JP5844504B1 - Light moisture curable resin composition, adhesive for electronic parts, and adhesive for display elements - Google Patents

Light moisture curable resin composition, adhesive for electronic parts, and adhesive for display elements Download PDF

Info

Publication number
JP5844504B1
JP5844504B1 JP2015528763A JP2015528763A JP5844504B1 JP 5844504 B1 JP5844504 B1 JP 5844504B1 JP 2015528763 A JP2015528763 A JP 2015528763A JP 2015528763 A JP2015528763 A JP 2015528763A JP 5844504 B1 JP5844504 B1 JP 5844504B1
Authority
JP
Japan
Prior art keywords
resin composition
meth
moisture curable
light
acrylate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015528763A
Other languages
Japanese (ja)
Other versions
JPWO2015174371A1 (en
Inventor
彰 結城
彰 結城
高橋 徹
徹 高橋
拓身 木田
拓身 木田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2015528763A priority Critical patent/JP5844504B1/en
Application granted granted Critical
Publication of JP5844504B1 publication Critical patent/JP5844504B1/en
Publication of JPWO2015174371A1 publication Critical patent/JPWO2015174371A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J175/00Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
    • C09J175/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J4/00Adhesives based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; adhesives, based on monomers of macromolecular compounds of groups C09J183/00 - C09J183/16

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Polymerisation Methods In General (AREA)
  • Paints Or Removers (AREA)

Abstract

本発明は、接着性、及び、高温高湿環境下における信頼性に優れる光湿気硬化型樹脂組成物を提供することを目的とする。また、本発明は、該光湿気硬化型樹脂組成物を用いてなる電子部品用接着剤及び表示素子用接着剤を提供することを目的とする。本発明は、ラジカル重合性化合物と、湿気硬化型ウレタン樹脂と、光ラジカル重合開始剤とを含有し、前記湿気硬化型ウレタン樹脂は、ウレタン結合と、下記式(1)で表される基と、イソシアネート基とを有する化合物を含有する光湿気硬化型樹脂組成物である。式(1)中、R1及びR2は、水素、炭素数1〜5のアルキル基、又は、アリール基であり、R1及びR2は、それぞれ同一であってもよいし、異なっていてもよい。xは、0〜2である。[化1]An object of the present invention is to provide an optical moisture curable resin composition having excellent adhesiveness and reliability in a high temperature and high humidity environment. Another object of the present invention is to provide an adhesive for electronic parts and an adhesive for display elements using the light moisture curable resin composition. The present invention includes a radical polymerizable compound, a moisture curable urethane resin, and a photo radical polymerization initiator, and the moisture curable urethane resin includes a urethane bond and a group represented by the following formula (1): And an optical moisture curable resin composition containing a compound having an isocyanate group. In formula (1), R1 and R2 are hydrogen, an alkyl group having 1 to 5 carbon atoms, or an aryl group, and R1 and R2 may be the same or different. x is 0-2. [Chemical 1]

Description

本発明は、接着性、及び、高温高湿環境下における信頼性に優れる光湿気硬化型樹脂組成物に関する。また、本発明は、該光湿気硬化型樹脂組成物を用いてなる電子部品用接着剤及び表示素子用接着剤に関する。 The present invention relates to a light moisture curable resin composition having excellent adhesiveness and reliability in a high temperature and high humidity environment. Moreover, this invention relates to the adhesive agent for electronic components and the adhesive agent for display elements which use this optical moisture hardening type resin composition.

近年、薄型、軽量、低消費電力等の特徴を有する表示素子として、液晶表示素子や有機EL表示素子等が広く利用されている。これらの表示素子では、通常、液晶や発光層の封止、基板や光学フィルムや保護フィルムや各種部材の接着等に光硬化型樹脂組成物が用いられている。
ところで、携帯電話、携帯ゲーム機等、各種表示素子付きモバイル機器が普及している現代において、表示素子の小型化は最も求められている課題であり、小型化の手法として、画像表示部を狭額縁化することが行われている(以下、狭額縁設計ともいう)。しかしながら、狭額縁設計においては、充分に光の届かない部分に光硬化型樹脂組成物が塗布されることがあり、その結果、光の届かない部分に塗布された光硬化型樹脂組成物は硬化が不充分となるという問題があった。そこで、光の届かない部分に塗布された場合でも充分に硬化できる樹脂組成物として光熱硬化型樹脂組成物を用い、光硬化と熱硬化とを併用することも行われているが、高温での加熱により素子等に悪影響を与えるおそれがあった。
In recent years, liquid crystal display elements, organic EL display elements, and the like are widely used as display elements having features such as thinness, light weight, and low power consumption. In these display elements, a photocurable resin composition is usually used for sealing a liquid crystal or a light emitting layer, bonding a substrate, an optical film, a protective film, or various members.
By the way, in the present age when mobile devices with various display elements such as mobile phones and portable game machines are widespread, downsizing of the display elements is the most demanded issue. A frame is being made (hereinafter also referred to as a narrow frame design). However, in a narrow frame design, a photocurable resin composition may be applied to a portion where light does not reach sufficiently, and as a result, the photocurable resin composition applied to a portion where light does not reach is cured. There was a problem that was insufficient. Therefore, a photothermosetting resin composition is used as a resin composition that can be sufficiently cured even when applied to a portion where light does not reach, and photocuring and thermosetting are also used in combination. There was a possibility of adversely affecting the elements and the like by heating.

高温での加熱を行わずに樹脂組成物を硬化させる方法として、特許文献1には、分子中に少なくとも1つのイソシアネート基と少なくとも1つの(メタ)アクリロイル基とを有するウレタンプレポリマーを含有する光湿気硬化型樹脂組成物を用い、光硬化と湿気硬化とを併用する方法が開示されている。しかしながら、特許文献1に開示されているような光湿気硬化型樹脂組成物を用いた場合、基板等の被着体を接着した際の接着性や、高温高湿環境下における信頼性(特に耐クリープ性)が不充分となることがあった。 As a method for curing a resin composition without heating at a high temperature, Patent Document 1 discloses a light containing a urethane prepolymer having at least one isocyanate group and at least one (meth) acryloyl group in the molecule. A method of using a moisture curable resin composition in combination with photocuring and moisture curing is disclosed. However, when the optical moisture curable resin composition as disclosed in Patent Document 1 is used, the adhesiveness when an adherend such as a substrate is adhered and the reliability in a high-temperature and high-humidity environment (especially withstand resistance) Creepability) may be insufficient.

特開2008−274131号公報JP 2008-274131 A

本発明は、接着性、及び、高温高湿環境下における信頼性に優れる光湿気硬化型樹脂組成物を提供することを目的とする。また、本発明は、該光湿気硬化型樹脂組成物を用いてなる電子部品用接着剤及び表示素子用接着剤を提供することを目的とする。 An object of the present invention is to provide an optical moisture curable resin composition having excellent adhesiveness and reliability in a high temperature and high humidity environment. Another object of the present invention is to provide an adhesive for electronic parts and an adhesive for display elements using the light moisture curable resin composition.

本発明は、ラジカル重合性化合物と、湿気硬化型ウレタン樹脂と、光ラジカル重合開始剤とを含有し、前記湿気硬化型ウレタン樹脂は、ウレタン結合と、下記式(1)で表される基と、イソシアネート基とを有する化合物を含有する光湿気硬化型樹脂組成物である。 The present invention includes a radical polymerizable compound, a moisture curable urethane resin, and a photo radical polymerization initiator, and the moisture curable urethane resin includes a urethane bond and a group represented by the following formula (1): And an optical moisture curable resin composition containing a compound having an isocyanate group.

Figure 0005844504
Figure 0005844504

式(1)中、R及びRは、水素、炭素数1〜5のアルキル基、又は、アリール基であり、R及びRは、それぞれ同一であってもよいし、異なっていてもよい。xは、0〜2である。
以下に本発明を詳述する。
In Formula (1), R 1 and R 2 are hydrogen, an alkyl group having 1 to 5 carbon atoms, or an aryl group, and R 1 and R 2 may be the same or different from each other. Also good. x is 0-2.
The present invention is described in detail below.

本発明者らは、驚くべきことに、ラジカル重合性化合物と湿気硬化型ウレタン樹脂と光ラジカル重合開始剤とを含有する光湿気硬化型樹脂組成物において、湿気硬化型ウレタン樹脂として特定の官能基を有する化合物を用いることにより、接着性、及び、高温高湿環境下における信頼性に優れる光湿気硬化型樹脂組成物を得ることができることを見出し、本発明を完成させるに至った。 Surprisingly, the inventors of the present invention have a specific functional group as a moisture curable urethane resin in a light moisture curable resin composition containing a radical polymerizable compound, a moisture curable urethane resin, and a photo radical polymerization initiator. It has been found that a light moisture curable resin composition excellent in adhesiveness and reliability in a high temperature and high humidity environment can be obtained by using a compound having the above, and the present invention has been completed.

本発明の光湿気硬化型樹脂組成物は、湿気硬化型ウレタン樹脂を含有する。上記湿気硬化型ウレタン樹脂は、分子内のイソシアネート基が空気中又は被着体中の水分と反応して硬化する。 The optical moisture curable resin composition of the present invention contains a moisture curable urethane resin. In the moisture-curable urethane resin, the isocyanate group in the molecule is cured by reacting with moisture in the air or in the adherend.

上記湿気硬化型ウレタン樹脂は、ウレタン結合と、上記式(1)で表される基と、イソシアネート基とを有する化合物(以下、「有機シリル基含有ウレタン樹脂」ともいう)を含有する。湿気硬化型ウレタン樹脂として上記有機シリル基含有ウレタン樹脂を含有することにより、本発明の光湿気硬化型樹脂組成物は、接着性、及び、高温高湿環境下における信頼性に優れるものとなる。 The moisture curable urethane resin contains a compound having a urethane bond, a group represented by the above formula (1), and an isocyanate group (hereinafter also referred to as “organic silyl group-containing urethane resin”). By containing the organic silyl group-containing urethane resin as the moisture curable urethane resin, the optical moisture curable resin composition of the present invention is excellent in adhesiveness and reliability in a high temperature and high humidity environment.

上記有機シリル基含有ウレタン樹脂は、上記式(1)で表される基を有する。
上記式(1)中、R及びRは、接着性、及び、高温高湿環境下における信頼性を向上させる効果に優れることから、炭素数1〜5のアルキル基であることが好ましく、メチル基、エチル基であることがより好ましい。
また、R及びRがアリール基である場合、該アリール基としては、例えば、フェニル基、ナフチル基、2−メチルフェニル基等が挙げられる。
なお、上記式(1)中におけるxが0の場合とは、ケイ素原子がRで表される原子又は基と結合せずに3つの−OR基と結合している場合を意味する。
The organic silyl group-containing urethane resin has a group represented by the above formula (1).
In the above formula (1), R 1 and R 2 are preferably an alkyl group having 1 to 5 carbon atoms because of excellent adhesiveness and the effect of improving reliability in a high-temperature and high-humidity environment. More preferred are a methyl group and an ethyl group.
When R 1 and R 2 are an aryl group, examples of the aryl group include a phenyl group, a naphthyl group, and a 2-methylphenyl group.
Note that the when x is 0 in the formula (1), which means the case in which the silicon atom is bonded to three -OR 2 group without binding the atoms or groups represented by R 1.

上記有機シリル基含有ウレタン樹脂は、イソシアネート基を有する。
上記有機シリル基含有ウレタン樹脂は、1分子中にイソシアネート基を1個のみ有していてもよいし、2個以上有していてもよい。
The organic silyl group-containing urethane resin has an isocyanate group.
The organic silyl group-containing urethane resin may have only one isocyanate group in one molecule, or may have two or more.

上記有機シリル基含有ウレタン樹脂は、上記式(1)で表される基及び上記イソシアネート基を、それぞれ末端に有することが好ましい。 The organic silyl group-containing urethane resin preferably has a group represented by the above formula (1) and the isocyanate group at each end.

上記有機シリル基含有ウレタン樹脂は、1分子中に2個以上の水酸基を有するポリオール化合物と、1分子中に2個以上のイソシアネート基を有するポリイソシアネート化合物とを反応させて得られるウレタン結合とイソシアネート基とを有する化合物を、反応性官能基と式(1)で表される基とを有する化合物と反応させることにより得ることができる。なお、上記「反応性官能基」とは、上記ウレタン結合とイソシアネート基とを有する化合物と反応可能な基を意味する。 The organic silyl group-containing urethane resin is obtained by reacting a polyol compound having two or more hydroxyl groups in one molecule with a polyisocyanate compound having two or more isocyanate groups in one molecule, and an isocyanate. It can be obtained by reacting a compound having a group with a compound having a reactive functional group and a group represented by the formula (1). The “reactive functional group” means a group capable of reacting with the compound having the urethane bond and the isocyanate group.

上記ポリオール化合物と上記ポリイソシアネート化合物との反応は、通常、上記ポリオール化合物中の水酸基(OH)と上記ポリイソシアネート化合物中のイソシアネート基(NCO)とのモル比が[NCO]/[OH]=2.0〜2.5となる範囲で行われる。 The reaction between the polyol compound and the polyisocyanate compound is usually such that the molar ratio of the hydroxyl group (OH) in the polyol compound to the isocyanate group (NCO) in the polyisocyanate compound is [NCO] / [OH] = 2. It is performed in a range of 0.0 to 2.5.

上記ポリオール化合物としては、ポリウレタンの製造に通常用いられている公知のポリオール化合物を使用することができ、例えば、ポリエステルポリオール、ポリエーテルポリオール、ポリアルキレンポリオール、ポリカーボネートポリオール等が挙げられる。これらのポリオール化合物は、単独で用いられてもよいし、2種以上を組み合わせて用いられてもよい。 As said polyol compound, the well-known polyol compound normally used for manufacture of a polyurethane can be used, For example, polyester polyol, polyether polyol, polyalkylene polyol, polycarbonate polyol etc. are mentioned. These polyol compounds may be used independently and may be used in combination of 2 or more type.

上記ポリエステルポリオールとしては、例えば、多価カルボン酸とポリオールとの反応により得られるポリエステルポリオールや、ε−カプロラクトンを開環重合して得られるポリ−ε−カプロラクトンポリオール等が挙げられる。 Examples of the polyester polyol include a polyester polyol obtained by a reaction between a polyvalent carboxylic acid and a polyol, and a poly-ε-caprolactone polyol obtained by ring-opening polymerization of ε-caprolactone.

上記ポリエステルポリオールの原料となる上記多価カルボン酸としては、例えば、テレフタル酸、イソフタル酸、1,5−ナフタル酸、2,6−ナフタル酸、琥珀酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、デカメチレンジカルボン酸、ドデカメチレンジカルボン酸等が挙げられる。 Examples of the polyvalent carboxylic acid used as a raw material for the polyester polyol include terephthalic acid, isophthalic acid, 1,5-naphthalic acid, 2,6-naphthalic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, and suberin. Examples include acid, azelaic acid, sebacic acid, decamethylene dicarboxylic acid, dodecamethylene dicarboxylic acid and the like.

上記ポリエステルポリオールの原料となる上記ポリオールとしては、例えば、エチレングリコール、プロピレングリコール、1,3−プロパンジオール、1,4−ブタンジオール、ネオペンチルグリコール、1,5−ペンタンジオール、1,6−ヘキサンジオール、ジエチレングリコール、シクロヘキサンジオール等が挙げられる。 Examples of the polyol used as a raw material for the polyester polyol include ethylene glycol, propylene glycol, 1,3-propanediol, 1,4-butanediol, neopentyl glycol, 1,5-pentanediol, and 1,6-hexane. Diol, diethylene glycol, cyclohexanediol, etc. are mentioned.

上記ポリエーテルポリオールとしては、例えば、エチレングリコール、プロピレングリコール、テトラヒドロフラン、3−メチルテトラヒドロフランの開環重合化合物、及び、これらやその誘導体のランダム共重合体又はブロック共重合体や、ビスフェノール型のポリオキシアルキレン変性体等が挙げられる。 Examples of the polyether polyol include, for example, a ring-opening polymerization compound of ethylene glycol, propylene glycol, tetrahydrofuran, 3-methyltetrahydrofuran, random copolymers or block copolymers of these and derivatives thereof, and bisphenol type polyoxy An alkylene modified body etc. are mentioned.

上記ビスフェノール型のポリオキシアルキレン変性体は、ビスフェノール型分子骨格の活性水素部分にアルキレンオキシド(例えば、エチレンオキシド、プロピレンオキシド、ブチレンオキシド、イソブチレンオキシド等)を付加反応させて得られるポリエーテルポリオールであり、ランダム共重合体であってもよいし、ブロック共重合体であってもよい。上記ビスフェノール型のポリオキシアルキレン変性体は、ビスフェノール型分子骨格の両末端に、1種又は2種以上のアルキレンオキシドが付加されていることが好ましい。
ビスフェノール型としては特に限定されず、A型、F型、S型等が挙げられ、好ましくはビスフェノールA型である。
The modified bisphenol-type polyoxyalkylene is a polyether polyol obtained by addition reaction of alkylene oxide (for example, ethylene oxide, propylene oxide, butylene oxide, isobutylene oxide, etc.) to the active hydrogen portion of the bisphenol-type molecular skeleton, A random copolymer or a block copolymer may be used. The modified bisphenol-type polyoxyalkylene preferably has one or more alkylene oxides added to both ends of the bisphenol-type molecular skeleton.
It does not specifically limit as a bisphenol type, A type, F type, S type etc. are mentioned, Preferably it is bisphenol A type.

上記ポリアルキレンポリオールとしては、例えば、ポリブタジエンポリオール、水素化ポリブタジエンポリオール、水素化ポリイソプレンポリオール等が挙げられる。 Examples of the polyalkylene polyol include polybutadiene polyol, hydrogenated polybutadiene polyol, and hydrogenated polyisoprene polyol.

上記ポリカーボネートポリオールとしては、例えば、ポリヘキサメチレンカーボネートポリオール、ポリシクロヘキサンジメチレンカーボネートポリオール等が挙げられる。 Examples of the polycarbonate polyol include polyhexamethylene carbonate polyol and polycyclohexane dimethylene carbonate polyol.

上記ポリイソシアネート化合物としては、例えば、ジフェニルメタンジイソシアネート、ジフェニルメタンジイソシアネートの液状変性物、ポリメリックMDI(メタンジイソシアネート)、トリレンジイソシアネート、ナフタレン−1,5−ジイソシアネート等が挙げられる。なかでも、蒸気圧や毒性の低い点、扱いやすさの点からジフェニルメタンジイソシアネート及びその変性物が好ましい。上記ポリイソシアネート化合物は、単独で用いられてもよいし、2種以上を組み合わせて用いられてもよい。 Examples of the polyisocyanate compound include diphenylmethane diisocyanate, a liquid modified product of diphenylmethane diisocyanate, polymeric MDI (methane diisocyanate), tolylene diisocyanate, naphthalene-1,5-diisocyanate, and the like. Of these, diphenylmethane diisocyanate and its modified products are preferred from the viewpoint of low vapor pressure, low toxicity, and ease of handling. The said polyisocyanate compound may be used independently and may be used in combination of 2 or more type.

上記反応性官能基と式(1)で表される基とを有する化合物としては、例えば、3−メルカプトプロピルトリメトキシシラン、3−メルカプトプロピルトリエトキシシラン、3−メルカプトプロピルメチルジメトキシシラン、3−メルカプトプロピルメチルジエトシキシラン、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルトリエトキシシラン、3−グリシジドキシプロピルメチルジメトキシシラン、3−グリシジドキシプロピルメチルジエトシキシラン、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、3−グリシドキシプロピルメチルジエトキシシラン、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、3−(2−アミノエチル)アミノプロピルトリメトキシシラン、3−(2−アミノエチル)アミノプロピルトリエトキシシラン、3−(2−アミノエチル)アミノプロピルメチルジメトキシシラン、3−(メタ)アクリロイルオキシプロピルトリメトキシシラン、3−(メタ)アクリロイルオキシプロピルトリエトキシシラン、3−(メタ)アクリロイルオキシプロピルメチルジメトキシシラン、3−(メタ)アクリロイルオキシプロピルメチルジエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、3−イソシアネートプロピルトリメトキシシラン等が挙げられる。なかでも、反応性の観点から、反応性官能基としてチオール基を有するものが好ましい。
なお、本明細書において、上記「(メタ)アクリロイル」とは、アクリロイル又はメタクリロイルを意味する。
Examples of the compound having the reactive functional group and the group represented by the formula (1) include 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 3-mercaptopropylmethyldimethoxysilane, 3- Mercaptopropylmethyldiethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycididoxypropylmethyldiethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3- (2-aminoethyl) aminopropyl bird Toxisilane, 3- (2-aminoethyl) aminopropyltriethoxysilane, 3- (2-aminoethyl) aminopropylmethyldimethoxysilane, 3- (meth) acryloyloxypropyltrimethoxysilane, 3- (meth) acryloyloxypropyl Examples include triethoxysilane, 3- (meth) acryloyloxypropylmethyldimethoxysilane, 3- (meth) acryloyloxypropylmethyldiethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, and 3-isocyanatopropyltrimethoxysilane. . Especially, what has a thiol group as a reactive functional group from a reactive viewpoint is preferable.
In the present specification, the “(meth) acryloyl” means acryloyl or methacryloyl.

上記有機シリル基含有ウレタン樹脂の含有量は、ラジカル重合性化合物と湿気硬化型ウレタン樹脂との合計100重量部に対して、好ましい下限が1重量部、好ましい上限が50重量部である。上記有機シリル基含有ウレタン樹脂の含有量が1重量部未満であると、接着性、及び、高温高湿環境下における信頼性を向上させる効果が充分に発揮されないことがある。上記有機シリル基含有ウレタン樹脂の含有量が50重量部を超えると、湿気硬化型ウレタン樹脂の反応を阻害し、硬化物の弾性率を低下させ、充分な接着力を確保できないことがある。上記有機シリル基含有ウレタン樹脂の含有量のより好ましい下限は2重量部、より好ましい上限は30重量部、更に好ましい下限は5重量部、更に好ましい上限は25重量部である。 The content of the organic silyl group-containing urethane resin is preferably 1 part by weight with a preferred lower limit and 50 parts by weight with respect to a total of 100 parts by weight of the radical polymerizable compound and the moisture curable urethane resin. When the content of the organic silyl group-containing urethane resin is less than 1 part by weight, the effect of improving the adhesiveness and the reliability in a high temperature and high humidity environment may not be sufficiently exhibited. If the content of the organic silyl group-containing urethane resin exceeds 50 parts by weight, the reaction of the moisture curable urethane resin may be inhibited, the elastic modulus of the cured product may be reduced, and sufficient adhesive strength may not be ensured. The more preferred lower limit of the content of the organic silyl group-containing urethane resin is 2 parts by weight, the more preferred upper limit is 30 parts by weight, the still more preferred lower limit is 5 parts by weight, and the still more preferred upper limit is 25 parts by weight.

本発明の光湿気硬化型樹脂組成物は、更に、有機シリル基含有ウレタン樹脂以外のその他の湿気硬化型ウレタン樹脂を含有することが好ましい。有機シリル基含有ウレタン樹脂以外のその他の湿気硬化型ウレタン樹脂を含有することで、硬化性を調整することが容易になる。
上記その他の湿気硬化型ウレタン樹脂としては、上述したウレタン結合とイソシアネート基とを有する化合物が好適に用いられる。
以下、上記有機シリル基含有ウレタン樹脂を含む湿気硬化型ウレタン樹脂全体に共通する事項については、単に「湿気硬化型ウレタン樹脂」として扱う。
The optical moisture curable resin composition of the present invention preferably further contains other moisture curable urethane resin other than the organic silyl group-containing urethane resin. By containing other moisture curable urethane resins other than the organic silyl group-containing urethane resin, it becomes easy to adjust the curability.
As said other moisture hardening type urethane resin, the compound which has the urethane bond mentioned above and an isocyanate group is used suitably.
Hereinafter, matters common to the entire moisture curable urethane resin including the organic silyl group-containing urethane resin are simply treated as “moisture curable urethane resin”.

上記湿気硬化型ウレタン樹脂は、下記式(2)で表される構造を有するポリオール化合物を用いて得られるものであることが好ましい。下記式(2)で表される構造を有するポリオール化合物を用いることにより、接着性に優れる組成物や、柔軟で伸びがよい硬化物を得ることができ、上記ラジカル重合性化合物との相溶性に優れるものとなる。また、上記湿気硬化型ウレタン樹脂は、分岐鎖を有していることが好ましい。
なかでも、プロピレングリコールや、テトラヒドロフラン(THF)化合物の開環重合化合物や、メチル基等の置換基を有するテトラヒドロフラン化合物の開環重合化合物からなるポリエーテルポリオールを用いたものが好ましい。
The moisture curable urethane resin is preferably obtained using a polyol compound having a structure represented by the following formula (2). By using a polyol compound having a structure represented by the following formula (2), it is possible to obtain a composition excellent in adhesiveness and a cured product that is flexible and has good elongation, and is compatible with the radical polymerizable compound. It will be excellent. The moisture curable urethane resin preferably has a branched chain.
Among these, those using a polyether polyol made of propylene glycol, a ring-opening polymerization compound of a tetrahydrofuran (THF) compound, or a ring-opening polymerization compound of a tetrahydrofuran compound having a substituent such as a methyl group are preferable.

Figure 0005844504
Figure 0005844504

式(2)中、Rは、水素、メチル基、又は、エチル基を表し、nは、1〜10の整数、Lは、0〜5の整数、mは、1〜500の整数である。nは、1〜5であることが好ましく、Lは、0〜4であることが好ましく、mは、50〜200であることが好ましい。
なお、Lが0の場合とは、Rと結合した炭素が直接酸素と結合している場合を意味する。
In formula (2), R represents hydrogen, a methyl group, or an ethyl group, n is an integer of 1 to 10, L is an integer of 0 to 5, and m is an integer of 1 to 500. n is preferably 1 to 5, L is preferably 0 to 4, and m is preferably 50 to 200.
The case where L is 0 means the case where carbon bonded to R is directly bonded to oxygen.

更に、上記湿気硬化型ウレタン樹脂は、ラジカル重合性基を有していてもよい。
上記湿気硬化型ウレタン樹脂が有していてもよいラジカル重合性基としては、不飽和二重結合を有する基が好ましく、特に反応性の面から(メタ)アクリロイル基がより好ましい。
なお、ラジカル重合性基を有する湿気硬化型ウレタン樹脂は、ラジカル重合性化合物には含まず、湿気硬化型ウレタン樹脂として扱う。
Furthermore, the moisture curable urethane resin may have a radical polymerizable group.
The radical polymerizable group that the moisture-curable urethane resin may have is preferably a group having an unsaturated double bond, and more preferably a (meth) acryloyl group from the viewpoint of reactivity.
The moisture curable urethane resin having a radical polymerizable group is not included in the radical polymerizable compound and is treated as a moisture curable urethane resin.

上記湿気硬化型ウレタン樹脂の重量平均分子量の好ましい下限は800、好ましい上限は1万である。上記湿気硬化型ウレタン樹脂の重量平均分子量が800未満であると、架橋密度が高くなり、柔軟性が損なわれることがある。上記湿気硬化型ウレタン樹脂の重量平均分子量が1万を超えると、得られる光湿気硬化型樹脂組成物が塗布性に劣るものとなることがある。上記湿気硬化型ウレタン樹脂の重量平均分子量のより好ましい下限は2000、より好ましい上限は8000、更に好ましい下限は2500、更に好ましい上限は6000である。
なお、本明細書において上記重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)で測定を行い、ポリスチレン換算により求められる値である。GPCによってポリスチレン換算による重量平均分子量を測定する際のカラムとしては、例えば、Shodex LF−804(昭和電工社製)等が挙げられる。また、GPCで用いる溶媒としては、テトラヒドロフラン等が挙げられる。
The preferable lower limit of the weight average molecular weight of the moisture curable urethane resin is 800, and the preferable upper limit is 10,000. When the weight average molecular weight of the moisture curable urethane resin is less than 800, the crosslink density increases and flexibility may be impaired. When the weight average molecular weight of the moisture curable urethane resin exceeds 10,000, the resulting light moisture curable resin composition may have poor applicability. The more preferable lower limit of the weight average molecular weight of the moisture curable urethane resin is 2000, the more preferable upper limit is 8000, the still more preferable lower limit is 2500, and the further preferable upper limit is 6000.
In addition, the said weight average molecular weight is a value calculated | required by polystyrene conversion by measuring with a gel permeation chromatography (GPC) in this specification. Examples of the column for measuring the weight average molecular weight in terms of polystyrene by GPC include Shodex LF-804 (manufactured by Showa Denko KK). Moreover, tetrahydrofuran etc. are mentioned as a solvent used by GPC.

上記湿気硬化型ウレタン樹脂の含有量は、上記ラジカル重合性化合物と上記湿気硬化型ウレタン樹脂との合計100重量部に対して、好ましい下限が20重量部、好ましい上限が90重量部である。上記湿気硬化型ウレタン樹脂の含有量が20重量部未満であると、得られる光湿気硬化型樹脂組成物が湿気硬化性に劣るものとなることがある。上記湿気硬化型ウレタン樹脂の含有量が90重量部を超えると、得られる光湿気硬化型樹脂組成物が光硬化性に劣るものとなることがある。上記湿気硬化型ウレタン樹脂の含有量のより好ましい下限は30重量部、より好ましい上限は75重量部であり、更に好ましい下限は41重量部、更に好ましい上限は70重量部である。 The content of the moisture curable urethane resin is preferably 20 parts by weight with a preferred lower limit and 90 parts by weight with respect to a total of 100 parts by weight of the radical polymerizable compound and the moisture curable urethane resin. When the content of the moisture curable urethane resin is less than 20 parts by weight, the resulting optical moisture curable resin composition may be inferior in moisture curable property. If the content of the moisture curable urethane resin exceeds 90 parts by weight, the resulting light moisture curable resin composition may be inferior in photocurability. The more preferable lower limit of the content of the moisture curable urethane resin is 30 parts by weight, the more preferable upper limit is 75 parts by weight, the still more preferable lower limit is 41 parts by weight, and the still more preferable upper limit is 70 parts by weight.

本発明の光湿気硬化型樹脂組成物は、ラジカル重合性化合物を含有する。
上記ラジカル重合性化合物としては、光重合性を有するラジカル重合性化合物であればよく、分子中にラジカル重合性基を有する化合物であれば特に限定されないが、ラジカル重合性基として不飽和二重結合を有する化合物が好適であり、特に反応性の面から(メタ)アクリロイル基を有する化合物(以下、「(メタ)アクリル化合物」ともいう)が好適である。
なお、本明細書において、上記「(メタ)アクリル」は、アクリル又はメタクリルを意味する。
The light moisture curable resin composition of the present invention contains a radically polymerizable compound.
The radical polymerizable compound is not particularly limited as long as it is a photopolymerizable radical polymerizable compound and is a compound having a radical polymerizable group in the molecule, but the radical polymerizable group is an unsaturated double bond. A compound having a (meth) acryloyl group (hereinafter, also referred to as “(meth) acrylic compound”) is preferable from the viewpoint of reactivity.
In the present specification, the “(meth) acryl” means acryl or methacryl.

上記(メタ)アクリル化合物としては、例えば、(メタ)アクリル酸に水酸基を有する化合物を反応させることにより得られるエステル化合物、(メタ)アクリル酸とエポキシ化合物とを反応させることにより得られるエポキシ(メタ)アクリレート、イソシアネート化合物に水酸基を有する(メタ)アクリル酸誘導体を反応させることにより得られるウレタン(メタ)アクリレート等が挙げられる。
なお、本明細書において、上記「(メタ)アクリレート」とは、アクリレート又はメタクリレートを意味する。また、上記ウレタン(メタ)アクリレートの原料となるイソシアネート化合物のイソシアネート基は、全てウレタン結合の形成に用いられ、上記ウレタン(メタ)アクリレートは、残存イソシアネート基を有さない。
Examples of the (meth) acrylic compound include an ester compound obtained by reacting a compound having a hydroxyl group with (meth) acrylic acid, and an epoxy (meth) acrylic obtained by reacting (meth) acrylic acid with an epoxy compound. ) Urethane (meth) acrylate obtained by reacting a (meth) acrylic acid derivative having a hydroxyl group with an acrylate or isocyanate compound.
In the present specification, the “(meth) acrylate” means acrylate or methacrylate. Moreover, all the isocyanate groups of the isocyanate compound used as the raw material of the said urethane (meth) acrylate are used for formation of a urethane bond, and the said urethane (meth) acrylate does not have a residual isocyanate group.

上記エステル化合物のうち単官能のものとしては、例えば、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、4−ヒドロキシブチル(メタ)アクリレート、2−ヒドロキシブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、t−ブチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、イソボルニル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、2−メトキシエチル(メタ)アクリレート、メトキシエチレングリコール(メタ)アクリレート、2−エトキシエチル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、ベンジル(メタ)アクリレート、エチルカルビトール(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、フェノキシジエチレングリコール(メタ)アクリレート、フェノキシポリエチレングリコール(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、2,2,2−トリフルオロエチル(メタ)アクリレート、2,2,3,3−テトラフルオロプロピル(メタ)アクリレート、1H,1H,5H−オクタフルオロペンチル(メタ)アクリレート、イミド(メタ)アクリレート、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n−ブチル(メタ)アクリレート、プロピル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、n−オクチル(メタ)アクリレート、イソノニル(メタ)アクリレート、イソミリスチル(メタ)アクリレート、2−ブトキシエチル(メタ)アクリレート、2−フェノキシエチル(メタ)アクリレート、ビシクロペンテニル(メタ)アクリレート、イソデシル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート、2−(メタ)アクリロイロキシエチルコハク酸、2−(メタ)アクリロイロキシエチルヘキサヒドロフタル酸、2−(メタ)アクリロイロキシエチル2−ヒドロキシプロピルフタレート、グリシジル(メタ)アクリレート、2−(メタ)アクリロイロキシエチルホスフェート、N−アクリロイルオキシエチルヘキサヒドロフタルイミド等のフタルイミドアクリレート類や各種イミドアクリレート等が挙げられる。 Examples of monofunctional compounds among the ester compounds include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, Isobutyl (meth) acrylate, t-butyl (meth) acrylate, isooctyl (meth) acrylate, lauryl (meth) acrylate, stearyl (meth) acrylate, isobornyl (meth) acrylate, cyclohexyl (meth) acrylate, 2-methoxyethyl (meth) ) Acrylate, methoxyethylene glycol (meth) acrylate, 2-ethoxyethyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, benzyl (meth) acrylate, ethyl cal Tall (meth) acrylate, phenoxyethyl (meth) acrylate, phenoxydiethylene glycol (meth) acrylate, phenoxypolyethylene glycol (meth) acrylate, methoxypolyethylene glycol (meth) acrylate, 2,2,2-trifluoroethyl (meth) acrylate, 2,2,3,3-tetrafluoropropyl (meth) acrylate, 1H, 1H, 5H-octafluoropentyl (meth) acrylate, imide (meth) acrylate, methyl (meth) acrylate, ethyl (meth) acrylate, n- Butyl (meth) acrylate, propyl (meth) acrylate, cyclohexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, n-octyl (meth) acrylate, isononyl (Meth) acrylate, isomyristyl (meth) acrylate, 2-butoxyethyl (meth) acrylate, 2-phenoxyethyl (meth) acrylate, bicyclopentenyl (meth) acrylate, isodecyl (meth) acrylate, diethylaminoethyl (meth) acrylate, dimethyl Aminoethyl (meth) acrylate, 2- (meth) acryloyloxyethyl succinic acid, 2- (meth) acryloyloxyethyl hexahydrophthalic acid, 2- (meth) acryloyloxyethyl 2-hydroxypropyl phthalate, glycidyl ( Examples thereof include phthalimide acrylates such as (meth) acrylate, 2- (meth) acryloyloxyethyl phosphate, N-acryloyloxyethyl hexahydrophthalimide, and various imide acrylates.

また、上記エステル化合物のうち2官能のものとしては、例えば、1,4−ブタンジオールジ(メタ)アクリレート、1,3−ブタンジオールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、1,9−ノナンジオールジ(メタ)アクリレート、1,10−デカンジオールジ(メタ)アクリレート、2−n−ブチル−2−エチル−1,3−プロパンジオールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコール(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロピレンオキシド付加ビスフェノールAジ(メタ)アクリレート、エチレンオキシド付加ビスフェノールAジ(メタ)アクリレート、エチレンオキシド付加ビスフェノールFジ(メタ)アクリレート、ジメチロールジシクロペンタジエニルジ(メタ)アクリレート、1,3−ブチレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、エチレンオキシド変性イソシアヌル酸ジ(メタ)アクリレート、2−ヒドロキシ−3−(メタ)アクリロイロキシプロピル(メタ)アクリレート、カーボネートジオールジ(メタ)アクリレート、ポリエーテルジオールジ(メタ)アクリレート、ポリエステルジオールジ(メタ)アクリレート、ポリカプロラクトンジオールジ(メタ)アクリレート、ポリブタジエンジオールジ(メタ)アクリレート等が挙げられる。 Examples of the bifunctional one of the ester compounds include 1,4-butanediol di (meth) acrylate, 1,3-butanediol di (meth) acrylate, and 1,6-hexanediol di (meth). Acrylate, 1,9-nonanediol di (meth) acrylate, 1,10-decanediol di (meth) acrylate, 2-n-butyl-2-ethyl-1,3-propanediol di (meth) acrylate, dipropylene Glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, polypropylene glycol (meth) acrylate, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, polyethylene glycol (Meth) acrylate, propylene oxide-added bisphenol A di (meth) acrylate, ethylene oxide-added bisphenol A di (meth) acrylate, ethylene oxide-added bisphenol F di (meth) acrylate, dimethylol dicyclopentadienyl di (meth) acrylate, 1 , 3-butylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, ethylene oxide modified isocyanuric acid di (meth) acrylate, 2-hydroxy-3- (meth) acryloyloxypropyl (meth) acrylate, carbonate diol Di (meth) acrylate, polyether diol di (meth) acrylate, polyester diol di (meth) acrylate, polycaprolactone diol di (meth) acrylate Over DOO, polybutadiene di (meth) acrylate.

また、上記エステル化合物のうち3官能以上のものとしては、例えば、ペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、プロピレンオキシド付加トリメチロールプロパントリ(メタ)アクリレート、エチレンオキシド付加トリメチロールプロパントリ(メタ)アクリレート、カプロラクトン変性トリメチロールプロパントリ(メタ)アクリレート、エチレンオキシド付加イソシアヌル酸トリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、グリセリントリ(メタ)アクリレート、プロピレンオキシド付加グリセリントリ(メタ)アクリレート、トリス(メタ)アクリロイルオキシエチルフォスフェート等が挙げられる。 Examples of the ester compound having three or more functional groups include pentaerythritol tri (meth) acrylate, trimethylolpropane tri (meth) acrylate, propylene oxide-added trimethylolpropane tri (meth) acrylate, and ethylene oxide-added trimethylol. Propane tri (meth) acrylate, caprolactone-modified trimethylolpropane tri (meth) acrylate, ethylene oxide-added isocyanuric acid tri (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, ditrimethylolpropane tetra (Meth) acrylate, pentaerythritol tetra (meth) acrylate, glycerin tri (meth) acrylate, propylene Oxide addition glycerin tri (meth) acrylate, tris (meth) acryloyloxyethyl phosphate, and the like.

上記エポキシ(メタ)アクリレートとしては、例えば、エポキシ化合物と(メタ)アクリル酸とを、常法に従って塩基性触媒の存在下で反応させることにより得られるもの等が挙げられる。 Examples of the epoxy (meth) acrylate include those obtained by reacting an epoxy compound and (meth) acrylic acid in the presence of a basic catalyst according to a conventional method.

上記エポキシ(メタ)アクリレートを合成するための原料となるエポキシ化合物としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、2,2’−ジアリルビスフェノールA型エポキシ樹脂、水添ビスフェノール型エポキシ樹脂、プロピレンオキシド付加ビスフェノールA型エポキシ樹脂、レゾルシノール型エポキシ樹脂、ビフェニル型エポキシ樹脂、スルフィド型エポキシ樹脂、ジフェニルエーテル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ナフタレン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、オルトクレゾールノボラック型エポキシ樹脂、ジシクロペンタジエンノボラック型エポキシ樹脂、ビフェニルノボラック型エポキシ樹脂、ナフタレンフェノールノボラック型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、アルキルポリオール型エポキシ樹脂、ゴム変性型エポキシ樹脂、グリシジルエステル化合物、ビスフェノールA型エピスルフィド樹脂等が挙げられる。 Examples of the epoxy compound that is a raw material for synthesizing the epoxy (meth) acrylate include, for example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, and 2,2′-diallyl bisphenol A type epoxy resin. , Hydrogenated bisphenol type epoxy resin, propylene oxide added bisphenol A type epoxy resin, resorcinol type epoxy resin, biphenyl type epoxy resin, sulfide type epoxy resin, diphenyl ether type epoxy resin, dicyclopentadiene type epoxy resin, naphthalene type epoxy resin, phenol Novolac epoxy resin, orthocresol novolac epoxy resin, dicyclopentadiene novolac epoxy resin, biphenyl novolac epoxy resin, naphtha Ren phenol novolak type epoxy resin, glycidyl amine type epoxy resin, alkyl polyol type epoxy resin, rubber modified epoxy resin, glycidyl ester compounds, bisphenol A type episulfide resins.

上記ビスフェノールA型エポキシ樹脂のうち市販されているものとしては、例えば、エピコート828EL、エピコート1001、エピコート1004(いずれも三菱化学社製)、エピクロン850−S(DIC社製)等が挙げられる。
上記ビスフェノールF型エポキシ樹脂のうち市販されているものとしては、例えば、エピコート806、エピコート4004(いずれも三菱化学社製)等が挙げられる。
上記ビスフェノールS型エポキシ樹脂のうち市販されているものとしては、例えば、エピクロンEXA1514(DIC社製)等が挙げられる。
上記2,2’−ジアリルビスフェノールA型エポキシ樹脂のうち市販されているものとしては、例えば、RE−810NM(日本化薬社製)等が挙げられる。
上記水添ビスフェノール型エポキシ樹脂のうち市販されているものとしては、例えば、エピクロンEXA7015(DIC社製)等が挙げられる。
上記プロピレンオキシド付加ビスフェノールA型エポキシ樹脂のうち市販されているものとしては、例えば、EP−4000S(ADEKA社製)等が挙げられる。
上記レゾルシノール型エポキシ樹脂のうち市販されているものとしては、例えば、EX−201(ナガセケムテックス社製)等が挙げられる。
上記ビフェニル型エポキシ樹脂のうち市販されているものとしては、例えば、エピコートYX−4000H(三菱化学社製)等が挙げられる。
上記スルフィド型エポキシ樹脂のうち市販されているものとしては、例えば、YSLV−50TE(新日鉄住金化学社製)等が挙げられる。
上記ジフェニルエーテル型エポキシ樹脂のうち市販されているものとしては、例えば、YSLV−80DE(新日鉄住金化学社製)等が挙げられる。
上記ジシクロペンタジエン型エポキシ樹脂のうち市販されているものとしては、例えば、EP−4088S(ADEKA社製)等が挙げられる。
上記ナフタレン型エポキシ樹脂のうち市販されているものとしては、例えば、エピクロンHP4032、エピクロンEXA−4700(いずれもDIC社製)等が挙げられる。
上記フェノールノボラック型エポキシ樹脂のうち市販されているものとしては、例えば、エピクロンN−770(DIC社製)等が挙げられる。
上記オルトクレゾールノボラック型エポキシ樹脂のうち市販されているものとしては、例えば、エピクロンN−670−EXP−S(DIC社製)等が挙げられる。
上記ジシクロペンタジエンノボラック型エポキシ樹脂のうち市販されているものとしては、例えば、エピクロンHP7200(DIC社製)等が挙げられる。
上記ビフェニルノボラック型エポキシ樹脂のうち市販されているものとしては、例えば、NC−3000P(日本化薬社製)等が挙げられる。
上記ナフタレンフェノールノボラック型エポキシ樹脂のうち市販されているものとしては、例えば、ESN−165S(新日鉄住金化学社製)等が挙げられる。
上記グリシジルアミン型エポキシ樹脂のうち市販されているものとしては、例えば、エピコート630(三菱化学社製)、エピクロン430(DIC社製)、TETRAD−X(三菱ガス化学社製)等が挙げられる。
上記アルキルポリオール型エポキシ樹脂のうち市販されているものとしては、例えば、ZX−1542(新日鉄住金化学社製)、エピクロン726(DIC社製)、エポライト80MFA(共栄社化学社製)、デナコールEX−611(ナガセケムテックス社製)等が挙げられる。
上記ゴム変性型エポキシ樹脂のうち市販されているものとしては、例えば、YR−450、YR−207(いずれも新日鉄住金化学社製)、エポリードPB(ダイセル化学工業社製)等が挙げられる。
上記グリシジルエステル化合物のうち市販されているものとしては、例えば、デナコールEX−147(ナガセケムテックス社製)等が挙げられる。
上記ビスフェノールA型エピスルフィド樹脂のうち市販されているものとしては、例えば、エピコートYL−7000(三菱化学社製)等が挙げられる。
上記エポキシ樹脂のうちその他に市販されているものとしては、例えば、YDC−1312、YSLV−80XY、YSLV−90CR(いずれも新日鉄住金化学社製)、XAC4151(旭化成社製)、エピコート1031、エピコート1032(いずれも三菱化学社製)、EXA−7120(DIC社製)、TEPIC(日産化学社製)等が挙げられる。
Examples of commercially available bisphenol A type epoxy resins include Epicoat 828EL, Epicoat 1001, Epicoat 1004 (all manufactured by Mitsubishi Chemical Corporation), Epicron 850-S (manufactured by DIC Corporation), and the like.
As what is marketed among the said bisphenol F type epoxy resins, Epicoat 806, Epicoat 4004 (all are Mitsubishi Chemical Corporation make) etc. are mentioned, for example.
As what is marketed among the said bisphenol S-type epoxy resins, Epicron EXA1514 (made by DIC Corporation) etc. are mentioned, for example.
As what is marketed among the said 2,2'- diallyl bisphenol A type epoxy resins, RE-810NM (made by Nippon Kayaku Co., Ltd.) etc. are mentioned, for example.
As what is marketed among the said hydrogenated bisphenol type | mold epoxy resins, Epicron EXA7015 (made by DIC Corporation) etc. are mentioned, for example.
As what is marketed among the said propylene oxide addition bisphenol A type epoxy resins, EP-4000S (made by ADEKA) etc. are mentioned, for example.
As what is marketed among the said resorcinol type epoxy resins, EX-201 (made by Nagase ChemteX Corporation) etc. are mentioned, for example.
As what is marketed among the said biphenyl type epoxy resins, Epicoat YX-4000H (made by Mitsubishi Chemical Corporation) etc. are mentioned, for example.
As what is marketed among the said sulfide type epoxy resins, YSLV-50TE (made by Nippon Steel & Sumikin Chemical Co., Ltd.) etc. are mentioned, for example.
As what is marketed among the said diphenyl ether type epoxy resins, YSLV-80DE (made by Nippon Steel & Sumikin Chemical Co., Ltd.) etc. are mentioned, for example.
As what is marketed among the said dicyclopentadiene type epoxy resins, EP-4088S (made by ADEKA) etc. are mentioned, for example.
As what is marketed among the said naphthalene type | mold epoxy resins, Epicron HP4032, Epicron EXA-4700 (all are the products made from DIC) etc. are mentioned, for example.
As what is marketed among the said phenol novolak-type epoxy resins, Epicron N-770 (made by DIC Corporation) etc. are mentioned, for example.
As what is marketed among the said ortho cresol novolak-type epoxy resins, Epicron N-670-EXP-S (made by DIC) etc. are mentioned, for example.
As what is marketed among the said dicyclopentadiene novolak-type epoxy resins, epiclone HP7200 (made by DIC) etc. are mentioned, for example.
As what is marketed among the said biphenyl novolak-type epoxy resins, NC-3000P (made by Nippon Kayaku Co., Ltd.) etc. are mentioned, for example.
As what is marketed among the said naphthalene phenol novolak-type epoxy resins, ESN-165S (made by Nippon Steel & Sumikin Chemical Co., Ltd.) etc. are mentioned, for example.
As what is marketed among the said glycidylamine type epoxy resins, Epicoat 630 (made by Mitsubishi Chemical Corporation), Epicron 430 (made by DIC Corporation), TETRAD-X (made by Mitsubishi Gas Chemical Co., Inc.) etc. are mentioned, for example.
Examples of commercially available alkyl polyol type epoxy resins include ZX-1542 (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.), Epiklon 726 (manufactured by DIC Corporation), Epolite 80MFA (manufactured by Kyoeisha Chemical Co., Ltd.), Denacol EX-611. (Manufactured by Nagase ChemteX Corporation).
Examples of commercially available rubber-modified epoxy resins include YR-450, YR-207 (all manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.), Epolide PB (manufactured by Daicel Chemical Industries, Ltd.), and the like.
As what is marketed among the said glycidyl ester compounds, Denacol EX-147 (made by Nagase ChemteX Corporation) etc. is mentioned, for example.
As what is marketed among the said bisphenol A type | mold episulfide resin, Epicoat YL-7000 (made by Mitsubishi Chemical Corporation) etc. are mentioned, for example.
Other commercially available epoxy resins include, for example, YDC-1312, YSLV-80XY, YSLV-90CR (all manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.), XAC4151 (manufactured by Asahi Kasei Corporation), Epicoat 1031 and Epicoat 1032. (All manufactured by Mitsubishi Chemical Corporation), EXA-7120 (manufactured by DIC Corporation), TEPIC (manufactured by Nissan Chemical Industries, Ltd.) and the like.

上記エポキシ(メタ)アクリレートのうち市販されているものとしては、例えば、EBECRYL860、EBECRYL3200、EBECRYL3201、EBECRYL3412、EBECRYL3600、EBECRYL3700、EBECRYL3701、EBECRYL3702、EBECRYL3703、EBECRYL3800、EBECRYL6040、EBECRYL RDX63182(いずれもダイセル・オルネクス社製)、EA−1010、EA−1020、EA−5323、EA−5520、EA−CHD、EMA−1020(いずれも新中村化学工業社製)、エポキシエステルM−600A、エポキシエステル40EM、エポキシエステル70PA、エポキシエステル200PA、エポキシエステル80MFA、エポキシエステル3002M、エポキシエステル3002A、エポキシエステル1600A、エポキシエステル3000M、エポキシエステル3000A、エポキシエステル200EA、エポキシエステル400EA(いずれも共栄社化学社製)、デナコールアクリレートDA−141、デナコールアクリレートDA−314、デナコールアクリレートDA−911(いずれもナガセケムテックス社製)等が挙げられる。 Examples of commercially available epoxy (meth) acrylates include EBECRYL860, EBECRYL3200, EBECRYL3201, EBECRYL3412, EBECRYL3600, EBECRYL3700, EBECRYL3701, EBECRYL3702, EBECRY370R ), EA-1010, EA-1020, EA-5323, EA-5520, EA-CHD, EMA-1020 (all manufactured by Shin-Nakamura Chemical Co., Ltd.), epoxy ester M-600A, epoxy ester 40EM, epoxy ester 70PA, Epoxy ester 200PA, Epoxy ester 80MF Epoxy ester 3002M, Epoxy ester 3002A, Epoxy ester 1600A, Epoxy ester 3000M, Epoxy ester 3000A, Epoxy ester 200EA, Epoxy ester 400EA (all manufactured by Kyoeisha Chemical Co., Ltd.), Denacol acrylate DA-141, Denacol acrylate DA-314 , Denacol acrylate DA-911 (all manufactured by Nagase ChemteX Corporation) and the like.

上記ウレタン(メタ)アクリレートは、例えば、イソシアネート化合物に対して、水酸基を有する(メタ)アクリル酸誘導体を、触媒量のスズ系化合物存在下で反応させることによって得ることができる。 The urethane (meth) acrylate can be obtained, for example, by reacting a (meth) acrylic acid derivative having a hydroxyl group with an isocyanate compound in the presence of a catalytic amount of a tin-based compound.

上記ウレタン(メタ)アクリレートの原料となるイソシアネート化合物としては、例えば、イソホロンジイソシアネート、2,4−トリレンジイソシアネート、2,6−トリレンジイソシアネート、ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、ジフェニルメタン−4,4’−ジイソシアネート(MDI)、水添MDI、ポリメリックMDI、1,5−ナフタレンジイソシアネート、ノルボルナンジイソシアネート、トリジンジイソシアネート、キシリレンジイソシアネート(XDI)、水添XDI、リジンジイソシアネート、トリフェニルメタントリイソシアネート、トリス(イソシアネートフェニル)チオフォスフェート、テトラメチルキシレンジイソシアネート、1,6,11−ウンデカントリイソシアネート等が挙げられる。 As an isocyanate compound used as the raw material of the urethane (meth) acrylate, for example, isophorone diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, diphenylmethane-4,4 '-Diisocyanate (MDI), hydrogenated MDI, polymeric MDI, 1,5-naphthalene diisocyanate, norbornane diisocyanate, tolidine diisocyanate, xylylene diisocyanate (XDI), hydrogenated XDI, lysine diisocyanate, triphenylmethane triisocyanate, tris (isocyanate) Phenyl) thiophosphate, tetramethylxylene diisocyanate, 1,6,11-undecanetriiso Aneto and the like.

また、上記イソシアネート化合物としては、例えば、エチレングリコール、グリセリン、ソルビトール、トリメチロールプロパン、(ポリ)プロピレングリコール、カーボネートジオール、ポリエーテルジオール、ポリエステルジオール、ポリカプロラクトンジオール等のポリオールと過剰のイソシアネート化合物との反応により得られる鎖延長されたイソシアネート化合物も使用することができる。 Examples of the isocyanate compound include ethylene glycol, glycerin, sorbitol, trimethylolpropane, (poly) propylene glycol, carbonate diol, polyether diol, polyester diol, polycaprolactone diol, and other polyols and excess isocyanate compounds. Chain-extended isocyanate compounds obtained by the reaction can also be used.

上記ウレタン(メタ)アクリレートの原料となる、水酸基を有する(メタ)アクリル酸誘導体としては、例えば、エチレングリコール、プロピレングリコール、1,3−プロパンジオール、1,3−ブタンジオール、1,4−ブタンジオール、ポリエチレングリコール等の二価のアルコールのモノ(メタ)アクリレートや、トリメチロールエタン、トリメチロールプロパン、グリセリン等の三価のアルコールのモノ(メタ)アクリレート又はジ(メタ)アクリレートや、ビスフェノールA型エポキシ(メタ)アクリレート等のエポキシ(メタ)アクリレート等が挙げられる。 Examples of the (meth) acrylic acid derivative having a hydroxyl group, which is a raw material of the urethane (meth) acrylate, include ethylene glycol, propylene glycol, 1,3-propanediol, 1,3-butanediol, and 1,4-butane. Di (meth) acrylates of dihydric alcohols such as diol and polyethylene glycol, mono (meth) acrylates or di (meth) acrylates of trivalent alcohols such as trimethylolethane, trimethylolpropane, glycerin, and bisphenol A type Examples include epoxy (meth) acrylates such as epoxy (meth) acrylate.

上記ウレタン(メタ)アクリレートのうち市販されているものとしては、例えば、M−1100、M−1200、M−1210、M−1600(いずれも東亞合成社製)、EBECRYL230、EBECRYL270、EBECRYL4858、EBECRYL8402、EBECRYL8411、EBECRYL8412、EBECRYL8413、EBECRYL8804、EBECRYL8803、EBECRYL8807、EBECRYL9260、EBECRYL1290、EBECRYL5129、EBECRYL4842、EBECRYL210、EBECRYL4827、EBECRYL6700、EBECRYL220、EBECRYL2220、KRM7735、KRM−8295(いずれもダイセル・オルネクス社製)、アートレジンUN−9000H、アートレジンUN−9000A、アートレジンUN−7100、アートレジンUN−1255、アートレジンUN−330、アートレジンUN−3320HB、アートレジンUN−1200TPK、アートレジンSH−500B(いずれも根上工業社製)、U−2HA、U−2PHA、U−3HA、U−4HA、U−6H、U−6LPA、U−6HA、U−10H、U−15HA、U−122A、U−122P、U−108、U−108A、U−324A、U−340A、U−340P、U−1084A、U−2061BA、UA−340P、UA−4100、UA−4000、UA−4200、UA−4400、UA−5201P、UA−7100、UA−7200、UA−W2A(いずれも新中村化学工業社製)、AI−600、AH−600、AT−600、UA−101I、UA−101T、UA−306H、UA−306I、UA−306T(いずれも共栄社化学社製)等が挙げられる。 Examples of commercially available urethane (meth) acrylates include M-1100, M-1200, M-1210, M-1600 (all manufactured by Toagosei Co., Ltd.), EBECRYL230, EBECRYL270, EBECRYL4858, EBECRYL8402, EBECRYL8411, EBECRYL8412, EBECRYL8413, EBECRYL8804, EBECRYL8803, EBECRYL8807, EBECRYL9260, EBECRYL1290, EBECRYL5129, EBECRYL4842, EBECRYL210, EBECRYL4827, EBECRYL6700, EBECRYL220, EBECRYL2220, KRM7735, KRM-8295 (both manufactured by Daicel Orunekusu, Inc. ), Art Resin UN-9000H, Art Resin UN-9000A, Art Resin UN-7100, Art Resin UN-1255, Art Resin UN-330, Art Resin UN-3320HB, Art Resin UN-1200TPK, Art Resin SH-500B ( All are manufactured by Negami Kogyo Co., Ltd.), U-2HA, U-2PHA, U-3HA, U-4HA, U-6H, U-6LPA, U-6HA, U-10H, U-15HA, U-122A, U- 122P, U-108, U-108A, U-324A, U-340A, U-340P, U-1084A, U-2061BA, UA-340P, UA-4100, UA-4000, UA-4200, UA-4400, UA-5201P, UA-7100, UA-7200, UA-W2A (all Shin-Nakamura Manabu Industries, Ltd.), AI-600, AH-600, AT-600, UA-101I, UA-101T, UA-306H, UA-306I, UA-306T (all manufactured by Kyoeisha Chemical Co., Ltd.).

また、上述した以外のその他のラジカル重合性化合物も適宜使用することができる。
上記その他のラジカル重合性化合物としては、例えば、N,N−ジメチル(メタ)アクリルアミド、N−(メタ)アクリロイルモルホリン、N−ヒドロキシエチル(メタ)アクリルアミド、N,N−ジエチル(メタ)アクリルアミド、N−イソプロピル(メタ)アクリルアミド、N,N−ジメチルアミノプロピル(メタ)アクリルアミド等の(メタ)アクリルアミド化合物や、スチレン、α−メチルスチレン、N−ビニルピロリドン、N−ビニルカプロラクトン等のビニル化合物等が挙げられる。
In addition, other radical polymerizable compounds other than those described above can be used as appropriate.
Examples of the other radical polymerizable compounds include N, N-dimethyl (meth) acrylamide, N- (meth) acryloylmorpholine, N-hydroxyethyl (meth) acrylamide, N, N-diethyl (meth) acrylamide, N -(Meth) acrylamide compounds such as isopropyl (meth) acrylamide and N, N-dimethylaminopropyl (meth) acrylamide, vinyl compounds such as styrene, α-methylstyrene, N-vinylpyrrolidone, N-vinylcaprolactone, and the like. It is done.

上記ラジカル重合性化合物の含有量は、上記ラジカル重合性化合物と上記湿気硬化型ウレタン樹脂との合計100重量部に対して、好ましい下限が10重量部、好ましい上限が80重量部である。上記ラジカル重合性化合物の含有量が10重量部未満であると、得られる光湿気硬化型樹脂組成物が光硬化性に劣るものとなることがある。上記ラジカル重合性化合物の含有量が80重量部を超えると、得られる光湿気硬化型樹脂組成物が湿気硬化性に劣るものとなることがある。上記ラジカル重合性化合物の含有量のより好ましい下限は25重量部、より好ましい上限は70重量部であり、更に好ましい下限は30重量部、更に好ましい上限は59重量部である。 The content of the radical polymerizable compound is such that the preferred lower limit is 10 parts by weight and the preferred upper limit is 80 parts by weight with respect to a total of 100 parts by weight of the radical polymerizable compound and the moisture curable urethane resin. When the content of the radical polymerizable compound is less than 10 parts by weight, the resulting light moisture curable resin composition may be inferior in photocurability. When the content of the radical polymerizable compound exceeds 80 parts by weight, the resulting optical moisture curable resin composition may be inferior in moisture curability. A more preferred lower limit of the content of the radical polymerizable compound is 25 parts by weight, a more preferred upper limit is 70 parts by weight, a still more preferred lower limit is 30 parts by weight, and a still more preferred upper limit is 59 parts by weight.

上記ラジカル重合性化合物は、硬化性を調整する等の観点から、単官能ラジカル重合性化合物と多官能ラジカル重合性化合物とを含有することが好ましい。単官能ラジカル重合性化合物のみを用いた場合、得られる光湿気硬化型樹脂組成物が硬化性に劣るものとなることがあり、多官能ラジカル重合性化合物のみを用いた場合、得られる光湿気硬化型樹脂組成物がタック性に劣るものとなることがある。なかでも、上記単官能ラジカル重合性化合物として分子中に窒素原子を有する化合物と、上記多官能ラジカル重合性化合物としてウレタン(メタ)アクリレートとを組み合わせて用いることがより好ましい。また、上記多官能ラジカル重合性化合物は、2官能又は3官能であることが好ましく、2官能であることがより好ましい。 The radical polymerizable compound preferably contains a monofunctional radical polymerizable compound and a polyfunctional radical polymerizable compound from the viewpoint of adjusting curability. When only a monofunctional radically polymerizable compound is used, the resulting light moisture curable resin composition may be inferior in curability, and when only a polyfunctional radically polymerizable compound is used, the resulting light moisture cured The mold resin composition may be inferior in tackiness. Among these, it is more preferable to use a combination of a compound having a nitrogen atom in the molecule as the monofunctional radical polymerizable compound and a urethane (meth) acrylate as the polyfunctional radical polymerizable compound. The polyfunctional radically polymerizable compound is preferably bifunctional or trifunctional, and more preferably bifunctional.

上記ラジカル重合性化合物が、上記単官能ラジカル重合性化合物と上記多官能ラジカル重合性化合物とを含有する場合、上記多官能ラジカル重合性化合物の含有量は、上記単官能ラジカル重合性化合物と上記多官能ラジカル重合性化合物との合計100重量部に対して、好ましい下限が2重量部、好ましい上限が45重量部である。上記多官能ラジカル重合性化合物の含有量が2重量部未満であると、得られる光湿気硬化型樹脂組成物が硬化性に劣るものとなることがある。上記多官能ラジカル重合性化合物の含有量が45重量部を超えると、得られる光湿気硬化型樹脂組成物がタック性に劣るものとなることがある。上記多官能ラジカル重合性化合物の含有量のより好ましい下限は5重量部、より好ましい上限は35重量部である。 When the radical polymerizable compound contains the monofunctional radical polymerizable compound and the polyfunctional radical polymerizable compound, the content of the polyfunctional radical polymerizable compound is the same as the monofunctional radical polymerizable compound and the polyfunctional radical polymerizable compound. A preferable lower limit is 2 parts by weight and a preferable upper limit is 45 parts by weight with respect to a total of 100 parts by weight with the functional radical polymerizable compound. When the content of the polyfunctional radically polymerizable compound is less than 2 parts by weight, the resulting light moisture curable resin composition may be inferior in curability. When content of the said polyfunctional radically polymerizable compound exceeds 45 weight part, the optical moisture hardening type resin composition obtained may become inferior to tack property. The minimum with more preferable content of the said polyfunctional radically polymerizable compound is 5 weight part, and a more preferable upper limit is 35 weight part.

本発明の光湿気硬化型樹脂組成物は、光ラジカル重合開始剤を含有する。
上記光ラジカル重合開始剤としては、例えば、ベンゾフェノン系化合物、アセトフェノン系化合物、アシルフォスフィンオキサイド系化合物、チタノセン系化合物、オキシムエステル系化合物、ベンゾインエーテル系化合物、チオキサントン等が挙げられる。
The light moisture curable resin composition of the present invention contains a radical photopolymerization initiator.
Examples of the photo radical polymerization initiator include benzophenone compounds, acetophenone compounds, acylphosphine oxide compounds, titanocene compounds, oxime ester compounds, benzoin ether compounds, thioxanthones, and the like.

上記光ラジカル重合開始剤のうち市販されているものとしては、例えば、IRGACURE184、IRGACURE369、IRGACURE379、IRGACURE651、IRGACURE784、IRGACURE819、IRGACURE907、IRGACURE2959、IRGACUREOXE01、ルシリンTPO(いずれもBASF Japan社製)、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル(いずれも東京化成工業社製)等が挙げられる。 Examples of commercially available photo radical polymerization initiators include IRGACURE 184, IRGACURE 369, IRGACURE 379, IRGACURE 651, IRGACURE 784, IRGACURE 907, IRGACURE 907, IRGACURE 2959, IRGACUREOXE01, and Benzylin TPO from Benzylin TPO. Benzoin ethyl ether, benzoin isopropyl ether (both manufactured by Tokyo Chemical Industry Co., Ltd.) and the like.

上記光ラジカル重合開始剤の含有量は、上記ラジカル重合性化合物100重量部に対して、好ましい下限が0.01重量部、好ましい上限が10重量部である。上記光ラジカル重合開始剤の含有量が0.01重量部未満であると、得られる光湿気硬化型樹脂組成物を充分に光硬化させることができないことがある。上記光ラジカル重合開始剤の含有量が10重量部を超えると、得られる光湿気硬化型樹脂組成物の保存安定性が低下することがある。上記光ラジカル重合開始剤の含有量のより好ましい下限は0.1重量部、より好ましい上限は5重量部である。 The content of the photo radical polymerization initiator is preferably 0.01 parts by weight and preferably 10 parts by weight with respect to 100 parts by weight of the radical polymerizable compound. When the content of the radical photopolymerization initiator is less than 0.01 part by weight, the resulting light moisture curable resin composition may not be sufficiently photocured. When content of the said radical photopolymerization initiator exceeds 10 weight part, the storage stability of the obtained optical moisture hardening type resin composition may fall. The minimum with more preferable content of the said radical photopolymerization initiator is 0.1 weight part, and a more preferable upper limit is 5 weight part.

本発明の光湿気硬化型樹脂組成物は、得られる光湿気硬化型樹脂組成物の塗布性や形状保持性を調整する等の観点から充填剤を含有してもよい。
上記充填剤は、一次粒子径の好ましい下限が1nm、好ましい上限が50nmである。上記充填剤の一次粒子径が1nm未満であると、得られる光湿気硬化型樹脂組成物が塗布性に劣るものとなる。上記充填剤の一次粒子径が50nmを超えると、得られる光湿気硬化型樹脂組成物が塗布後の形状保持性に劣るものとなる。上記充填剤の一次粒子径のより好ましい下限は5nm、より好ましい上限は30nm、更に好ましい下限は10nm、更に好ましい上限は20nmである。
なお、上記充填剤の一次粒子径は、NICOMP 380ZLS(PARTICLE SIZING SYSTEMS社製)を用いて、上記充填剤を溶媒(水、有機溶媒等)に分散させて測定することができる。
また、上記充填剤は、本発明の光湿気硬化型樹脂組成物において二次粒子(一次粒子が複数集まったもの)として存在する場合があり、このような二次粒子の粒子径の好ましい下限は5nm、好ましい上限は500nm、より好ましい下限は10nm、より好ましい上限は100nmである。上記充填剤の二次粒子の粒子径は、本発明の光湿気硬化型樹脂組成物又はその硬化物を、透過型電子顕微鏡(TEM)を用いて観察することにより測定することができる。
The light moisture curable resin composition of the present invention may contain a filler from the viewpoint of adjusting the applicability and shape retention of the resulting light moisture curable resin composition.
The filler preferably has a primary particle diameter with a preferred lower limit of 1 nm and a preferred upper limit of 50 nm. When the primary particle diameter of the filler is less than 1 nm, the resulting light moisture curable resin composition has poor applicability. When the primary particle diameter of the filler exceeds 50 nm, the resulting light moisture curable resin composition is inferior in shape retention after application. The more preferable lower limit of the primary particle diameter of the filler is 5 nm, the more preferable upper limit is 30 nm, the still more preferable lower limit is 10 nm, and the still more preferable upper limit is 20 nm.
The primary particle size of the filler can be measured by dispersing the filler in a solvent (water, organic solvent, etc.) using NICOMP 380ZLS (manufactured by PARTICS SIZING SYSTEMS).
In addition, the filler may be present as secondary particles (a collection of a plurality of primary particles) in the light moisture curable resin composition of the present invention, and the preferred lower limit of the particle size of such secondary particles is 5 nm, a preferable upper limit is 500 nm, a more preferable lower limit is 10 nm, and a more preferable upper limit is 100 nm. The particle diameter of the secondary particles of the filler can be measured by observing the optical moisture curable resin composition of the present invention or a cured product thereof using a transmission electron microscope (TEM).

上記充填剤としては、例えば、シリカ、タルク、酸化チタン、酸化亜鉛等が挙げられる。なかでも、得られる光湿気硬化型樹脂組成物がUV光透過性に優れるものとなることから、シリカが好ましい。これらの充填剤は、単独で用いられてもよいし、2種以上を組み合わせて用いられてもよい。 Examples of the filler include silica, talc, titanium oxide, and zinc oxide. Among these, silica is preferable because the obtained light moisture curable resin composition is excellent in UV light transmittance. These fillers may be used independently and may be used in combination of 2 or more type.

上記充填剤は、疎水性表面処理がなされていることが好ましい。上記疎水性表面処理により、得られる光湿気硬化型樹脂組成物が塗布後の形状保持性により優れるものとなる。
上記疎水性表面処理としては、シリル化処理、アルキル化処理、エポキシ化処理等が挙げられる。なかでも、形状保持性を向上させる効果に優れることから、シリル化処理が好ましく、トリメチルシリル化処理がより好ましい。
The filler is preferably subjected to a hydrophobic surface treatment. By the hydrophobic surface treatment, the resulting optical moisture curable resin composition is more excellent in shape retention after application.
Examples of the hydrophobic surface treatment include silylation treatment, alkylation treatment, and epoxidation treatment. Especially, since it is excellent in the effect which improves shape retainability, a silylation process is preferable and a trimethylsilylation process is more preferable.

上記充填剤を疎水性表面処理する方法としては、例えば、シランカップリング剤等の表面処理剤を用いて、充填剤の表面を処理する方法等が挙げられる。
具体的には例えば、上記トリメチルシリル化処理シリカは、例えば、シリカをゾルゲル法等の方法で合成し、シリカを流動させた状態でヘキサメチルジシラザンを噴霧する方法や、アルコール、トルエン等の有機溶媒中にシリカを加え、更に、ヘキサメチルジシラザンと水とを加えた後、水と有機溶媒とをエバポレーターで蒸発乾燥させる方法等により作製することができる。
Examples of the method for treating the filler with a hydrophobic surface include a method for treating the surface of the filler with a surface treatment agent such as a silane coupling agent.
Specifically, for example, the trimethylsilylated silica is prepared by, for example, synthesizing silica by a method such as a sol-gel method and spraying hexamethyldisilazane in a state where the silica is fluidized, or an organic solvent such as alcohol or toluene. It can be produced by a method in which silica is added, hexamethyldisilazane and water are added, and then water and an organic solvent are evaporated and dried with an evaporator.

上記充填剤の含有量は、本発明の光湿気硬化型樹脂組成物全体100重量部中において、好ましい下限が1重量部、好ましい上限が20重量部である。上記充填剤の含有量が1重量部未満であると、得られる光湿気硬化型樹脂組成物が塗布後の形状保持性に劣るものとなることがある。上記充填剤の含有量が20重量部を超えると、得られる光湿気硬化型樹脂組成物が塗布性に劣るものとなることがある。上記充填剤の含有量のより好ましい下限は2重量部、より好ましい上限は15重量部であり、更に好ましい下限は3重量部、更に好ましい上限は10重量部、特に好ましい下限は4重量部である。 The content of the filler is preferably 1 part by weight at a preferable lower limit and 20 parts by weight at a preferable upper limit in 100 parts by weight of the entire light moisture curable resin composition of the present invention. When the content of the filler is less than 1 part by weight, the resulting light moisture curable resin composition may be inferior in shape retention after coating. When content of the said filler exceeds 20 weight part, the optical moisture hardening type resin composition obtained may become inferior to applicability | paintability. The more preferred lower limit of the content of the filler is 2 parts by weight, the more preferred upper limit is 15 parts by weight, the still more preferred lower limit is 3 parts by weight, the still more preferred upper limit is 10 parts by weight, and the particularly preferred lower limit is 4 parts by weight. .

本発明の光湿気硬化型樹脂組成物は、遮光剤を含有してもよい。上記遮光剤を含有することにより、本発明の光湿気硬化型樹脂組成物は、遮光性に優れるものとなって表示素子の光漏れを防止することができる。
なお、本明細書において、上記「遮光剤」は、可視光領域の光を透過させ難い能力を有する材料を意味する。
The light moisture curable resin composition of the present invention may contain a light shielding agent. By containing the said light-shielding agent, the optical moisture hardening type resin composition of this invention becomes the thing excellent in light-shielding property, and can prevent the light leak of a display element.
In the present specification, the “light-shielding agent” means a material having an ability of hardly transmitting light in the visible light region.

上記遮光剤としては、例えば、酸化鉄、チタンブラック、アニリンブラック、シアニンブラック、フラーレン、カーボンブラック、樹脂被覆型カーボンブラック等が挙げられる。また、上記遮光剤は、黒色を呈するものでなくてもよく、可視光領域の光を透過させ難い能力を有する材料であれば、シリカ、タルク、酸化チタン等、充填剤として挙げた材料も上記遮光剤に含まれる。なかでも、チタンブラックが好ましい。 Examples of the light-shielding agent include iron oxide, titanium black, aniline black, cyanine black, fullerene, carbon black, and resin-coated carbon black. In addition, the light-shielding agent may not be black, and the materials mentioned as fillers such as silica, talc, titanium oxide, etc., as long as the material has the ability to hardly transmit light in the visible light region. Included in sunscreen. Of these, titanium black is preferable.

上記チタンブラックは、波長300〜800nmの光に対する平均透過率と比較して、紫外線領域付近、特に波長370〜450nmの光に対する透過率が高くなる物質である。即ち、上記チタンブラックは、可視光領域の波長の光を充分に遮蔽することで本発明の光湿気硬化型樹脂組成物に遮光性を付与する一方、紫外線領域付近の波長の光は透過させる性質を有する遮光剤である。従って、光ラジカル重合開始剤として、上記チタンブラックの透過率の高くなる波長(370〜450nm)の光によって反応を開始可能なものを用いることで、本発明の光湿気硬化型樹脂組成物の光硬化性をより増大させることができる。また一方で、本発明の光湿気硬化型樹脂組成物に含有される遮光剤としては、絶縁性の高い物質が好ましく、絶縁性の高い遮光剤としてもチタンブラックが好適である。
上記チタンブラックは、光学濃度(OD値)が、3以上であることが好ましく、4以上であることがより好ましい。また、上記チタンブラックは、黒色度(L値)が9以上であることが好ましく、11以上であることがより好ましい。上記チタンブラックの遮光性は高ければ高いほど良く、上記チタンブラックのOD値に好ましい上限は特に無いが、通常は5以下となる。
The titanium black is a substance having a higher transmittance in the vicinity of the ultraviolet region, particularly for light with a wavelength of 370 to 450 nm, compared to the average transmittance for light with a wavelength of 300 to 800 nm. That is, the above-described titanium black sufficiently shields light having a wavelength in the visible light region, thereby imparting light shielding properties to the light moisture curable resin composition of the present invention, while transmitting light having a wavelength in the vicinity of the ultraviolet region. Is a light-shielding agent. Therefore, by using a photo radical polymerization initiator that can initiate a reaction with light having a wavelength (370 to 450 nm) at which the transmittance of titanium black is high, the light of the photo moisture curable resin composition of the present invention can be used. Curability can be further increased. On the other hand, the light-shielding agent contained in the light moisture curable resin composition of the present invention is preferably a highly insulating material, and titanium black is also preferable as the highly insulating light-shielding agent.
The titanium black preferably has an optical density (OD value) of 3 or more, and more preferably 4 or more. The titanium black preferably has a blackness (L value) of 9 or more, more preferably 11 or more. The higher the light shielding property of the titanium black, the better. There is no particular upper limit to the OD value of the titanium black, but it is usually 5 or less.

上記チタンブラックは、表面処理されていないものでも充分な効果を発揮するが、表面がカップリング剤等の有機成分で処理されているものや、酸化ケイ素、酸化チタン、酸化ゲルマニウム、酸化アルミニウム、酸化ジルコニウム、酸化マグネシウム等の無機成分で被覆されているもの等、表面処理されたチタンブラックを用いることもできる。なかでも、有機成分で処理されているものは、より絶縁性を向上できる点で好ましい。
また、本発明の光湿気硬化型樹脂組成物を用いて製造した表示素子は、光湿気硬化型樹脂組成物が充分な遮光性を有するため、光の漏れ出しがなく高いコントラストを有し、優れた画像表示品質を有するものとなる。
The above-mentioned titanium black exhibits a sufficient effect even if it is not surface-treated, but the surface is treated with an organic component such as a coupling agent, silicon oxide, titanium oxide, germanium oxide, aluminum oxide, oxidized Surface-treated titanium black such as those coated with an inorganic component such as zirconium or magnesium oxide can also be used. Especially, what is processed with the organic component is preferable at the point which can improve insulation more.
In addition, the display element manufactured using the light moisture curable resin composition of the present invention has a high contrast because there is no light leakage because the light moisture curable resin composition has sufficient light shielding properties. Image display quality.

上記チタンブラックのうち市販されているものとしては、例えば、12S、13M、13M−C、13R−N(いずれも三菱マテリアル社製)、ティラックD(赤穂化成社製)等が挙げられる。 Examples of commercially available titanium black include 12S, 13M, 13M-C, 13R-N (all manufactured by Mitsubishi Materials Corporation), Tilak D (manufactured by Ako Kasei Co., Ltd.), and the like.

上記チタンブラックの比表面積の好ましい下限は5m/g、好ましい上限は40m/gであり、より好ましい下限は10m/g、より好ましい上限は25m/gである。
また、上記チタンブラックのシート抵抗の好ましい下限は、樹脂と混合された場合(70%配合)において、10Ω/□であり、より好ましい下限は1011Ω/□である。
The preferable lower limit of the specific surface area of the titanium black is 5 m 2 / g, the preferable upper limit is 40 m 2 / g, the more preferable lower limit is 10 m 2 / g, and the more preferable upper limit is 25 m 2 / g.
Moreover, the preferable lower limit of the sheet resistance of the titanium black is 10 9 Ω / □ when mixed with a resin (70% blending), and the more preferable lower limit is 10 11 Ω / □.

本発明の光湿気硬化型樹脂組成物において、上記遮光剤の一次粒子径は、表示素子の基板間の距離以下等、用途に応じて適宜選択されるが、好ましい下限は30nm、好ましい上限は500nmである。上記遮光剤の一次粒子径が30nm未満であると、得られる光湿気硬化型樹脂組成物の粘度やチクソトロピーが大きく増大してしまい、作業性が悪くなることがある。上記遮光剤の一次粒子径が500nmを超えると、得られる光湿気硬化型樹脂組成物中における遮光剤の分散性が低下し、遮光性が低下することがある。上記遮光剤の一次粒子径のより好ましい下限は50nm、より好ましい上限は200nmである。
なお、上記遮光剤の粒子径は、NICOMP 380ZLS(PARTICLE SIZING SYSTEMS社製)を用いて、上記遮光剤を溶媒(水、有機溶媒等)に分散させて平均粒子径を求めることにより測定することができる。
In the light-moisture curable resin composition of the present invention, the primary particle diameter of the light-shielding agent is appropriately selected depending on the application, such as the distance between the substrates of the display element, but the preferable lower limit is 30 nm and the preferable upper limit is 500 nm. It is. When the primary particle diameter of the light-shielding agent is less than 30 nm, the viscosity and thixotropy of the obtained light moisture-curable resin composition are greatly increased, and workability may be deteriorated. When the primary particle diameter of the light-shielding agent exceeds 500 nm, the dispersibility of the light-shielding agent in the obtained light moisture curable resin composition may be lowered, and the light-shielding property may be lowered. The more preferable lower limit of the primary particle diameter of the light shielding agent is 50 nm, and the more preferable upper limit is 200 nm.
The particle size of the light shielding agent can be measured by dispersing the light shielding agent in a solvent (water, organic solvent, etc.) using NICOMP 380ZLS (manufactured by PARTICLE SIZING SYSTEMS) and determining the average particle size. it can.

本発明の光湿気硬化型樹脂組成物全体における上記遮光剤の含有量は特に限定されないが、好ましい下限は0.05重量%、好ましい上限は10重量%である。上記遮光剤の含有量が0.05重量%未満であると、充分な遮光性が得られないことがある。上記遮光剤の含有量が10重量%を超えると、得られる光湿気硬化型樹脂組成物の基板等に対する接着性や硬化後の強度が低下したり、描画性が低下したりすることがある。上記遮光剤の含有量のより好ましい下限は0.1重量%、より好ましい上限は2重量%、更に好ましい上限は1重量%である。 Although content of the said light shielding agent in the whole optical moisture hardening type resin composition of this invention is not specifically limited, A preferable minimum is 0.05 weight% and a preferable upper limit is 10 weight%. If the content of the light shielding agent is less than 0.05% by weight, sufficient light shielding properties may not be obtained. When the content of the light-shielding agent is more than 10% by weight, the adhesiveness of the obtained light moisture curable resin composition to the substrate or the strength after curing may be lowered, or the drawing property may be lowered. A more preferable lower limit of the content of the light shielding agent is 0.1% by weight, a more preferable upper limit is 2% by weight, and a still more preferable upper limit is 1% by weight.

本発明の光湿気硬化型樹脂組成物は、更に、必要に応じて、着色剤、イオン液体、溶剤、金属含有粒子、反応性希釈剤等の添加剤を含有してもよい。 The light moisture curable resin composition of the present invention may further contain additives such as a colorant, an ionic liquid, a solvent, metal-containing particles, and a reactive diluent as necessary.

本発明の光湿気硬化型樹脂組成物を製造する方法としては、例えば、ホモディスパー、ホモミキサー、万能ミキサー、プラネタリーミキサー、ニーダー、3本ロール等の混合機を用いて、ラジカル重合性化合物と、湿気硬化型ウレタン樹脂と、光ラジカル重合開始剤と、必要に応じて添加する添加剤とを混合する方法等が挙げられる。 As a method for producing the light moisture curable resin composition of the present invention, for example, using a mixer such as a homodisper, a homomixer, a universal mixer, a planetary mixer, a kneader, a three roll, And a method of mixing a moisture curable urethane resin, a radical photopolymerization initiator, and an additive to be added as necessary.

本発明の光湿気硬化型樹脂組成物における、コーンプレート型粘度計を用いて25℃、1rpmの条件で測定した粘度の好ましい下限は50Pa・s、好ましい上限は500Pa・sである。上記粘度が50Pa・s未満であったり、500Pa・sを超えたりすると、光湿気硬化型樹脂組成物を電子部品用接着剤や表示素子用接着剤に用いる場合に基板等の被着体に塗布する際の作業性が悪くなることがある。上記粘度のより好ましい下限は80Pa・s、より好ましい上限は300Pa・s、更に好ましい上限は200Pa・sである。 In the light moisture curable resin composition of the present invention, the preferable lower limit of the viscosity measured at 25 ° C. and 1 rpm using a cone plate viscometer is 50 Pa · s, and the preferable upper limit is 500 Pa · s. When the viscosity is less than 50 Pa · s or more than 500 Pa · s, the light moisture curable resin composition is applied to an adherend such as a substrate when used as an adhesive for electronic parts or an adhesive for display elements. The workability when doing so may deteriorate. A more preferred lower limit of the viscosity is 80 Pa · s, a more preferred upper limit is 300 Pa · s, and a still more preferred upper limit is 200 Pa · s.

本発明の光湿気硬化型樹脂組成物のチクソトロピックインデックスの好ましい下限は1.3、好ましい上限は5.0である。上記チクソトロピックインデックスが1.3未満であったり、5.0を超えたりすると、光湿気硬化型樹脂組成物を電子部品用接着剤や表示素子用接着剤に用いる場合に基板等の被着体に塗布する際の作業性が悪くなることがある。上記チクソトロピックインデックスのより好ましい下限は1.5、より好ましい上限は4.0である。
なお、本明細書において上記チクソトロピックインデックスとは、コーンプレート型粘度計を用いて25℃、1rpmの条件で測定した粘度を、コーンプレート型粘度計を用いて25℃、10rpmの条件で測定した粘度で除した値を意味する。
The preferable lower limit of the thixotropic index of the light moisture curable resin composition of the present invention is 1.3, and the preferable upper limit is 5.0. When the thixotropic index is less than 1.3 or exceeds 5.0, an adherend such as a substrate is used when the optical moisture curable resin composition is used as an adhesive for electronic parts or an adhesive for display elements. The workability at the time of applying to may be deteriorated. The more preferable lower limit of the thixotropic index is 1.5, and the more preferable upper limit is 4.0.
In the present specification, the thixotropic index is a viscosity measured at 25 ° C. and 1 rpm using a cone plate viscometer, and measured at 25 ° C. and 10 rpm using a cone plate viscometer. It means the value divided by the viscosity.

本発明の光湿気硬化型樹脂組成物は、硬化物の25℃における引張弾性率の好ましい下限が0.5kgf/cm、好ましい上限が6kgf/cmである。上記引張弾性率が0.5kgf/cm未満であると、柔らかすぎて、凝集力が弱く、接着力が低くなることがある。上記引張弾性率が6kgf/cmを超えると、柔軟性が損なわれることがある。上記引張弾性率のより好ましい下限は1kgf/cm、より好ましい上限は4kgf/cmである。
なお、本明細書において上記「引張弾性率」は、引張り試験機(例えば、島津製作所社製、「EZ−Graph」)を用いて、硬化物を10mm/minの速度で引張り、50%伸びた時の力として測定される値を意味する。
Light moisture-curable resin composition of the present invention has a tensile preferred lower limit is 0.5 kgf / cm 2 in elastic modulus at 25 ° C. of the cured product, the desirable upper limit is 6 kgf / cm 2. If the tensile elastic modulus is less than 0.5 kgf / cm 2, it is too soft, the cohesive force is weak, and the adhesive force may be low. When the tensile elastic modulus exceeds 6 kgf / cm 2 , flexibility may be impaired. A more preferable lower limit of the tensile modulus is 1 kgf / cm 2 , and a more preferable upper limit is 4 kgf / cm 2 .
In the present specification, the above-mentioned “tensile modulus” is 50% elongation by pulling the cured product at a speed of 10 mm / min using a tensile tester (for example, “EZ-Graph” manufactured by Shimadzu Corporation). It means the value measured as the force of time.

本発明の光湿気硬化型樹脂組成物は、電子部品用接着剤や表示素子用接着剤として特に好適に用いることができる。本発明の光湿気硬化型樹脂組成物を用いてなる電子部品用接着剤、及び、本発明の光湿気硬化型樹脂組成物を用いてなる表示素子用接着剤もまた、それぞれ本発明の1つである。 The light moisture curable resin composition of the present invention can be particularly suitably used as an adhesive for electronic parts or an adhesive for display elements. An adhesive for electronic components using the light moisture curable resin composition of the present invention and a display element adhesive using the light moisture curable resin composition of the present invention are also included in the present invention. It is.

本発明によれば、接着性、及び、高温高湿環境下における信頼性に優れる光湿気硬化型樹脂組成物を提供することができる。また、本発明によれば、該光湿気硬化型樹脂組成物を用いてなる電子部品用接着剤及び表示素子用接着剤を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the optical moisture hardening type resin composition excellent in adhesiveness and the reliability in a high-temperature, high-humidity environment can be provided. Moreover, according to this invention, the adhesive for electronic components and the adhesive for display elements which use this optical moisture hardening type resin composition can be provided.

(a)は、接着性評価用サンプルを上から見た場合を示す模式図であり、(b)は、接着性評価用サンプルを横から見た場合を示す模式図である。(A) is a schematic diagram which shows the case where the sample for adhesive evaluation is seen from the top, (b) is a schematic diagram which shows the case where the sample for adhesive evaluation is seen from the side.

以下に実施例を掲げて本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定されない。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples.

(合成例1(ウレタンプレポリマーAの作製))
ポリオール化合物として100重量部のポリテトラメチレンエーテルグリコール(三菱化学社製、「PTMG−2000」)と、0.01重量部のジブチル錫ジラウレートとを500mL容のセパラブルフラスコに入れ、真空下(20mmHg以下)、100℃で30分間撹拌し、混合した。その後常圧とし、ポリイソシアネート化合物としてジフェニルメタンジイソシアネート(日曹商事社製、「Pure MDI」)26.5重量部を入れ、80℃で3時間撹拌し、反応させ、ウレタンプレポリマーA(重量平均分子量2700)を得た。
(Synthesis Example 1 (Production of Urethane Prepolymer A))
As a polyol compound, 100 parts by weight of polytetramethylene ether glycol (manufactured by Mitsubishi Chemical Corporation, “PTMG-2000”) and 0.01 part by weight of dibutyltin dilaurate were placed in a 500 mL separable flask and subjected to vacuum (20 mmHg The following was stirred for 30 minutes at 100 ° C. and mixed. Thereafter, normal pressure was applied, and 26.5 parts by weight of diphenylmethane diisocyanate (manufactured by Nisso Shoji Co., Ltd., “Pure MDI”) was added as a polyisocyanate compound, stirred at 80 ° C. for 3 hours, reacted, and urethane prepolymer A (weight average molecular weight). 2700).

(合成例2(ウレタンプレポリマーBの作製))
ポリオール化合物として100重量部のポリプロピレングリコール(旭硝子社製、「EXCENOL 2020」)と、0.01重量部のジブチル錫ジラウレートとを500mL容のセパラブルフラスコに入れ、真空下(20mmHg以下)、100℃で30分間撹拌し、混合した。その後常圧とし、ポリイソシアネート化合物としてジフェニルメタンジイソシアネート(日曹商事社製、「Pure MDI」)26.5重量部を入れ、80℃で3時間撹拌し、反応させ、ウレタンプレポリマーB(重量平均分子量2900)を得た。
(Synthesis Example 2 (Production of Urethane Prepolymer B))
As a polyol compound, 100 parts by weight of polypropylene glycol (manufactured by Asahi Glass Co., Ltd., “EXCENOL 2020”) and 0.01 part by weight of dibutyltin dilaurate are placed in a 500 mL separable flask, and are placed under vacuum (20 mmHg or less) at 100 ° C. For 30 minutes and mixed. Thereafter, normal pressure was applied and 26.5 parts by weight of diphenylmethane diisocyanate (“Pure MDI”, manufactured by Nissho Shoji Co., Ltd.) was added as a polyisocyanate compound, stirred at 80 ° C. for 3 hours, reacted, and urethane prepolymer B (weight average molecular weight) 2900).

(合成例3(ウレタンプレポリマーCの作製))
合成例1と同様にして得られたウレタンプレポリマーA100重量部の入った反応容器に、ヒドロキシエチルメタクリレート1.3重量部と、重合禁止剤としてN−ニトロソフェニルヒドロキシルアミンアルミニウム塩(和光純薬工業社製、「Q−1301」)0.14重量部とを添加し、窒素気流下、80℃で1時間撹拌混合し、分子末端にイソシアネート基とメタクリロイル基とを有するウレタンプレポリマーC(重量平均分子量2900)を得た。
(Synthesis Example 3 (Production of Urethane Prepolymer C))
In a reaction vessel containing 100 parts by weight of urethane prepolymer A obtained in the same manner as in Synthesis Example 1, 1.3 parts by weight of hydroxyethyl methacrylate and N-nitrosophenylhydroxylamine aluminum salt as a polymerization inhibitor (Wako Pure Chemical Industries, Ltd.) 0.14 parts by weight of “Q-1301” manufactured by the company, and stirred and mixed at 80 ° C. for 1 hour under a nitrogen stream, and urethane prepolymer C having a isocyanate group and a methacryloyl group at the molecular end (weight average) Molecular weight 2900) was obtained.

(合成例4(ウレタンプレポリマーDの作製))
合成例1と同様にして得られたウレタンプレポリマーA100重量部の入った反応容器に、3−メルカプトプロピルトリメトキシシラン(信越化学工業社製、「KBM−803」)9.8重量部を添加し、80℃で1時間撹拌混合し、有機シリル基含有ウレタン樹脂として、分子末端にイソシアネート基とトリメトキシシリル基とを有するウレタンプレポリマーD(重量平均分子量3100)を得た。
(Synthesis Example 4 (Production of Urethane Prepolymer D))
To a reaction vessel containing 100 parts by weight of urethane prepolymer A obtained in the same manner as in Synthesis Example 1, 9.8 parts by weight of 3-mercaptopropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., “KBM-803”) was added. The mixture was stirred and mixed at 80 ° C. for 1 hour to obtain a urethane prepolymer D (weight average molecular weight 3100) having an isocyanate group and a trimethoxysilyl group at the molecular end as an organic silyl group-containing urethane resin.

(実施例1〜15、比較例1、2)
表1、2に記載された配合比に従い、各材料を、遊星式撹拌装置(シンキー社製、「あわとり練太郎」)にて撹拌した後、セラミック3本ロールにて均一に混合して実施例1〜15、比較例1、2の光湿気硬化型樹脂組成物を得た。
なお、表1、2における「ウレタンプレポリマーA」は合成例1に記載した、両末端にイソシアネート基を有するウレタンプレポリマーであり、「ウレタンプレポリマーB」は合成例2に記載した、両末端にイソシアネート基を有するウレタンプレポリマーであり、「ウレタンプレポリマーC」は合成例3に記載した、分子末端にイソシアネート基とメタクリロイル基とを有するウレタンプレポリマー、「ウレタンプレポリマーD」は合成例4に記載した、分子末端にイソシアネート基とトリメトキシシリル基とを有するウレタンプレポリマーである。
(Examples 1 to 15, Comparative Examples 1 and 2)
In accordance with the blending ratios described in Tables 1 and 2, each material was stirred with a planetary stirrer (manufactured by Shinky Co., Ltd., “Awatori Netaro”) and then mixed uniformly with a ceramic three roll. The optical moisture curable resin compositions of Examples 1 to 15 and Comparative Examples 1 and 2 were obtained.
In Tables 1 and 2, “urethane prepolymer A” is a urethane prepolymer having an isocyanate group at both ends described in Synthesis Example 1, and “urethane prepolymer B” is both ends described in Synthesis Example 2. Is a urethane prepolymer having an isocyanate group at the end, “urethane prepolymer C” is the urethane prepolymer having an isocyanate group and a methacryloyl group at the molecular end described in Synthesis Example 3, and “urethane prepolymer D” is Synthesis Example 4 And a urethane prepolymer having an isocyanate group and a trimethoxysilyl group at the molecular end.

<評価>
実施例及び比較例で得られた各光湿気硬化型樹脂組成物について以下の評価を行った。結果を表1、2に示した。
なお、比較例2で得られた光湿気硬化型樹脂組成物については、基板貼り合わせ時に光湿気硬化型樹脂組成物が潰れ、各評価におけるサンプルの作製ができなかったため、以下の評価は行わなかった。
<Evaluation>
The following evaluation was performed about each light moisture hardening type resin composition obtained by the Example and the comparative example. The results are shown in Tables 1 and 2.
In addition, about the optical moisture curable resin composition obtained in Comparative Example 2, the optical moisture curable resin composition was crushed when the substrates were bonded together, and the samples in each evaluation could not be prepared. It was.

(接着性)
実施例及び比較例で得られた各光湿気硬化型樹脂組成物を、ディスペンス装置を用いて、ポリカーボネート基板に約2mmの幅で塗布した。その後、UV−LED(波長365nm)を用いて、紫外線を1000mJ/cm照射することによって、光湿気硬化型樹脂組成物を光硬化させた。その後、ポリカーボネート基板にガラス板を貼り合わせ、20gの重りを置き、一晩放置することにより湿気硬化させて、接着性評価用サンプルを得た。図1に接着性評価用サンプルを上から見た場合を示す模式図(図1(a))、及び、接着性評価用サンプルを横から見た場合を示す模式図(図1(b))を示した。
作製した接着性評価用サンプルを、引張り試験機(島津製作所社製、「Ez−Grapf」)を用いて、剪断方向に5mm/secの速度で引張り、ポリカーボネート基板とガラス板とが剥がれる際の強度を測定した。
(Adhesiveness)
Each optical moisture curable resin composition obtained in Examples and Comparative Examples was applied to a polycarbonate substrate with a width of about 2 mm using a dispensing apparatus. Then, the optical moisture curing type resin composition was photocured by irradiating ultraviolet rays with 1000 mJ / cm 2 using a UV-LED (wavelength 365 nm). Thereafter, a glass plate was bonded to the polycarbonate substrate, a weight of 20 g was placed, and the sample was allowed to stand overnight to be moisture cured to obtain a sample for evaluating adhesiveness. FIG. 1 is a schematic diagram (FIG. 1 (a)) showing a case where an adhesive evaluation sample is viewed from above, and a schematic diagram showing a case where the adhesive evaluation sample is viewed from the side (FIG. 1 (b)). showed that.
Using the tensile tester (manufactured by Shimadzu Corporation, “Ez-Grapf”), the prepared adhesive evaluation sample is pulled at a rate of 5 mm / sec in the shear direction, and the strength when the polycarbonate substrate and the glass plate are peeled off. Was measured.

(高温高湿信頼性(耐クリープ性))
上記「(接着性)」の評価における接着性評価用サンプルと同様にして高温高湿信頼性評価用サンプルを作製した。得られた高温高湿信頼性評価用サンプルを地面に対して垂直にぶら下げ、ポリカーボネート基板の端に120gの重りを吊るした状態で60℃95%RHの恒温恒湿オーブンに入れ、24時間静置した。24時間静置後、ポリカーボネート基板とガラス板とが剥がれていなかった場合を「○」、ポリカーボネート基板とガラス板とが部分的に剥がれていた場合を「△」、ポリカーボネート基板とガラス板とが完全に剥がれていた場合を「×」として、光湿気硬化型樹脂組成物の高温高湿信頼性(耐クリープ性)を評価した。
(High temperature and high humidity reliability (creep resistance))
A sample for evaluating high temperature and high humidity reliability was produced in the same manner as the sample for evaluating adhesiveness in the evaluation of “(adhesiveness)”. The obtained sample for high-temperature and high-humidity reliability evaluation was hung perpendicularly to the ground, and a weight of 120 g was hung on the end of the polycarbonate substrate, placed in a constant temperature and humidity oven at 60 ° C. and 95% RH, and left for 24 hours. did. After standing for 24 hours, the case where the polycarbonate substrate and the glass plate were not peeled was “◯”, the case where the polycarbonate substrate and the glass plate were partially peeled was “△”, and the polycarbonate substrate and the glass plate were completely The case where it was peeled off was evaluated as “x”, and the high-temperature and high-humidity reliability (creep resistance) of the light moisture-curable resin composition was evaluated.

(柔軟性)
高圧水銀ランプを用いて、紫外線を1000mJ/cm照射することによって、実施例及び比較例で得られた各光湿気硬化型樹脂組成物を光硬化させ、その後、一晩放置することにより湿気硬化させた。得られた硬化物をダンベル状(「JIS K 6251」で規定される6号形)に打ち抜いて得られた試験片を、引張り試験機(島津製作所社製、「EZ−Graph」)を用いて、10mm/minの速度で引張り、50%伸びた時の力を弾性率として求めた。
(Flexibility)
Using a high-pressure mercury lamp, ultraviolet light is irradiated at 1000 mJ / cm 2 to light-cure each light-moisture-curable resin composition obtained in the examples and comparative examples, and then left overnight to cure the moisture. I let you. Using a tensile tester (manufactured by Shimadzu Corporation, “EZ-Graph”), a test piece obtained by punching the obtained cured product into a dumbbell shape (No. 6 defined by “JIS K 6251”) was obtained. Tensile force at a speed of 10 mm / min and the force at 50% elongation were determined as the elastic modulus.

Figure 0005844504
Figure 0005844504

Figure 0005844504
Figure 0005844504

本発明によれば、接着性、及び、高温高湿環境下における信頼性に優れる光湿気硬化型樹脂組成物を提供することができる。また、本発明によれば、該光湿気硬化型樹脂組成物を用いてなる電子部品用接着剤及び表示素子用接着剤を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the optical moisture hardening type resin composition excellent in adhesiveness and the reliability in a high-temperature, high-humidity environment can be provided. Moreover, according to this invention, the adhesive for electronic components and the adhesive for display elements which use this optical moisture hardening type resin composition can be provided.

1 ポリカーボネート基板
2 光湿気硬化型樹脂組成物
3 ガラス板
1 Polycarbonate substrate 2 Light moisture curable resin composition 3 Glass plate

Claims (9)

ラジカル重合性化合物と、湿気硬化型ウレタン樹脂と、光ラジカル重合開始剤とを含有し、
前記湿気硬化型ウレタン樹脂は、ウレタン結合と、下記式(1)で表される基と、イソシアネート基とを有する化合物を含有する
ことを特徴とする光湿気硬化型樹脂組成物。
Figure 0005844504
式(1)中、R及びRは、水素、炭素数1〜5のアルキル基、又は、アリール基であり、R及びRは、それぞれ同一であってもよいし、異なっていてもよい。xは、0〜2である。
Containing a radical polymerizable compound, a moisture curable urethane resin, and a photo radical polymerization initiator,
The moisture-curable urethane resin contains a compound having a urethane bond, a group represented by the following formula (1), and an isocyanate group.
Figure 0005844504
In Formula (1), R 1 and R 2 are hydrogen, an alkyl group having 1 to 5 carbon atoms, or an aryl group, and R 1 and R 2 may be the same or different from each other. Also good. x is 0-2.
ウレタン結合と、式(1)で表される基と、イソシアネート基とを有する化合物の含有量が、ラジカル重合性化合物と湿気硬化型ウレタン樹脂との合計100重量部に対して、1〜50重量部であることを特徴とする請求項1記載の光湿気硬化型樹脂組成物。 The content of the compound having a urethane bond, a group represented by the formula (1), and an isocyanate group is 1 to 50 weights with respect to 100 parts by weight in total of the radical polymerizable compound and the moisture curable urethane resin. The light moisture curable resin composition according to claim 1, wherein the composition is a part. 更に、ウレタン結合と、式(1)で表される基と、イソシアネート基とを有する化合物以外のその他の湿気硬化型ウレタン樹脂を含有することを特徴とする請求項1又は2記載の光湿気硬化型樹脂組成物。 Furthermore, moisture-curable urethane resin other than the compound which has a urethane bond, group represented by Formula (1), and an isocyanate group is contained, The optical moisture hardening of Claim 1 or 2 characterized by the above-mentioned. Mold resin composition. ラジカル重合性化合物が、単官能ラジカル重合性化合物と多官能ラジカル重合性化合物とを含有することを特徴とする請求項1、2又は3記載の光湿気硬化型樹脂組成物。 The photo-moisture curable resin composition according to claim 1, 2 or 3, wherein the radical polymerizable compound contains a monofunctional radical polymerizable compound and a polyfunctional radical polymerizable compound. 多官能ラジカル重合性化合物の含有量が、単官能ラジカル重合性化合物と多官能ラジカル重合性化合物との合計100重量部に対して、2〜45重量部であることを特徴とする請求項4記載の光湿気硬化型樹脂組成物。 The content of the polyfunctional radical polymerizable compound is 2 to 45 parts by weight with respect to 100 parts by weight in total of the monofunctional radical polymerizable compound and the polyfunctional radical polymerizable compound. Light moisture curable resin composition. 一次粒子径が1〜50nmの充填剤を含有することを特徴とする請求項1、2、3、4又は5記載の光湿気硬化型樹脂組成物。 The optical moisture-curable resin composition according to claim 1, 2, 3, 4, or 5, characterized by containing a filler having a primary particle diameter of 1 to 50 nm. 遮光剤を含有することを特徴とする請求項1、2、3、4、5、又は6記載の光湿気硬化型樹脂組成物。 The light moisture curable resin composition according to claim 1, further comprising a light-shielding agent. 請求項1、2、3、4、5、6又は7記載の光湿気硬化型樹脂組成物を用いてなることを特徴とする電子部品用接着剤。 An adhesive for electronic parts, comprising the optical moisture-curable resin composition according to claim 1, 2, 3, 4, 5, 6 or 7. 請求項1、2、3、4、5、6又は7記載の光湿気硬化型樹脂組成物を用いてなることを特徴とする表示素子用接着剤。 A light-moisture curable resin composition according to claim 1, 2, 3, 4, 5, 6, or 7.
JP2015528763A 2014-05-13 2015-05-11 Light moisture curable resin composition, adhesive for electronic parts, and adhesive for display elements Active JP5844504B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015528763A JP5844504B1 (en) 2014-05-13 2015-05-11 Light moisture curable resin composition, adhesive for electronic parts, and adhesive for display elements

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014099743 2014-05-13
JP2014099743 2014-05-13
JP2015528763A JP5844504B1 (en) 2014-05-13 2015-05-11 Light moisture curable resin composition, adhesive for electronic parts, and adhesive for display elements
PCT/JP2015/063484 WO2015174371A1 (en) 2014-05-13 2015-05-11 Photo- and moisture-curing resin composition, adhesive for electronic parts, and adhesive for display element

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2015224060A Division JP2016065247A (en) 2014-05-13 2015-11-16 Photo moisture-curable resin composition, adhesive for electronic component, adhesive for display element

Publications (2)

Publication Number Publication Date
JP5844504B1 true JP5844504B1 (en) 2016-01-20
JPWO2015174371A1 JPWO2015174371A1 (en) 2017-04-20

Family

ID=54479910

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2015528763A Active JP5844504B1 (en) 2014-05-13 2015-05-11 Light moisture curable resin composition, adhesive for electronic parts, and adhesive for display elements
JP2015224060A Pending JP2016065247A (en) 2014-05-13 2015-11-16 Photo moisture-curable resin composition, adhesive for electronic component, adhesive for display element

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2015224060A Pending JP2016065247A (en) 2014-05-13 2015-11-16 Photo moisture-curable resin composition, adhesive for electronic component, adhesive for display element

Country Status (5)

Country Link
JP (2) JP5844504B1 (en)
KR (1) KR102320903B1 (en)
CN (2) CN105814094B (en)
TW (1) TWI670326B (en)
WO (1) WO2015174371A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016167305A1 (en) * 2015-04-17 2016-10-20 積水化学工業株式会社 Cured body, electronic component, display element, and light-/moisture-curable resin composition

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102633875B1 (en) * 2015-04-09 2024-02-05 세키스이가가쿠 고교가부시키가이샤 Photo/moisture curable resin composition, adhesive for electronic components, and adhesive for display elements
CN107709369B (en) * 2015-12-02 2021-04-23 积水化学工业株式会社 Light-moisture-curable resin composition, adhesive for electronic component, and adhesive for display element
WO2018030434A1 (en) * 2016-08-09 2018-02-15 積水化学工業株式会社 Adhesive composition, cured object, electronic component, and assembly component
WO2018087743A1 (en) * 2016-11-14 2018-05-17 積水化学工業株式会社 Moisture-curable resin composition and assembled component
WO2019035411A1 (en) * 2017-08-18 2019-02-21 積水化学工業株式会社 Moisture curable resin composition, adhesive for electronic components, and adhesive for display elements
JP7228088B2 (en) * 2018-10-09 2023-02-24 Dic株式会社 Resin composition and article formed from said resin composition
JP7205149B2 (en) * 2018-10-09 2023-01-17 Dic株式会社 Resin composition and article formed from said resin composition
JPWO2022114186A1 (en) * 2020-11-30 2022-06-02
CN115353810B (en) * 2022-09-08 2024-01-30 杭州之江有机硅化工有限公司 UV and moisture dual-curing adhesive as well as preparation method and application thereof

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000159851A (en) * 1998-11-24 2000-06-13 Asahi Glass Co Ltd Cold-setting composition
JP2000273418A (en) * 1999-03-25 2000-10-03 Sekisui Chem Co Ltd Optically polymerizable composition, moisture-hardenable type pressure-sensitive adhesive sheet and connection of member
JP2002241461A (en) * 2001-02-20 2002-08-28 Dainippon Ink & Chem Inc Thixotropic moisture-curable urethane composition
JP2005187615A (en) * 2003-12-25 2005-07-14 Yunimatekku Kk Ultraviolet-curing acrylic composition
JP2005273418A (en) * 2004-03-26 2005-10-06 Miwa Lock Co Ltd Key storage device
JP2006169348A (en) * 2004-12-15 2006-06-29 Konishi Co Ltd Curable resin composition
JP2013237863A (en) * 2013-08-07 2013-11-28 Autonetworks Technologies Ltd Ultraviolet curable composition and cured product using the same
JP2013241508A (en) * 2012-05-18 2013-12-05 Toagosei Co Ltd Active energy ray-curable adhesive composition for plastic film or sheet
WO2014132464A1 (en) * 2013-02-27 2014-09-04 株式会社オートネットワーク技術研究所 Light-curable material combining radical and anionic curability
WO2015056717A1 (en) * 2013-10-18 2015-04-23 積水化学工業株式会社 Light/moisture-curable resin composition, adhesive for electronic component, and adhesive for display device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0249347B2 (en) * 1983-08-01 1990-10-29 Toa Gosei Chem Ind SUKURIININSATSUTOKOSEINOYOIMIZUBUNSANGATAKANATSUSETSUCHAKUZAI
JP5228370B2 (en) 2007-04-27 2013-07-03 東亞合成株式会社 One-part moisture-curing urethane hot melt adhesive composition and method of using the same
CN103703087B (en) * 2011-07-22 2015-09-09 H.B.富勒公司 With the two cure adhesive of single component on the electronic devices
CN103525355B (en) * 2013-10-16 2015-02-18 烟台德邦科技有限公司 Ultraviolet curing adhesive for liquid crystal display television side frame and preparation method of ultraviolet curing adhesive

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000159851A (en) * 1998-11-24 2000-06-13 Asahi Glass Co Ltd Cold-setting composition
JP2000273418A (en) * 1999-03-25 2000-10-03 Sekisui Chem Co Ltd Optically polymerizable composition, moisture-hardenable type pressure-sensitive adhesive sheet and connection of member
JP2002241461A (en) * 2001-02-20 2002-08-28 Dainippon Ink & Chem Inc Thixotropic moisture-curable urethane composition
JP2005187615A (en) * 2003-12-25 2005-07-14 Yunimatekku Kk Ultraviolet-curing acrylic composition
JP2005273418A (en) * 2004-03-26 2005-10-06 Miwa Lock Co Ltd Key storage device
JP2006169348A (en) * 2004-12-15 2006-06-29 Konishi Co Ltd Curable resin composition
JP2013241508A (en) * 2012-05-18 2013-12-05 Toagosei Co Ltd Active energy ray-curable adhesive composition for plastic film or sheet
WO2014132464A1 (en) * 2013-02-27 2014-09-04 株式会社オートネットワーク技術研究所 Light-curable material combining radical and anionic curability
JP2013237863A (en) * 2013-08-07 2013-11-28 Autonetworks Technologies Ltd Ultraviolet curable composition and cured product using the same
WO2015056717A1 (en) * 2013-10-18 2015-04-23 積水化学工業株式会社 Light/moisture-curable resin composition, adhesive for electronic component, and adhesive for display device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016167305A1 (en) * 2015-04-17 2016-10-20 積水化学工業株式会社 Cured body, electronic component, display element, and light-/moisture-curable resin composition

Also Published As

Publication number Publication date
TW201600558A (en) 2016-01-01
KR102320903B1 (en) 2021-11-02
KR20170008714A (en) 2017-01-24
JP2016065247A (en) 2016-04-28
JPWO2015174371A1 (en) 2017-04-20
CN109679031A (en) 2019-04-26
TWI670326B (en) 2019-09-01
CN105814094B (en) 2019-01-18
WO2015174371A1 (en) 2015-11-19
CN105814094A (en) 2016-07-27

Similar Documents

Publication Publication Date Title
JP5845362B2 (en) Adhesive for electronic parts and adhesive for display element
JP5844504B1 (en) Light moisture curable resin composition, adhesive for electronic parts, and adhesive for display elements
JP5989902B2 (en) Light moisture curable resin composition, adhesive for electronic parts, and adhesive for display elements
JP6039080B2 (en) Narrow frame design display element adhesive
JP6641255B2 (en) Adhesives for electronic components and adhesives for display elements
JP6434890B2 (en) Light moisture curable resin composition
JP6510790B2 (en) Light moisture curable resin composition
JP6499561B2 (en) Light moisture curable resin composition
JP6510788B2 (en) Light moisture curable resin composition
JP2016199743A (en) Photo/moisture curable resin composition, adhesive for electronic components, and adhesive for display elements
JP7486414B2 (en) Photo-Moisture-Curable Urethane Compound, Photo-Moisture-Curable Urethane Prepolymer, and Photo-Moisture-Curable Resin Composition
JP6789014B2 (en) Light-moisture-curable resin composition, adhesive for electronic components, and adhesive for display elements
JP5824597B1 (en) Light moisture curable resin composition, adhesive for electronic parts, and adhesive for display elements
JP2016147969A (en) Photo- and moisture-curable resin composition, adhesive agent for electronic component, and adhesive agent for display element
WO2020241803A1 (en) Curable resin composition, cured object, and electronic component
JP6622465B2 (en) Light moisture curable resin composition cured body for narrow frame design display element
JP2016074782A (en) Moisture-curable resin composition

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151020

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151118

R151 Written notification of patent or utility model registration

Ref document number: 5844504

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151