すように、平均窒素除去率は91.5%を得ることができ、本発明の粒状ゲル担体の有効性が証明できた。従来は、粒状ゲル担体の代わりにメチルアルコールを投入していた。その場合、メチルアルコールの量が多すぎると、処理水のBOD値が上昇することになる。反対に、メチルアルコールの量が少なすぎると、脱窒素細菌の活性が低下し、窒素除去率が低下するか、同じ除去率になるまでの時間が掛かることになる。これに対し、本発明の粒状ゲル担体を使用した場合、BOD成分が溶出することがなく、多すぎても粒状ゲル担体として処理液中に残存するので、容易に除去することができ、処理水のBOD値が上昇することもない。
〔実験例2〕
図4は、本発明の粒状ゲル担体を使用した水処理の試験結果を示す表である。水処理の対象となる原水は、農業集落排水処理施設計量槽流入水を採取し、2mmメッシュのフルイにかけて夾雑物を取り除き、沈殿上澄水を使用し、これに活性汚泥を加えた。ケース1では、原水がリアクターに滞留する時間を24時間とし、ケース2では15〜16時間とし、ケース3では12時間とした。
ケース1から3において、「添加」は、本発明の粒状ゲル担体をリアクター有効容量の1重量%を添加したもので、「無添加」は、本発明の粒状ゲル担体を一切添加しなかったものである。
水素イオン濃度は、曝気槽に残留するアンモニア性窒素の濃度が高いと高くなり、硝化が進むと徐々に低くなるが、図4の表について見ると、滞留時間が24時間のケース1では、添加と無添加では殆ど差がない。しかし、滞留時間が短いケース2、ケース3では、添加の方が、硝化が進み水素イオン濃度が小さくなっている。
また、アンモニア性窒素の濃度を見ると、ケース1では、添加と無添加とでは殆ど差がないが、ケース2、ケース3では、かなりの差が認められる。これは、本発明の粒状ゲル担体が活性汚泥中の微生物を活性化したことによって、曝気槽でのアンモニア性窒素の硝化が進み、酸化態窒素が生成したことを示すものである。以上から、本発明の粒状ゲル担体を添加すると、滞留時間を短くしても従来と同じ程度のアンモニア性窒素の分解処理を行うことができるということが分かる。
BODについて見ると、原水では59mg/lであったものが、ケース1とケース2では無添加と添加とでは大きな差がなく、処理がされていることを示している。しかし、ケース3では、無添加では5.0mg/lであったのに対し、添加では1.5mg/lとケース1、2と同等の処理がされている。このことから、本発明の粒状ゲル担体を添加すると、BODに対する水処理が短時間でできることが分かる。逆に言えば、同じ時間であれば、無添加に比して大量の水処理が可能ということになる。
本発明の活性汚泥を活性化する担体は、農業集落排水や、コミュニティー・プラント、合併浄化槽、工場排水(食品工場排水、酒造排水)等に利用することができる。とくに酒造排水では、季節による排水の量が大きく変化するが、本発明の活性汚泥等を活性化する粒状ゲル担体を使用すれば、安定した排水処理が可能となる。

Claims (4)

  1. アルギン酸カルシウムのゲルに、リグニン様物質が除去されたサトウキビの植物抽出成分を混入したことを特徴とする活性汚泥等を活性化する粒状ゲル担体。
  2. 前記植物抽出成分に、さらに、窒素化合物及び/又はリン化合物を添加したことを特徴とする請求項1に記載の活性汚泥を活性化する粒状ゲル担体。
  3. サトウキビからの抽出液に活性炭を入れて、活性炭に植物抽出液中のリグニン様物質を吸着させる工程と、リグニン様物質が吸着された前記活性炭を含むサトウキビの抽出液をフィルターで濾して前記活性炭を除去する工程と、リグニン様物質を除去したサトウキビの植物抽出液とアルギン酸ナトリウムとの混合溶液を作る工程と、該アルギン酸ナトリウムを含む溶液を、塩化カルシウム溶液中に滴下してアルギン酸カルシウムのゲル状体を形成する工程と、を有することを特徴とする活性汚泥等を活性化する粒状ゲル担体の製造方法。
  4. 有機汚濁物質を含む排水中に活性汚泥等を投入して行う排水処理方法において、請求項1又は2のいずれかに記載の活性汚泥等を活性化する粒状ゲル担体を投入することを特徴とする排水処理方法。
JP2012019463A 2012-02-01 2012-02-01 活性汚泥等を活性化する粒状ゲル担体とその製造方法および排水処理方法 Active JP5846944B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012019463A JP5846944B2 (ja) 2012-02-01 2012-02-01 活性汚泥等を活性化する粒状ゲル担体とその製造方法および排水処理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012019463A JP5846944B2 (ja) 2012-02-01 2012-02-01 活性汚泥等を活性化する粒状ゲル担体とその製造方法および排水処理方法

Publications (2)

Publication Number Publication Date
JP2013154335A JP2013154335A (ja) 2013-08-15
JP5846944B2 true JP5846944B2 (ja) 2016-01-20

Family

ID=49050066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012019463A Active JP5846944B2 (ja) 2012-02-01 2012-02-01 活性汚泥等を活性化する粒状ゲル担体とその製造方法および排水処理方法

Country Status (1)

Country Link
JP (1) JP5846944B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6148703B2 (ja) * 2015-09-04 2017-06-14 浅野テクノロジー株式会社 活性炭含有粒状ゲル担体及びその製造方法
CN106145449B (zh) * 2016-08-17 2018-06-19 中国水产科学研究院黄海水产研究所 一种海藻化工钙化废水循环回用方法
CN106186441A (zh) * 2016-08-30 2016-12-07 郜杰 一种含重金属废水的处理方法
CN110745963A (zh) * 2019-11-21 2020-02-04 佛山科学技术学院 一种地表污水的快速生物修复方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05304959A (ja) * 1992-04-28 1993-11-19 Haipetsuto Kk 光合成細菌含有ビーズ
JPH081181A (ja) * 1994-06-24 1996-01-09 Tonen Corp 微生物ゲル担体およびその使用による汚濁物質の処理方法
JP2006142170A (ja) * 2004-11-18 2006-06-08 Yakult Honsha Co Ltd 活性汚泥における硫黄化合物の生成抑制剤及び生成抑制方法
JP2007275748A (ja) * 2006-04-05 2007-10-25 Idemitsu Kosan Co Ltd 排水処理方法および排水処理装置
JP2010124720A (ja) * 2008-11-26 2010-06-10 Oji Paper Co Ltd 植物性乳酸菌増殖促進用組成物及び経口摂取用組成物

Also Published As

Publication number Publication date
JP2013154335A (ja) 2013-08-15

Similar Documents

Publication Publication Date Title
Gu et al. Anammox bacteria enrichment and denitrification in moving bed biofilm reactors packed with different buoyant carriers: Performances and mechanisms
Wagner et al. Effect of particulate organic substrate on aerobic granulation and operating conditions of sequencing batch reactors
Chu et al. Nitrogen removal using biodegradable polymers as carbon source and biofilm carriers in a moving bed biofilm reactor
Zhu et al. Biological denitrification using poly (butylene succinate) as carbon source and biofilm carrier for recirculating aquaculture system effluent treatment
Sengar et al. Aerobic granulation technology: Laboratory studies to full scale practices
AU2005334124B2 (en) Water treatment process
CN109485157A (zh) 一种用于污水脱氮的复合碳源及其制备方法和使用方法
Liu et al. Role of adding dried sludge micropowder in aerobic granular sludge reactor with extended filamentous bacteria
CN102753487A (zh) 同时缺氧生物除磷和氮
Huynh et al. Application of CANON process for nitrogen removal from anaerobically pretreated husbandry wastewater
Di Trapani et al. Treatment of high strength industrial wastewater with membrane bioreactors for water reuse: Effect of pre-treatment with aerobic granular sludge on system performance and fouling tendency
Chen et al. Effects of C/N ratio on the performance of a hybrid sponge-assisted aerobic moving bed-anaerobic granular membrane bioreactor for municipal wastewater treatment
JP4925208B2 (ja) 好気性グラニュールの形成方法、水処理方法及び水処理装置
Zhang et al. Impacts of sulfadiazine on the performance and membrane fouling of a hybrid moving bed biofilm reactor-membrane bioreactor system at different C/N ratios
JP2017209647A (ja) 水処理用微生物の包括担体、水処理方法、包括担体の製造方法
JP5846944B2 (ja) 活性汚泥等を活性化する粒状ゲル担体とその製造方法および排水処理方法
Chen et al. Recent developments in anammox-based membrane bioreactors: A review
Bernat et al. Biological treatment of leachate from stabilization of biodegradable municipal solid waste in a sequencing batch biofilm reactor
JP2006289347A (ja) 廃水処理方法及び装置
Radmehr et al. Reducing mechanical aeration in membrane bioreactors by inoculation of algal cells into activated sludge biomass
Dang et al. Effect of biomass retention time on performance and fouling of a stirred membrane photobioreactor
Li et al. Reactor performance and membrane fouling of a novel submerged aerobic granular sludge membrane bioreactor during long-term operation
JP2002001389A (ja) 生物膜の製造方法およびそれを用いた無機性アンモニア廃水連続処理装置
JP5224502B2 (ja) 被処理物質の生分解処理方法
JP2008272610A (ja) 亜硝酸型硝化担体及びその製造方法並びにそれを用いた廃水処理方法及び廃水処理装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140328

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20140328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150414

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150508

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151124

R150 Certificate of patent or registration of utility model

Ref document number: 5846944

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250