JPWO2018016620A1 - Vibration power generator - Google Patents

Vibration power generator Download PDF

Info

Publication number
JPWO2018016620A1
JPWO2018016620A1 JP2018528891A JP2018528891A JPWO2018016620A1 JP WO2018016620 A1 JPWO2018016620 A1 JP WO2018016620A1 JP 2018528891 A JP2018528891 A JP 2018528891A JP 2018528891 A JP2018528891 A JP 2018528891A JP WO2018016620 A1 JPWO2018016620 A1 JP WO2018016620A1
Authority
JP
Japan
Prior art keywords
vibration
threshold
amplitude
frequency
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018528891A
Other languages
Japanese (ja)
Inventor
増田 新
新 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoto Institute of Technology NUC
Original Assignee
Kyoto Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto Institute of Technology NUC filed Critical Kyoto Institute of Technology NUC
Publication of JPWO2018016620A1 publication Critical patent/JPWO2018016620A1/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K35/00Generators with reciprocating, oscillating or vibrating coil system, magnet, armature or other part of the magnetic circuit
    • H02K35/02Generators with reciprocating, oscillating or vibrating coil system, magnet, armature or other part of the magnetic circuit with moving magnets and stationary coil systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output

Abstract

負性インピーダンス変換回路(26)は、非線形振動子(50)に振動を与える。スイッチ切替部(24)は、非線形振動子(50)の振動の振幅が予め設定された閾値以上の場合、負性インピーダンス変換回路(26)が非線形振動子(50)に非接続である第1状態にし、非線形振動子(50)の振動の振幅が閾値未満の場合、負性インピーダンス変換回路(26)が非線形振動子(50)に接続され、非線形振動子(50)を励振する第2状態にする。振幅・周波数検出部(41)は、非線形振動子(50)の振動周波数を検出する。閾値設定部(4212)は、非線形振動子(50)の複数動作点共存帯域を含む励振部が励振する周波数帯域に振動周波数が含まれるか否かに応じて、閾値を設定する。The negative impedance conversion circuit (26) applies vibration to the non-linear oscillator (50). The switch switching unit (24) is configured such that the negative impedance conversion circuit (26) is not connected to the non-linear oscillator (50) when the amplitude of the vibration of the non-linear oscillator (50) is equal to or greater than a preset threshold. In the second state, when the amplitude of the vibration of the non-linear oscillator (50) is less than the threshold, the negative impedance conversion circuit (26) is connected to the non-linear oscillator (50) to excite the non-linear oscillator (50) Make it The amplitude / frequency detection unit (41) detects the vibration frequency of the non-linear oscillator (50). The threshold setting unit (4212) sets the threshold according to whether or not the vibration frequency is included in the frequency band in which the excitation unit including the multiple operating point coexistence band of the non-linear vibrator (50) excites.

Description

本発明は、振動発電装置に関する。   The present invention relates to a vibration power generator.

近年、エネルギハーベスティング(環境発電)の注目度が増している。環境発電に用いるエネルギは、太陽光や照明光等の光、機械や構造物の発する振動、熱等の身の回りにある密度の小さいエネルギであり、この通常捨てられるエネルギを効率よく電力に変換し活用するものである。   In recent years, the attention of energy harvesting (environmental power generation) has been increasing. Energy used for environmental power generation is light with low density such as light such as sunlight and illumination light, vibration emitted from machinery and structures, heat and so on, and this energy that is usually thrown away is efficiently converted into power and utilized It is

振動エネルギを電力に変換する共振型の振動発電装置は、質量要素とばね要素から成る振動子と電気機械変換器を組み込んで構成される。振動する機械などの振動源に振動発電装置を機械的に結合し、振動源の振動により振動子を機械的に共振させて電気機械変換器で振動源の振動エネルギの一部を電気エネルギに変換する。   A resonant vibration power generator for converting vibration energy into electric power is configured by incorporating a vibrator comprising an mass element and a spring element and an electromechanical transducer. A vibration power generator is mechanically coupled to a vibration source such as a vibrating machine, and the vibrator is mechanically resonated by the vibration of the vibration source to convert a portion of the vibration energy of the vibration source into electrical energy with an electromechanical converter. Do.

このような振動発電装置としては、電気機械変換器として、電磁型変換器を用いたもの、圧電素子を用いたもの、磁歪素子を用いたものなどが考案され、また、振動子は、板バネ、コイルばね、振り子などをばね要素として用いた線形振動子を有するものが提案されている(例えば非特許文献1、非特許文献2参照)。或いは、永久磁石による吸引力や斥力を復元力として用いる磁気ばねを用いた振動発電装置も提案されている(例えば特許文献1、特許文献2参照)。   As such a vibration power generation apparatus, one using an electromagnetic converter, one using a piezoelectric element, one using a magnetostrictive element, etc. is devised as an electromechanical transducer, and the vibrator is a leaf spring. , And a linear vibrator using a coil spring, a pendulum or the like as a spring element have been proposed (see, for example, Non-Patent Document 1 and Non-Patent Document 2). Alternatively, a vibration power generation apparatus using a magnetic spring using a suction force or a repulsion force by a permanent magnet as a restoring force has also been proposed (see, for example, Patent Document 1 and Patent Document 2).

これらの振動発電装置は、振動子の力学的エネルギを電気エネルギに変換するいわゆる電気機械変換器を備え、振動源の振動周波数と振動子の固有振動周波数とを一致させて共振させることで振動子の振動振幅を大きくしている。電気機械変換器は、振動子の振動振幅が大きいほど大きな発電電力を生じる。振動子の共振周波数での振動振幅を大きくするには、振動子の機械損失を低くする、即ち、振動子の機械的Q値が大きくなるように振動子を設計することが好ましい。但し、振動子の機械的Q値が大きくなると、その分、有効動作帯域が縮小し,振動源の振動周波数と振動子の固有振動周波数がずれたときの発電性能の低下が顕著になってしまう。特に、現実に存在する振動源の多くは、振動周波数が経時的に変動する。従って、振動発電装置において、振動子の機械的Q値を大きく設計することには限度がある。   These vibration power generators include so-called electromechanical transducers that convert mechanical energy of the vibrator into electrical energy, and the vibrator is configured to resonate by matching the vibration frequency of the vibration source with the natural vibration frequency of the vibrator. The vibration amplitude of is increased. The electromechanical converter produces larger generated power as the vibration amplitude of the vibrator is larger. In order to increase the vibration amplitude at the resonant frequency of the vibrator, it is preferable to design the vibrator so as to lower the mechanical loss of the vibrator, that is, to increase the mechanical Q value of the vibrator. However, as the mechanical Q value of the vibrator increases, the effective operating band is correspondingly reduced, and the power generation performance drops significantly when the vibration frequency of the vibration source and the natural vibration frequency of the vibrator deviate from each other. . In particular, in many of the actual vibration sources, the vibration frequency fluctuates with time. Therefore, there is a limit in designing a large mechanical Q value of the vibrator in the vibration power generator.

また、振動源の振幅変動に応じて振動子の動作を変化させる制御回路を備えた振動発電装置が提案されている(例えば特許文献3参照)。この振動発電装置は、電磁型の電気機械変換器を備えており、振動源の振幅変動に応じて電気機械変換器の特性を調節する。但し、この振動発電装置は、振動源の振動周波数が変動した場合は発電電力が低下してしまう。   Further, a vibration power generation apparatus provided with a control circuit that changes the operation of the vibrator in accordance with the amplitude fluctuation of the vibration source has been proposed (see, for example, Patent Document 3). This vibration power generator includes an electromagnetic type electromechanical transducer, and adjusts the characteristics of the electromechanical transducer according to the amplitude fluctuation of the vibration source. However, in this vibration power generation device, the generated power is reduced when the vibration frequency of the vibration source fluctuates.

更に、複数の振動子を備え、振動源の振動周波数の変動に対して、最適な振動子に切り替える可変容量型の振動発電装置が提案されている(特許文献4参照)。ところが、特許文献4に記載された振動発電装置は、振動源の振動周波数が連続的に変動する場合に十分に最適化されない虞がある。また、振動子の動作を能動的に制御することにより、任意の振動源に対応して振動子が共振した状態を実現する手法が提案されている(特許文献5参照)。ところが、特許文献5に記載された技術では、振動源の速度を計測するセンサが必要となり、構成が複雑になる虞がある。   Furthermore, a variable capacity vibration power generator has been proposed that includes a plurality of vibrators and switches to a vibrator that is optimal for fluctuations in the vibration frequency of the vibration source (see Patent Document 4). However, the vibration power generation device described in Patent Document 4 may not be sufficiently optimized when the vibration frequency of the vibration source fluctuates continuously. Further, there has been proposed a method of realizing a state in which a vibrator resonates in response to an arbitrary vibration source by actively controlling the operation of the vibrator (see Patent Document 5). However, the technology described in Patent Document 5 requires a sensor for measuring the velocity of the vibration source, which may make the configuration complicated.

これに対して、質量要素と非線形ばね要素とを有する非線形振動子と、非線形振動子で生じる力学的エネルギを電気エネルギに変換する電気機械変換器と、を備える共振型の振動発電装置が提案されている(例えば特許文献6参照)。この振動発電装置は、非線形ばね要素を使用することにより,機械的Q値を大きくしつつ有効動作帯域を広くとることを可能にする。しかし、非線形振動子は、共振周波数帯域において、大振幅振動動作点と小振幅振動動作点とを共存的にとりうる。そこで、この振動発電装置は、予め非線形振動子の振幅閾値を設定し、非線形振動子の振動振幅が振幅閾値未満の場合、電気機械変換器から見た出力側のインピーダンスを負にすることにより電気機械変換器を介して非線形振動子側へエネルギを環流させる。これにより、非線形振動子を励振して動作点を大振幅振動動作点に強制的に変化させることにより、発電効率を高めている。   On the other hand, a resonance type vibration power generator is proposed which includes a non-linear oscillator having a mass element and a non-linear spring element, and an electromechanical transducer for converting mechanical energy generated by the non-linear oscillator into electrical energy. (See, for example, Patent Document 6). This vibration power generator makes it possible to widen the effective operating band while increasing the mechanical Q factor by using a non-linear spring element. However, in the resonant frequency band, the non-linear oscillator can have both the large amplitude oscillation operating point and the small amplitude oscillation operating point. Therefore, in this vibration power generation apparatus, the amplitude threshold of the non-linear vibrator is set in advance, and when the vibration amplitude of the non-linear vibrator is less than the amplitude threshold, the impedance on the output side viewed from the electromechanical transducer is made negative. Energy is circulated to the non-linear oscillator side via a mechanical converter. As a result, the power generation efficiency is enhanced by exciting the non-linear oscillator to forcibly change the operating point to the large amplitude oscillating operating point.

特開2002−281727号公報JP 2002-281727 A 特開2005−33917号公報JP 2005-33917 A 特開2003−199313号公報Unexamined-Japanese-Patent No. 2003-199313 特開2005−137071号公報Japanese Patent Application Laid-Open No. 2005-137071 特開2009−17769号公報JP, 2009-17769, A 特開2012−60864号公報JP 2012-60864 A

S. P. Beeby, M. J. Tudor, N. M. White, Energy Harvesting Vibration Sources for Microsystems Applications, Meas. Sci. Technol., Vol. 17 (2006) pp. R175-R195.S. P. Beeby, M. J. Tudor, N. M. White, Energy Harvesting Vibration Sources for Microsystems Applications, Meas. Sci. Technol., Vol. 17 (2006) pp. R175-R195. P. D. Mitcheson, E. M. Yeatman, G. K. Rao, A. S. Holmes, T. C. Green, Energy Harvesting from Human and Machine Motion for Wireless Electronic Devices, Proc. of the IEEE, Vol. 96, No. 9 (2008) pp. 1457-1486.P. D. Mitcheson, E. M. Yeatman, G. K. Rao, A. S. Holmes, T. C. Green, Energy Harvesting from Human and Machine Motion for Wireless Electronic Devices, Proc. Of the IEEE, Vol. 96, No. 9 (2008) pp. 1457-1486.

しかしながら、特許文献6に記載された振動発電装置では、振動振幅閾値が振動源の振幅や周波数の大きさに関わらず一定である。従って、振動源の振動周波数が非線形振動子の複数動作点共存帯域に含まれない場合にも、非線形振動子の振動振幅が振幅閾値以下であるため、非線形振動子が励振されてしまう。この場合、振動発電装置は、非線形振動子側へエネルギを環流させ続けることになり、エネルギが無駄に消費されてしまうという問題がある。さらに、振動源の振動周波数が非線形振動子の複数動作点共存帯域に含まれる場合においても、しきい値の設定が不適切である場合、振動源に同期しない概周期解が生起される場合があり、この場合においても、振動発電装置は、非線形振動子側へエネルギを環流させ続けることになり、エネルギが無駄に消費されてしまうという問題がある。   However, in the vibration power generation device described in Patent Document 6, the vibration amplitude threshold is constant regardless of the amplitude or frequency of the vibration source. Therefore, even when the vibration frequency of the vibration source is not included in the multiple operating point coexisting band of the non-linear vibrator, the non-linear vibrator is excited because the vibration amplitude of the non-linear vibrator is equal to or less than the amplitude threshold. In this case, the vibration power generation apparatus continues to circulate energy to the non-linear vibrator side, which causes a problem that energy is wasted. Furthermore, even when the vibration frequency of the vibration source is included in the multiple operating point coexisting band of the non-linear vibrator, if the setting of the threshold is inappropriate, a case where an approximate periodic solution not synchronized with the vibration source may be generated In this case as well, the vibration power generation apparatus continues to circulate energy to the non-linear oscillator side, and there is a problem that energy is wasted wastefully.

本発明は上記事由に鑑みてなされたものであり、無駄なエネルギ消費が抑制された振動発電装置を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a vibration power generation device in which wasteful energy consumption is suppressed.

上記目的を達成するために、本発明に係る振動発電装置は、
質量要素と非線形ばね要素とを有する非線形振動子と、
振動源から前記非線形振動子に与えられる力学的エネルギを電気エネルギに変換する電気機械変換器と、
前記電気機械変換器から入力される電気エネルギを外部へ出力する出力回路と、
前記非線形素子に振動を与える励振部と、
前記非線形振動子の振動の振幅が予め設定された閾値以上の場合、前記励振部が前記非線形振動子に非接続である第1状態にし、前記非線形振動子の振動の振幅が前記閾値未満の場合、前記励振部が前記非線形振動子に接続され、前記非線形振動子を励振する第2状態にする状態切替部と、
前記振動源の振動周波数を検出する周波数検出部と、
前記非線形振動子が複数の動作点をとりうる複数動作点共存帯域を含む励振部が励振する周波数帯域に、前記振動周波数が含まれるか否かに応じて、前記閾値を設定する閾値設定部と、を備える。
In order to achieve the above object, a vibration power generation device according to the present invention is
A non-linear oscillator having a mass element and a non-linear spring element;
An electromechanical transducer for converting mechanical energy given from the vibration source to the non-linear oscillator into electrical energy;
An output circuit for outputting the electrical energy input from the electromechanical converter to the outside;
An excitation unit that vibrates the non-linear element;
When the amplitude of the vibration of the non-linear vibrator is equal to or greater than a preset threshold value, the excitation unit is set to the first state in which the non-linear vibrator is not connected, and the vibration amplitude of the non-linear vibrator is less than the threshold A state switching unit configured to connect the excitation unit to the non-linear oscillator and bring the non-linear oscillator into a second state for excitation;
A frequency detection unit that detects the vibration frequency of the vibration source;
A threshold setting unit configured to set the threshold according to whether or not the vibration frequency is included in a frequency band in which an excitation unit including a plurality of operating point coexistence bands in which the non-linear oscillator can take a plurality of operating points excites; And.

本発明によれば、状態切替部が、非線形振動子の振幅が予め設定された閾値以上の場合、励振部が非線形振動子に非接続である第1状態にし、非線形振動子の振動の振幅が閾値未満の場合、励振部が非線形振動子に接続され、非線形振動子を励振する第2状態にする。そして、閾値設定部が、非線形振動子が複数の動作点をとりうる複数動作点共存帯域を含む励振部が励振する周波数帯域に、振動周波数が含まれるか否かに応じて、閾値を設定する。これにより、例えば非線形振動子の振動周波数が複数動作点共存帯域に含まれない場合に、閾値設定部が閾値レベルをゼロに設定するようにすれば、非線形振動子の振動周波数が複数動作点共存帯域に対応して設置された周波数帯域とに含まれない場合、励振部が非線形振動子に接続されない(つまり、非線形振動子は発電状態になり、励振されない)。従って、非線形振動子の振動周波数が複数動作点共存帯域を含む励振部が励振する周波数帯域に含まれない場合に、出力回路から非線形振動子へ無駄にエネルギが還流することを防止でき、無駄なエネルギ消費が抑制される。また、例えば非線形振動子の振動周波数が励振部が励振する周波数帯域に含まれる場合、閾値設定部が閾値を、振動源の振幅と周波数とに応じてあらかじめ定めておいた適切な値に設定することにより、概周期解の生起を抑制し、出力回路から非線形振動子へ無駄にエネルギが還流することを防止でき、無駄なエネルギ消費が抑制される。   According to the present invention, when the state switching unit is in the first state in which the exciting unit is not connected to the non-linear vibrator when the amplitude of the non-linear vibrator is equal to or greater than the preset threshold, the amplitude of the vibration of the non-linear vibrator is If it is less than the threshold value, the excitation unit is connected to the non-linear oscillator to bring the non-linear oscillator into the second state for excitation. Then, the threshold setting unit sets the threshold according to whether or not the vibration frequency is included in the frequency band in which the excitation unit including the multiple operating point coexistence band in which the non-linear oscillator can take multiple operating points is excited. . Thus, for example, if the threshold setting unit sets the threshold level to zero when the vibration frequency of the non-linear oscillator is not included in the plurality of operating point coexistence bands, the vibration frequency of the non-linear oscillator coexists with the plurality of operation points If it is not included in the frequency band installed corresponding to the band, the excitation unit is not connected to the non-linear oscillator (that is, the non-linear oscillator is in a power generation state and is not excited). Therefore, when the vibration frequency of the non-linear oscillator is not included in the frequency band excited by the excitation unit including the multiple operating point coexistence band, it is possible to prevent energy from being returned from the output circuit to the non-linear oscillator wastefully. Energy consumption is reduced. Further, for example, when the vibration frequency of the non-linear vibrator is included in the frequency band in which the excitation unit excites, the threshold setting unit sets the threshold to an appropriate value previously determined according to the amplitude and frequency of the vibration source. As a result, the occurrence of the approximately periodic solution can be suppressed, energy can be prevented from being unnecessarily returned from the output circuit to the non-linear oscillator, and unnecessary energy consumption can be suppressed.

本発明の実施の形態に係る振動発電装置の構成図である。It is a block diagram of the vibration electric power generating apparatus which concerns on embodiment of this invention. 実施の形態に係る非線形振動子の非線形ばね特性を示す図である。It is a figure showing the nonlinear spring characteristic of the nonlinear oscillator concerning an embodiment. 実施の形態に係る非線形振動子と線形振動子の周波数特性を示す図である。It is a figure which shows the frequency characteristic of the nonlinear oscillator which concerns on embodiment, and a linear oscillator. 実施の形態に係る制御部を示すブロック図である。It is a block diagram showing a control part concerning an embodiment. 実施の形態に係る非線形振動子の振動振幅と、振幅閾値と、の振動周波数依存性を示す図である。It is a figure which shows the vibration frequency dependence of the vibration amplitude of the nonlinear vibrator concerning embodiment, and an amplitude threshold value. 実施の形態に係る振動発電装置の模式図である。It is a schematic diagram of the vibration electric power generating apparatus which concerns on embodiment. 実施の形態に係る制御部が実行する電圧閾値制御処理を示すフローチャートである。It is a flowchart which shows the voltage threshold value control processing which the control part which concerns on embodiment performs. 比較例に係る振動発電装置の振動周波数依存性を示す図である。It is a figure which shows the vibration frequency dependence of the vibration electric power generating apparatus which concerns on a comparative example. 実施の形態に係る振動発電装置の振動周波数依存性を示す図である。It is a figure which shows the vibration frequency dependence of the vibration electric power generating apparatus which concerns on embodiment. 励振部を備えない振動発電装置の場合の非線形振動子の変位と発電機の負荷抵抗の履歴を示す図である。It is a figure which shows the displacement of the nonlinear vibrator | oscillator in the case of the vibration electric power generating apparatus which does not have an excitation part, and the log | history of load resistance of a generator. 比較例に係る振動発電装置の場合の非線形振動子の変位と発電機の負荷抵抗の履歴を示す図である。It is a figure which shows the displacement of the nonlinear oscillator in the case of the vibration electric power generating apparatus which concerns on a comparative example, and the log | history of load resistance of a generator. 実施の形態に係る振動発電装置の場合の非線形振動子の変位と発電機の負荷抵抗の履歴を示す図である。It is a figure which shows the displacement of the nonlinear vibrator | oscillator in the case of the vibration electric power generating apparatus which concerns on embodiment, and the log | history of load resistance of a generator. 振動発電装置の発電機における累積発電量を示す図である。It is a figure which shows the accumulated power generation amount in the generator of a vibration electric power generating apparatus. 励振部を備えない振動発電装置の場合の非線形振動子の変位と発電機の負荷抵抗の履歴を示す図である。It is a figure which shows the displacement of the nonlinear vibrator | oscillator in the case of the vibration electric power generating apparatus which does not have an excitation part, and the log | history of load resistance of a generator. 比較例に係る振動発電装置の場合の非線形振動子の変位と発電機の負荷抵抗の履歴を示す図である。It is a figure which shows the displacement of the nonlinear oscillator in the case of the vibration electric power generating apparatus which concerns on a comparative example, and the log | history of load resistance of a generator. 実施の形態に係る振動発電装置の場合の非線形振動子の変位と発電機の負荷抵抗の履歴を示す図である。It is a figure which shows the displacement of the nonlinear vibrator | oscillator in the case of the vibration electric power generating apparatus which concerns on embodiment, and the log | history of load resistance of a generator. 振動発電装置の発電機における累積発電量を示す図である。It is a figure which shows the accumulated power generation amount in the generator of a vibration electric power generating apparatus. 励振部を備えない振動発電装置の場合の非線形振動子の変位と発電機の負荷抵抗の履歴を示す図である。It is a figure which shows the displacement of the nonlinear vibrator | oscillator in the case of the vibration electric power generating apparatus which does not have an excitation part, and the log | history of load resistance of a generator. 比較例に係る振動発電装置の場合の非線形振動子の変位と発電機の負荷抵抗の履歴を示す図である。It is a figure which shows the displacement of the nonlinear oscillator in the case of the vibration electric power generating apparatus which concerns on a comparative example, and the log | history of load resistance of a generator. 実施の形態に係る振動発電装置の場合の非線形振動子の変位と発電機の負荷抵抗の履歴を示す図である。It is a figure which shows the displacement of the nonlinear vibrator | oscillator in the case of the vibration electric power generating apparatus which concerns on embodiment, and the log | history of load resistance of a generator. 振動発電装置の発電機における累積発電量を示す図である。It is a figure which shows the accumulated power generation amount in the generator of a vibration electric power generating apparatus. 励振部を備えない振動発電装置の場合の非線形振動子の変位と発電機の負荷抵抗の履歴を示す図である。It is a figure which shows the displacement of the nonlinear vibrator | oscillator in the case of the vibration electric power generating apparatus which does not have an excitation part, and the log | history of load resistance of a generator. 比較例に係る振動発電装置の場合の非線形振動子の変位と発電機の負荷抵抗の履歴を示す図である。It is a figure which shows the displacement of the nonlinear oscillator in the case of the vibration electric power generating apparatus which concerns on a comparative example, and the log | history of load resistance of a generator. 実施の形態に係る振動発電装置の場合の非線形振動子の変位と発電機の負荷抵抗の履歴を示す図である。It is a figure which shows the displacement of the nonlinear vibrator | oscillator in the case of the vibration electric power generating apparatus which concerns on embodiment, and the log | history of load resistance of a generator. 振動発電装置の発電機における累積発電量を示す図である。It is a figure which shows the accumulated power generation amount in the generator of a vibration electric power generating apparatus. 励振部を備えない振動発電装置の場合の非線形振動子の変位と発電機の負荷抵抗の履歴を示す図である。It is a figure which shows the displacement of the nonlinear vibrator | oscillator in the case of the vibration electric power generating apparatus which does not have an excitation part, and the log | history of load resistance of a generator. 比較例に係る振動発電装置の場合の非線形振動子の変位と発電機の負荷抵抗の履歴を示す図である。It is a figure which shows the displacement of the nonlinear oscillator in the case of the vibration electric power generating apparatus which concerns on a comparative example, and the log | history of load resistance of a generator. 実施の形態に係る振動発電装置の場合の非線形振動子の変位と発電機の負荷抵抗の履歴を示す図である。It is a figure which shows the displacement of the nonlinear vibrator | oscillator in the case of the vibration electric power generating apparatus which concerns on embodiment, and the log | history of load resistance of a generator. 振動発電装置の発電機における累積発電量を示す図である。It is a figure which shows the accumulated power generation amount in the generator of a vibration electric power generating apparatus.

以下、本発明の実施の形態に係る振動発電装置について図面を参照しながら説明する。   Hereinafter, a vibration power generator according to an embodiment of the present invention will be described with reference to the drawings.

本実施の形態に係る振動発電装置は、図1に示すように、電磁振動エネルギ変換器10と、充電回路(出力回路)18と、蓄電部22と、負性インピーダンス変換回路26と、スイッチ38と、スイッチ切替部(状態切替部)24と、振幅・周波数検出部(周波数検出部)41と、振幅検出部25と、制御部42と、を備える。なお、図1においてuは振動源100の変位の方向を表し、xは可動磁石14の振動源100に対する相対的な変位の方向を表す。電磁振動エネルギ変換器10は、筒体56と、筒体56の筒軸方向の両端部に配置された一対の固定磁石51、52と、固定磁石51、52の間に同極が対向するように筒体56内に配置された可動磁石14と、コイル16と、検出コイル161と、を有する。電磁振動エネルギ変換器10は、振動源100に固定されている。振動源100は、例えば機械や動く構造体、人体が挙げられる。可動磁石14は、図1の矢印AR1方向に変位する質量要素に相当する。固定磁石51、52と可動磁石14との間には、磁気ばね(非線形ばね要素)が形成されている。このように、可動磁石14と固定磁石51、52とは、質量要素と磁気ばね要素とを有する非線形振動子50を構成する。また、可動磁石14とコイル16とは、振動源100から非線形振動子50に与えられる力学的エネルギを電気エネルギに変換する電磁誘導型の発電機(電気機械変換器)Gを構成する。負性インピーダンス変換回路26と電気機械変換器Gは非線形振動子50を励振する励振部を構成する。   As shown in FIG. 1, the vibration power generation apparatus according to the present embodiment includes an electromagnetic vibration energy converter 10, a charging circuit (output circuit) 18, a storage unit 22, a negative impedance conversion circuit 26, and a switch 38. And a switch switching unit (state switching unit) 24, an amplitude / frequency detection unit (frequency detection unit) 41, an amplitude detection unit 25, and a control unit 42. In FIG. 1, u represents the direction of displacement of the vibration source 100, and x represents the direction of displacement of the movable magnet 14 relative to the vibration source 100. In the electromagnetic vibration energy converter 10, the same pole is opposed between the cylinder 56, the pair of fixed magnets 51 and 52 arranged at both ends in the cylinder axial direction of the cylinder 56, and the fixed magnets 51 and 52. The movable magnet 14 disposed in the cylindrical body 56, the coil 16, and the detection coil 161. The electromagnetic vibrational energy converter 10 is fixed to the vibration source 100. The vibration source 100 may be, for example, a machine, a moving structure, or a human body. The movable magnet 14 corresponds to a mass element displaced in the direction of the arrow AR1 in FIG. A magnetic spring (nonlinear spring element) is formed between the fixed magnets 51 and 52 and the movable magnet 14. Thus, the movable magnet 14 and the fixed magnets 51 and 52 constitute a non-linear vibrator 50 having a mass element and a magnetic spring element. The movable magnet 14 and the coil 16 constitute an electromagnetic induction generator (electromechanical transducer) G that converts mechanical energy given from the vibration source 100 to the non-linear vibrator 50 into electrical energy. The negative impedance conversion circuit 26 and the electromechanical transducer G constitute an excitation unit for exciting the non-linear oscillator 50.

非線形振動子50は、図2Aに示すように、変位xの絶対値が大きくなるに従って次第に復元力F(x)の傾きが大きくなるいわゆるハードニング特性を有する磁気ばねにより質量要素である可動磁石14が支持された構成を有する。非線形振動子50の振動振幅aの振動周波数依存性は、図2Bの曲線S2に示すようになる。なお、図2Bは、正弦波加振に対する振動振幅aを示している。線形振動子の振動振幅aの振動周波数依存性は、図2Bの曲線S1に示すように、共振周波数(ω)で最大となり共振周波数の両側で急に低下している。これに対して、非線形振動子50の振動振幅aの振動周波数依存性は、共振峰が高周波側に折れ曲がったような曲線S2で示される。この共振峰の折れ曲がりにより、振動振幅aが規定の振幅(最大振幅の1/√2に相当する振幅)以上になる振動周波数の帯域(以下、「共振周波数帯域」と称する。)BW2は、線形振動子の共振周波数帯域BW1よりも広くなる。As shown in FIG. 2A, the non-linear oscillator 50 is a movable magnet 14 which is a mass element by a magnetic spring having a so-called hardening characteristic in which the inclination of the restoring force F (x) gradually increases as the absolute value of the displacement x increases. Have a supported configuration. Vibration frequency dependence of the vibration amplitude a 0 of the nonlinear resonator 50 is shown in the curve S2 in FIG. 2B. Incidentally, FIG. 2B shows the vibration amplitude a 0 for sinusoidal excitation. The vibration frequency dependency of the vibration amplitude a 0 of the linear vibrator is maximized at the resonance frequency (ω E ) and suddenly drops on both sides of the resonance frequency, as shown by the curve S1 in FIG. 2B. In contrast, the vibration frequency dependence of the vibration amplitude a 0 of the nonlinear resonator 50, the resonance peak is indicated by the curve S2 as bent to the high frequency side. The bending of the resonance peak, the vibration amplitude a 0 is defined amplitude (maximum amplitude of 1 / √2 corresponding amplitude) above comprising vibration frequency band (hereinafter, referred to as "resonant frequency band".) BW2 is It becomes wider than the resonance frequency band BW1 of the linear oscillator.

また、図2Bに示すように、非線形振動子50の振動周波数が周波数帯域BW3(以下、「複数動作点共存帯域」と称する。)に含まれる場合、非線形振動子50は、比較的安定な大振幅振動動作点(図2B中のM1参照)および小振幅振動動作点(図2B中のM2参照)を含む複数の動作点をとりうる。非線形振動子50の振動周波数が複数動作点共存帯域BW3に含まれる場合、非線形振動子50は、振動源100の振動の初期条件に応じて大振幅振動動作点と小振幅振動動作点とのいずれかに収束する。また、振動源100の振動状態により、非線形振動子50のとりうる動作点が大振幅振動動作点と小振幅振動動作点との間で移り変わるいわゆるジャンプ現象が発生することが知られている。非線形振動子50の動作点が小振幅振動動作点で安定した場合、振動発電装置の発電能力が著しく低下してしまう。そこで、本実施の形態に係る振動発電装置では、負性インピーダンス変換回路26(励振部)を用いて、非線形振動子50の動作点を、大振幅振動動作点で安定させる。詳細は後述する。   Further, as shown in FIG. 2B, when the vibration frequency of the non-linear oscillator 50 is included in the frequency band BW3 (hereinafter referred to as "multiple operating point coexistence band"), the non-linear oscillator 50 is relatively stable and large. There may be multiple operating points, including an amplitude oscillating operating point (see M1 in FIG. 2B) and a small amplitude oscillating operating point (see M2 in FIG. 2B). When the vibration frequency of the non-linear oscillator 50 is included in the multiple operating point coexistence band BW3, the non-linear oscillator 50 is either the large amplitude oscillation operating point or the small amplitude oscillation operating point according to the initial condition of the oscillation of the oscillation source 100. Converge on heels. In addition, it is known that a so-called jump phenomenon in which the operation point of the non-linear oscillator 50 can be shifted between a large amplitude vibration operation point and a small amplitude vibration operation point occurs depending on the vibration state of the vibration source 100. When the operating point of the non-linear oscillator 50 is stabilized at the small amplitude oscillating operating point, the power generation capacity of the oscillating power generator is significantly reduced. Therefore, in the vibration power generation apparatus according to the present embodiment, the operating point of the non-linear vibrator 50 is stabilized at the large amplitude vibration operating point using the negative impedance conversion circuit 26 (excitation unit). Details will be described later.

図1に戻って、充電回路18は、発電機Gから入力される電気エネルギを蓄電部22へ出力する。充電回路18は、整流回路BR18と、平滑用のコンデンサC18と、電圧変換回路181と、を有する。整流回路BR18は、ダイオードブリッジから構成され、その入力端がコイル16の2つの出力端間に接続されている。コンデンサC18は、整流回路BR18の出力端間に接続されている。電圧変換回路181は、DCDCコンバータや力率改善回路を含み、コンデンサC18の両端間に生じる直流電圧を昇圧または降圧して蓄電部22へ出力する。この充電回路18と蓄電部22とは、発電機Gに接続される負荷R18と看做すことができる。   Returning to FIG. 1, the charging circuit 18 outputs the electrical energy input from the generator G to the storage unit 22. The charging circuit 18 includes a rectifier circuit BR18, a smoothing capacitor C18, and a voltage conversion circuit 181. The rectifier circuit BR18 is composed of a diode bridge, and its input end is connected between the two output ends of the coil 16. The capacitor C18 is connected between the output ends of the rectifier circuit BR18. Voltage conversion circuit 181 includes a DC-DC converter and a power factor correction circuit, and boosts or lowers a DC voltage generated between both ends of capacitor C18 and outputs it to storage unit 22. The charging circuit 18 and the storage unit 22 can be regarded as a load R 18 connected to the generator G.

蓄電部22は、二次電池から構成され、充電回路18により充電される。また、蓄電部22は、負性インピーダンス変換回路26に接続され、負性インピーダンス回路26が発電機Gに接続された状態において負性インピーダンス変換回路26へ電力を供給する。   Power storage unit 22 is formed of a secondary battery, and is charged by charging circuit 18. In addition, the storage unit 22 is connected to the negative impedance conversion circuit 26 and supplies power to the negative impedance conversion circuit 26 in a state where the negative impedance circuit 26 is connected to the generator G.

負性インピーダンス変換回路26は、オペアンプOP26と、抵抗R261、R262、R263と、から構成されている。オペアンプOP26のプラス側の入力端は、スイッチ38を介してコイル16の一端側に接続され、マイナス側の入力端は、抵抗R263を介してコイル16の他端側に接続されている。また、オペアンプOP26の出力端は、抵抗R261を介してプラス側の入力端に接続され、抵抗R262を介してマイナス側の入力端に接続されている。更に、オペアンプOP26は、蓄電部22に接続され、蓄電部22から駆動電力の供給を受ける。負性インピーダンス変換回路26の負性抵抗値は、スイッチ38が閉状態のときに発電機Gから見た出力側のインピーダンスが負の値となるように設定されている。即ち、負性インピーダンス変換回路26は、発電機Gに接続された状態において、発電機Gから見た出力側のインピーダンスを負にする。   The negative impedance conversion circuit 26 includes an operational amplifier OP26 and resistors R261, R262, and R263. The positive input terminal of the operational amplifier OP26 is connected to one end of the coil 16 via the switch 38, and the negative input terminal is connected to the other end of the coil 16 via the resistor R263. The output terminal of the operational amplifier OP26 is connected to the positive input terminal via the resistor R261, and is connected to the negative input terminal via the resistor R262. Furthermore, the operational amplifier OP26 is connected to the storage unit 22 and receives supply of drive power from the storage unit 22. The negative resistance value of the negative impedance conversion circuit 26 is set such that the impedance on the output side viewed from the generator G has a negative value when the switch 38 is in the closed state. That is, in the state of being connected to the generator G, the negative impedance conversion circuit 26 makes the impedance on the output side seen from the generator G negative.

スイッチ38は、n型トランジスタ、FET等の半導体素子、またはリードリレーのようなスイッチング素子から構成され、スイッチ切替部24により開閉される。   The switch 38 is composed of a semiconductor element such as an n-type transistor or an FET, or a switching element such as a reed relay, and is opened and closed by the switch switching unit 24.

上記の説明より、検出コイル161の出力電圧は可動磁石14の振動振幅に比例する。スイッチ切替部24は、検出コイル161の出力電圧の振幅値が予め設定された電圧閾値(直流であり、振動閾値に相当する)以上の場合、スイッチ38を開状態にして、負性インピーダンス変換回路26が発電機Gに非接続である状態(第1状態、発電状態のみで励振状態がない状態)にする。一方、スイッチ切替部24は、検出コイル161の出力電圧の振幅値が電圧閾値未満の場合、スイッチ38を閉状態にして、負性インピーダンス変換回路26が発電機Gに接続された状態(第2状態、少なくとも励振状態が存在)にする。スイッチ切替部24は、比較器241と、駆動回路242と、を有する。比較器241のプラス側の入力端は、制御部42に接続され、比較器241のマイナス側の入力端は、整流回路BR18の高電位側の出力端に接続されている。比較器241のプラス側の入力端には、制御部42から電圧閾値に相当する大きさの電圧が入力される。比較器241のマイナス側の入力端には、検出コイル161の出力電圧の振幅値に相当する大きさの電圧が入力される。比較器241は、マイナス側の入力端の電圧値がプラス側の入力端の電圧閾値未満の場合、イネーブル信号を駆動回路242へ出力する。一方、比較器241は、マイナス側の入力端の電圧値がプラス側の入力端の電圧閾値以上の場合、ディセーブル信号を駆動回路242へ出力する。駆動回路242は、比較器241からイネーブル信号が入力されると、スイッチ38のターンオン電圧よりも高い電圧をスイッチ38へ出力し、比較器241からディセーブル信号が入力されると、スイッチ38のターンオン電圧よりも低い電圧をスイッチ38へ出力する。   From the above description, the output voltage of the detection coil 161 is proportional to the vibration amplitude of the movable magnet 14. When the amplitude value of the output voltage of the detection coil 161 is equal to or greater than a preset voltage threshold (DC, which corresponds to a vibration threshold), the switch switching unit 24 opens the switch 38 to set the negative impedance conversion circuit. 26 is in a state where it is not connected to the generator G (first state, only in the power generation state and in the state where there is no excitation state). On the other hand, when the amplitude value of the output voltage of the detection coil 161 is less than the voltage threshold, the switch switching unit 24 closes the switch 38 to connect the negative impedance conversion circuit 26 to the generator G (second State, at least the excitation state exists). The switch switching unit 24 includes a comparator 241 and a drive circuit 242. The positive input terminal of the comparator 241 is connected to the control unit 42, and the negative input terminal of the comparator 241 is connected to the high potential output terminal of the rectifier circuit BR18. A voltage corresponding to the voltage threshold is input from the control unit 42 to the positive input terminal of the comparator 241. To the negative input terminal of the comparator 241, a voltage having a magnitude corresponding to the amplitude value of the output voltage of the detection coil 161 is input. The comparator 241 outputs an enable signal to the drive circuit 242 when the voltage value at the negative input terminal is less than the voltage threshold at the positive input terminal. On the other hand, the comparator 241 outputs the disable signal to the drive circuit 242 when the voltage value at the negative input terminal is equal to or higher than the voltage threshold at the positive input terminal. The drive circuit 242 outputs a voltage higher than the turn-on voltage of the switch 38 to the switch 38 when the enable signal is input from the comparator 241, and turns on the switch 38 when the disable signal is input from the comparator 241. A voltage lower than the voltage is output to the switch 38.

振幅・周波数検出部41は、振動源100に取り付けられた加速度センサ41aにより取得される加速度波形から、振動源100の振動振幅および周波数を検出する。振幅・周波数検出部41は、振動源100の振動周波数を示す周波数信号を制御部42へ出力する。   The amplitude / frequency detection unit 41 detects the vibration amplitude and frequency of the vibration source 100 from the acceleration waveform acquired by the acceleration sensor 41 a attached to the vibration source 100. The amplitude / frequency detection unit 41 outputs a frequency signal indicating the vibration frequency of the vibration source 100 to the control unit 42.

振幅検出部25は、検出コイル161の出力電圧の振幅値を検出する。   The amplitude detection unit 25 detects the amplitude value of the output voltage of the detection coil 161.

制御部42は、図3に示すように、CPU(Central Processing Unit)421と、主記憶部422と、補助記憶部423と、第1インタフェース424と、第2インタフェース425と、DAコンバータ(以下、「DAC」と称する。)426と、各部を接続するバス427と、を有する。主記憶部422は、揮発性メモリから構成され、CPU421の作業領域として使用される。補助記憶部423は、不揮発性メモリから構成され、CPU421が実行する後述の電圧閾値制御処理のプログラムを記憶する。第1インタフェース424は、振幅・周波数検出部41に接続され、振幅・周波数検出部41から入力される周波数信号を周波数の値を示す周波数情報に変換する。第2インタフェース425は、CPU421かバス427を介して入力される電圧値を示す電圧値情報をDAC426へ出力する。DAC426は、第2インタフェース425から入力される電圧値情報を、当該電圧値情報が示す電圧値を有する電圧信号に変換してスイッチ切替部24へ出力する。   As shown in FIG. 3, the control unit 42 includes a central processing unit (CPU) 421, a main storage unit 422, an auxiliary storage unit 423, a first interface 424, a second interface 425, and a DA converter (hereinafter referred to as (Referred to as “DAC”.) 426 and a bus 427 connecting the components. The main storage unit 422 includes volatile memory and is used as a work area of the CPU 421. The auxiliary storage unit 423 is configured of a non-volatile memory, and stores a program of voltage threshold control processing described later that is executed by the CPU 421. The first interface 424 is connected to the amplitude / frequency detection unit 41, and converts the frequency signal input from the amplitude / frequency detection unit 41 into frequency information indicating the value of the frequency. The second interface 425 outputs voltage value information indicating a voltage value input via the CPU 421 or the bus 427 to the DAC 426. The DAC 426 converts the voltage value information input from the second interface 425 into a voltage signal having a voltage value indicated by the voltage value information, and outputs the voltage signal to the switch switching unit 24.

また、CPU421が、補助記憶部423が記憶する電圧閾値制御処理のプログラムを主記憶部422に読み出して実行することにより、周波数取得部4211、閾値設定部4212として機能する。また、補助記憶部423は、非線形振動子50の振動振幅および周波数と当該振動振幅および周波数に対応する電圧閾値との相関関係を示す相関情報を記憶する相関テーブル(相関情報記憶部)4231を有する。   In addition, the CPU 421 functions as a frequency acquisition unit 4211 and a threshold setting unit 4212 by reading out a program of voltage threshold control processing stored in the auxiliary storage unit 423 to the main storage unit 422 and executing the program. The auxiliary storage unit 423 also has a correlation table (correlation information storage unit) 4231 that stores correlation information indicating the correlation between the vibration amplitude and frequency of the non-linear vibrator 50 and the voltage threshold value corresponding to the vibration amplitude and frequency. .

相関情報が示す電圧閾値は、非線形振動子50の複数動作点共存帯域に対応して設置された周波数帯域以外の周波数帯域において0V(第1電圧値)であり、複数動作点共存帯域に対応して設置された周波数帯域において0Vよりも大きい電圧値(第2電圧値)である。また、複数動作点共存帯域BW3における電圧閾値は、非線形振動子50が複数動作点共存帯域において小振幅振動動作点で振動するときの検出コイル161の出力電圧の振幅値よりも大きく、大振幅振動動作点の振動振幅よりも小さい振幅で振動する場合の検出コイル161の出力電圧の振幅値に相当する電圧値に設定されている。例えば、大振幅振動動作点で振動する場合の検出コイル161の出力電圧振幅の90〜95%程度に設定すれば効果的である。   The voltage threshold value indicated by the correlation information is 0 V (first voltage value) in a frequency band other than the frequency band set corresponding to the multiple operating point coexistence band of the nonlinear oscillator 50, and corresponds to the multiple operating point coexistence band The voltage value (second voltage value) is larger than 0 V in the frequency band installed. In addition, the voltage threshold in the multiple operation point coexistence band BW3 is larger than the amplitude value of the output voltage of the detection coil 161 when the nonlinear oscillator 50 vibrates at the small amplitude oscillation operation point in the multiple operation point coexistence band The voltage value is set to a voltage value corresponding to the amplitude value of the output voltage of the detection coil 161 in the case of vibrating with an amplitude smaller than the vibration amplitude of the operating point. For example, it is effective to set to about 90 to 95% of the output voltage amplitude of the detection coil 161 when vibrating at the large amplitude vibration operating point.

また、相関情報は、非線形振動子50の振動振幅の振動周波数依存性および振動源の振幅に応じて適宜設定される。振動源の振幅に依存して、非線形振動子50の振動振幅の振動周波数依存性が、図4の曲線S21、S22、S23に示すように異なると、それに応じて複数動作点共存帯域BW31、BW32、BW33も異なる。この場合、相関情報は、図4の曲線ath21(ω)、ath22(ω)、ath23(ω)に示すような振幅閾値の振動周波数依存性を反映した電圧閾値の周波数依存性を表すように設定される。即ち、電圧閾値は、複数動作点共存帯域BW31、BW32、BW33以外の周波数帯域において0Vである。また、電圧閾値は、複数動作点共存帯域BW31、BW32、BW33において、小振幅振動動作点で振動するときの検出コイル161の出力電圧の振幅値よりも大きく、大振幅振動動作点の振動振幅よりも小さい振幅で振動する場合の検出コイル161の出力電圧の振幅値に相当する電圧値に設定されている。例えば、大振幅振動動作点で振動する場合の検出コイル161の出力電圧振幅の90〜95%程度に設定すれば効果的である。相関情報は、振動源100の振動状態を計測し、計測した振動源100の振動状態から予測される非線形振動子50の振動周波数特性から決定される。Further, the correlation information is appropriately set according to the vibration frequency dependency of the vibration amplitude of the non-linear vibrator 50 and the amplitude of the vibration source. If the vibration frequency dependency of the vibration amplitude of the non-linear vibrator 50 differs depending on the amplitude of the vibration source as shown by the curves S21, S22, S23 in FIG. 4, the multiple operating point coexistence bands BW31, BW32 accordingly , BW33 also different. In this case, the correlation information is the frequency dependency of the voltage threshold reflecting the oscillation frequency dependency of the amplitude threshold as shown by the curves ath 21 (ω), a th 22 (ω), and a th 23 (ω) in FIG. It is set to represent gender. That is, the voltage threshold is 0 V in the frequency bands other than the multiple operating point coexistence bands BW31, BW32, and BW33. The voltage threshold is larger than the amplitude value of the output voltage of detection coil 161 when vibrating at the small amplitude vibration operating point in the multiple operating point coexistence bands BW31, BW32, BW33, and is larger than the vibration amplitude of the large amplitude vibration operating point Is also set to a voltage value corresponding to the amplitude value of the output voltage of the detection coil 161 when vibrating with a small amplitude. For example, it is effective to set to about 90 to 95% of the output voltage amplitude of the detection coil 161 when vibrating at the large amplitude vibration operating point. The correlation information is determined from the vibration frequency characteristic of the non-linear vibrator 50 which is measured from the vibration state of the vibration source 100 measured and measured from the vibration state of the vibration source 100.

周波数取得部4211は、第1インタフェース424から、振幅・周波数検出部41により検出される非線形振動子50の振動周波数を示す周波数情報を取得する。   The frequency acquisition unit 4211 acquires, from the first interface 424, frequency information indicating the vibration frequency of the non-linear vibrator 50 detected by the amplitude / frequency detection unit 41.

閾値設定部4212は、複数動作点共存帯域に対応して設置された周波数帯域に非線形振動子50の振動周波数が含まれるか否かに応じて、電圧閾値を設定する。また、閾値設定部4212は、相関テーブル4231の相関情報を参照して、電圧閾値を、非線形振動子50の振動周波数に応じた電圧値に設定する。こうして、閾値設定部4212は、複数動作点共存帯域BW3以外の周波数帯域に非線形振動子50の振動周波数が含まれる場合、電圧閾値を0V(第1電圧値)に設定する。そして、閾値設定部4212は、複数動作点共存帯域BW3に振動周波数が含まれる場合、電圧閾値を0Vよりも大きい電圧値(第2電圧値)に設定する。この電圧値は、前述のように、非線形振動子50が複数動作点共存帯域BW3において小振幅振動動作点で振動するときの振幅よりも大きい振幅で振動する場合の検出コイル161の出力電圧の振幅値に相当する電圧値である。   The threshold setting unit 4212 sets the voltage threshold depending on whether the vibration frequency of the non-linear oscillator 50 is included in the frequency band set corresponding to the multiple operating point coexistence band. The threshold setting unit 4212 sets the voltage threshold to a voltage value corresponding to the vibration frequency of the non-linear vibrator 50 with reference to the correlation information in the correlation table 4231. Thus, the threshold setting unit 4212 sets the voltage threshold to 0 V (first voltage value) when the vibration frequency of the non-linear vibrator 50 is included in a frequency band other than the multiple operating point coexistence band BW3. When the vibration frequency is included in the multiple operation point coexistence band BW3, the threshold setting unit 4212 sets the voltage threshold to a voltage value (second voltage value) larger than 0V. As described above, this voltage value is the amplitude of the output voltage of the detection coil 161 when the nonlinear oscillator 50 oscillates with an amplitude larger than the amplitude when oscillating in the small amplitude oscillation operating point in the multiple operating point coexisting band BW3. It is a voltage value corresponding to the value.

次に、本実施の形態に係る振動発電装置の基本的な動作について説明する。振動発電装置は、図5に示すように、質量要素である可動磁石14と振動源100との間に、非線形ばね要素SPと機械減衰要素Cと発電機Gとが並列に接続されたものとして表すことができる。なお、図5において、uは振動源100の変位の方向を表し、xは質量要素である可動磁石14の振動源100に対する相対的な変位の方向を表す。非線形ばね要素SPは、固定磁石51、52と可動磁石14との間に形成される磁気ばねに相当する。非線形ばね要素SPと機械減衰要素Cとから非線形振動子50が構成される。また、スイッチ38は、発電機Gを、充電回路18と蓄電部22とから構成される負荷R18に接続された状態と、負荷インピーダンス変換回路26に接続された状態と、のいずれかに切り替えるスイッチとして表すことができる。   Next, the basic operation of the vibration power generator according to the present embodiment will be described. As shown in FIG. 5, in the vibration power generating apparatus, it is assumed that a non-linear spring element SP, a mechanical damping element C and a generator G are connected in parallel between the movable magnet 14 as a mass element and the vibration source 100. Can be represented. In FIG. 5, u represents the direction of displacement of the vibration source 100, and x represents the direction of displacement of the movable magnet 14 as a mass element relative to the vibration source 100. The non-linear spring element SP corresponds to a magnetic spring formed between the fixed magnets 51 and 52 and the movable magnet 14. A non-linear oscillator 50 is composed of the non-linear spring element SP and the mechanical damping element C. Further, switch 38 switches the generator G to one of a state connected to load R 18 configured of charging circuit 18 and storage unit 22 and a state connected to load impedance conversion circuit 26. It can be expressed as

そして、振動源100がu方向に振動すると、非線形振動子50に振動が伝達し、質量要素である可動磁石14が振動源100に対してx方向に相対的に変位する形で振動する。このとき、可動磁石14の振動により生じる力学的エネルギの一部が、発電機Gにより電気エネルギに変換される。発電機Gの発電電力の値は、可動磁石14の振動振幅の2乗に比例し、可動磁石14の振動振幅が大きくなると、それに伴い、発電機Gの出力電圧の振幅値が増加する。   Then, when the vibration source 100 vibrates in the u direction, the vibration is transmitted to the non-linear vibrator 50, and the movable magnet 14 as a mass element vibrates so as to be displaced relative to the vibration source 100 in the x direction. At this time, a part of mechanical energy generated by the vibration of the movable magnet 14 is converted by the generator G into electric energy. The value of the generated power of the generator G is proportional to the square of the vibration amplitude of the movable magnet 14. When the vibration amplitude of the movable magnet 14 increases, the amplitude value of the output voltage of the generator G increases accordingly.

スイッチ切替部24は、検出コイル161の出力電圧の振幅値と、制御部42から入力される電圧閾値と、の大小関係に応じて、スイッチ38を切り替える。スイッチ切替部24は、検出コイル161の出力電圧の振幅値が電圧閾値以上の場合、スイッチ38を負荷R18側に接続する。即ち、スイッチ切替部24は、負性インピーダンス変換回路26が発電機Gに非接続である状態(第1状態、発電状態のみ)にする。これにより、負荷R18を構成する充電回路18は、発電機Gからの電力供給を受けて蓄電部22を充電する。   The switch switching unit 24 switches the switch 38 in accordance with the magnitude relationship between the amplitude value of the output voltage of the detection coil 161 and the voltage threshold value input from the control unit 42. When the amplitude value of the output voltage of the detection coil 161 is equal to or greater than the voltage threshold, the switch switching unit 24 connects the switch 38 to the load R 18 side. That is, the switch switching unit 24 puts the negative impedance conversion circuit 26 in a non-connection state with the generator G (first state, power generation state only). Thereby, charging circuit 18 configuring load R18 receives power supply from generator G to charge power storage unit 22.

一方、スイッチ切替部24は、検出コイル161の出力電圧の振幅平均値が電圧閾値未満の場合、負性インピーダンス変換回路26が発電機Gに接続された状態(第2状態、少なくても励振状態が存在)にする。これにより、蓄電部22から発電機Gを介して非線形振動子50にエネルギが環流され、非線形振動子50が励振される。この非線形振動子50の励振のためのエネルギは、蓄電部22に貯えられたエネルギの一部を利用することになり、発電機Gでの発電により生み出されたエネルギの一部が消費されてしまうことになる。但し、励振により非線形振動子50が大振幅振動動作点に移行した後は、発電機Gの発電電力が格段に増大する。また、後述するように、電圧閾値は、非線形振動子50の振動周波数が複数動作点共存帯域BW3以外の周波数帯域に含まれる場合、0Vに設定される。従って、励振による蓄電部22に蓄えられたエネルギの消費はごく僅かである。   On the other hand, when the amplitude average value of the output voltage of the detection coil 161 is less than the voltage threshold, the switch switching unit 24 is in a state where the negative impedance conversion circuit 26 is connected to the generator G (second state, excitation state at least Exist). Thereby, energy is circulated from the storage unit 22 to the non-linear vibrator 50 via the generator G, and the non-linear vibrator 50 is excited. The energy for excitation of the non-linear vibrator 50 is to use a part of the energy stored in the storage unit 22 and a part of the energy generated by the power generation by the generator G is consumed. It will be. However, after the non-linear vibrator 50 shifts to the large amplitude vibration operation point due to the excitation, the generated power of the generator G significantly increases. Further, as described later, the voltage threshold is set to 0 V when the vibration frequency of the non-linear vibrator 50 is included in a frequency band other than the multiple operating point coexistence band BW3. Therefore, the consumption of energy stored in storage unit 22 due to excitation is very small.

このように、振動発電装置は、検出コイル161の出力電圧の振幅値が電圧閾値以上の場合、蓄電部22を充電し、検出コイル161の出力電圧の振幅値が電圧閾値未満になった場合、非線形振動子50を励振する動作をする。そして、振動発電装置は、電圧閾値を非線形振動子50の振動周波数に応じて変化させる。なお、非線形振動子50の振動振幅を検出する手段としては、前述のように、検出コイル161によるものに限定されるものではなく、他の如何なる手段を用いてもよい。   Thus, when the amplitude value of the output voltage of the detection coil 161 is equal to or greater than the voltage threshold, the vibration power generation device charges the power storage unit 22 and the amplitude value of the output voltage of the detection coil 161 becomes less than the voltage threshold. It operates to excite the nonlinear oscillator 50. Then, the vibration power generation apparatus changes the voltage threshold according to the vibration frequency of the non-linear vibrator 50. The means for detecting the vibration amplitude of the non-linear vibrator 50 is not limited to that by the detection coil 161 as described above, and any other means may be used.

次に、電圧閾値を非線形振動子50の振動周波数に応じて変化させるために閾値設定部4212が実行する電圧閾値制御処理について、図5および図6を参照しながら説明する。この電圧閾値制御処理は、電圧閾値制御処理のプログラムが起動したことを契機として開始される。   Next, the voltage threshold control process performed by the threshold setting unit 4212 to change the voltage threshold according to the vibration frequency of the non-linear vibrator 50 will be described with reference to FIGS. 5 and 6. The voltage threshold control process is started when the program of the voltage threshold control process is activated.

まず、周波数取得部4211が、振幅・周波数検出部41により検出された振動源100の振動周波数を取得する(ステップS101)。   First, the frequency acquisition unit 4211 acquires the vibration frequency of the vibration source 100 detected by the amplitude / frequency detection unit 41 (step S101).

次に、閾値設定部4212は、相関テーブル4231に基づいて、振動源の振動振幅および周波数に対応する電圧閾値を設定する(ステップS102)。閾値設定部4212は、取得した振動周波数が複数動作点共存帯域に含まれない場合、相関テーブル4231に基づいて、電圧閾値を0Vに設定する。これにより、検出コイル161の出力電圧の振幅値の大きさに関わらず、図5に示す負性インピーダンス変換回路26が、発電機Gに接続されない状態となる。即ち、検出コイル161の出力電圧の振幅値の大きさに関わらず、発電機Gから充電回路18へ電力供給され、充電回路18が蓄電部22を充電する。一方、閾値設定部4212は、取得した振動周波数が複数動作点共存帯域に含まれる場合、相関テーブル4231に基づいて、電圧閾値を、適切な電圧値に設定する。   Next, the threshold setting unit 4212 sets a voltage threshold corresponding to the vibration amplitude and frequency of the vibration source based on the correlation table 4231 (step S102). The threshold setting unit 4212 sets the voltage threshold to 0 V based on the correlation table 4231 when the acquired vibration frequency is not included in the multiple operation point coexistence band. As a result, regardless of the magnitude of the amplitude value of the output voltage of the detection coil 161, the negative impedance conversion circuit 26 shown in FIG. That is, regardless of the magnitude of the amplitude value of the output voltage of the detection coil 161, power is supplied from the generator G to the charging circuit 18, and the charging circuit 18 charges the power storage unit 22. On the other hand, when the acquired vibration frequency is included in the multiple operating point coexistence band, the threshold setting unit 4212 sets the voltage threshold to an appropriate voltage value based on the correlation table 4231.

続いて、閾値設定部4212は、設定した電圧閾値を示す電圧閾値情報を、第2インタフェース425へ出力する(ステップS103)。第2インタフェース425は、電圧閾値情報をプロトコル変換してDAC426へ出力する。DAC426は、第2インタフェース425から入力される電圧閾値情報をディジタルアナログ変換してスイッチ切替部24へ出力する。   Subsequently, the threshold setting unit 4212 outputs voltage threshold information indicating the set voltage threshold to the second interface 425 (step S103). The second interface 425 performs protocol conversion on voltage threshold information and outputs the converted information to the DAC 426. The DAC 426 performs digital-to-analog conversion on the voltage threshold information input from the second interface 425 and outputs the converted information to the switch switching unit 24.

その後、周波数取得部4211は、電圧閾値制御処理を終了するよう指令する終了指令が入力されたか否かを判定する(ステップS104)。終了指令は、ユーザが制御部42に接続された入力装置(図示せず)に対して電圧閾値制御処理を終了させるための操作を実行することにより主記憶部422に記憶される。そして、周波数取得部4211は、主記憶部422が終了指令を記憶している場合、終了指令が入力されたと判定する。周波数取得部4211により終了指令が入力されていないと判定されると(ステップS104:No)、再びステップS101の処理が実行される。一方、周波数取得部4211により終了指令が入力されたと判定されると(ステップS104:Yes)、電圧閾値制御処理が終了する。   Thereafter, the frequency acquisition unit 4211 determines whether or not an end command instructing to end the voltage threshold control process is input (step S104). The end instruction is stored in the main storage unit 422 by the user performing an operation for ending the voltage threshold control process on an input device (not shown) connected to the control unit 42. Then, when the main storage unit 422 stores the end instruction, the frequency acquisition unit 4211 determines that the end instruction is input. If it is determined by the frequency acquisition unit 4211 that the end instruction has not been input (step S104: No), the process of step S101 is performed again. On the other hand, when it is determined by the frequency acquisition unit 4211 that the end instruction has been input (step S104: Yes), the voltage threshold control process ends.

次に、本実施の形態に係る振動発電装置の非線形振動子50の振動周波数特性について、比較例に係る振動発電装置の非線形振動子の振動周波数特性と比較しながら説明する。比較例に係る振動発電装置の構成は、図1に示す構成と同様である。但し、電圧閾値が、非線形振動子50の振動周波数に依らず一定である。即ち、図7Aに示すように、非線形振動子50の振動振幅aに対する振幅閾値ath(ω)が、非線形振動子50の振動周波数に依らずに一定となる。なお、図7Aにおいて、丸印は非線形振動子50の振動振幅aを示し、実線は電圧閾値に対応する振幅閾値を示す。これにより、非線形振動子50の振動周波数が複数動作点共存帯域BW3よりも高い周波数帯域BW4にある場合でも非線形振動子50が励振される。このため、非線形振動子50の振幅は、図7Aに示すように、周波数帯域BW4において、曲線S2で表される本来の非線形振動子50の振幅よりも大きくなる。この場合、励振による非線形振動子50の振幅増加分PL(図7A中のクロスハッチングで示した部分)に相当するエネルギが、無駄に消費されることになる。Next, the vibration frequency characteristics of the non-linear vibrator 50 of the vibration power generation device according to the present embodiment will be described in comparison with the vibration frequency characteristics of the non-linear vibrator of the vibration power generation device according to the comparative example. The configuration of the vibration power generation device according to the comparative example is the same as the configuration shown in FIG. However, the voltage threshold is constant regardless of the vibration frequency of the non-linear vibrator 50. That is, as shown in FIG. 7A, the amplitude threshold a th (ω) with respect to the vibration amplitude a 0 of the non-linear vibrator 50 becomes constant regardless of the vibration frequency of the non-linear vibrator 50. Incidentally, in FIG. 7A, the circles indicate the vibration amplitude a 0 of the nonlinear oscillator 50, a solid line indicates the amplitude threshold corresponding to the voltage threshold. Thus, even when the vibration frequency of the non-linear vibrator 50 is in the frequency band BW4 higher than the multiple operating point coexistence band BW3, the non-linear vibrator 50 is excited. Therefore, as shown in FIG. 7A, the amplitude of the non-linear oscillator 50 is larger than the amplitude of the original non-linear oscillator 50 represented by the curve S2 in the frequency band BW4. In this case, the energy corresponding to the increase in amplitude PL (the portion indicated by cross hatching in FIG. 7A) of the non-linear vibrator 50 due to the excitation is wastefully consumed.

これに対して、本実施の形態に係る振動発電装置では、電圧閾値が、非線形振動子50の振動周波数が複数動作点共存帯域BW3以外の場合、0Vである。即ち、図7Bに示すように、非線形振動子の振幅閾値ath(ω)は、非線形振動子50の振動周波数ωが複数動作点共存帯域BW3に含まれる場合のみ0Vよりも大きい電圧に設定されている。なお、図7Bにおいて、丸印は非線形振動子50の振動振幅aを示し、実線は電圧閾値に対応する振幅閾値を示す。これにより、非線形振動子50の振動周波数が複数動作点共存帯域BW3に含まれる場合のみ非線形振動子50が励振される。このため、複数動作点共存帯域BW3以外の周波数帯域において、非線形振動子50を励振することによりエネルギが消費されることがない。On the other hand, in the vibration power generation device according to the present embodiment, the voltage threshold is 0 V when the vibration frequency of the non-linear vibrator 50 is other than the multiple operating point coexistence band BW3. That is, as shown in FIG. 7B, the amplitude threshold a th (ω) of the nonlinear oscillator is set to a voltage larger than 0 V only when the vibration frequency ω of the nonlinear oscillator 50 is included in the multiple operating point coexistence band BW3. ing. Incidentally, in FIG. 7B, circles show the vibration amplitude a 0 of the nonlinear oscillator 50, a solid line indicates the amplitude threshold corresponding to the voltage threshold. Thus, the nonlinear oscillator 50 is excited only when the vibration frequency of the nonlinear oscillator 50 is included in the multiple operating point coexistence band BW3. Therefore, energy is not consumed by exciting the non-linear vibrator 50 in a frequency band other than the multiple operation point coexistence band BW3.

次に、図7Aおよび図7Bに示す振動周波数ω、ω、ω、ω、ω近傍における非線形振動子50の変位と発電機Gの負荷抵抗との関係について説明する。ここでは、励振部を備えない振動発電装置、前述の比較例に係る振動発電装置および本実施の形態に係る振動発電装置それぞれの場合を比較しながら説明する。また、初期条件は共通であるとして、ωt/(2π)が20に到達した時点で非線形振動子50に外乱が入力される場合の振る舞いについて説明する。発電機Gの負荷抵抗は、発電機Gから蓄電部22へ電力が供給される場合、正となり、蓄電部22から非線形振動子50へエネルギが環流する場合、負となる。Next, the relationship between the displacement of the non-linear vibrator 50 and the load resistance of the generator G near the vibration frequencies ω A , ω B , ω C , ω D and ω E shown in FIGS. 7A and 7B will be described. Here, the vibration power generation device which does not include the excitation unit, the vibration power generation device according to the comparative example described above, and the vibration power generation device according to the present embodiment will be described in comparison with each other. In addition, assuming that the initial condition is common, the behavior in the case where a disturbance is input to the nonlinear oscillator 50 when ωt / (2π) reaches 20 will be described. The load resistance of the generator G is positive when power is supplied from the generator G to the storage unit 22, and is negative when energy circulates from the storage unit 22 to the non-linear vibrator 50.

複数動作点共存帯域BW3より低い振動周波数ω近傍における非線形振動子50の変位と発電機Gの負荷抵抗とは、図8A乃至図8Cに示すような履歴を示す。ここで、図8Aは、励振部を備えない振動発電装置の場合、図8Bは前述の比較例に係る振動発電装置の場合、図8Cは本実施の形態に係る振動発電装置の場合の結果である。図8Aおよび図8Cに示すように、励振部を備えない振動発電装置および本実施の形態に係る振動発電装置における負荷抵抗ρ(t)は正の値で推移し、蓄電部22に貯えられたエネルギの損失が生じていない。一方、図8Bに示すように、比較例に係る振動発電装置の場合、非線形振動子50の変位振幅が閾値を下回ったときに、非線形振動子50を励振するために蓄電部22から非線形振動子50へエネルギが環流されることにより、負荷抵抗ρ(t)が負となっている。そして、図9に示すように、比較例に係る振動発電装置の場合、発電機Gでの累積発電量は時間の経過とともに減少していく。一方、本実施の形態に係る振動発電装置の場合、発電機Gでの累積発電量は励振部を備えない振動発電装置の場合と同様に時間の経過とともに増加していく。比較例に係る振動発電装置の場合、非線形振動子50が無駄に励振されることにより、大きなエネルギ損失が発生し累積発電量の減少が生じてしまう。The load resistance of the displacement and the generator G of the nonlinear oscillator 50 at low vibration frequency omega A near a plurality operating point coexisting band BW3, indicating a history as shown in FIGS. 8A to 8C. Here, FIG. 8A shows the result in the case of the vibration power generation device according to the present embodiment, and FIG. 8C shows the result in the case of the vibration power generation device according to the present embodiment. is there. As shown in FIGS. 8A and 8C, the load resistance ρ (t) in the vibration power generation device without the excitation unit and the vibration power generation device according to the present embodiment changes at a positive value and is stored in power storage unit 22. There is no loss of energy. On the other hand, as shown to FIG. 8B, in the case of the vibration electric power generating apparatus which concerns on a comparative example, when the displacement amplitude of the nonlinear oscillator 50 falls below a threshold value, in order to excite the nonlinear oscillator 50 The load resistance ρ (t) is negative because the energy is circulated to 50. And as shown in FIG. 9, in the case of the vibration electric power generating apparatus which concerns on a comparative example, the accumulation electric power generation amount in the generator G reduces with progress of time. On the other hand, in the case of the vibration power generation device according to the present embodiment, the accumulated power generation amount of the generator G increases with the passage of time, similarly to the case of the vibration power generation device without the excitation unit. In the case of the vibration power generation device according to the comparative example, the non-linear vibrator 50 is unnecessarily excited to generate a large energy loss and a decrease in the accumulated power generation amount.

複数動作点共存帯域BW3の低い振動周波数ω近傍における非線形振動子50の変位と発電機Gの負荷抵抗とは、図10A乃至図10Cに示すような履歴を示す。ここで、図10Aは、励振部を備えない振動発電装置の場合、図10Bは前述の比較例に係る振動発電装置の場合、図10Cは本実施の形態に係る振動発電装置の場合の結果である。図10Aに示すように、励振部を備えない振動発電装置の場合、大振幅振動動作中に外乱が加わると小振幅振動動作に遷移する。一方、図10Bおよび図10Cに示すように、比較例に係る振動発電装置および本実施の形態に係る振動発電装置の場合、外乱が加わって小振幅振動動作に遷移しようとしたときに非線形振動子50が励振される。このとき、発電機Gの負荷抵抗ρ(t)が一時的に負になる。その後、非線形振動子50は、外乱が加わる前の振幅を維持する。そして、図11に示すように、励振部を備えない振動発電装置の場合、外乱が加わった後、振幅の縮小に伴い、発電機Gにおける累積発電量の増加率が低下する。一方、比較例に係る振動発電装置および実施の形態に係る振動発電装置の場合、外乱が加わった後の累積発電量は、外乱が加わる前の累積発電量の増加率と同じ増加率で時間の経過とともに増加していく。但し、比較例に係る振動発電装置の場合、本実施の形態に係る振動発電装置に比べて、振動周波数ω近傍における閾値が高く、その分、小振幅振動動作から大振幅振動動作への遷移に時間がかかる。そして、発電機Gの負荷抵抗ρ(t)が負で推移する時間が長くなる分だけ、エネルギ損失が大きくなっている。The displacement of the non-linear vibrator 50 and the load resistance of the generator G in the vicinity of the low vibration frequency ω B in the multiple operation point coexisting band BW3 show the history as shown in FIGS. 10A to 10C. Here, FIG. 10A shows the result in the case of the vibration power generation device according to the present embodiment, and FIG. 10C shows the result in the case of the vibration power generation device according to the present embodiment. is there. As shown in FIG. 10A, in the case of the vibration power generation apparatus without the excitation unit, transition to the small amplitude vibration operation is made when disturbance is added during the large amplitude vibration operation. On the other hand, as shown in FIG. 10B and FIG. 10C, in the case of the vibration power generation device according to the comparative example and the vibration power generation device according to the present embodiment, a nonlinear vibrator is added when disturbance is added and transition is made to small amplitude vibration operation. 50 is excited. At this time, the load resistance ρ (t) of the generator G temporarily becomes negative. Thereafter, the non-linear oscillator 50 maintains the amplitude before the disturbance is applied. Then, as shown in FIG. 11, in the case of the vibration power generation apparatus without the excitation unit, the increase rate of the accumulated power generation amount in the generator G decreases with the reduction of the amplitude after the disturbance is added. On the other hand, in the case of the vibration power generation device according to the comparative example and the vibration power generation device according to the embodiment, the accumulated power generation amount after the disturbance is applied is the same increase rate as the accumulated power generation amount before the disturbance is applied. It will increase with the passage of time. However, in the case of the vibration power generation device according to the comparative example, the threshold in the vicinity of the vibration frequency ω B is higher than that of the vibration power generation device according to the present embodiment, and the transition from small amplitude vibration operation to large amplitude vibration operation Takes time. Then, the energy loss is increased by the lengthened time during which the load resistance ρ (t) of the generator G transitions to a negative value.

複数動作点共存帯域BW3の中の振動周波数ω近傍における非線形振動子50の変位と発電機Gの負荷抵抗とは、図12A乃至図12Cに示すような履歴を示す。ここで、図12Aは、励振部を備えない振動発電装置の場合、図12Bは前述の比較例に係る振動発電装置の場合、図12Cは本実施の形態に係る振動発電装置の場合の結果である。図12Aに示すように、励振部を備えない振動発電装置の場合、大振幅振動動作中に外乱が加わると小振幅振動動作に遷移する。一方、図12Bおよび図12Cに示すように、比較例に係る振動発電装置および本実施の形態に係る振動発電装置の場合、外乱が加わって小振幅振動動作に遷移しようとしたときに非線形振動子50が励振される。このとき、発電機Gの負荷抵抗ρ(t)が一時的に負になる。その後、非線形振動子50は、外乱が加わる前の振幅を維持する。そして、図13に示すように、励振部を備えない振動発電装置の場合、外乱が加わった後、振幅の縮小に伴い、発電機Gにおける累積発電量の増加率が低下する。一方、比較例に係る振動発電装置および実施の形態に係る振動発電装置の場合、外乱が加わった後の累積発電量は、外乱が加わる前の累積発電量の増加率と同じ増加率で時間の経過とともに増加していく。但し、比較例に係る振動発電装置の場合、本実施の形態に係る振動発電装置に比べて、振動周波数ω近傍における閾値が低く、その分、小振幅振動動作から大振幅振動動作への遷移に時間がかかる。そして、発電機Gの負荷抵抗ρ(t)が負で推移する時間が長くなる分だけ、エネルギ損失が大きくなっている。The displacement of the non-linear vibrator 50 and the load resistance of the generator G in the vicinity of the vibration frequency ω C in the multiple operation point coexistence band BW3 show a history as shown in FIGS. 12A to 12C. Here, FIG. 12A shows the result in the case of the vibration power generation device according to the present embodiment, and FIG. 12C shows the result in the case of the vibration power generation device according to the present embodiment. is there. As shown to FIG. 12A, in the case of the vibration electric power generating apparatus which does not have an excitation part, if disturbance is added during large amplitude vibration operation | movement, it will transfer to small amplitude vibration operation | movement. On the other hand, as shown in FIG. 12B and FIG. 12C, in the case of the vibration power generation device according to the comparative example and the vibration power generation device according to the present embodiment, a nonlinear vibrator is added when disturbance is added and transition is made to small amplitude vibration operation. 50 is excited. At this time, the load resistance ρ (t) of the generator G temporarily becomes negative. Thereafter, the non-linear oscillator 50 maintains the amplitude before the disturbance is applied. Then, as shown in FIG. 13, in the case of the vibration power generation apparatus without the excitation unit, the increase rate of the accumulated power generation amount in the generator G decreases with the reduction of the amplitude after the disturbance is added. On the other hand, in the case of the vibration power generation device according to the comparative example and the vibration power generation device according to the embodiment, the accumulated power generation amount after the disturbance is applied is the same increase rate as the accumulated power generation amount before the disturbance is applied. It will increase with the passage of time. However, in the case of the vibration power generation device according to the comparative example, the threshold in the vicinity of the vibration frequency ω C is lower than that of the vibration power generation device according to the present embodiment, and the transition from small amplitude vibration operation to large amplitude vibration operation Takes time. Then, the energy loss is increased by the lengthened time during which the load resistance ρ (t) of the generator G transitions to a negative value.

複数動作点共存帯域BW3の中の高い振動周波数ω近傍における非線形振動子50の変位と発電機Gの負荷抵抗とは、図14A乃至図14Cに示すような履歴を示す。ここで、図14Aは、励振部を備えない振動発電装置の場合、図14Bは前述の比較例に係る振動発電装置の場合、図14Cは本実施の形態に係る振動発電装置の場合の結果である。図14Aに示すように、励振部を備えない振動発電装置の場合、与えた初期条件では大振幅動作に収束できず小振幅動作に収束するため、非線形振動子50の振幅が漸減していく。一方、図14Bに示すように、比較例に係る振動発電装置の場合、非線形振動子50の変位振幅が閾値を下回ったときに、その都度、非線形振動子50が励振される。このとき、発電機Gの負荷抵抗ρ(t)が一時的に負になる。また、図14Cに示すように、本実施の形態に係る振動発電装置の場合、外乱が加わったときに一時的に非線形振動子50が励振され、その後大振幅振動動作を継続する。そして、図15に示すように、励振部を備えない振動発電装置の場合、発電機Gの累積発電量が0.4程度まで上昇した後、略一定となる。但し、比較例に係る振動発電装置の場合、本実施の形態に係る振動発電装置に比べて、振動周波数ω近傍における閾値が低く、その分、小振幅振動動作から大振幅振動動作への遷移に十分な駆動が行われないため、発電機Gの累積発電量が0.4程度まで上昇した後、非線形振動子50が繰り返し励振されることに伴い、累積発電量が漸減していく。一方、本実施の形態に係る振動発電装置の場合、大振幅振動動作で安定した後、発電機Gにおける累積発電量が時間とともに増加していく。The displacement of the non-linear vibrator 50 and the load resistance of the generator G in the vicinity of the high vibration frequency ω D in the multiple operation point coexisting band BW3 show the history as shown in FIGS. 14A to 14C. Here, FIG. 14A shows the result in the case of the vibration power generation device without the excitation part, FIG. 14B shows the result in the case of the vibration power generation device according to the above comparative example, and FIG. 14C shows the result in the case of the vibration power generation device according to the present embodiment. is there. As shown in FIG. 14A, in the case of the vibration power generation apparatus without the excitation unit, the amplitude can not be converged to the large amplitude operation under the given initial condition and is converged to the small amplitude operation. On the other hand, as shown to FIG. 14B, in the case of the vibration electric power generating apparatus which concerns on a comparative example, whenever the displacement amplitude of the nonlinear oscillator 50 falls below a threshold value, the nonlinear oscillator 50 is excited each time. At this time, the load resistance ρ (t) of the generator G temporarily becomes negative. Further, as shown in FIG. 14C, in the case of the vibration power generation apparatus according to the present embodiment, when a disturbance is applied, the non-linear vibrator 50 is temporarily excited, and then the large amplitude vibration operation is continued. And as shown in FIG. 15, in the case of the vibration electric power generating apparatus which is not provided with the excitation part, after the accumulated electric power generation amount of the generator G rises to about 0.4, it becomes substantially constant. However, in the case of the vibration power generation device according to the comparative example, the threshold in the vicinity of the vibration frequency ω D is lower than that of the vibration power generation device according to the present embodiment, and the transition from the small amplitude vibration operation to the large amplitude vibration operation As the accumulated power generation amount of the generator G rises to about 0.4, the accumulated power generation amount gradually decreases as the non-linear oscillator 50 is repeatedly excited. On the other hand, in the case of the vibration power generation apparatus according to the present embodiment, after being stabilized by the large amplitude vibration operation, the accumulated power generation amount in the generator G increases with time.

複数動作点共存帯域BW3の外の高い振動周波数ω近傍における非線形振動子50の変位と発電機Gの負荷抵抗とは、図16A乃至図16Cに示すような履歴を示す。ここで、図16Aは、励振部を備えない振動発電装置の場合、図16Bは前述の比較例に係る振動発電装置の場合、図16Cは本実施の形態に係る振動発電装置の場合の結果である。この振動周波数では小振幅動作しか存在しないため、図16Aに示すように、励振部を備えない振動発電装置の場合、非線形振動子50の応答は過渡状態を経て小振幅動作に収束する。一方、図16Bに示すように、比較例に係る振動発電装置の場合、非線形振動子50の変位振幅が閾値を下回ったときに、その都度、繰り返し非線形振動子50が励振される。このとき、発電機Gの負荷抵抗ρ(t)が一時的に負になる。また、図16Cに示すように、本実施の形態に係る振動発電装置の場合、励振部を備えない振動発電装置の場合と同様に非線形振動子50は励振されず、小振幅動作に収束する。そして、図17に示すように、比較例に係る振動発電装置の場合、発電機Gの累積発電量が0.15程度まで上昇した後、非線形振動子50が繰り返し励振されることに伴い、累積発電量が漸減していく。一方、励振部を備えない振動発電装置および本実施の形態に係る振動発電装置の場合、発電機Gにおける累積発電量の増加率が時間とともに減少しつつも時間とともに増加していく。比較例に係る振動発電装置の場合、非線形振動子50が無駄に励振されることにより、大きなエネルギ損失が発生し累積発電量の減少が生じてしまう。The displacement of the non-linear vibrator 50 and the load resistance of the generator G in the vicinity of the high vibration frequency ω E outside the multiple operation point coexistence band BW3 show histories as shown in FIGS. 16A to 16C. Here, FIG. 16A shows the result in the case of the vibration power generation device without the excitation part, FIG. 16B shows the result in the case of the vibration power generation device according to the above comparative example, and FIG. is there. Since only a small amplitude operation exists at this vibration frequency, as shown in FIG. 16A, in the case of a vibration power generator without an excitation unit, the response of the non-linear vibrator 50 converges to the small amplitude operation through a transient state. On the other hand, as shown to FIG. 16B, in the case of the vibration electric power generating apparatus which concerns on a comparative example, whenever the displacement amplitude of the nonlinear oscillator 50 falls below a threshold value, the nonlinear oscillator 50 is excited repeatedly each time. At this time, the load resistance ρ (t) of the generator G temporarily becomes negative. Further, as shown in FIG. 16C, in the case of the vibration power generation device according to the present embodiment, the non-linear vibrator 50 is not excited as in the case of the vibration power generation device without the excitation portion, and converges to the small amplitude operation. Then, as shown in FIG. 17, in the case of the vibration power generation device according to the comparative example, after the accumulated power generation amount of the generator G rises to about 0.15, the accumulation is accompanied by the non-linear oscillator 50 being excited repeatedly. The amount of power generation gradually declines. On the other hand, in the case of the vibration power generation device without the excitation unit and the vibration power generation device according to the present embodiment, the increase rate of the accumulated power generation amount in the generator G increases with time while decreasing with time. In the case of the vibration power generation device according to the comparative example, the non-linear vibrator 50 is unnecessarily excited to generate a large energy loss and a decrease in the accumulated power generation amount.

このように、比較例に係る振動発電装置の場合、振動周波数ω近傍、ω近傍、ω近傍で動作する場合、図9、図15および図17に示すように、蓄電部22から非線形振動子50へのエネルギの環流が繰り返し生じ、発電機Gにおける累積発電量が時間とともに減少してしまう。また、励振部を備えない振動発電装置の場合、振動周波数ω近傍、ω近傍、ω近傍で動作する場合、図11、図13および図15に示すように、非線形振動子50の振動振幅が減少してしまい、発電機Gにおける累積発電量の増加率が大幅に低下してしまう。これに対して、本実施の形態に係る振動発電装置の場合、振動周波数ω近傍、ω近傍、ω近傍、ω近傍、ω近傍の全てにおいて、発電機Gにおける累積発電量が時間とともに増加する。つまり、本実施の形態に係る振動発電装置は、励振部を備えない振動発電装置および比較例に係る振動発電装置に比べて、広い振動周波数の帯域において、発電機Gにおける無駄なエネルギ消費が抑制され、累積発電量が大きいという利点がある。As described above, in the case of the vibration power generation apparatus according to the comparative example, when operating near the vibration frequency ω A, near ω D, and near ω E , as shown in FIGS. Recirculation of energy to the vibrator 50 occurs repeatedly, and the accumulated power generation amount of the generator G decreases with time. Further, in the case of the vibration power generation apparatus without the excitation unit, when operating in the vicinity of the vibration frequency ω B, in the vicinity of ω C and in the vicinity of ω D , as shown in FIG. 11, FIG. 13 and FIG. The amplitude decreases, and the rate of increase in the accumulated power generation amount of the generator G is significantly reduced. In contrast, in the case of the vibration generator according to the present embodiment, the vibration frequency omega A near omega B vicinity, omega C near, omega D neighborhood, all neighboring omega E, the accumulated power generation amount of the generator G is It increases with time. That is, in the vibration power generation device according to the present embodiment, wasteful energy consumption in the generator G is suppressed in a wide vibration frequency band compared to the vibration power generation device without the excitation portion and the vibration power generation device according to the comparative example. And the accumulated power generation amount is large.

以上説明したように、本実施の形態に係る振動発電装置によれば、スイッチ切替部24が、検出コイル161の出力電圧が予め設定された閾値以上の場合、負性インピーダンス変換回路26が発電機Gに非接続である第1状態にする。一方、スイッチ切替部24は、検出コイル161の出力電圧が閾値よりも小さい場合、負性インピーダンス変換回路26が発電機Gに接続された第2状態にする。そして、閾値設定部4212が、振幅・周波数検出部41により検出される振動周波数が、非線形振動子50が複数の動作点をとりうる複数動作点共存帯域BW3に含まれるか否かに応じて、閾値を制御する。これにより、例えば閾値設定部4212が、非線形振動子50の振動周波数が、複数動作点共存帯域BW3に含まれない場合に、閾値が0となるように、閾値を制御すれば、非線形振動子50の振動周波数が複数動作点共存帯域BW3に含まれない場合、負性インピーダンス変換回路26が発電機Gに接続されない。従って、非線形振動子50の振動周波数が複数動作点共存帯域BW3に含まれない場合に、充電回路18から発電機Gを介して非線形振動子50へ無駄にエネルギが還流することを防止でき、無駄なエネルギ消費が抑制される。   As described above, according to the vibration power generation device according to the present embodiment, when the switch voltage of the detection coil 161 is equal to or higher than the preset threshold value, the negative impedance conversion circuit 26 is a generator. The first state, which is not connected to G, is set. On the other hand, when the output voltage of the detection coil 161 is smaller than the threshold, the switch switching unit 24 brings the negative impedance conversion circuit 26 into the second state in which it is connected to the generator G. Then, depending on whether the vibration frequency detected by the amplitude / frequency detection unit 41 by the threshold setting unit 4212 is included in the multiple operation point coexistence band BW3 in which the non-linear oscillator 50 can take a plurality of operation points. Control the threshold. Thus, for example, if the threshold setting unit 4212 controls the threshold so that the threshold is 0 when the vibration frequency of the non-linear oscillator 50 is not included in the multiple operating point coexistence band BW3, the non-linear oscillator 50 The negative impedance conversion circuit 26 is not connected to the generator G when the vibration frequency of the second operating frequency is not included in the multiple operating point coexistence band BW3. Therefore, in the case where the vibration frequency of the non-linear oscillator 50 is not included in the multiple operating point coexisting band BW3, it is possible to prevent the energy from being returned from the charging circuit 18 to the non-linear oscillator 50 through the generator G. Energy consumption is suppressed.

また、本実施の形態に係る振動発電装置は、非線形振動子50の振動周波数と当該振動周波数に対応する電圧閾値との相関関係を示す相関情報を記憶する相関テーブル4231を備える。これにより、ユーザは、相関テーブル4231が記憶する相関情報を書き換えるだけで、電圧閾値の振動周波数依存性を変更することができる。従って、例えば振動発電装置に組み込む電磁振動エネルギ変換器10の変更に伴い非線形振動子50の振動振幅aの振動周波数依存性が変化した場合において、電圧閾値の振動周波数依存性を変更後の非線形振動子50に適合したものに比較的容易に変更することができる。Further, the vibration power generation apparatus according to the present embodiment includes a correlation table 4231 that stores correlation information indicating the correlation between the vibration frequency of the non-linear vibrator 50 and the voltage threshold value corresponding to the vibration frequency. Thereby, the user can change the oscillation frequency dependency of the voltage threshold only by rewriting the correlation information stored in the correlation table 4231. Therefore, for example, when the vibration frequency dependency of the vibration amplitude a 0 of the non-linear vibrator 50 changes with the change of the electromagnetic vibration energy converter 10 incorporated into the vibration power generation apparatus, the nonlinearity after changing the vibration frequency dependency of the voltage threshold It can be relatively easily changed to one compatible with the transducer 50.

(変形例)
以上、本発明の実施の形態では、振動発電装置1は、非線形振動子50の振動周波数が複数動作点共存帯域BW3に入っているかどうかを判定して、発電動作と励振動作を決定している。但し、本発明は前述の実施の形態の構成に限定されるものではない。例えば、非線形振動子50および振動源100の特性変化に応じて、複数動作点共存帯域に対応して設置された周波数帯域および振動振幅の閾値の大きさを適応的に変化させる構成であってもよい。
(Modification)
As described above, in the embodiment of the present invention, the vibration power generation device 1 determines whether the power generation operation and the excitation operation are performed by determining whether the vibration frequency of the non-linear vibrator 50 falls within the multiple operating point coexistence band BW3. . However, the present invention is not limited to the configuration of the above-described embodiment. For example, according to the characteristic change of the non-linear oscillator 50 and the vibration source 100, the frequency band installed corresponding to the multiple operating point coexistence band and the size of the threshold of the vibration amplitude are adaptively changed. Good.

具体的には、振動発電装置が、非線形振動子の動作状態を検知するために、振動源100の振動波形を計測する振動波形計測部と、非線形振動子50の応答波形を計測する振動子応答波形計測部と、振動源100の振動波形と非線形振動子50の応答波形との位相差を検出する位相差検出部と、を備える。そして、閾値設定部が、位相差検出部により検出される位相差が一定値になるように、つまり、非線形振動子50の応答波形が振動源100の振動波形と同一周波数になる(同期する)ように、しきい値を適応的に制御する。この場合、振動源100の周波数が複数動作点共存帯域BW3に入っているかどうかの判定は不要となる。複数動作点共存帯域BW3外では振動源100の振動波形と非線形振動子50の応答波形との位相差は、±90°程度ずれ、複数動作点共存帯域BW3内では位相差が、±90°よりも小さい値になる。そして、閾値設定部は、位相差検出部により検出される位相差が±90°よりも小さい一定値になるような領域で、しきい値を適応的に制御する。これにより、振動源100の振動周波数が複数動作点共存帯域BW3に入っているかどうかの判定が不要となる。   Specifically, in order to detect the operating state of the non-linear vibrator, the vibration power generation apparatus measures a vibration waveform measurement unit that measures the vibration waveform of the vibration source 100, and a vibrator response that measures the response waveform of the non-linear vibrator 50. A waveform measurement unit and a phase difference detection unit that detects a phase difference between the vibration waveform of the vibration source 100 and the response waveform of the non-linear vibrator 50 are provided. Then, the threshold setting unit causes the phase difference detected by the phase difference detection unit to have a constant value, that is, the response waveform of the non-linear oscillator 50 has the same frequency (synchronizes) with the vibration waveform of the vibration source 100. To control the threshold adaptively. In this case, it is not necessary to determine whether the frequency of the vibration source 100 is in the multiple operating point coexistence band BW3. The phase difference between the vibration waveform of the vibration source 100 and the response waveform of the nonlinear oscillator 50 deviates by about ± 90 ° outside the multiple operating point coexistence band BW3, and the phase difference is ± 90 ° within the multiple operating point coexistence band BW3. Is also a small value. Then, the threshold setting unit adaptively controls the threshold in a region where the phase difference detected by the phase difference detection unit becomes a constant value smaller than ± 90 °. This makes it unnecessary to determine whether the vibration frequency of the vibration source 100 falls within the multiple operating point coexistence band BW3.

実施の形態では、発電機Gが、可動磁石14とコイル16とから構成されるいわゆる電磁式の発電機である例について説明したが、振動エネルギを電気エネルギに変換するものであれば発電機Gの構成はこれに限定されるものではない。例えば発電機が、圧電素子を用いた発電機から構成されるものであってもよい。   Although in the embodiment, the generator G is a so-called electromagnetic generator composed of the movable magnet 14 and the coil 16, the generator G has been described as long as it converts vibration energy into electric energy. The configuration of is not limited to this. For example, the generator may be configured of a generator using a piezoelectric element.

実施の形態では、発電機Gに負性インピーダンス変換回路26が接続された状態と接続されていない状態とを切り替えることにより、発電機Gから充電回路18へ電力供給されるモードと非線形振動子50が励振されるモードとに切り替える例について説明した。これに限らず、例えば、発電機と非線形振動子50を励振する励振回路とを別個に設けた構成で、励振モードの時に励振回路および励振部を動作させるものあってもよい。   In the embodiment, the mode in which power is supplied from the generator G to the charging circuit 18 and the non-linear vibrator 50 are switched by switching between the state where the negative impedance conversion circuit 26 is connected to the generator G and the state where the negative impedance conversion circuit 26 is not connected. An example has been described in which the mode is switched to the mode in which is excited. Not limited to this, for example, the generator and the excitation circuit for exciting the non-linear oscillator 50 may be separately provided, and the excitation circuit and the excitation unit may be operated in the excitation mode.

実施の形態では、閾値設定部4212が、相関テーブル4231を用いる例について説明したが、閾値設定部4212は、相関テーブル4231を用いる構成に限定されない。例えば閾値設定部4212が、相関テーブル4231に代えて、電圧閾値と振動周波数との関係式を示す関係式情報を用いる構成であってもよい。   Although the threshold setting unit 4212 described the example using the correlation table 4231 in the embodiment, the threshold setting unit 4212 is not limited to the configuration using the correlation table 4231. For example, the threshold setting unit 4212 may be configured to use relational expression information indicating a relational expression between a voltage threshold and a vibration frequency, instead of the correlation table 4231.

実施の形態では、非線形振動子50の振動周波数が複数動作点共存帯域BW3以外の周波数帯域に含まれる場合、閾値設定部4212が、電圧閾値を0Vに設定する例について説明した。但し、非線形振動子50の振動周波数が複数動作点共存帯域BW3以外の周波数帯域に含まれる場合の電圧閾値の大きさは、0Vに限定されない。非線形振動子50の振動周波数が複数動作点共存帯域BW3以外の周波数帯域に含まれる場合の電圧閾値の大きさは、非線形振動子50が小振幅振動動作点で振動するときの振動振幅よりも小さい振動振幅で振動する場合の発電機Gの出力電圧に相当する電圧値であれば0Vよりも大きい電圧値であってもよい。   In the embodiment, an example has been described in which the threshold setting unit 4212 sets the voltage threshold to 0 V when the vibration frequency of the non-linear vibrator 50 is included in a frequency band other than the multiple operating point coexistence band BW3. However, the magnitude of the voltage threshold is not limited to 0 V when the vibration frequency of the non-linear vibrator 50 is included in a frequency band other than the multiple operating point coexistence band BW3. The magnitude of the voltage threshold when the vibration frequency of the non-linear vibrator 50 is included in a frequency band other than the multiple operating point coexistence band BW3 is smaller than the vibration amplitude when the non-linear vibrator 50 vibrates at the small amplitude vibration operating point The voltage value may be larger than 0 V as long as the voltage value corresponds to the output voltage of the generator G when vibrating with the vibration amplitude.

実施の形態では、非線形振動子50の振動周波数が複数動作点共存帯域に含まれる場合、電圧閾値が0Vよりも大きい電圧値である例について説明した。但し、電圧閾値の振動周波数依存性は、これに限定されるものではなく、例えば、非線形振動子50の振動周波数が複数動作点共存帯域を含み複数動作点共存帯域よりも広い周波数帯域に含まれる場合、電圧閾値が0Vよりも大きい電圧値であってもよい。また、上記の説明では0Vよりも大きい電圧閾値を設定した周波数帯域を非線形振動子50の複数動作点共存帯域と一致させているが、効率が若干低下することを認めれば、0Vよりも大きい電圧値を閾値を設定した周波数帯域を非線形振動子50の複数動作点共存帯域よりも広くしても、狭くしても、ずらせても良い。実験条件、環境によっても異なるが、非線形振動子50の複数動作点共存帯域と0Vよりも大きい電圧値を閾値を設定した周波数帯域とが帯域の10%程度ずれても発電効率は5%程度以内の低下に収まっている。つまり、従来の閾値の設定に比べ、複数動作点共存帯域を考慮した閾値を設定する本発明は発電効率向上という大きな効果が得られる。   In the embodiment, when the vibration frequency of the non-linear vibrator 50 is included in the multiple operating point coexistence band, an example in which the voltage threshold is a voltage value larger than 0 V has been described. However, the oscillation frequency dependency of the voltage threshold is not limited to this, and for example, the oscillation frequency of the non-linear oscillator 50 is included in a frequency band wider than a plurality of operating point coexisting bands including a plurality of operating point coexisting bands. In this case, the voltage threshold may be a voltage value larger than 0V. In the above description, although the frequency band in which the voltage threshold larger than 0 V is set is made to coincide with the multiple operating point coexistence band of the non-linear oscillator 50, the voltage slightly larger than 0 V The frequency band for which the threshold value is set may be wider, narrower or shifted than the multiple operating point coexistence band of the nonlinear oscillator 50. The power generation efficiency is about 5% or less even if the multiple operating point coexistence band of the nonlinear oscillator 50 and the frequency band where the threshold value is set for the voltage value larger than 0V deviate by about 10% of the band. Fall in the That is, the present invention of setting the threshold in consideration of the multiple operating point coexistence band has a great effect of improving the power generation efficiency as compared with the conventional setting of the threshold.

以上、本発明の各実施の形態および変形例(なお書きに記載したものを含む。以下、同様。)について説明したが、本発明はこれらに限定されるものではない。本発明は、実施の形態及び変形例が適宜組み合わされたもの、それに適宜変更が加えられたものを含む。   As mentioned above, although each embodiment and modification of the present invention (including the thing described in the statement. Hereinafter, the same) were explained, the present invention is not limited to these. The present invention includes those in which the embodiments and the modifications are combined as appropriate, and those in which changes are appropriately applied.

本出願は、2016年7月21日に出願された、日本国特許出願特願2016−143534号に基づく。本明細書中に日本国特許出願特願2016−143534号の明細書、特許請求の範囲、図面全体を参照として取り込むものとする。   This application is based on Japanese Patent Application No. 2016-143534 filed on July 21, 2016. The specification, claims, and whole drawings of Japanese Patent Application No. 2016-143534 are incorporated herein by reference.

本発明は、機械や動く構造体、人体等の振動源に取り付けられる振動発電装置として好適である。   The present invention is suitable as a vibration power generator attached to a vibration source such as a machine, a moving structure, or a human body.

10:電磁振動エネルギ変換器、14:可動磁石、16:コイル、18:充電回路、22:蓄電部、24:スイッチ切替部、25:振幅検出部、26:負性インピーダンス変換回路、38:スイッチ、41:振幅・周波数検出部、41a:加速度センサ、42:制御部、50:非線形振動子、51,52:固定磁石、56:筒体、100:振動源、161:検出コイル、181:電圧変換回路、241:比較器、242:駆動回路、421:CPU、422:主記憶部、423:補助記憶部、424:第1インタフェース、425:第2インタフェース、426:DAC、427:バス、4211:周波数取得部、4212:閾値設定部、4231:相関テーブル、BR18:整流回路、C18:コンデンサ、G:発電機、OP26:オペアンプ、R18:負荷、R261,R262,R263:抵抗 10: electromagnetic vibration energy converter, 14: movable magnet, 16: coil, 18: charging circuit, 22: storage unit, 24: switch switching unit, 25: amplitude detection unit, 26: negative impedance conversion circuit, 38: switch , 41: amplitude / frequency detection unit, 41a: acceleration sensor, 42: control unit, 50: non-linear oscillator, 51, 52: fixed magnet, 56: cylinder, 100: vibration source, 161: detection coil, 181: voltage Conversion circuit, 241: comparator, 242: drive circuit, 421: CPU, 422: main storage unit, 423: auxiliary storage unit, 424: first interface, 425: second interface, 426: DAC, 427: bus, 4211 : Frequency acquisition unit, 4212: Threshold setting unit, 4231: Correlation table, BR18: Rectification circuit, C18: Capacitor, G: Generator, OP26: OPEA Flop, R18: load, R261, R262, R263: resistance

Claims (6)

質量要素と非線形ばね要素とを有する非線形振動子と、
振動源から前記非線形振動子に与えられる力学的エネルギを電気エネルギに変換する電気機械変換器と、
前記電気機械変換器から入力される電気エネルギを外部へ出力する出力回路と、
前記非線形振動子に振動を与える励振部と、
前記非線形振動子の振動の振幅が予め設定された閾値以上の場合、前記励振部が前記非線形振動子に非接続である第1状態にし、前記非線形振動子の振動の振幅が前記閾値未満の場合、前記励振部が前記非線形振動子に接続され、前記非線形振動子を励振する第2状態にする状態切替部と、
前記振動源の振動周波数を検出する周波数検出部と、
前記非線形振動子が複数の動作点をとりうる複数動作点共存帯域を含む励振部が励振する周波数帯域に、前記振動周波数が含まれるか否かに応じて、前記閾値を設定する閾値設定部と、を備える、
振動発電装置。
A non-linear oscillator having a mass element and a non-linear spring element;
An electromechanical transducer for converting mechanical energy given from the vibration source to the non-linear oscillator into electrical energy;
An output circuit for outputting the electrical energy input from the electromechanical converter to the outside;
An excitation unit that vibrates the nonlinear oscillator;
When the amplitude of the vibration of the non-linear vibrator is equal to or greater than a preset threshold value, the excitation unit is set to the first state in which the non-linear vibrator is not connected, and the vibration amplitude of the non-linear vibrator is less than the threshold A state switching unit configured to connect the excitation unit to the non-linear oscillator and bring the non-linear oscillator into a second state for excitation;
A frequency detection unit that detects the vibration frequency of the vibration source;
A threshold setting unit configured to set the threshold according to whether or not the vibration frequency is included in a frequency band in which an excitation unit including a plurality of operating point coexistence bands in which the non-linear oscillator can take a plurality of operating points excites; With
Vibration generator.
前記非線形振動子の振動周波数と前記振動周波数に対応する閾値との相関関係を示す相関情報を記憶する相関情報記憶部を更に備え、
前記閾値設定部は、前記相関情報を参照して、前記閾値を、前記振動周波数に応じた値に設定する、
請求項1に記載の振動発電装置。
The information processing apparatus further includes a correlation information storage unit that stores correlation information indicating a correlation between the vibration frequency of the non-linear vibrator and a threshold value corresponding to the vibration frequency.
The threshold setting unit sets the threshold to a value according to the vibration frequency with reference to the correlation information.
The vibration power generation device according to claim 1.
前記閾値は、前記複数動作点共存帯域の小振幅安定点よりも高く、大振幅安定点よりも低く設定されている、
請求項1に記載の振動発電装置。
The threshold is set to be higher than the small amplitude stable point of the multiple operating point coexistence band and lower than the large amplitude stable point.
The vibration power generation device according to claim 1.
前記閾値設定部は、前記複数動作点共存帯域を含む励振部が励振する周波数帯域以外の周波数帯域に前記振動周波数が含まれる場合、前記閾値を第1閾値に設定し、前記励振部が励振する周波数帯域に前記振動周波数が含まれる場合、前記閾値を第1閾値よりも大きい第2閾値に設定する、
請求項1から3のいずれか1項に記載の振動発電装置。
The threshold setting unit sets the threshold to a first threshold and excites the excitation unit when the vibration frequency is included in a frequency band other than a frequency band in which the excitation unit including the plurality of operating point coexistence bands excites. When the vibration frequency is included in a frequency band, the threshold is set to a second threshold larger than the first threshold.
The vibration power generation device according to any one of claims 1 to 3.
前記複数の動作点は、安定な小振幅振動動作点および大振幅振動動作点を含み、
前記第1閾値は、0であり、
前記第2閾値は、前記非線形振動子が前記小振幅振動動作点で振動するときの振動振幅よりも大きい、
請求項4に記載の振動発電装置。
The plurality of operating points include a stable small amplitude oscillating operating point and a large amplitude oscillating operating point,
The first threshold is 0,
The second threshold is larger than the vibration amplitude when the nonlinear vibrator vibrates at the small amplitude vibration operating point.
The vibration power generation device according to claim 4.
前記閾値設定部は、前記複数動作点共存帯域を含む励振部が励振する周波数帯域および前記閾値の大きさを適応的に変化させる、
請求項1に記載の振動発電装置。
The threshold setting unit adaptively changes a frequency band in which an excitation unit including the plurality of operating point coexistence bands excites and a magnitude of the threshold.
The vibration power generation device according to claim 1.
JP2018528891A 2016-07-21 2017-07-21 Vibration power generator Pending JPWO2018016620A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016143534 2016-07-21
JP2016143534 2016-07-21
PCT/JP2017/026446 WO2018016620A1 (en) 2016-07-21 2017-07-21 Vibration power generation device

Publications (1)

Publication Number Publication Date
JPWO2018016620A1 true JPWO2018016620A1 (en) 2019-05-09

Family

ID=60993024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018528891A Pending JPWO2018016620A1 (en) 2016-07-21 2017-07-21 Vibration power generator

Country Status (2)

Country Link
JP (1) JPWO2018016620A1 (en)
WO (1) WO2018016620A1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5508684B2 (en) * 2007-03-13 2014-06-04 国立大学法人信州大学 Linear vibration actuator, linear compressor and linear vibration generator using the same
CN103607092B (en) * 2013-09-25 2015-09-02 河北工业大学 A kind of electromagnetic type vibration generator
JP2016025762A (en) * 2014-07-22 2016-02-08 スター精密株式会社 Oscillating power generator
EP3029803B1 (en) * 2014-12-02 2018-06-13 WEIDPLAS GmbH Electric generating device for a vehicle

Also Published As

Publication number Publication date
WO2018016620A1 (en) 2018-01-25

Similar Documents

Publication Publication Date Title
US7345372B2 (en) Electromechanical generator for, and method of, converting mechanical vibrational energy into electrical energy
Lefeuvre et al. Materials, structures and power interfaces for efficient piezoelectric energy harvesting
JP5979369B2 (en) Power generation device, electronic device, moving means, battery, and method for controlling power generation device
JP4835888B1 (en) Power generator
JP4811537B1 (en) Power generator
JP6103182B2 (en) POWER GENERATION DEVICE, ELECTRONIC DEVICE, MOBILE DEVICE, AND POWER GENERATION DEVICE CONTROL METHOD
JP6015917B2 (en) Power generation device, electronic device and moving means
JP2009509495A (en) Energy harvesting using frequency rectification
JP2014503169A (en) Circuit to optimize vibration energy conversion by mechanical / electrical converter
EP2494689A2 (en) Nonlinear oscillator for vibration energy harvesting
JP2005130624A (en) Generator and power generation method
JP2006522579A (en) Near-resonant wide-range electromechanical motor
Li et al. Harvesting vibration energy: technologies and challenges
JPWO2018016620A1 (en) Vibration power generator
JP2012060864A (en) Vibration power generation apparatus
EP3295554B1 (en) Vibration energy harvester
RU136937U1 (en) PIEZOELECTRIC GENERATOR
JP5930152B2 (en) POWER GENERATION DEVICE, ELECTRONIC DEVICE, MOBILE DEVICE, AND METHOD FOR CONTROLLING POWER GENERATION DEVICE
JP5979353B2 (en) Power generation device, electronic device, moving means and battery
JP6789524B2 (en) Energy harvesting circuit
JP5871120B2 (en) Power generation device, power generation device control method, electronic device, and moving means
JP2019134540A (en) Vibration power generator and nonlinear vibrator
RU155155U1 (en) DISC PIEZOELECTRIC GENERATOR
KR20170059386A (en) Vibration energy harvesting device and operating method thereof
RU195757U1 (en) Piezoelectric beam generator