JP5845806B2 - Steel material with rust layer with excellent chloride ion barrier properties - Google Patents

Steel material with rust layer with excellent chloride ion barrier properties Download PDF

Info

Publication number
JP5845806B2
JP5845806B2 JP2011236096A JP2011236096A JP5845806B2 JP 5845806 B2 JP5845806 B2 JP 5845806B2 JP 2011236096 A JP2011236096 A JP 2011236096A JP 2011236096 A JP2011236096 A JP 2011236096A JP 5845806 B2 JP5845806 B2 JP 5845806B2
Authority
JP
Japan
Prior art keywords
rust layer
steel material
steel
rust
chloride ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011236096A
Other languages
Japanese (ja)
Other versions
JP2012188736A (en
Inventor
馬場 和彦
和彦 馬場
名越 正泰
正泰 名越
悦男 ▲濱▼田
悦男 ▲濱▼田
塩谷 和彦
和彦 塩谷
俊一 橘
俊一 橘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2011236096A priority Critical patent/JP5845806B2/en
Publication of JP2012188736A publication Critical patent/JP2012188736A/en
Application granted granted Critical
Publication of JP5845806B2 publication Critical patent/JP5845806B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Heat Treatment Of Steel (AREA)

Description

本発明は、腐食性因子となる塩化物イオンに富む高湿潤環境下での使用に供して好適な耐食素材であって、特に塩化物イオン遮断性に優れた錆層付き鋼材に関する。   The present invention relates to a steel material with a rust layer, which is a corrosion-resistant material suitable for use in a highly humid environment rich in chloride ions, which are corrosive factors, and particularly excellent in chloride ion barrier properties.

塩分を含む厳しい腐食環境下で使用される耐候性鋼や耐食鋼では、電気防食法の他、鋼表面に形成した保護性錆や塗装を施すことにより耐食性を付与している。保護性錆に関しては、日本工業規格JIS G 3114に記載される橋梁用耐候性鋼材や、特許文献1〜5に記載されているように、Ni、Cr、Cu、Wなどの添加元素が濃縮した錆層に覆われることで腐食速度を著しく低減させて、無塗装のまましばしば数十年間の供用に耐えることができる。   In weathering steel and corrosion resistant steel used in a severe corrosive environment containing salt, corrosion resistance is imparted by applying protective rust and coating formed on the steel surface in addition to the anticorrosion method. Regarding protective rust, as described in Japanese Industrial Standards JIS G 3114 for weathering steel for bridges and Patent Documents 1 to 5, additive elements such as Ni, Cr, Cu, and W are concentrated. Covering with a rust layer can significantly reduce the corrosion rate and often withstand service for decades without painting.

一方、塗装処置が施される具体的な環境としては、例えば造船用耐食鋼材のように、高塩分性・高湿潤性の厳しい環境下に長期間曝されるケースがある。この場合、保護性の高い錆層が形成されにくく実用に耐えるような優れた耐食性が得られないといった問題があるため、塗装などの防食措置を施した鋼材を使用している。   On the other hand, as a specific environment where the coating treatment is performed, there is a case where it is exposed to a severe environment of high salinity and high wettability for a long period of time such as a corrosion-resistant steel for shipbuilding. In this case, there is a problem that a highly protective rust layer is difficult to be formed, and excellent corrosion resistance that can withstand practical use cannot be obtained. Therefore, a steel material subjected to anticorrosion measures such as painting is used.

特開平11−172370号公報JP-A-11-172370 特開平2−125839号公報Japanese Patent Laid-Open No. 2-125839 特開平5−51668号公報JP-A-5-51668 特開2007−254881号公報JP 2007-254881 A 特開2007−46148号公報JP 2007-46148 A

しかしながら、特許文献1〜5に記載された耐候性鋼においては、いずれも、Ni、Cr、Cu、Wのうちの少なくとも一種の合金添加元素の添加を必須としており、高塩分環境下での耐食機能を得るため、これらの高価な合金添加量を最大で10質量%程度の比較的多量の合金添加量が必要である。最近になって、1〜3質量%程度添加した耐候性鋼が開発されてはきているものの、製造面の原料低コスト化および耐食性向上元素の代替元素の探求といった課題が残ったままと言える。また、使用する合金元素の中には、高塩分環境下では耐食性をむしろ劣化させるなど、使用する環境や仕方に制約を受け易い元素があり、その例としてCrがある。
さらに、塗装などの防食措置を行う場合、塗膜の経年劣化が起こり定期的な補修作業が必要となる上、その維持管理に莫大な費用が必要となるといった問題があり、これらの観点から無塗装での使用が本来望ましい。
However, all of the weathering steels described in Patent Documents 1 to 5 require the addition of at least one alloy additive element of Ni, Cr, Cu, and W, and are resistant to corrosion in a high salinity environment. In order to obtain the function, a relatively large amount of alloy addition of these expensive alloy addition amounts of up to about 10% by mass is required. Recently, although weather resistant steel added with about 1 to 3% by mass has been developed, it can be said that problems such as cost reduction of raw materials for production and search for alternative elements for corrosion resistance remain. . In addition, among the alloy elements used, there is an element that is easily restricted by the environment and method of use, such as rather deteriorating the corrosion resistance in a high salinity environment, and an example is Cr.
Furthermore, when anti-corrosion measures such as painting are performed, there is a problem that the coating film deteriorates over time and regular repair work is required, and there is a problem that enormous costs are required for its maintenance. Originally desirable for painting.

本発明の目的は、塩分に富む高湿潤環境下に曝される部位に無塗装で使用できる、塩化物イオン遮断性に優れた錆層付き鋼材を提供することにある。   An object of the present invention is to provide a steel material with a rust layer that is excellent in chloride ion barrier properties and can be used without coating in a site exposed to a highly humid environment rich in salt.

本発明者らは、塩分に富む高湿潤環境下に曝される部位に無塗装で使用できる耐食性に優れた鋼材について鋭意検討した結果、次のことを見出した。   As a result of intensive investigations on a steel material having excellent corrosion resistance that can be used without coating in a portion exposed to a highly humid environment rich in salt, the present inventors have found the following.

(i)温度35℃〜50℃、相対湿度95%RHの環境下で7日間曝露した鋼材の表面に形成した錆層の鋼材側部分(錆下層)に、SbおよびSnのうちから選ばれた1種または2種の元素を含有させ、より好適には濃化させるようにすれば、塩分に富む高湿潤環境下に曝される部位に無塗装で使用できる程の耐食性に優れた鋼材が提供できる。 (I) It was selected from Sb and Sn for the steel material side portion (rust underlayer) of the rust layer formed on the surface of the steel material exposed for 7 days in an environment of temperature 35 ° C to 50 ° C and relative humidity 95% RH. If one or two elements are contained and more preferably concentrated, a steel material having excellent corrosion resistance that can be used without coating in a portion exposed to a high humidity environment rich in salt is provided. it can.

(ii)さらに、錆層の鋼材側部分(錆下層)の平均結晶粒径を50nm以下として、耐食性向上に寄与する微細且つ緻密な保護性錆層の形成の促進・強化を図ることにより、一層優れた耐食性が得られる。 (Ii) Further, the average crystal grain size of the steel material side portion (rust lower layer) of the rust layer is set to 50 nm or less, thereby promoting and strengthening the formation of a fine and dense protective rust layer that contributes to the improvement of corrosion resistance. Excellent corrosion resistance is obtained.

本発明は、このような知見に基づいてなされたものであり、具体的には、質量%で、C:0.01〜0.20%、Si:0.05〜0.5%、Mn:0.1〜2.0%、P:0.025%以下、S:0.0001〜0.02%、Al:0.01〜0.10%を含有し、さらに、Sb:0.34〜0.8%とSn:0.50〜0.8%の中から選ばれる1種又は2種の元素を合計で0.34〜1.0%含有し、残部がFeおよび不可避的不純物からなる鋼材の表面に錆層を有し、該錆層の鋼材側部分は、Sbおよび/またはSnを含み、かつ平均結晶粒径が50nm以下であることを特徴とする塩化物イオン遮断性に優れた錆層付き鋼材である。 The present invention has been made based on such findings. Specifically, in terms of mass%, C: 0.01 to 0.20%, Si: 0.05 to 0.5%, Mn: 0.1 to 2.0%, P: 0.025 % Or less, S: 0.0001 to 0.02%, Al: 0.01 to 0.10%, and one or two elements selected from Sb: 0.34 to 0.8% and Sn: 0.50 to 0.8% in total It has a rust layer on the surface of a steel material containing 0.34 to 1.0%, the balance being Fe and inevitable impurities, the steel material side portion of the rust layer contains Sb and / or Sn, and the average crystal grain size is 50 nm It is the steel material with a rust layer excellent in the chloride ion barrier property characterized by being the following.

本発明によれば、腐食性因子となる塩化物イオンに富む高湿潤環境下での使用に適した耐食素材であって、特に塩化物イオン遮断性に優れた錆層付き鋼材を提供することができる。   According to the present invention, it is a corrosion-resistant material suitable for use in a highly humid environment rich in chloride ions that are corrosive factors, and it is possible to provide a steel material with a rust layer that is particularly excellent in chloride ion barrier properties. it can.

図1(a)は、本発明に従う錆層付き鋼材(Sb:0.34質量%含有)の断面について、電子プローブマイクロアナライザ(EPMA)を用いて元素マッピング分析を行ったときの写真であり、同図(b)は、同図(a)の深さ方向の白破線で示す線上の位置について、SbとClのX線強度を測定したときのチャートである。FIG. 1 (a) is a photograph when element mapping analysis is performed using an electron probe microanalyzer (EPMA) on a cross section of a steel material with a rust layer (Sb: containing 0.34% by mass) according to the present invention. (B) is a chart when the X-ray intensities of Sb and Cl are measured at positions on the line indicated by the white broken line in the depth direction of FIG. 図2(a)は、本発明に従う錆層付き鋼材(Sn:0.35質量%含有)の断面について、電子プローブマイクロアナライザ(EPMA)を用いて元素マッピング分析を行ったときの写真であり、同図(b)は、同図(a)の深さ方向の白破線で示す線上の位置について、SnとClのX線強度を測定したときのチャートである。FIG. 2 (a) is a photograph when element mapping analysis is performed using an electron probe microanalyzer (EPMA) on the cross section of a steel material with a rust layer (Sn: 0.35% by mass) according to the present invention. (B) is a chart when the X-ray intensities of Sn and Cl are measured at positions on the line indicated by the white broken line in the depth direction of FIG. 図3(a)、(b)は、本発明に従う錆層付き鋼材(Sb:0.34質量%含有)の錆層の電子回折写真であって、図3(a)は錆層中の高Sb含有部、図3(b)は錆層中の低Sb含有部である。3 (a) and 3 (b) are electron diffraction photographs of a rust layer of a steel material with a rust layer (Sb: 0.34% by mass) according to the present invention, and FIG. 3 (a) shows a high Sb content in the rust layer. Part and FIG.3 (b) are low Sb content parts in a rust layer.

次に、本発明の実施形態について以下で詳細に説明する。
本発明に従う錆層付き鋼材は、質量%で、C:0.01〜0.20%、Si:0.05〜0.5%、Mn:0.1〜2.0%、P:0.025%以下、S:0.0001〜0.02%、Al:0.01〜0.10%を含有し、さらに、Sb:0.34〜0.8%とSn:0.50〜0.8%の中から選ばれる1種又は2種の元素を合計で0.34〜1.0%含有し、残部がFeおよび不可避的不純物からなる鋼材の表面に錆層を有し、該錆層の鋼材側部分は、Sbおよび/またはSnを含み、かつ平均結晶粒径が50nm以下である。
Next, embodiments of the present invention will be described in detail below.
The steel material with a rust layer according to the present invention is in mass%, C: 0.01 to 0.20%, Si: 0.05 to 0.5%, Mn: 0.1 to 2.0%, P: 0.025% or less, S: 0.0001 to 0.02%, Al: 0.01 Contains ~ 0.10%, and further contains one or two elements selected from Sb: 0.34 ~ 0.8% and Sn: 0.50 ~ 0.8% in total, 0.34 ~ 1.0%, the balance being Fe and inevitable The surface of the steel material made of impurities has a rust layer, the steel material side portion of the rust layer contains Sb and / or Sn, and the average crystal grain size is 50 nm or less.

(1)本発明の錆層付き鋼材の成分組成について
以下に示す成分の含有量の単位である「%」は、特に断らない限り「質量%」を意味するものとする。
(1) About the component composition of the steel material with a rust layer of this invention "%" which is a unit of the content of the component shown below shall mean "mass%" unless otherwise indicated.

・C:0.01〜0.20%
Cは、鋼材の強度を向上させる有効な元素であり、所望の強度を確保するためには0.01%以上含有させる必要があるが、0.20%を超えると溶接性および靱性が劣化する。このため、C含有量は0.01〜0.20%とする。
・ C: 0.01 ~ 0.20%
C is an effective element for improving the strength of the steel material, and in order to ensure the desired strength, it is necessary to contain 0.01% or more, but if it exceeds 0.20%, the weldability and toughness deteriorate. For this reason, C content shall be 0.01 to 0.20%.

・Si:0.05〜0.5%
Siは、製鋼時の脱酸剤および鋼材の強度を高めるために添加される元素であり、所定の強度を確保するために0.05%以上含有させる。一方、Si含有量が0.5%を超えると靱性および溶接性が著しく劣化するため、Si量は0.05〜0.5%の範囲とする。
・ Si: 0.05-0.5%
Si is an element added to increase the strength of the deoxidizer and steel material during steelmaking, and is contained in an amount of 0.05% or more in order to ensure a predetermined strength. On the other hand, if the Si content exceeds 0.5%, the toughness and weldability deteriorate significantly, so the Si content is in the range of 0.05 to 0.5%.

・Mn:0.1〜2.0%
Mnは、強度と靱性を向上させる元素であり、所定の強度を確保するためには0.1%以上含有させる必要があるが、Mn含有量が2.0%を超えると靱性および溶接性が劣化する。このため、Mn含有量は0.1〜2.0%の範囲とする。
・ Mn: 0.1-2.0%
Mn is an element that improves strength and toughness, and needs to be contained in an amount of 0.1% or more in order to ensure a predetermined strength. However, if the Mn content exceeds 2.0%, the toughness and weldability deteriorate. For this reason, Mn content is taken as 0.1 to 2.0% of range.

・P:0.025%以下
Pは、耐食性を向上させる元素であるが、P含有量が0.025%を超えると溶接性が劣化する。このためP含有量は0.025%以下とする。
-P: 0.025% or less P is an element that improves corrosion resistance, but when the P content exceeds 0.025%, weldability deteriorates. Therefore, the P content is 0.025% or less.

・S:0.0001〜0.02%
Sは、溶接性および靱性が劣化させる元素であるので0.02%以下にする必要がある。一方、S含有量を0.0001%未満まで過度に低減しても、生産コストが著しく増大するため好ましくない。したがって、S含有量は0.0001〜0.02%とする。
・ S: 0.0001-0.02%
Since S is an element that deteriorates weldability and toughness, it must be 0.02% or less. On the other hand, even if the S content is excessively reduced to less than 0.0001%, the production cost is remarkably increased, which is not preferable. Therefore, the S content is 0.0001 to 0.02%.

・Al:0.01〜0.10%
Alは、製鋼時の脱酸に必要な元素であるが、Al含有量として0.01%未満では十分な脱酸効果が期待できない。一方、Al含有量が0.10%よりも多いと、地鉄の腐食により溶出したAl3+により地鉄表面のpHが低下し耐食性が劣化するので、Al含有量は0.01〜0.10%とする。
・ Al: 0.01-0.10%
Al is an element necessary for deoxidation during steelmaking, but if the Al content is less than 0.01%, a sufficient deoxidation effect cannot be expected. On the other hand, if the Al content is more than 0.10%, the Al 3+ eluted by the corrosion of the base iron lowers the pH of the base iron surface and deteriorates the corrosion resistance. Therefore, the Al content is set to 0.01 to 0.10%.

・Sb:0.34〜0.8%とSn:0.34〜0.8%の中から選ばれる1種又は2種の元素を合計で0.34〜1.0%
SbおよびSnは、本発明の重要な元素であり、耐食性向上に寄与する有効な元素である。SbおよびSnは、マグネタイト(Fe3O4)を微細化する機能を有しており、これにより塩化物イオン侵入抑制による鋼板の腐食を抑制する。この耐食効果を発揮させるためには、Sb:0.34〜0.8%とSn:0.34〜0.8%の中から選ばれる1種又は2種の元素を合計で0.34%以上添加する必要がある。なお、SbおよびSnの含有量は多いほど錆生成を抑制する効果はあるが、単独で0.8%超え、合計で1.0%超えになると、製造時にヒビ割れが発生する等の脆化の問題が生じる。よって、SbおよびSnの含有量は、SbおよびSnのいずれかの単独添加の場合には、ともに0.34〜0.8%、SbおよびSnの双方の複合添加の場合には、合計で0.34〜1.0%に範囲とした。
・ Sb: 0.34 to 0.8% and Sn: 0.34 to 0.8% of one or two elements selected from 0.34 to 0.8% in total
Sb and Sn are important elements of the present invention, and are effective elements that contribute to the improvement of corrosion resistance. Sb and Sn have a function of refining magnetite (Fe 3 O 4 ), thereby suppressing corrosion of the steel sheet due to suppression of chloride ion intrusion. In order to exhibit this corrosion resistance effect, it is necessary to add 0.34% or more in total of one or two elements selected from Sb: 0.34 to 0.8% and Sn: 0.34 to 0.8%. In addition, although there is an effect which suppresses rust formation, so that there is much content of Sb and Sn, if it exceeds 0.8% independently and exceeds 1.0% in total, the problem of embrittlement that a crack will occur at the time of manufacture will arise. . Therefore, the content of Sb and Sn is 0.34 to 0.8% for both of Sb and Sn added alone, and 0.34 to 1.0% in total for the combined addition of both Sb and Sn. The range.

本発明の錆層付き鋼材は、上記した成分を基本組成とし、残部はFeおよび不可避的不純物からなる。なお、ここで述べる不可避的不純物には、Ni:0.009%以下、Cr:0.009%以下、Cu:0.01%以下、N:0.004%以下およびO:0.004%以下が含まれる。ここで、Crは、高塩分環境では耐食性の劣化を招く一要因になる場合もあり、扱いのし易さの観点から添加を避けることが望ましく、上記したように0.009%以下とすることが好ましい。   The steel material with a rust layer of the present invention has the above-described components as a basic composition, and the balance is composed of Fe and inevitable impurities. The inevitable impurities described here include Ni: 0.009% or less, Cr: 0.009% or less, Cu: 0.01% or less, N: 0.004% or less, and O: 0.004% or less. Here, Cr may be a factor causing deterioration of corrosion resistance in a high salinity environment, it is desirable to avoid addition from the viewpoint of ease of handling, as described above, preferably 0.009% or less .

(2)本発明の錆層付き鋼材の錆層について
本発明の錆層付き鋼材は、上記鋼組成を有するだけではなく、錆層の鋼材側部分(錆下層)がSbおよび/またはSnを含み、かつ錆層の鋼材側部分の平均結晶粒径が50nm以下であることを必須の発明特定事項としたものである。以下に、その限定理由を説明する。
(2) About the rust layer of the steel material with a rust layer of the present invention The steel material with a rust layer of the present invention not only has the above steel composition, but also the steel material side portion (rust lower layer) of the rust layer contains Sb and / or Sn. In addition, it is an essential invention specific matter that the average grain size of the steel material side portion of the rust layer is 50 nm or less. Below, the reason for limitation will be described.

まず、発明者らは、質量%で、C: 0.144%、Si:0.28%、Mn:1.18%、P:0.012%、S:0.002%、Al:0.022%およびSb:0.34%含有する鋼種Aを用いて製造した鋼材(鋼板)Iと、質量%で、C:0.144%、Si:0.28%、Mn:1.18%、P:0.014%、S:0.002%、Al:0.022%およびSn:0.35%含有する鋼種Bを用いて製造した鋼材(鋼板)IIについて、以下のような塩化物イオンに富む高湿潤環境下を模擬した腐食試験により、耐食性、特に塩化物イオン遮断性について評価した。   First, the inventors have a steel type A containing C: 0.144%, Si: 0.28%, Mn: 1.18%, P: 0.012%, S: 0.002%, Al: 0.022% and Sb: 0.34% by mass. Steel material (steel plate) I produced using C and 0.1% by mass, C: 0.144%, Si: 0.28%, Mn: 1.18%, P: 0.014%, S: 0.002%, Al: 0.022% and Sn: 0.35% The steel material (steel plate) II produced using the steel type B to be evaluated was evaluated for corrosion resistance, particularly chloride ion blocking ability, by a corrosion test simulating a highly humid environment rich in chloride ions as follows.

前記2種類の鋼種A,Bをそれぞれ溶製し圧延して鋼材I、IIを作製し、各鋼材I、IIを、3mm×15mm×15mmの試験片に切り出し、各試験片の表面にショットブラスト処理を施した。そして、各試験片を人工海水(5%NaCl)溶液に浸漬して、腐食サイクル条件:[5%NaCl溶液浸漬(15分、週2回)、35℃、95%相対湿度(RH)、2時間→60℃、30%RH、4時間→50℃、95%RH、2時間]下で腐食サイクル試験を、7日間高塩分の湿潤環境を模擬して行った。   The two steel types A and B are melted and rolled to produce steel materials I and II. Each steel material I and II is cut into test pieces of 3 mm × 15 mm × 15 mm and shot blasted on the surface of each test piece. Treated. Then, each test piece is immersed in artificial seawater (5% NaCl) solution, corrosion cycle conditions: [5% NaCl solution immersion (15 minutes, twice a week), 35 ° C., 95% relative humidity (RH), 2 [Time → 60 ° C., 30% RH, 4 hours → 50 ° C., 95% RH, 2 hours], a corrosion cycle test was conducted for 7 days, simulating a humid environment with high salinity.

前記腐食試験後の錆層中におけるSbまたはSnの存在位置と、腐食性因子である塩化物イオンとの位置関係を判定するため、各試験片をせん断して断面を出し、その断面の観察ができるように樹脂で埋め込み固定(直径:25mm)して電子プローブマイクロアナライザ(EPMA)解析を実施した。錆断面は、エタノール(水は使用せず。)を用いて#4000まで研磨仕上げした。   In order to determine the positional relationship between the presence position of Sb or Sn in the rust layer after the corrosion test and chloride ions that are corrosive factors, each test piece is sheared to obtain a cross section, and the cross section is observed. Electron probe microanalyzer (EPMA) analysis was carried out by embedding and fixing with resin (diameter: 25 mm) as possible. The rust cross section was polished to # 4000 using ethanol (no water was used).

図1(a)は、鋼種Aを用いて製造した鋼板Iの研磨仕上げした錆断面について、元素マッピングした結果、図1(b)は、同図(a)の深さ方向の白破線で示す線上の位置について、SbとClのX線強度を測定したときのチャート、図2(a)は、鋼種Bを用いて製造した鋼板IIの研磨仕上げした錆断面について、元素マッピングした結果、そして、図2(b)は、同図(a)の深さ方向の白破線で示す線上の位置について、SnとClのX線強度を測定したときのチャートを示したものである。   FIG. 1A shows the result of element mapping of a polished rust cross section of a steel sheet I manufactured using steel type A, and FIG. 1B shows a white broken line in the depth direction of FIG. FIG. 2A shows the result of elemental mapping of a polished rust cross section of a steel plate II produced using steel type B, and the chart when measuring the X-ray intensity of Sb and Cl for the position on the line, and FIG. 2B shows a chart when the X-ray intensities of Sn and Cl are measured at positions on the line indicated by the white broken line in the depth direction of FIG.

図1および図2に示す結果から、錆層3でのSbまたはSnのX線強度が、母材部(鋼板)1でのSbまたはSnのX線強度レベルより明らかに高い部分が存在することから、鋼板中に含有するSnまたはSbが錆層内にも存在していることがわかる。さらに、図1および図2に示す結果は、多くの塩化物イオンが、錆層の鋼材側(錆下層)に存在するSbまたはSnの高含有部(濃化部)よりも錆層の表面側(錆上層)に分布していることを示しており、これは、錆層の鋼材側(錆下層)に存在するSbやSnの高含有部(濃化部)が、鋼材表面から鋼材内部への塩化物イオンの移動(透過)を抑制していることが確認された。
この濃化部のさび組織について、走査電子顕微鏡(SEM)解析、集束イオンビーム加工(FIB)−透過電子顕微鏡(TEM)解析および走査透過電子顕微鏡(STEM)解析を行った結果、以下のように考察することができる。
From the results shown in FIGS. 1 and 2, there is a portion where the X-ray intensity of Sb or Sn in the rust layer 3 is clearly higher than the X-ray intensity level of Sb or Sn in the base material part (steel plate) 1. From this, it can be seen that Sn or Sb contained in the steel sheet is also present in the rust layer. Furthermore, the results shown in FIG. 1 and FIG. 2 show that a large amount of chloride ions are present on the surface side of the rust layer rather than the high content portion (concentrated portion) of Sb or Sn existing on the steel material side (rust lower layer) of the rust layer. This indicates that the high content part (concentration part) of Sb and Sn existing on the steel material side (rust lower layer) of the rust layer is from the steel material surface to the steel material inside. It was confirmed that the movement (permeation) of chloride ions in the slag was suppressed.
As a result of performing scanning electron microscope (SEM) analysis, focused ion beam processing (FIB) -transmission electron microscope (TEM) analysis and scanning transmission electron microscope (STEM) analysis on the rust structure of this concentrated part, Can be considered.

実験は、EPMAにより特定した濃化部位置からFIB法により面積10μm2程度の薄片化さびを作製し、TEM観察を行った。SbおよびSn含有部の位置確認は、エネルギー分散型X線分析(EDS)により評価し、含有しているか否かを判断した。ビーム径は、500nm程度である。また、電子ビームを透過させて生じる電子回折パターンの解析から、さび結晶の種類、結晶子の大きさを推定することができる。鋼種Aを用いて製造した鋼板Iの結果について述べる。 In the experiment, a thinned rust with an area of about 10 μm 2 was prepared by FIB method from the concentrated part position specified by EPMA, and TEM observation was performed. The position confirmation of the Sb and Sn-containing part was evaluated by energy dispersive X-ray analysis (EDS) to determine whether or not it contained. The beam diameter is about 500 nm. Further, from the analysis of the electron diffraction pattern generated by transmitting the electron beam, the type of rust crystal and the size of the crystallite can be estimated. The result of the steel plate I manufactured using the steel type A will be described.

図3(a)、(b)は、鋼板Iの錆層中に存在する高Sb含有部と非Sb含有部(低Sb含有部)の電子回折写真を示したものである。図3(a)、(b)の結果から、錆層中に存在する高Sb含有部と非Sb含有部(低Sb含有部)は、ともに逆スピネル型構造のマグネタイト(Fe3O4)であった。また、高Sb含有部は、図3(a)に示すようなリング状、非Sb含有部(低Sb含有部)は図3(b)に示すようなスポット状であり、このことは、高Sb含有部の錆層が、非Sb含有部(低Sb含有部)のものと比べて結晶粒が微細であることを示している。さらに、具体的な錆層に存在するマグネタイト結晶粒の粒径の大きさをTEM明視野像により直接観測した結果、非Sb含有部(低Sb含有部)では結晶粒径が50nmよりもはるかに大きく、最大で1μm程度のものもあるのに対し、高Sb含有部では最大でも50nmである。また、高Sb含有部は非Sb含有部(低Sb含有部)と比べて相対的に緻密性が高いことも、SEM観察反射電子像およびSTEM観察高角度環状暗視野像(HAADF)により確認した。これにより、高Sb含有部の錆層は、微細且つ緻密なマグネタイトで構成されているものと考えられる。 3A and 3B show electron diffraction photographs of a high Sb-containing part and a non-Sb-containing part (low Sb-containing part) existing in the rust layer of the steel sheet I. FIG. From the results of FIGS. 3A and 3B, the high Sb-containing part and the non-Sb-containing part (low Sb-containing part) present in the rust layer are both magnetites (Fe 3 O 4 ) having an inverted spinel structure. there were. In addition, the high Sb-containing part has a ring shape as shown in FIG. 3 (a), and the non-Sb-containing part (low Sb-containing part) has a spot shape as shown in FIG. 3 (b). The rust layer of the Sb-containing part shows that the crystal grains are finer than that of the non-Sb-containing part (low Sb-containing part). Furthermore, as a result of directly observing the size of the magnetite crystal grains present in the concrete rust layer with a TEM bright field image, the crystal grain size of the non-Sb-containing part (low Sb-containing part) is much larger than 50 nm. Some of them are large and about 1 μm at the maximum, while those having a high Sb content are 50 nm at the maximum. Moreover, it was confirmed by SEM observation backscattered electron image and STEM observation high-angle annular dark field image (HAADF) that the high Sb content part is relatively dense compared to the non-Sb content part (low Sb content part). . Thereby, it is thought that the rust layer of a high Sb content part is comprised with the fine and dense magnetite.

さらに、鋼板IIについても同様に解析を行い、Sbの場合と同様の結果が得られることも確認した。   Furthermore, the steel plate II was analyzed in the same manner, and it was confirmed that the same result as in the case of Sb was obtained.

以上のことから、本発明の錆層付き鋼材は、上記鋼組成を有するだけではなく、錆層の鋼材側部分がSbおよび/またはSnを含み、かつ錆層の鋼材側部分の平均結晶粒径を50nm以下とした。   From the above, the steel material with a rust layer of the present invention not only has the above steel composition, but the steel material side portion of the rust layer contains Sb and / or Sn, and the average crystal grain size of the steel material side portion of the rust layer Was 50 nm or less.

また、錆層中のSbおよびSnの原子価数は、それぞれ+5価、+4価が主体であることを確認しており、その状態として錆層におけるSb原子価数+5および/またはSn原子価数+4から形成される塩([SbO3]-, [SnO3]2-) および/または酸化物(Sb2O5, SnO2)が挙げられる。すなわち、Sbおよび/またはSnの存在がマグネタイトの結晶成長を阻害してマグネタイトの微細化を図り、これが、塩化物イオンの鋼材内部への移動(透過)を抑制する保護性錆層の形成に寄与し、さらにこれら酸素酸イオン[SbO3]-、[SnO3]2- と塩化物イオンCl-のクーロン反発力による腐食性因子の塩化物イオンの透過抑制により、塩化物イオン遮断性を一層高めていると推定される。 In addition, it has been confirmed that the valence of Sb and Sn in the rust layer is mainly +5 valence and +4 valence, respectively, and the Sb valence in the rust layer is +5 and / or Sn atoms. And salts ([SbO 3 ] , [SnO 3 ] 2− ) and / or oxides (Sb 2 O 5 , SnO 2 ) formed from the valence +4. In other words, the presence of Sb and / or Sn inhibits the crystal growth of magnetite and refines the magnetite, which contributes to the formation of a protective rust layer that suppresses migration (permeation) of chloride ions into the steel. and further these oxygen acid ions [SbO 3] -, [SnO 3] 2- and chloride ion Cl - by permeation suppressing corrosive factors due to the Coulomb repulsion of the chloride ion, a chloride ion blocking further enhance It is estimated that

以上のマグネタイトを微細化して塩化物イオン遮断作用を有する錆層形成に必要なSbおよびSn含有量について、微細なマグネタイト部位におけるTEMによるエネルギー分散型X線分析装置(EDS)定量分析(空間分解能500 nm)により算出した。その結果、錆層中の鉄原子1個に対するSbおよび/またはSn原子の割合は少なくとも0.01以上であることが好ましく、より好ましくは、0.03以上であることが判明した。前記割合は大きい方がより大きな効果を得やすい。しかしながら、前記割合があまりに大きい場合、SbおよびSnの酸素酸イオンなどによる塩化物イオンの遮断性(イオン選択透過性)の効果が飽和するので、錆層中の鉄原子1個に対するSbおよび/またはSn原子の割合は2.0未満が好適である。   Regarding the Sb and Sn contents necessary for the formation of a rust layer with chloride ion blocking action by refining the above magnetite, energy dispersive X-ray analyzer (EDS) quantitative analysis by TEM in the fine magnetite region (spatial resolution 500 nm). As a result, it has been found that the ratio of Sb and / or Sn atoms to one iron atom in the rust layer is preferably at least 0.01 or more, and more preferably 0.03 or more. The larger the ratio, the greater the effect. However, when the ratio is too large, the effect of chloride ion blocking (ion selective permeability) by oxygen acid ions of Sb and Sn is saturated, so Sb and / or for one iron atom in the rust layer The ratio of Sn atoms is preferably less than 2.0.

なお、本発明でいう「錆層」とは、主にマグネタイト(Fe3O4)を含み、その他、ゲーサイト(α‐FeOOH)、アカガネアイト(β‐FeOOH)およびレピドクロサイト(γ‐FeOOH)のうち1種または2種以上、および不可避的相を含む錆のことを指す。
また、本発明では、この錆層の厚みは1〜500μm 程度とすることが好ましく、更に好ましくは10〜100μmである。さらに、本発明において、錆層の鋼材側部分(錆下層)とは、鋼材表面から錆層全体厚みに対して概ね3分の1の厚み領域を指す。
The “rust layer” as used in the present invention mainly includes magnetite (Fe 3 O 4 ), and in addition, goethite (α-FeOOH), akaganeite (β-FeOOH) and lipidocrosite (γ-FeOOH). It refers to rust containing one or more of them and an inevitable phase.
Moreover, in this invention, it is preferable that the thickness of this rust layer shall be about 1-500 micrometers, More preferably, it is 10-100 micrometers. Furthermore, in this invention, the steel material side part (rust lower layer) of a rust layer points out the thickness area | region of about 1/3 with respect to the whole rust layer thickness from the steel material surface.

上述したところは、この発明の実施形態の一例を示したにすぎず、請求の範囲において種々の変更を加えることができる。   The above description is merely an example of the embodiment of the present invention, and various modifications can be made within the scope of the claims.

表1に示す成分組成を有する鋼種No.1〜13を製造し、3mm×15mm×15mmの試験片に切り出した鋼板表面に、前述した腐食サイクル試験を7日間、高塩分の湿潤環境を模擬して行い錆層を付与し、サンプルとした。この時点での、錆層を含まない鋼材の重量(本試験前鋼材重量(A))を、サンプルの脱錆後の重量を測定することにより求めた。錆層全体の厚みは、各サンプルの断面を走査電子顕微鏡により観察し従来公知の方法で求めた。また、錆層の鋼材側部分におけるSb、Snの含有は、鋼材表面から錆層全体厚みの3分の1の厚みの領域におけるEPMA観察により判断した。また、錆層鋼材側部分の平均結晶粒径は、鋼材表面から錆層全体厚みの3分の1の厚みの領域において存在するマグネタイト結晶粒の粒径の大きさを、TEM明視野像により直接観測し従来公知の方法で求めた。また、上記の、腐食サイクル試験を7日間行い錆層を形成したサンプルに対し、さらに同じ腐食試験を43日間実施(本試験)し、塩化物イオン遮断性の評価をした。本試験後の脱錆後の鋼材の重量と本試験前鋼材重量(A)との差から本試験による腐食量を求めて本試験による腐食速度(mm/年)を算出した。基準となるSnやSbを含有しない鋼種No.9の腐食速度(B)と各サンプルの腐食速度(C)とを比較して塩化物イオン遮断性を評価した結果を表1に示す。なお、表1中の塩化物イオン遮断性の数値は、SnやSbを含有しない鋼種No.9を基準として塩化物イオン遮断性の向上割合を百分率で示したものであり、100×(B−C)/B により求めた。数値が大きいほど塩化物イオン遮断性に優れていることを示す。   Steel types No. 1 to 13 having the composition shown in Table 1 were manufactured, and the above-described corrosion cycle test was simulated on a steel plate surface cut into 3 mm × 15 mm × 15 mm test pieces for 7 days to simulate a high salt moisture environment. A rust layer was added to prepare a sample. At this time, the weight of the steel material not including the rust layer (the weight of the steel material before the test (A)) was obtained by measuring the weight of the sample after derusting. The thickness of the entire rust layer was determined by a conventionally known method by observing the cross section of each sample with a scanning electron microscope. Further, the content of Sb and Sn in the steel material side portion of the rust layer was judged by EPMA observation in a region having a thickness of one third of the entire rust layer thickness from the steel material surface. In addition, the average grain size of the rust layer steel material side part can be obtained by directly measuring the grain size of the magnetite crystal grains existing in the region of one third of the thickness of the entire rust layer from the steel surface by a TEM bright field image. Observed and determined by a conventionally known method. In addition, the same corrosion test was further performed for 43 days (main test) on the sample in which the corrosion cycle test was performed for 7 days to form a rust layer, and the chloride ion blocking property was evaluated. Corrosion rate (mm / year) by this test was calculated from the difference between the weight of steel after derusting after this test and the weight (A) of steel before this test to determine the amount of corrosion by this test. Table 1 shows the results of evaluating the chloride ion barrier properties by comparing the corrosion rate (B) of steel type No. 9 containing no Sn or Sb as a reference and the corrosion rate (C) of each sample. In addition, the numerical value of the chloride ion blocking property in Table 1 shows the improvement rate of the chloride ion blocking property as a percentage based on the steel type No. 9 containing no Sn or Sb, and is 100 × (B− C) / B. The larger the value, the better the chloride ion blocking property.

表1の結果から、鋼中のSb、Snの含有量と、錆層の平均結晶粒径の適正化を図った発明例1〜8はいずれも、鋼中にSb、Snを含有せず、かつ錆層の平均結晶粒径も本発明の適正外である比較例9に比べて、塩化物イオン遮断性が31%以上向上している。一方、鋼中のSb、Snの含有量が本発明の範囲よりも少なく、かつ錆層の平均結晶粒径も本発明の範囲外である比較例10および11は、いずれも塩化物イオン遮断性の向上割合が10%以下であった。
また、鋼中に本発明適正内のSb、Sn含有量を添加した鋼材に、さらにCrを添加した比較例12および13は、発明例1および4に比べるとイオン遮断性が劣化していた。
発明例1〜8で比較した場合、鋼中にSbとSnの双方を適正量含有する発明例7,8およびSn最大量含有する発明例6が、塩化物イオン遮断性の向上割合が54%以上と最も大きく、次いで、鋼中にSnを単独で適正量含有する発明例4,5およびSb最大量含有する発明例3が、塩化物イオン遮断性の向上割合が42%以上と大きく、そして、鋼中にSbを単独で適正量含有する発明例1および2が、塩化物イオン遮断性の向上割合が31%以上となり、特に鋼中のSnが、塩化物イオン遮断性の向上効果が顕著であった。従来技術では、WやNiとともにSb,Snを添加しないと塩化物イオン遮断性が向上しなかったが、本発明では、Sn、Sbの含有量と錆層の平均結晶粒径の適正化によって、WやNiを含有することなく塩化物イオン遮断性を向上できるようになった。
From the results shown in Table 1, none of the inventive examples 1 to 8 aiming at optimizing the content of Sb and Sn in the steel and the average crystal grain size of the rust layer contain Sb and Sn in the steel. In addition, the average crystal grain size of the rust layer is improved by 31% or more in terms of chloride ion blocking ability as compared with Comparative Example 9 which is outside the proper range of the present invention. On the other hand, Comparative Examples 10 and 11 in which the content of Sb and Sn in the steel is less than the range of the present invention and the average crystal grain size of the rust layer is outside the range of the present invention are both chloride ion blocking properties. The improvement rate was 10% or less.
Further, Comparative Examples 12 and 13 in which Cr was further added to the steel material in which the Sb and Sn contents within the present invention were added to the steel of the present invention had deteriorated ion barrier properties as compared with Invention Examples 1 and 4.
When compared in Invention Examples 1 to 8, Invention Examples 7 and 8 containing the proper amounts of both Sb and Sn in the steel and Invention Example 6 containing the maximum amount of Sn had a 54% improvement in chloride ion barrier properties. Inventive Examples 4 and 5 containing the proper amount of Sn alone in steel and Inventive Example 3 containing the maximum amount of Sb in the steel are the largest and the improvement rate of the chloride ion blocking property is as large as 42% or more. Inventive Examples 1 and 2, which contain an appropriate amount of Sb alone in the steel, the improvement rate of the chloride ion blocking property is 31% or more, and particularly Sn in the steel has a remarkable effect of improving the chloride ion blocking property. Met. In the prior art, the chloride ion barrier property was not improved unless Sb and Sn were added together with W and Ni, but in the present invention, by optimizing the content of Sn and Sb and the average crystal grain size of the rust layer, The chloride ion barrier property can be improved without containing W or Ni.

本発明によれば、腐食性因子となる塩化物イオンに富む高湿潤環境下での使用に適した耐食素材であって、特に塩化物イオン遮断性に優れた錆層付き鋼材を提供できるようになった。   According to the present invention, it is possible to provide a corrosion-resistant material suitable for use in a highly humid environment rich in chloride ions, which are corrosive factors, and can provide a steel material with a rust layer that is particularly excellent in chloride ion barrier properties. became.

1 鋼板
2 鋼板表面と錆層の界面
3 錆層
4 高Sb含有部
5 樹脂
6 高Sn含有部
DESCRIPTION OF SYMBOLS 1 Steel plate 2 Steel plate surface and rust layer interface 3 Rust layer 4 High Sb content part 5 Resin 6 High Sn content part

Claims (1)

質量%で、C:0.01〜0.20%、Si:0.05〜0.5%、Mn:0.1〜2.0%、P:0.025%以下、S:0.0001〜0.02%、Al:0.01〜0.10%を含有し、さらに、Sb:0.34〜0.8%とSn:0.50〜0.8%の中から選ばれる1種又は2種の元素を合計で0.34〜1.0%含有し、残部がFeおよび不可避的不純物からなる鋼材の表面に錆層を有し、
該錆層の鋼材側部分は、Sbおよび/またはSnを含み、かつ平均結晶粒径が50nm以下であることを特徴とする塩化物イオン遮断性に優れた錆層付き鋼材。
In mass%, C: 0.01-0.20%, Si: 0.05-0.5%, Mn: 0.1-2.0%, P: 0.025% or less, S: 0.0001-0.02%, Al: 0.01-0.10%, Contains one or two elements selected from Sb: 0.34 to 0.8% and Sn: 0.50 to 0.8% in total, with a balance of 0.34 to 1.0% on the surface of the steel material consisting of Fe and inevitable impurities. Have
A steel material with a rust layer excellent in chloride ion barrier property, wherein the steel material side portion of the rust layer contains Sb and / or Sn and has an average crystal grain size of 50 nm or less.
JP2011236096A 2011-02-25 2011-10-27 Steel material with rust layer with excellent chloride ion barrier properties Active JP5845806B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011236096A JP5845806B2 (en) 2011-02-25 2011-10-27 Steel material with rust layer with excellent chloride ion barrier properties

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011040644 2011-02-25
JP2011040644 2011-02-25
JP2011236096A JP5845806B2 (en) 2011-02-25 2011-10-27 Steel material with rust layer with excellent chloride ion barrier properties

Publications (2)

Publication Number Publication Date
JP2012188736A JP2012188736A (en) 2012-10-04
JP5845806B2 true JP5845806B2 (en) 2016-01-20

Family

ID=47082212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011236096A Active JP5845806B2 (en) 2011-02-25 2011-10-27 Steel material with rust layer with excellent chloride ion barrier properties

Country Status (1)

Country Link
JP (1) JP5845806B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6106450B2 (en) * 2013-02-12 2017-03-29 新日鐵住金ステンレス株式会社 High purity ferritic stainless steel sheet excellent in temper color resistance and workability and method for producing the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07118802A (en) * 1993-10-26 1995-05-09 Nippon Steel Corp Sn and si-containing low carbon hot rolled steel sheet good in surface property and its production
JP4811277B2 (en) * 2007-01-16 2011-11-09 住友金属工業株式会社 Corrosion resistant steel for holding coal and ore carrier
JP2010248567A (en) * 2009-04-15 2010-11-04 Sumitomo Metal Ind Ltd Surface-treated steel material excellent in corrosion resistance
JP2011021248A (en) * 2009-07-16 2011-02-03 Jfe Steel Corp Steel for ship having excellent coating corrosion resistance

Also Published As

Publication number Publication date
JP2012188736A (en) 2012-10-04

Similar Documents

Publication Publication Date Title
JP4185552B2 (en) Steel material with excellent corrosion resistance
WO2010087509A1 (en) Corrosion resistant steel for crude oil tank, manufacturing method therefor, and crude oil tank
JP4577158B2 (en) Corrosion resistant steel for crude oil tanks
KR20080097933A (en) Steel sheet excellent in pit resistance and method for manufacturing the same
JP5849868B2 (en) Steel material with excellent corrosion resistance
KR101609430B1 (en) Steel with rust layer excellent in weathering resistance in highly salty environment
JP2012067377A (en) Steel material for structure having excellent weather resistance, and steel structure
JP2016199778A (en) Steel material and method for producing the steel material
JP5375246B2 (en) Corrosion-resistant steel for crude oil tank and its manufacturing method
JPWO2016092756A1 (en) Structural steel with excellent weather resistance
KR20150067771A (en) Structural steel material having excellent atmospheric corrosion resistance
JP6536769B1 (en) Crude oil tanker upper deck and bottom plate corrosion resistant steel, and crude oil tanker
KR101732469B1 (en) Ferritic stainless steel and method for manufacturing the same
JP2018040031A (en) Steel material for structure excellent in coating durability and structure
JP2013256701A (en) Steel material for vessel ballast tank excellent in coating film blistering resistance
JP2015140442A (en) Steel material excellent in hydrogen induced cracking resistance and production method therefor
JP2008132515A (en) Ferritic stainless steel weld metal with excellent corrosion resistance, and welding wire
JP2012214871A (en) Steel material with rust layer excellent in corrosion resistance
JP5942532B2 (en) Steel material with excellent corrosion resistance
JP5845806B2 (en) Steel material with rust layer with excellent chloride ion barrier properties
JP6743524B2 (en) Anti-corrosion coated steel and its manufacturing method, anti-corrosion method for coated steel
JP6874363B2 (en) Anti-corrosion coated steel materials and their manufacturing methods, anti-corrosion methods for coated steel materials
JP2008133536A (en) Steel having excellent corrosion resistance for ship use
JP4444924B2 (en) High tensile steel for marine vessels with excellent corrosion resistance and base metal toughness
JP2012072489A (en) Steel product for welded structure, excellent in weatherability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150707

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151027

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151109

R150 Certificate of patent or registration of utility model

Ref document number: 5845806

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250