JP5841410B2 - Thermoelectric portable device - Google Patents

Thermoelectric portable device Download PDF

Info

Publication number
JP5841410B2
JP5841410B2 JP2011246670A JP2011246670A JP5841410B2 JP 5841410 B2 JP5841410 B2 JP 5841410B2 JP 2011246670 A JP2011246670 A JP 2011246670A JP 2011246670 A JP2011246670 A JP 2011246670A JP 5841410 B2 JP5841410 B2 JP 5841410B2
Authority
JP
Japan
Prior art keywords
temperature
voltage
crystal
characteristic
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011246670A
Other languages
Japanese (ja)
Other versions
JP2013106081A (en
Inventor
木村 文雄
文雄 木村
内山 武
武 内山
篠原 陽子
陽子 篠原
新荻 正隆
正隆 新荻
大海 学
学 大海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2011246670A priority Critical patent/JP5841410B2/en
Publication of JP2013106081A publication Critical patent/JP2013106081A/en
Application granted granted Critical
Publication of JP5841410B2 publication Critical patent/JP5841410B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、腕時計等に搭載される計時用水晶発振器の温度補償を行う熱発電型携帯機器に関する。   The present invention relates to a thermoelectric power generation type portable device that performs temperature compensation of a clock crystal oscillator mounted on a wristwatch or the like.

従来、電力源として熱発電素子を用い、熱発電素子を裏蓋と本体内部の放熱リングとの間に設置し、人体の腕から体温が裏蓋を介して伝達される発熱側の温度と放熱側の温度との温度差によって発電電圧を得る熱発電腕時計が知られている(例えば、特許文献1参照)。そして、腕時計等の計時機能を有する機器には、音叉型水晶振動子を用いた水晶発振回路が搭載されている。計時精度は、この水晶発振回路から出力される計時信号の温度特性に大きく左右されるので、近年において、計時用水晶発振器の温度補償技術が注目されている。   Conventionally, a thermoelectric generator is used as a power source, and the thermoelectric generator is installed between the back cover and the heat dissipation ring inside the main body, so that the body temperature is transmitted from the human arm through the back cover, and the heat generation side temperature and heat dissipation. A thermoelectric wristwatch that obtains a generated voltage based on a temperature difference from the temperature on the side is known (see, for example, Patent Document 1). A crystal oscillation circuit using a tuning fork type crystal resonator is mounted on a device having a timekeeping function such as a wristwatch. Since the timing accuracy is greatly influenced by the temperature characteristics of the timing signal output from the crystal oscillation circuit, in recent years, temperature compensation technology for the timing crystal oscillator has attracted attention.

図11は従来の計時用水晶発振器の温度補償を説明するブロック図である。図11において、水晶振動子1101、反転増幅器1102、ゲート容量1103及びドレイン容量1104にてコルピッツ型の水晶発振回路1105が構成されている。この水晶振動子1101は周波数32.768KHzの音叉型水晶振動子である。この水晶発振回路1105から出力された信号は周波数分周回路1106で分周され、周期一秒のパルス信号に変換される。ここで、水晶振動子1101の固有周波数は周囲の温度に対して変化する性質を持っており、水晶発振回路1105と通常の周波数分周回路の組み合わせのみでは、パルス信号の周期は正確に一秒とはならず、水晶振動子1101の固有周波数の周波数温度特性を反映して、温度に依存してしまい、高精度な計時ができないという問題がある。この問題を解決するために、温度センサ1108で計測された温度情報と、メモリ1109に前もって記録されている情報をもとにして、周波数分周回路1106は、分周比を温度変化に対して可変できる機能を有している。すなわち、周波数分周回路1106の分周比を温度に対して、デジタル的に変化させて、パルス信号1107の周期の温度安定性を向上させている。   FIG. 11 is a block diagram for explaining temperature compensation of a conventional clock crystal oscillator. In FIG. 11, a Colpitts-type crystal oscillation circuit 1105 is configured by a crystal resonator 1101, an inverting amplifier 1102, a gate capacitor 1103, and a drain capacitor 1104. This crystal unit 1101 is a tuning fork type crystal unit having a frequency of 32.768 KHz. The signal output from the crystal oscillation circuit 1105 is divided by a frequency dividing circuit 1106 and converted into a pulse signal having a period of 1 second. Here, the natural frequency of the crystal unit 1101 has a property of changing with respect to the ambient temperature, and the period of the pulse signal is exactly 1 second only by combining the crystal oscillation circuit 1105 and the normal frequency divider circuit. However, the frequency temperature characteristic of the natural frequency of the crystal unit 1101 is reflected, and the temperature depends on the temperature. In order to solve this problem, based on the temperature information measured by the temperature sensor 1108 and information recorded in advance in the memory 1109, the frequency divider 1106 sets the frequency division ratio to the temperature change. It has a variable function. That is, the frequency division ratio of the frequency dividing circuit 1106 is digitally changed with respect to the temperature to improve the temperature stability of the period of the pulse signal 1107.

図12は図11で説明した従来の温度補償を用いたパルス信号の温度特性を説明する特性図である。横軸は温度、縦軸は変化率である。特性曲線1201は、図11の発振回路1105から出力される発振周波数の温度変化曲線であり、上に凸に放物線状をしている。この放物線状の温度特性が、音叉型水晶振動子の物性値で決定される固有の温度特性であって、後述する直列共振周波数Frの温度変化曲線である。こ特性曲線1201の頂点温度Tpは、通常20℃に設定されている。しかしこの頂点温度Tpは水晶振動子のカット角を変更する事によって自由に変化させる事が可能である。それに対して、特性曲線1202は図11で説明したパルス信号1107の周期の温度補償後の温度変化曲線であって、特性曲線1201の温度特性と比較して、その温度変化は抑制されている。 FIG. 12 is a characteristic diagram for explaining the temperature characteristics of a pulse signal using the conventional temperature compensation explained in FIG. The horizontal axis is temperature, and the vertical axis is the rate of change. A characteristic curve 1201 is a temperature change curve of the oscillation frequency output from the oscillation circuit 1105 in FIG. 11, and is convexly parabolic. This parabolic temperature characteristic is a unique temperature characteristic determined by the physical property value of the tuning fork type crystal resonator, and is a temperature change curve of a series resonance frequency F r described later. The vertex temperature Tp of this characteristic curve 1201 is normally set to 20 ° C. However, this apex temperature Tp can be changed freely by changing the cut angle of the crystal resonator. On the other hand, the characteristic curve 1202 is a temperature change curve after the temperature compensation of the period of the pulse signal 1107 described in FIG. 11, and the temperature change is suppressed as compared with the temperature characteristic of the characteristic curve 1201.

特許第3054933号公報Japanese Patent No. 3054933

しかしながら、上記従来技術に係る計時用水晶発振器の温度補償、特に腕時計においては、温度センサ1108、メモリ1109及び分周回路1106を駆動するために、過大電力を必要とするために、バッテリ寿命が短くなってしまうという問題があった。さらに分周比変更時に発生する電気的ノイズも問題となっている。   However, in the temperature compensation of the above-described prior art crystal oscillator, particularly in a wristwatch, excessive power is required to drive the temperature sensor 1108, the memory 1109, and the frequency dividing circuit 1106, so that the battery life is short. There was a problem of becoming. Furthermore, electrical noise generated when changing the frequency division ratio is also a problem.

本発明は上記事情に鑑みてなされたものであり、消費電力を低減でき、さらには電気的ノイズも少ない計時用水晶発振回路、さらに時計用水晶発振回路の温度補償法を行う熱発電型携帯機器を提供する事を目的とする。   The present invention has been made in view of the above circumstances, and it is possible to reduce power consumption, and furthermore, a time-consuming crystal oscillation circuit with less electrical noise, and a thermoelectric power generation portable device that performs a temperature compensation method for a watch crystal oscillation circuit The purpose is to provide.

上記課題を解決するための本発明の熱発電型携帯機器の第1の特徴は、水晶振動子を有する水晶発振回路と、熱源と温度差とに基づき発電する熱発電素子と、前記熱発電素子から出力される発電電圧から制御電圧を生成し、前記制御電圧の値に基づいて前記水晶発振回路の負荷容量値を電圧制御し、前記水晶発振回路の発振周波数の温度特性を制御する制御部とを有する事を要旨とする。
かかる特徴によれば、前記温度センサおよび前記メモリを駆動させる事なく、前記水晶発振回路の発振周波数の温度特性を制御することが可能となり、消費電力の低減ができる。
The first feature of the thermoelectric power generation portable device of the present invention for solving the above-mentioned problems is a crystal oscillation circuit having a crystal resonator, a thermoelectric generator that generates electric power based on a heat source and a temperature difference, and the thermoelectric generator A control unit that generates a control voltage from the power generation voltage output from the controller, voltage-controls a load capacitance value of the crystal oscillation circuit based on the value of the control voltage, and controls a temperature characteristic of an oscillation frequency of the crystal oscillation circuit; The gist is to have.
According to this feature, the temperature characteristic of the oscillation frequency of the crystal oscillation circuit can be controlled without driving the temperature sensor and the memory, and the power consumption can be reduced.

また本発明の燃料電池の第2の特徴は、第1の特徴の熱発電型携帯機器において、前記水晶振動子は、音叉型水晶振動子であり、前記音叉型水晶振動子の前記発振周波数の前記温度特性における頂点温度は、前記熱源の温度と略同一であり、前記制御電圧の温度依存性が、前記頂点温度を対称点としたに凸のV字型であるV字型特性に設定されている事を要旨とする。
かかる特徴によれば、音叉型水晶振動子の有する頂点温度を対称点とした温度特性に起因する周波数変動を小さくすることができる。
According to a second feature of the fuel cell of the present invention, in the thermoelectric power generation portable device according to the first feature, the crystal resonator is a tuning fork crystal resonator, and the oscillation frequency of the tuning fork crystal resonator is the same. The vertex temperature in the temperature characteristic is substantially the same as the temperature of the heat source, and the temperature dependency of the control voltage is set to a V-shaped characteristic that is a downwardly convex V shape with the vertex temperature as a symmetry point. The gist of what is being done.
According to such a feature, it is possible to reduce the frequency fluctuation caused by the temperature characteristics with the vertex temperature of the tuning fork type crystal resonator as the symmetry point.

また本発明の燃料電池の第3の特徴は、第2の特徴の熱発電型携帯機器において、前記V字型特性に対して、正係数をもつ二次曲線成分を含ませた事を要旨とする。
かかる特徴によれば、音叉型水晶振動子の有する頂点温度を対称点とした温度特性の二次曲線成分をも制御可能となり、周波数変動をきわめて小さくすることができる。
The third feature of the fuel cell according to the present invention is that the thermoelectric power generation portable device of the second feature includes a quadratic curve component having a positive coefficient with respect to the V-shaped characteristic. To do.
According to such a feature, it is possible to control the quadratic curve component of the temperature characteristic with the vertex temperature of the tuning fork type crystal resonator as a symmetric point, and the frequency fluctuation can be extremely reduced.

また本発明の燃料電池の第4の特徴は、第2または3のいずれかの特徴の熱発電型携帯機器において、前記制御部は、前記熱発電素子より出力された発電電圧を昇圧及び蓄電する機能を有すると共に、前記昇圧または前記蓄電された前記発電電圧を用いて、前記水晶発振回路を駆動させる事を要旨とする。
かかる特徴によれば、水晶発振回路の駆動に必要な電力をも、熱発電素子より出力された電圧で駆動できるので、さらに消費電力を低減できる。
According to a fourth aspect of the fuel cell of the present invention, in the thermoelectric power generation portable device according to the second or third aspect, the control unit boosts and stores the generated voltage output from the thermoelectric generator. The gist of the invention is to drive the crystal oscillation circuit using the boosted voltage or the stored generated power voltage.
According to such a feature, the power necessary for driving the crystal oscillation circuit can be driven by the voltage output from the thermoelectric generator, so that the power consumption can be further reduced.

本発明の如く、熱源側温度と放熱側温度との温度差に基づき発電する熱発電素子と、該発電部材から出力される発電電圧から、放物線状の周波数温度特性を持つ水晶振動子搭載の水晶発振回路の負荷容量値を電圧制御するための制御電圧を生成し、該制御電圧によって、この水晶発振回路の発振周波数の温度特性を改善する方法(温度補償法)を採用すれば、図12にて説明した従来の温度補償法に比較して、温度補償に必要な電力が熱発電素子から供給されるので、大幅な消費電力の削減が実現できるという極めて大きな効果が得られる。   As in the present invention, a thermoelectric generator that generates electricity based on a temperature difference between a heat source side temperature and a heat radiating side temperature, and a quartz crystal mounted on a quartz resonator having a parabolic frequency temperature characteristic from a generated voltage output from the power generation member If a method for generating a control voltage for controlling the load capacitance value of the oscillation circuit and improving the temperature characteristic of the oscillation frequency of the crystal oscillation circuit by the control voltage (temperature compensation method) is adopted, FIG. Compared with the conventional temperature compensation method described above, since the electric power necessary for the temperature compensation is supplied from the thermoelectric generator, an extremely great effect that a significant reduction in power consumption can be realized.

本発明に係る熱発電型計時機能付生体携帯機器の温度補償方法の第一の実施例を説明するブロック図。The block diagram explaining the 1st Example of the temperature compensation method of the bioelectric portable apparatus with a thermoelectric generation type timekeeping function which concerns on this invention. 本発明に係る熱発電型計時機能付生体携帯機器の温度補償方法の第二の実施例を説明するブロック図。The block diagram explaining the 2nd Example of the temperature compensation method of the bioelectric portable apparatus with a thermoelectric generation type timekeeping function which concerns on this invention. 水晶振動子1101の等価回路図。FIG. 6 is an equivalent circuit diagram of the crystal unit 1101. 水晶発振回路の発振周波数F0の負荷容量依存性を示す特性曲線図。Characteristic curves illustrating load capacitance dependence of the oscillation frequency F 0 of the crystal oscillation circuit. 可変容量ダイオードのV字型印加電圧特性を示す特性図。The characteristic view which shows the V-shaped applied voltage characteristic of a variable capacity diode. 本発明に係る可変容量ダイオードに印加される印加電圧VRの温度変化と該可変容量ダイオードで構成された負荷容量CLの温度変化を説明する第一の特性図。First characteristic diagram for explaining the temperature change in the load capacitance C L constituted by the temperature change and variable capacitance diode application voltage V R applied to the variable capacitance diode according to the present invention. 本発明に係る発振周波数の温度特性を説明する第一の特性図。The 1st characteristic view explaining the temperature characteristic of the oscillation frequency concerning the present invention. 本発明に係る可変容量ダイオードに印加される印加電圧VRの温度変化と可変容量ダイオードで構成された負荷容量CLの温度変化を説明する第二の特性図。Second characteristic diagram for explaining the temperature change in the load capacitance C L constituted by a temperature change and a variable capacitance diode application voltage V R applied to the variable capacitance diode according to the present invention. 本発明に係る発振周波数の温度特性を説明する第二の特性図。The 2nd characteristic view explaining the temperature characteristic of the oscillation frequency concerning the present invention. 本発明に係る熱発電素子を用いたV字型印加電圧発生機構を説明するためのブロック図。The block diagram for demonstrating the V-shaped applied voltage generation mechanism using the thermoelectric generation element which concerns on this invention. 従来の計時用水晶発振器の温度補償を説明するブロック図。The block diagram explaining the temperature compensation of the conventional crystal oscillator for timekeeping. 従来の温度補償を用いたパルス信号の温度特性を説明する特性図。The characteristic view explaining the temperature characteristic of the pulse signal using the conventional temperature compensation.

(実施の形態1)
図1、図11〜12に基づいて、本発明の実施の形態1における熱発電型携帯機器の実施例を説明する。
(Embodiment 1)
Based on FIG. 1 and FIGS. 11-12, the Example of the thermoelectric generation type portable apparatus in Embodiment 1 of this invention is described.

まず、水晶発振回路における負荷容量と発振周波数の関係を以下で説明する。図11記載の水晶発振回路1105における負荷容量CLは、ゲート容量1103とドレイン容量1104でほぼ決定される。ゲート容量1103及びドレイン容量1104の値をそれぞれ、図11記載のように、Cg、Cdとすれば、水晶発振回路1105の負荷容量は両容量の直列合成容量として定義できる。すなわち水晶発振回路1105の負荷容量CLFirst, the relationship between the load capacitance and the oscillation frequency in the crystal oscillation circuit will be described below. The load capacitance C L in the crystal oscillation circuit 1105 illustrated in FIG. 11 is substantially determined by the gate capacitance 1103 and the drain capacitance 1104. If the values of the gate capacitance 1103 and the drain capacitance 1104 are Cg and Cd, respectively, as shown in FIG. 11, the load capacitance of the crystal oscillation circuit 1105 can be defined as a series combined capacitance of both capacitances. That is, the load capacitance C L of the crystal oscillation circuit 1105 is

Figure 0005841410
Figure 0005841410

と書ける。
図3は、図11記載の水晶振動子1101の等価回路図であって、水晶振動子1101は、等価インダクタンス301、等価容量302、等価抵抗303及び並列容量304で等価構成されている。ここで、等価インダクタンス301、等価容量302、等価抵抗303及び並列容量304をそれぞれ、図3記載の如くLm、Cm、Rm及びC0とすると、水晶振動子1101の直列共振周波数Frは、
Can be written.
FIG. 3 is an equivalent circuit diagram of the crystal unit 1101 shown in FIG. 11, and the crystal unit 1101 is equivalently configured by an equivalent inductance 301, an equivalent capacitor 302, an equivalent resistor 303, and a parallel capacitor 304. Here, the equivalent inductance 301, the equivalent capacitance 302, respectively an equivalent resistance 303 and a parallel capacitor 304, L m as described FIG. 3, C m, when the R m and C 0, the series resonant frequency of the crystal oscillator 1101 F r Is

Figure 0005841410
Figure 0005841410

となる。この直列共振周波数Fr、[数1]で与えられた負荷容量CL及び図3記載の等価素子を用いて、水晶発振回路1105にて励振される発振周波数F0は、 It becomes. Using this series resonance frequency F r , the load capacitance C L given by [Equation 1] and the equivalent element shown in FIG. 3, the oscillation frequency F 0 excited by the crystal oscillation circuit 1105 is

Figure 0005841410
Figure 0005841410

となる。
図4は、図11と図12を基にして、水晶発振回路1105の発振周波数F0の負荷容量依存性を示す特性曲線図であって、横軸が負荷容量CL、縦軸が発振周波数F0の変化率ΔF0/Frである。この発振周波数F0の変化率ΔF0/Frは、[数3]を基にして
It becomes.
FIG. 4 is a characteristic curve diagram showing the load capacitance dependence of the oscillation frequency F 0 of the crystal oscillation circuit 1105 based on FIGS. 11 and 12, where the horizontal axis is the load capacitance C L and the vertical axis is the oscillation frequency. The rate of change of F 0 is ΔF 0 / F r . The rate of change ΔF 0 / F r of this oscillation frequency F 0 is based on [Equation 3].

Figure 0005841410
Figure 0005841410

と定義されおり、これを図示したのが図4記載の特性曲線401である。 This is illustrated by a characteristic curve 401 shown in FIG.

水晶発振回路1105の発振周波数F0の周波数温度特性は、[数3]から、水晶振動子1101の直列共振周波数Frの温度特性、等価容量Cm、並列容量C0及び負荷容量CLの温度特性で決定される事が判明する。実際には、等価容量Cm、並列容量C0の温度特性は極めて影響が小さく、発振周波数F0の周波数温度特性は、前述の直列共振周波数Frの温度特性と負荷容量CLの温度特性で決定される。それゆえ、直列共振周波数Frの温度変化に対する周波数変動を負荷容量CLの温度変化量で補償し、発振周波数F0の周波数温度特性を改善する事が可能である。 The frequency temperature characteristic of the oscillation frequency F 0 of the crystal oscillation circuit 1105 is obtained from [Equation 3] of the temperature characteristic of the series resonance frequency F r of the crystal oscillator 1101, the equivalent capacitance C m , the parallel capacitance C 0, and the load capacitance C L. It turns out that it is determined by the temperature characteristics. Actually, the temperature characteristics of the equivalent capacitance C m and the parallel capacitance C 0 are extremely insignificant, and the frequency temperature characteristics of the oscillation frequency F 0 are the temperature characteristics of the series resonance frequency F r and the temperature characteristics of the load capacitance C L. Determined by Therefore, the frequency variation with respect to the temperature change of the series resonance frequency F r can be compensated by the temperature change amount of the load capacitance C L , and the frequency temperature characteristic of the oscillation frequency F 0 can be improved.

図5は、可変容量ダイオードの印加電圧特性を示す特性図であって、横軸は印加電圧VR、縦軸は容量値Cvである。また、特性曲線501が、容量値の印加電圧を示す特性曲線である。この特性曲線501が示すように可変容量ダイオードの容量値Cvは印加電圧VRの増加に従って減少する特性を示す。それゆえ、負荷容量がゲート側およびドレイン側の容量素子のすべて、または一部を可変容量ダイオードとする構成の水晶発振回路において、温度変化を電圧変化に変換し、その電圧変化を負荷容量変化に変換することで発振周波数の温度特性の改善、すなわち温度補償が実現できる。 FIG. 5 is a characteristic diagram showing the applied voltage characteristics of the variable capacitance diode, where the horizontal axis represents the applied voltage V R , and the vertical axis represents the capacitance value C v . A characteristic curve 501 is a characteristic curve indicating the applied voltage of the capacitance value. Capacitance C v of the variable capacitance diode as indicated by the characteristic curve 501 shows the characteristic that decreases with increasing applied voltage V R. Therefore, in a crystal oscillation circuit configured such that all or part of the capacitive elements on the gate side and the drain side have variable capacitance diodes, the temperature change is converted into a voltage change, and the voltage change is changed to the load capacitance change. By conversion, the temperature characteristics of the oscillation frequency can be improved, that is, temperature compensation can be realized.

以下で、音叉型水晶振動子を用いた水晶発振回路の温度補償を中心に説明する。図6は本発明に係る可変容量ダイオードに印加される印加電圧VRの温度変化と該可変容量ダイオードで構成された負荷容量CLの温度変化を説明する第一の特性図である。本図の横軸は温度であり、縦第一軸は印加電圧VR、縦第二軸は負荷容量値CLである。V字型印加電圧特性曲線601が印加電圧VRの温度変化を示す特性曲線であり、基準温度TSを対称中心とした上に凸のV字型の特性曲線となっている。この特性曲線601に連動して、可変容量ダイオードで構成された負荷容量の温度依存性を示す特性曲線が図6記載の負荷容量特性曲線602であって、基準温度TSを対称中心とした上に凸のV字型の特性曲線となっている。この負荷容量特性曲線602は[数3]を介在して、発振周波数F0の周波数温度特性を補償するように設定されている。この設定は、V字型印加電圧特性曲線601に対応させるべく使用する可変容量ダイオード及び組み合わせる容量素子の定格を選定する事で容易にできる事は言うまでなく、単なる設計的事項にすぎない。 Hereinafter, the temperature compensation of the crystal oscillation circuit using the tuning fork type crystal resonator will be mainly described. 6 is a first characteristic diagram for explaining the temperature change in the load capacitance C L constituted by the temperature change and variable capacitance diode application voltage V R applied to the variable capacitance diode according to the present invention. In this figure, the horizontal axis represents temperature, the vertical first axis represents the applied voltage V R , and the vertical second axis represents the load capacitance value C L. A V-shaped applied voltage characteristic curve 601 is a characteristic curve showing the temperature change of the applied voltage V R , and is a convex V-shaped characteristic curve with the reference temperature T S as the center of symmetry. In conjunction with this characteristic curve 601, a characteristic curve showing the temperature dependence of the load capacitance constituted by the variable capacitance diode is a load capacitance characteristic curve 602 shown in FIG. 6, which has a reference temperature T S as the center of symmetry. It has a convex V-shaped characteristic curve. This load capacity characteristic curve 602 is set so as to compensate for the frequency temperature characteristic of the oscillation frequency F 0 via [Equation 3]. It goes without saying that this setting can be easily made by selecting the ratings of the variable capacitance diode used and the capacitive element to be combined in order to correspond to the V-shaped applied voltage characteristic curve 601, and is merely a design matter.

図7は、本発明に係る水晶発振回路の負荷容量に対して図6記載の負荷容量特性曲線602を採用した場合の発振周波数の温度特性を説明する第一の特性図であって、縦軸は周波数変化率、横軸は温度である。負荷容量CLの温度依存性がない場合の発振周波数の温度特性は本図記載の補償前温特曲線701であって、音叉型水晶振動子の直列共振周波数Frの温度変化曲線にほぼ等しい温度変化曲線である。この補償前温特曲線701の頂点温度を、カット角を調整し図6記載の基準温度TSと同じ温度に設定すると共に負荷容量に対して図6記載の負荷容量特性曲線602を採用した場合の発振周波数の温度特性が、本図記載の補償後温特曲線702である。この補償後温特曲線702をみればわかるとおり、負荷容量CLに温度特性を持たせる事によって、温度に対して安定な周波数温度特性が得られる事が判明する。 FIG. 7 is a first characteristic diagram for explaining the temperature characteristics of the oscillation frequency when the load capacity characteristic curve 602 shown in FIG. 6 is adopted for the load capacity of the crystal oscillation circuit according to the present invention. Is the frequency change rate, and the horizontal axis is the temperature. The temperature characteristic of the oscillation frequency when there is no temperature dependency of the load capacitance C L is the pre-compensation temperature special curve 701 shown in this figure, which is substantially equal to the temperature change curve of the series resonance frequency F r of the tuning fork crystal resonator. It is a temperature change curve. When the peak temperature of the pre-compensation temperature special curve 701 is adjusted to the same temperature as the reference temperature T S shown in FIG. 6 by adjusting the cut angle, and the load capacity characteristic curve 602 shown in FIG. 6 is adopted for the load capacity. The temperature characteristic of the oscillation frequency is a post-compensation temperature characteristic curve 702 shown in the figure. As can be seen from this post-compensation temperature characteristic curve 702, it is found that by giving the load capacitance CL a temperature characteristic, a frequency temperature characteristic stable with respect to temperature can be obtained.

図8は本発明に係る可変容量ダイオードに印加される印加電圧VRの温度変化と該可変容量ダイオードで構成された負荷容量CLの温度変化を説明する第二の特性図である。本図の横軸は温度であり、縦第一軸は印加電圧VR、縦第二軸は負荷容量値CLである。V字型印加電圧特性曲線801が印加電圧VRの温度変化を示す特性曲線であり、図6記載のV字型印加電圧特性曲線601と同様に基準温度TSを対称中心とした上に凸のV字型の特性曲線となっている。ただし、このV字型印加電圧特性曲線801は、図6記載のV字型印加電圧特性曲線601に比較して、下に凸の二次曲線成分を含んでいる点が相違している。このV字型印加電圧特性曲線801に連動して、可変容量ダイオードで構成された負荷容量の温度依存性を示す特性曲線が図8記載の負荷容量特性曲線802であって、基準温度TSを対称中心とした上に凸のV字型の特性曲線となっている。この負荷容量特性曲線802は、図6記載の負荷容量特性曲線602と比較して上に凸の二次曲線成分は小さくなっている。この負荷容量特性曲線802と図6記載の負荷容量特性曲線602の二次曲線成分に違いは、V字型印加電圧特性曲線801が下に凸の二次曲線成分をもっている事に起因している。この負荷容量特性曲線802は[数3]を介在して、発振周波数F0の周波数温度特性を補償するように設定されている。この設定は、V字型印加電圧特性曲線801に対応させるべく使用する可変容量ダイオード及び組み合わせる容量素子の定格を選定する事で容易にできる事は言うまでなく、単なる設計的事項にすぎない。 Figure 8 is a second characteristic diagram for explaining the temperature change in the load capacitance C L constituted by the temperature change and variable capacitance diode application voltage V R applied to the variable capacitance diode according to the present invention. In this figure, the horizontal axis represents temperature, the vertical first axis represents the applied voltage V R , and the vertical second axis represents the load capacitance value C L. A characteristic curve showing the temperature variation of the V-shaped applied voltage characteristic curve 801 is the applied voltage V R, convex upward with a symmetry around a reference temperature T S in the same manner as V-shaped applied voltage characteristic curve 601 of FIG. 6, wherein This is a V-shaped characteristic curve. However, the V-shaped applied voltage characteristic curve 801 is different from the V-shaped applied voltage characteristic curve 601 shown in FIG. 6 in that it includes a downwardly convex quadratic curve component. In conjunction with the V-shaped applied voltage characteristic curve 801, the characteristic curve showing the temperature dependency of the load capacity is composed of a variable capacitance diode is a load capacitance characteristic curve 802 according 8, the reference temperature T S It is a V-shaped characteristic curve that is convex upward with the center of symmetry. In the load capacity characteristic curve 802, the upward convex quadratic curve component is smaller than the load capacity characteristic curve 602 shown in FIG. The difference between the quadratic curve component of the load capacity characteristic curve 802 and the load capacity characteristic curve 602 shown in FIG. 6 is due to the fact that the V-shaped applied voltage characteristic curve 801 has a downward convex quadratic curve component. . This load capacity characteristic curve 802 is set so as to compensate the frequency temperature characteristic of the oscillation frequency F 0 via [Equation 3]. It goes without saying that this setting can be easily made by selecting the ratings of the variable capacitance diode used and the capacitive element to be combined to correspond to the V-shaped applied voltage characteristic curve 801, and is merely a design matter.

図9は、本発明に係る水晶発振回路の負荷容量に対して図8記載の負荷容量特性曲線802を採用した場合の発振周波数の温度特性を説明する第二の特性図であって、縦軸は周波数変化率、横軸は温度である。負荷容量CLの温度依存性がない場合の発振周波数の温度特性は、本図記載の補償前温特曲線901であって、音叉型水晶振動子の直列共振周波数Frの温度変化曲線にほぼ等しい温度変化曲線である。この補償前温特曲線901の頂点温度を、カット角を調整して図8記載の基準温度TSと同じ温度に設定すると共に負荷容量に対して図8記載の負荷容量特性曲線802を採用した場合の発振周波数の温度特性が、本図記載の補償後温特曲線902である。この補償後温特曲線902をみればわかるとおり、負荷容量特性曲線801を採用することで、図7記載の補償後温特曲線702に比較して二次曲線成分も小さくなっており、さらに温度に対して安定な周波数温度特性が得られる事が判明する。この理由は、V字型印加電圧特性曲線801が下に凸の二次曲線成分をもっている事に起因している。 FIG. 9 is a second characteristic diagram for explaining the temperature characteristics of the oscillation frequency when the load capacity characteristic curve 802 shown in FIG. 8 is adopted with respect to the load capacity of the crystal oscillation circuit according to the present invention. Is the frequency change rate, and the horizontal axis is the temperature. The temperature characteristic of the oscillation frequency when there is no temperature dependency of the load capacitance C L is the pre-compensation temperature special curve 901 shown in this figure, which is almost the temperature change curve of the series resonance frequency F r of the tuning fork crystal resonator. It is an equal temperature change curve. The peak temperature of the pre-compensation temperature special curve 901 is set to the same temperature as the reference temperature T S shown in FIG. 8 by adjusting the cut angle, and the load capacity characteristic curve 802 shown in FIG. 8 is adopted for the load capacity. The temperature characteristic of the oscillation frequency in this case is the post-compensation temperature characteristic curve 902 shown in this figure. As can be seen from this post-compensation temperature characteristic curve 902, by adopting the load capacity characteristic curve 801, the quadratic curve component is also smaller than the post-compensation temperature characteristic curve 702 shown in FIG. It becomes clear that a stable frequency temperature characteristic can be obtained. This is because the V-shaped applied voltage characteristic curve 801 has a downwardly convex quadratic curve component.

以上が、本発明に係る負荷容量変化を用いた温度補償の説明である。次に本発明に係る負荷容量を制御するためのV字型印加電圧の発生機構について説明する。図10は本発明に係る熱発電素子を用いたV字型印加電圧発生機構を説明するブロック図である。本発明に係る熱発電素子1001は一面を温度T0で一定の発熱部1002に接触し、他の面は外界への放熱部1003に連結されている。この発熱部1002と放熱部1003の温度差ΔTに比例して、熱発電素子1001から発電電圧ΔVが出力される。
ここで、温度差ΔTを
The above is the description of the temperature compensation using the load capacity change according to the present invention. Next, a mechanism for generating a V-shaped applied voltage for controlling the load capacity according to the present invention will be described. FIG. 10 is a block diagram illustrating a V-shaped applied voltage generation mechanism using the thermoelectric generator according to the present invention. One surface of the thermoelectric generator 1001 according to the present invention is in contact with the constant heat generating portion 1002 at the temperature T 0 , and the other surface is connected to the heat radiating portion 1003 to the outside. A power generation voltage ΔV is output from the thermoelectric generator 1001 in proportion to the temperature difference ΔT between the heat generating portion 1002 and the heat radiating portion 1003.
Where the temperature difference ΔT is

Figure 0005841410
Figure 0005841410

とすると、発電電圧ΔVは比例定数をkとして Then, the generated voltage ΔV is proportional constant k

Figure 0005841410
Figure 0005841410

となるので、放熱部1003の温度が発熱部1002の温度T0より低い場合は負電圧、温度T0より高い場合は正電圧となる。それゆえ、この発電電圧ΔVをモニタする事で温度T0を基準温度とする温度差を感知する温度差センサとしての機能もある。 Therefore, when the temperature of the heat radiating part 1003 is lower than the temperature T 0 of the heat generating part 1002, it becomes a negative voltage, and when it is higher than the temperature T 0 , it becomes a positive voltage. Therefore, there is also a function as a temperature difference sensor that senses a temperature difference with the temperature T 0 as a reference temperature by monitoring the generated voltage ΔV.

この発電電圧ΔVは、スィッチング回路1004及び昇圧回路1005と蓄電回路1006に入力される。この蓄電回路1006から供給される電力で昇圧/制御回路1007とスィッチング回路1004を駆動させている。この昇圧/制御回路1007は発電電圧ΔVをモニタし、放熱部1003の温度Tが、発熱部1002の温度T0以下になり、負電圧となるとスィッチング回路1004を起動させ発電電圧の符号を反転させる。この一連の電圧制御は昇圧/制御回路1007に内蔵されているV字型電圧制御回路1008で行われ、このV字型電圧制御回路1008とスィッチング回路1004にて、温度T0を対称中心としたV字型電圧信号が生成される。このV字型電圧信号は昇圧/制御回路1007に内蔵されている増幅回路1009で所望の電圧に増幅されて図6並びに図8記載のV字型印加電圧として出力され、水晶発振回路の負荷容量構成部1010に入力される。この一連の動作は、すべて熱発電素子1001より供給される電圧で行われるので、なんら他の電力供給源は必要としない。 The generated voltage ΔV is input to the switching circuit 1004, the booster circuit 1005, and the power storage circuit 1006. The boost / control circuit 1007 and the switching circuit 1004 are driven by the electric power supplied from the power storage circuit 1006. This step-up / control circuit 1007 monitors the generated voltage ΔV, and when the temperature T of the heat dissipating unit 1003 falls below the temperature T 0 of the heat generating unit 1002 and becomes negative, the switching circuit 1004 is activated to invert the sign of the generated voltage. . This series of voltage control is performed by a V-shaped voltage control circuit 1008 built in the booster / control circuit 1007. The V-shaped voltage control circuit 1008 and the switching circuit 1004 have a temperature T 0 as the center of symmetry. A V-shaped voltage signal is generated. This V-shaped voltage signal is amplified to a desired voltage by an amplifier circuit 1009 built in the booster / control circuit 1007 and output as a V-shaped applied voltage shown in FIGS. 6 and 8, and the load capacitance of the crystal oscillation circuit Input to the configuration unit 1010. Since this series of operations is performed with the voltage supplied from the thermoelectric generator 1001, no other power supply source is required.

以上の説明から、図6及び図8記載のV字型印加電圧特性曲線の対称中心の基準温度TS、及び音叉型水晶振動子の直列共振周波数の周波数温度特性における頂点温度を、発熱部1002の温度T0と等しく設定し、さらに所望のV字型印加電圧特性曲線になるべく増幅回路1009の増幅率を設定すれば、水晶発振回路の発振周波数の温度補償が実現できる事になる。なお本発明に係る温度補償方法は、音叉型水晶振動子に限定されるものでなく、その放物線状の周波数温度特性を持つ水晶振動子ならば、すべてにおいて適応できる温度補償方法である。また、図10記載の温度一定の発熱部1002は、体温が一定な生体表面等を想定しているが、かならずしも生体にこだわるものでなく、あくまでも温度が一定な場所及び環境ならば有効である事をここに明記する。 From the above description, the reference temperature T S at the center of symmetry of the V-shaped applied voltage characteristic curve shown in FIGS. 6 and 8 and the apex temperature in the frequency temperature characteristic of the series resonance frequency of the tuning fork type crystal resonator are expressed as the heating unit 1002. of set equal to the temperature T 0, if further setting the amplification factor of as much as possible to the desired V-shaped applied voltage characteristic curve the amplifier circuit 1009, a temperature compensation of the oscillation frequency of the crystal oscillator circuit is to be able to realize. The temperature compensation method according to the present invention is not limited to a tuning fork type crystal resonator, and is a temperature compensation method applicable to all crystal resonators having a parabolic frequency temperature characteristic. Further, although the heat generating unit 1002 having a constant temperature shown in FIG. 10 assumes a living body surface having a constant body temperature, it is not necessarily particular to a living body, and is effective only in a place and environment where the temperature is constant. Is specified here.

以下、本発明の実施形態に係る熱発電型携帯機器の温度補償方法について説明する。図1は本発明に係る熱発電型携帯機器の温度補償方法の第一の実施例を説明するブロック図である。本図は図10で説明したV字型電圧発生部101と水晶発振回路108より構成されており、V字型電圧発生部101は、図10の説明と同じく、熱発電素子102、スィッチング回路103、昇圧回路104、蓄電回路105、V字型電圧制御回路106及び増幅回路107で構成されている。このV字型電圧発生部101におけるV字型電圧発生及び制御に関しては、図10の説明で述べたのでここでは省略する。水晶発振回路108は、水晶振動子109、ゲート容量110、ドレイン容量111、反転増幅器112及びバッファ113で構成されている。水晶振動子109は音叉型水晶振動子に代表される放物線状の周波数温度特性を持つ水晶振動子であり、その放物線の頂点温度は前述したように図10記載の発熱部1002の温度と略同一温度に設定されている。特に腕時計等に代表される生体装着型の計時装置においては、この頂点温度はほぼ生体の体温と等しく設定される。この水晶発振回路108の負荷容量を構成している部分が図記載の負荷容量構成部114である。本図における負荷容量構成部114は、単純にゲート容量110とドレイン容量111をそれぞれ、一個の可変容量ダイオードに置き換えた構成をとっている。この時、ゲート容量110の容量値をCvg、ドレイン容量の容量値をCvdとすれば、この負荷容量構成部114で決定される本発明に係る電圧可変型負荷容量CvLは、 Hereinafter, a temperature compensation method for a thermoelectric portable device according to an embodiment of the present invention will be described. FIG. 1 is a block diagram for explaining a first embodiment of a temperature compensation method for a thermoelectric portable device according to the present invention. This figure is composed of the V-shaped voltage generator 101 and the crystal oscillation circuit 108 described with reference to FIG. 10. The V-shaped voltage generator 101 is similar to the description of FIG. 10 in that it includes the thermoelectric generator 102 and the switching circuit 103. , A booster circuit 104, a power storage circuit 105, a V-shaped voltage control circuit 106, and an amplifier circuit 107. The V-shaped voltage generation and control in the V-shaped voltage generator 101 has been described in the description of FIG. The crystal oscillation circuit 108 includes a crystal resonator 109, a gate capacitor 110, a drain capacitor 111, an inverting amplifier 112, and a buffer 113. The crystal unit 109 is a crystal unit having a parabolic frequency temperature characteristic represented by a tuning fork type crystal unit, and the apex temperature of the parabola is substantially the same as the temperature of the heat generating unit 1002 shown in FIG. The temperature is set. In particular, in a biological wearable timing device represented by a wristwatch or the like, this vertex temperature is set to be approximately equal to the body temperature of the living body. The portion constituting the load capacitance of the crystal oscillation circuit 108 is a load capacitance constituting portion 114 shown in the figure. The load capacitance configuration unit 114 in this figure simply has a configuration in which each of the gate capacitance 110 and the drain capacitance 111 is replaced with one variable capacitance diode. At this time, if the capacitance value of the gate capacitance 110 is C vg and the capacitance value of the drain capacitance is C vd , the voltage variable load capacitance C vL according to the present invention determined by the load capacitance configuration unit 114 is

Figure 0005841410
Figure 0005841410

となる。
図1記載のV字型電圧発生部101で生成されたV字型電圧は、水晶発振回路108の負荷容量構成部114のゲート容量110とドレイン容量111の双方に印加される。その結果、水晶発振回路108にて励振される発振周波数は温度補償され、温度変化に対して安定な周波数温度特性を持つ。この温度補償された発振周波数が、本図記載の分周回路115に入力され、この分周回路115にて周期一秒のパルス信号に変換される。
It becomes.
The V-shaped voltage generated by the V-shaped voltage generating unit 101 shown in FIG. 1 is applied to both the gate capacitance 110 and the drain capacitance 111 of the load capacitance forming unit 114 of the crystal oscillation circuit 108. As a result, the oscillation frequency excited by the crystal oscillation circuit 108 is temperature-compensated and has a frequency-temperature characteristic that is stable against temperature changes. The temperature-compensated oscillation frequency is input to the frequency dividing circuit 115 shown in the figure, and is converted into a pulse signal having a period of 1 second by the frequency dividing circuit 115.

図6記載の直線的なV字型印加電圧特性曲線601を生成する場合、本図記載のV字型電圧発生部101の増幅回路107は線形増幅回路となる。それに対して、図8記載の下に凸の二次曲線成分を含んだV字型印加電圧特性曲線801を生成する場合、本図記載のV字型電圧発生部101の増幅回路107は非線形増幅回路となる。   When the linear V-shaped applied voltage characteristic curve 601 shown in FIG. 6 is generated, the amplifier circuit 107 of the V-shaped voltage generator 101 shown in this figure is a linear amplifier circuit. On the other hand, when the V-shaped applied voltage characteristic curve 801 including the convex quadratic curve component shown in FIG. 8 is generated, the amplifying circuit 107 of the V-shaped voltage generator 101 shown in FIG. It becomes a circuit.

(実施の形態2)
本発明の実施の形態2における熱発電型計時機能付生体携帯機器の実施例を説明する。 図2は本発明に係る熱発電型携帯機器の温度補償方法の第2の実施例を説明するブロック図である。本図は実施の形態1の図1と同様にV字型電圧発生部201と水晶発振回路208より構成されており、V字型電圧発生部201は、図1の説明と同じく、熱発電素子202、スィッチング回路203、昇圧回路204、蓄電回路205、V字型電圧制御回路206及び増幅回路207で構成されている。このV字型電圧発生部201におけるV字型電圧発生及び制御に関しては、図10の説明で述べたのでここでは省略する。水晶発振回路208は、水晶振動子209、ゲート容量210、ドレイン容量211、反転増幅器212及びバッファ213で構成されている。水晶振動子209は音叉が型水晶振動子に代表される放物線状の周波数温度特性を持つ水晶振動子であり、その放物線の頂点温度は前述したように図10記載の発熱部1002の温度と略同一温度に設定されている。特に腕時計等に代表される生体装着型の計時装置においては、この頂点温度はほぼ生体の体温と等しく設定される。この水晶発振回路208の負荷容量を構成している部分が図記載の負荷容量構成部214である。図2における負荷容量構成部214は、単純にゲート容量210とドレイン容量211をそれぞれ、一個の可変容量ダイオードに置き換えた構成をとっている。この時、ゲート容量110の容量値をCvg、ドレイン容量の容量値をCvdとすれば、この負荷容量構成部114で決定される本発明に係る電圧可変型負荷容量CvLは、図1と同じく[数7]で与えられる。
(Embodiment 2)
An example of a bioelectric portable device with a thermoelectric generation type timekeeping function according to Embodiment 2 of the present invention will be described. FIG. 2 is a block diagram for explaining a second embodiment of the temperature compensation method for a thermoelectric portable device according to the present invention. This figure is composed of a V-shaped voltage generator 201 and a crystal oscillation circuit 208 as in FIG. 1 of the first embodiment. The V-shaped voltage generator 201 is similar to the description of FIG. 202, a switching circuit 203, a booster circuit 204, a storage circuit 205, a V-shaped voltage control circuit 206, and an amplifier circuit 207. The V-shaped voltage generation and control in the V-shaped voltage generator 201 has been described in the description of FIG. The crystal oscillation circuit 208 includes a crystal resonator 209, a gate capacitor 210, a drain capacitor 211, an inverting amplifier 212, and a buffer 213. The crystal resonator 209 is a crystal resonator having a parabolic frequency temperature characteristic represented by a tuning fork as a type crystal resonator, and the apex temperature of the parabola is substantially equal to the temperature of the heating unit 1002 shown in FIG. The same temperature is set. In particular, in a biological wearable timing device represented by a wristwatch or the like, this vertex temperature is set to be approximately equal to the body temperature of the living body. The portion constituting the load capacitance of the crystal oscillation circuit 208 is a load capacitance constituting portion 214 shown in the figure. 2 has a configuration in which each of the gate capacitance 210 and the drain capacitance 211 is simply replaced with one variable capacitance diode. At this time, if the capacitance value of the gate capacitance 110 is C vg and the capacitance value of the drain capacitance is C vd , the voltage variable load capacitance C vL according to the present invention determined by the load capacitance configuration unit 114 is as shown in FIG. Like [Formula 7].

このV字型電圧発生部201で生成されたV字型電圧は、水晶発振回路208の負荷容量構成部214のゲート容量210とドレイン容量211の双方に印加される。その結果、水晶発振回路208にて励振される発振周波数は温度補償され、温度変化に対して安定な周波数温度特性を持つ。この温度補償された発振周波数が、本図記載の分周回路215に入力され、この分周回路215で周期一秒のパルス信号に変換され、他の構成素子216を駆動させる。   The V-shaped voltage generated by the V-shaped voltage generating unit 201 is applied to both the gate capacitance 210 and the drain capacitance 211 of the load capacitance forming unit 214 of the crystal oscillation circuit 208. As a result, the oscillation frequency excited by the crystal oscillation circuit 208 is temperature-compensated and has a frequency-temperature characteristic that is stable against temperature changes. The temperature-compensated oscillation frequency is input to the frequency dividing circuit 215 shown in the figure, and is converted into a pulse signal having a period of 1 second by the frequency dividing circuit 215 to drive other components 216.

図6記載の直線的なV字型印加電圧特性曲線601を生成する場合、本図記載のV字型電圧発生部201の増幅回路207は線形増幅回路となる。それに対して、図8記載の下に凸の二次曲線成分を含んだV字型印加電圧特性曲線801を生成する場合、本図記載のV字型電圧発生部201の増幅回路207は非線形増幅回路となる。   When the linear V-shaped applied voltage characteristic curve 601 illustrated in FIG. 6 is generated, the amplifier circuit 207 of the V-shaped voltage generation unit 201 illustrated in FIG. 6 is a linear amplifier circuit. On the other hand, when the V-shaped applied voltage characteristic curve 801 including the convex quadratic curve component shown in FIG. 8 is generated, the amplifier circuit 207 of the V-shaped voltage generator 201 shown in FIG. It becomes a circuit.

この図2で説明する熱発電型携帯機器の温度補償方法の第二の実施例は、V字型電圧発生部201の蓄電回路205で蓄積された電力は、V字型電圧発生回路201を駆動させるだけでなく、水晶発振回路208及び分周回路215さらには他の構成素子216をも駆動させるという特徴を持っている。   In the second embodiment of the temperature compensation method for the thermoelectric generation portable device described in FIG. 2, the electric power accumulated in the power storage circuit 205 of the V-shaped voltage generator 201 drives the V-shaped voltage generator circuit 201. In addition, the crystal oscillation circuit 208, the frequency dividing circuit 215, and other components 216 are also driven.

以上、本発明に係る熱発電型携帯機器の温度補償方法における負荷容量構成部の可変容量ダイオードの電気的配線及びV字型印加電圧の印加方法は、必ずしも、図1及び図2記載の構成に限定されることはなく、製品の仕様などで便宜設計変更できることゆうまでもない。さらに、V字型電圧発生部の熱発電素子は、必ずしも、図1及び図2記載の如く、一個の熱発電素子の配置構成に限定されることはなく、二個の熱発電素子を互いに極性を変えて配置する構成であってもよい。   As described above, the electrical wiring of the variable capacitance diode and the method of applying the V-shaped applied voltage in the load capacitance configuration unit in the temperature compensation method for the thermoelectric generation portable device according to the present invention are not necessarily configured as shown in FIGS. There is no limitation, and it is needless to say that the design can be changed according to the specifications of the product. Further, the thermoelectric generator of the V-shaped voltage generator is not necessarily limited to the arrangement configuration of one thermoelectric generator as shown in FIGS. 1 and 2, and the two thermoelectric generators are connected to each other in polarity. It is also possible to use a configuration in which these are changed.

101 V字型電圧発生部
102 熱発電素子
103 スィッチング回路
104 昇圧回路
105 蓄電回路
106 V字型電圧制御回路
107 増幅回路
108 水晶発振回路
109 水晶振動子
111 ゲート容量
112 ドレイン容量
113 バッファ
114 負荷容量構成部
115 分周回路
DESCRIPTION OF SYMBOLS 101 V-shaped voltage generation part 102 Thermoelectric power generation element 103 Switching circuit 104 Booster circuit 105 Power storage circuit 106 V-shaped voltage control circuit 107 Amplifier circuit 108 Crystal oscillation circuit 109 Crystal oscillator 111 Gate capacity 112 Drain capacity 113 Buffer 114 Load capacity configuration 115 frequency divider circuit

Claims (4)

水晶振動子を有する水晶発振回路と、
熱源と温度差とに基づき発電する熱発電素子と、
前記熱発電素子から出力される発電電圧から制御電圧を生成し、前記制御電圧の値に基づいて前記水晶発振回路の負荷容量値を電圧制御し、前記水晶発振回路の発振周波数の温度特性を制御する制御部とを有する事を特徴とする熱発電型携帯機器。
A crystal oscillation circuit having a crystal resonator;
A thermoelectric generator that generates electricity based on a heat source and a temperature difference;
A control voltage is generated from the generated voltage output from the thermoelectric generator, voltage control is performed on the load capacitance value of the crystal oscillation circuit based on the value of the control voltage, and temperature characteristics of the oscillation frequency of the crystal oscillation circuit are controlled. And a thermoelectric power generation portable device characterized by having a control unit.
前記水晶振動子は、音叉型水晶振動子であり、
前記音叉型水晶振動子の前記発振周波数の前記温度特性における頂点温度は、前記熱源の温度と略同一であり、
前記制御電圧の温度依存性が、前記頂点温度を対称点としたに凸のV字型であるV字型特性に設定されている事を特徴とした請求項1に記載の熱発電型携帯機器。
The crystal unit is a tuning fork type crystal unit,
The apex temperature in the temperature characteristic of the oscillation frequency of the tuning fork type crystal resonator is substantially the same as the temperature of the heat source,
2. The thermoelectric generator according to claim 1, wherein the temperature dependency of the control voltage is set to a V-shaped characteristic that is a downwardly convex V-shape with the vertex temperature as a symmetry point. 3. machine.
前記V字型特性に対して、正係数をもつ二次曲線成分を含ませた事を特徴とする請求項2に記載の熱発電型携帯機器。   The thermoelectric generation portable device according to claim 2, wherein a quadratic curve component having a positive coefficient is included in the V-shaped characteristic. 前記制御部は、前記熱発電素子より出力された発電電圧を昇圧及び蓄電する機能を有すると共に、前記昇圧または前記蓄電された前記発電電圧を用いて、前記水晶発振回路を駆動させる事を特徴とした請求項2または請求項3に記載の熱発電型携帯機器。   The control unit has a function of boosting and storing the power generation voltage output from the thermoelectric generator, and driving the crystal oscillation circuit using the boosted or the stored power generation voltage. The thermoelectric power generation type portable device according to claim 2 or claim 3.
JP2011246670A 2011-11-10 2011-11-10 Thermoelectric portable device Expired - Fee Related JP5841410B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011246670A JP5841410B2 (en) 2011-11-10 2011-11-10 Thermoelectric portable device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011246670A JP5841410B2 (en) 2011-11-10 2011-11-10 Thermoelectric portable device

Publications (2)

Publication Number Publication Date
JP2013106081A JP2013106081A (en) 2013-05-30
JP5841410B2 true JP5841410B2 (en) 2016-01-13

Family

ID=48625355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011246670A Expired - Fee Related JP5841410B2 (en) 2011-11-10 2011-11-10 Thermoelectric portable device

Country Status (1)

Country Link
JP (1) JP5841410B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0915353A (en) * 1995-04-26 1997-01-17 Citizen Watch Co Ltd Watch with generating element
JPH11248866A (en) * 1998-03-04 1999-09-17 Seiko Instruments Inc Electronic time piece with charging electrode
JP2000193763A (en) * 1998-10-22 2000-07-14 Citizen Watch Co Ltd Thermoelectric power generation watch
JP2005217903A (en) * 2004-01-30 2005-08-11 Seiko Epson Corp Tuning fork type oscillating piece and electronic apparatus
JP2007078405A (en) * 2005-09-12 2007-03-29 Kojima Press Co Ltd Timing program of software timepiece
JP2008227893A (en) * 2007-03-13 2008-09-25 Epson Toyocom Corp Temperature compensated piezoelectric oscillator
JP4891131B2 (en) * 2007-03-30 2012-03-07 京セラキンセキ株式会社 Temperature compensation method for temperature compensated oscillator and temperature compensated oscillator

Also Published As

Publication number Publication date
JP2013106081A (en) 2013-05-30

Similar Documents

Publication Publication Date Title
CN102780452B (en) Temperature-compensated oscillator and electronic device
JP4293189B2 (en) Piezoelectric actuator driving device, electronic device, and driving method of electronic device
US8773004B2 (en) Circuit for optimizing the recovery of vibratory energy by a mechanical/electrical converter
US10528011B2 (en) Oscillation device and timepiece with temperature compensation function
US9048420B2 (en) Power generation unit, electronic apparatus, transportation device, and method of controlling power generation unit
CN102751946B (en) Temperature-compensated oscillator and electronic device
JP7192938B2 (en) Electronically controlled mechanical timepiece and control method for electronically controlled mechanical timepiece
EP1701438A3 (en) Temperature-compensated piezoelectric oscillator
US11619910B2 (en) Timepiece including a mechanical movement whose operation is controlled by an electronic device
CN109510603B (en) Piezoelectric element for frequency automatic control circuit, mechanical oscillation system and device including piezoelectric element
CN103250347A (en) Oscillator and ic chip
JP5841410B2 (en) Thermoelectric portable device
JP7297126B2 (en) Clock movement with oscillator containing piezoelectric spring
JP5034772B2 (en) Temperature compensated piezoelectric oscillator
JP3767388B2 (en) Piezoelectric governor and electronic device using the piezoelectric governor
JP5939852B2 (en) Analog electronic clock
JP7115332B2 (en) Electronically controlled mechanical timepiece, control method for electronically controlled mechanical timepiece, and electronic timepiece
CN105278322A (en) Analog electronic timepiece
JP2013017074A (en) Temperature compensation oscillator and electronic apparatus
JP7402927B2 (en) Timing movement with oscillator with piezoelectric balance spring
JP2001313529A (en) Oscillation circuit, constant voltage generating circuit, semiconductor device, and mobile electronic device provided with them and clock
JP3539110B2 (en) Oscillation circuit, semiconductor device, and portable electronic device and clock provided with these
JPS60121823A (en) Temperature compensating circuit of oscillator
JP5831002B2 (en) Oscillators and electronics
Orfei Circuitry for nonlinear vibration energy harvesting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140911

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151008

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151113

R150 Certificate of patent or registration of utility model

Ref document number: 5841410

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees