JP5838370B2 - Probe for 3D shape measuring equipment - Google Patents

Probe for 3D shape measuring equipment Download PDF

Info

Publication number
JP5838370B2
JP5838370B2 JP2013007244A JP2013007244A JP5838370B2 JP 5838370 B2 JP5838370 B2 JP 5838370B2 JP 2013007244 A JP2013007244 A JP 2013007244A JP 2013007244 A JP2013007244 A JP 2013007244A JP 5838370 B2 JP5838370 B2 JP 5838370B2
Authority
JP
Japan
Prior art keywords
side member
probe
vertical
arm
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013007244A
Other languages
Japanese (ja)
Other versions
JP2014137330A (en
Inventor
隆憲 舟橋
隆憲 舟橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2013007244A priority Critical patent/JP5838370B2/en
Priority to TW102145674A priority patent/TWI495844B/en
Priority to KR1020140005043A priority patent/KR101514179B1/en
Priority to CN201410022585.7A priority patent/CN103940366B/en
Publication of JP2014137330A publication Critical patent/JP2014137330A/en
Application granted granted Critical
Publication of JP5838370B2 publication Critical patent/JP5838370B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01MCATCHING, TRAPPING OR SCARING OF ANIMALS; APPARATUS FOR THE DESTRUCTION OF NOXIOUS ANIMALS OR NOXIOUS PLANTS
    • A01M9/00Special adaptations or arrangements of powder-spraying apparatus for purposes covered by this subclass
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01CPLANTING; SOWING; FERTILISING
    • A01C7/00Sowing
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G24/00Growth substrates; Culture media; Apparatus or methods therefor
    • A01G24/60Apparatus for preparing growth substrates or culture media

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Soil Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Insects & Arthropods (AREA)
  • Pest Control & Pesticides (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • A Measuring Device Byusing Mechanical Method (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Description

本発明は、三次元の形状を高精度かつ低測定力にて走査測定する三次元形状測定装置用プローブに関する。   The present invention relates to a probe for a three-dimensional shape measuring apparatus that scans and measures a three-dimensional shape with high accuracy and low measurement force.

測定物の三次元形状を高精度かつ低測定力にて走査測定可能な従来の三次元形状測定装置用プローブ(以下、プローブという。)としては、特許文献1に開示されたものがある。図12、13は、特許文献1に開示されたプローブの構成を示す。   As a conventional probe for a three-dimensional shape measuring apparatus (hereinafter referred to as a probe) capable of scanning and measuring a three-dimensional shape of a measurement object with high accuracy and low measurement force, there is one disclosed in Patent Document 1. 12 and 13 show the configuration of the probe disclosed in Patent Document 1. FIG.

図12において、プローブ101は取付用部材102により、三次元形状測定装置201に着脱可能に取り付けられる。取付用部材102の下部に固定された載置台104bに対して、揺動部103が揺動可能に連結され、揺動部103に対してアーム取付部120が上下弾性体109を介して、上下移動可能に保持されている。三次元形状測定装置201からは測定用レーザ光211が発せられ、アーム取付部120の揺動、上下方向の変位を検出する。アーム取付部120の下部には下端にスタイラス121を備えるアーム122が固定されている。スタイラス121は測定対象となる測定物60の被測定面61a、61bに接触し、その三次元形状を測定する。 In FIG. 12, the probe 101 is detachably attached to the three-dimensional shape measuring apparatus 201 by an attachment member 102. The swinging part 103 is slidably connected to the mounting table 104 b fixed to the lower part of the mounting member 102, and the arm mounting part 120 is vertically connected to the swinging part 103 via the vertical elastic body 109. It is held movable. A laser beam 211 for measurement is emitted from the three-dimensional shape measuring apparatus 201 to detect the swing of the arm mounting portion 120 and the displacement in the vertical direction. An arm 122 having a stylus 121 at the lower end is fixed to the lower portion of the arm mounting portion 120. The stylus 121 comes into contact with the measurement surfaces 61a and 61b of the measurement object 60 to be measured, and measures the three-dimensional shape thereof.

図13により、その詳細を説明する。図13は図12におけるプローブ101をA−A面で切断したときの斜視図である。図13において、取付用部材102に対して揺動を行なう揺動部103は、下部材103c、スペーサ103b、上部材103a、延伸部103e、可動側保持部103dとから構成される。2枚の上下弾性体109が下部材103c、上部材103aにスペーサ103bを介して両端を固定される。揺動部103における揺動運動の支点となる支点部材104cは下部材103cの下部中央に垂下するように固定される。上部材103aの上面には鉛直上方向に伸びる延伸部103eが2箇所に設けられている。また、延伸部103eの上端に可動側保持部103dが設けられている。可動側保持部103dは、リング状の部材であり、可動側磁石151が4箇所に同一半径上に等間隔に設けられている。   The details will be described with reference to FIG. FIG. 13 is a perspective view when the probe 101 in FIG. 12 is cut along the AA plane. In FIG. 13, the swinging portion 103 that swings with respect to the mounting member 102 includes a lower member 103c, a spacer 103b, an upper member 103a, an extending portion 103e, and a movable side holding portion 103d. Two upper and lower elastic bodies 109 are fixed to the lower member 103c and the upper member 103a via spacers 103b at both ends. A fulcrum member 104c serving as a fulcrum of the swinging motion in the swinging part 103 is fixed so as to hang down from the lower center of the lower member 103c. On the upper surface of the upper member 103a, two extending portions 103e extending vertically upward are provided. Moreover, the movable side holding | maintenance part 103d is provided in the upper end of the extending | stretching part 103e. The movable-side holding portion 103d is a ring-shaped member, and the movable-side magnets 151 are provided at four locations on the same radius at equal intervals.

取付用部材102には、固定側保持部材114が取り付けられている。固定側保持部材114に、固定側磁石152が4箇所に同一半径上に等間隔に設けられている。可動側磁石151と固定側磁石152との位置関係は、それぞれ鉛直軸方向であるZ軸方向に並んで配置される。また、可動側磁石151と固定側磁石152は、それぞれの対について、互いに吸引力が働く向きに固定される。   A fixed-side holding member 114 is attached to the attachment member 102. On the fixed side holding member 114, fixed side magnets 152 are provided at four locations on the same radius at equal intervals. The positional relationship between the movable-side magnet 151 and the fixed-side magnet 152 is arranged side by side in the Z-axis direction, which is the vertical axis direction. In addition, the movable side magnet 151 and the fixed side magnet 152 are fixed in a direction in which an attractive force acts on each pair.

揺動部103と取付用部材102とは、連結機構104により揺動可能に連結されている。連結機構104は取付用部材102に固定された角柱の載置台104bと、揺動部の下部材103cに取り付けられた支点部材104cとにより構成されている。載置台104bは、その上面に円錐形の溝104aが形成されており、支点部材104cの先端が当該溝104aに嵌入する。これにより、揺動部103と取付用部材102とは、支点部材104cと円錐形の溝104aとの接触部分を回転中心として、任意の水平軸まわりに回転可能に連結される。すなわち、揺動部103は取付用部材102に対して揺動回転可能である。   The swinging part 103 and the mounting member 102 are connected by a connecting mechanism 104 so as to be swingable. The coupling mechanism 104 includes a prismatic mounting base 104b fixed to the mounting member 102, and a fulcrum member 104c attached to the lower member 103c of the swinging portion. The mounting table 104b has a conical groove 104a formed on the upper surface thereof, and the tip of the fulcrum member 104c is fitted into the groove 104a. Thus, the swinging portion 103 and the mounting member 102 are coupled so as to be rotatable about an arbitrary horizontal axis with the contact portion between the fulcrum member 104c and the conical groove 104a as the rotation center. That is, the swinging part 103 can swing and rotate with respect to the mounting member 102.

揺動部103に両端を固定された2枚の上下弾性体109の中央部には、アーム取付部120が固定される。アーム取付部120の上部には取付用部材102を通過した測定用レーザ光211を反射するミラー123が設けられている。   An arm mounting portion 120 is fixed to the central portion of the two upper and lower elastic bodies 109 whose both ends are fixed to the swinging portion 103. A mirror 123 that reflects the measurement laser beam 211 that has passed through the mounting member 102 is provided above the arm mounting portion 120.

上記の構成により、揺動部103が支点部材104cの先端を中心として揺動回転したとしても、上記磁石の吸引力により当該回転を戻す方向に復元力が働く。また、上下弾性体109により、アーム取付部120は揺動部103に対して上下方向に微小移動可能となるとともに、上下移動に対して中立位置に戻るように弾性的な復元力が働く。上下弾性体109として、2枚の板ばねを使用することにより、上下方向のみ剛性を弱く、水平方向の剛性を強くし、高精度に測定できるようにしている。   With the above configuration, even if the swinging portion 103 swings and rotates around the tip of the fulcrum member 104c, a restoring force acts in a direction to return the rotation by the attractive force of the magnet. Further, the vertical elastic body 109 allows the arm mounting portion 120 to move minutely in the vertical direction with respect to the swinging portion 103, and an elastic restoring force acts so as to return to the neutral position with respect to the vertical movement. By using two leaf springs as the upper and lower elastic bodies 109, the rigidity in the vertical direction is weakened, the rigidity in the horizontal direction is increased, and measurement can be performed with high accuracy.

次に、上記構成のプローブ101による測定方法について述べる。測定物60の鉛直面である被測定面61aの形状測定は、アーム122に取り付けられているスタイラス121を被測定面61aに所定の押圧力にて押しつけて行われる。該押圧力、すなわち測定力は、スタイラス121を被測定面61aに接触させた状態でプローブ101を測定物60側へ僅かに移動させることで、揺動部103の復元力により発生する。   Next, a measurement method using the probe 101 having the above configuration will be described. The shape measurement of the measured surface 61a which is the vertical surface of the measurement object 60 is performed by pressing the stylus 121 attached to the arm 122 against the measured surface 61a with a predetermined pressing force. The pressing force, that is, the measuring force is generated by the restoring force of the swinging portion 103 by slightly moving the probe 101 toward the measured object 60 with the stylus 121 in contact with the surface to be measured 61a.

また、測定物60の被測定面61bのような水平面の場合、スタイラス121を被測定面61bに所定の押圧力にて押しつけて行われる。該押圧力、すなわち測定力は、スタイラス121を被測定面61bに接触させた状態で取付用部材102を測定物60側の下方向へ僅かに移動させることで、上下弾性体109の復元力により発生させることができる。   Further, in the case of a horizontal surface such as the measured surface 61b of the measurement object 60, the stylus 121 is pressed against the measured surface 61b with a predetermined pressing force. The pressing force, that is, the measuring force is caused by the restoring force of the upper and lower elastic bodies 109 by slightly moving the mounting member 102 downward in the measured object 60 side with the stylus 121 in contact with the surface to be measured 61b. Can be generated.

以上のようにプローブ101を測定物60に一定の測定力を加えながら走査すると同時に、測定用レーザ光211により、ミラー123の上下位置、傾きを検出することにより、プローブ101に対するスタイラス121の中心の相対位置を求めることが出来る。また、三次元形状測定装置201により、プローブ101の位置を求めることにより、測定物60の形状を三次元的に測定することが出来る。   As described above, the probe 101 is scanned while applying a constant measuring force to the measurement object 60, and at the same time, the vertical position and inclination of the mirror 123 are detected by the measurement laser beam 211, so that the center of the stylus 121 relative to the probe 101 is detected. The relative position can be obtained. Further, by obtaining the position of the probe 101 by the three-dimensional shape measuring apparatus 201, the shape of the measurement object 60 can be measured three-dimensionally.

特開2010−286475号公報JP 2010-286475 A

しかしながら、より高精度に測定する場合や、微小なスタイラスを使用する場合、より小さい測定力にする必要があり、前記従来の構成では、水平面の測定時の測定力を小さくしようすると、上下弾性体109の一例である板ばねの厚みをさらに薄くし、また板ばねを大きくする必要がある。例えば、測定力を0.5gf以下にする場合、板ばねの厚みを0.05mm程度、水平方向の長さが30mm程度にする必要がある。このような厚みでは水平方向の剛性が小さくなり、プローブ内のミラーの傾きと上下移動を検知する測定機においては、水平方向のずれが測定誤差となってしまう。また、板ばねの厚みを薄くすると剛性が下がり、厚みの薄い板ばねを大きくすると、可動部の質量が増えるため、プローブの固有振動数が下がる。固有振動数が下がると、測定時に振動が起こりやすくなり、測定データに振動による測定誤差が生じる。   However, when measuring with higher accuracy or when using a small stylus, it is necessary to use a smaller measuring force. In the conventional configuration, if the measuring force when measuring the horizontal plane is reduced, the upper and lower elastic bodies It is necessary to further reduce the thickness of the leaf spring, which is an example of 109, and to increase the leaf spring. For example, when the measurement force is 0.5 gf or less, it is necessary to set the thickness of the leaf spring to about 0.05 mm and the horizontal length to about 30 mm. With such a thickness, the rigidity in the horizontal direction becomes small, and in a measuring instrument that detects the tilt and vertical movement of the mirror in the probe, a horizontal deviation becomes a measurement error. Further, when the thickness of the leaf spring is reduced, the rigidity is lowered, and when the leaf spring having a small thickness is increased, the mass of the movable portion is increased, so that the natural frequency of the probe is lowered. When the natural frequency decreases, vibration is likely to occur during measurement, and measurement errors due to vibration occur in measurement data.

本発明は、前記従来の課題を解決するもので、プローブの上下微小移動機構の上下方向(鉛直軸方向)の剛性を小さく、水平方向の剛性を高くすることにより、より小さい測定力での測定を可能にすると共に、プローブの固有振動数を高くすることにより測定時、非測定時の振動が起こりにくい三次元形状測定装置用プローブを提供することを目的とする。   The present invention solves the above-mentioned conventional problems, and the measurement with a smaller measuring force is achieved by reducing the vertical rigidity (vertical axis direction) of the probe vertical movement mechanism and increasing the horizontal rigidity. It is another object of the present invention to provide a probe for a three-dimensional shape measuring apparatus in which vibration during measurement and non-measurement hardly occurs by increasing the natural frequency of the probe.

上記目的を達成するために、本発明の三次元形状測定装置用プローブは、三次元形状測定装置に取り付けられる取付部と、前記取付部に設けられた載置台と、前記載置台に載置された支点部材とを有し、前記支点部材を支点として前記取付部に揺動可能に連結され、互いに交差する第1面と第2面とを有する揺動部と、前記揺動部に設けられた可動側部材と、前記取付部に設けられて前記可動側部材に対して間隔を隔てて対向する固定側部材とを備え、前記可動側部材と前記固定側部材は磁気的吸引力を発生するように構成され、当該磁気的吸引力により前記揺動部が一定の方向を向くように前記揺動部を付勢する付勢機構と、測定物の被測定面に接触するスタイラスが下端に配置されたアームが垂下して取り付けられ、前記第1面と対向する第3面と、前記第2面と対向する第4面とを有するアーム支持部と、前記揺動部の前記第1面と前記第2面に設けられ、それぞれ鉛直面を有する複数の揺動部側部材と、前記アーム支持部の前記第3面と前記第4面に設けられ、それぞれ前記揺動部側部材のいずれかと水平方向に間隔を隔てて対向し、かつ対向する前記揺動部側部材の前記鉛直面と水平方向に間隔をあけて対向する鉛直面を有し、前記揺動側部材と磁気的吸引力を発生するように構成された複数のアーム側部材と、それぞれ互いに対向する前記揺動部側部材と前記アーム側部材との間に配置されて前記磁気的吸引力により前記鉛直面に吸引されて接触する、磁性体からなる複数の球体とを備える。 In order to achieve the above object, a probe for a three-dimensional shape measuring apparatus according to the present invention is mounted on a mounting portion attached to the three-dimensional shape measuring device, a mounting table provided on the mounting portion, and the mounting table. And a pivot part having a first surface and a second surface intersecting each other with the fulcrum member as a fulcrum. A movable side member, and a fixed side member provided at the mounting portion and opposed to the movable side member with a space therebetween, and the movable side member and the fixed side member generate a magnetic attractive force. An urging mechanism that urges the oscillating part so that the oscillating part is directed in a certain direction by the magnetic attraction force and a stylus that contacts the surface to be measured of the object to be measured are arranged at the lower end. The attached arm is suspended and is opposed to the first surface. An arm support portion having a third surface and a fourth surface opposite to the second surface, and a plurality of swing portions provided on the first surface and the second surface of the swing portion, each having a vertical surface a Department-side member, wherein provided the third surface of the arm support portion and the fourth surface, respectively face each other with an interval in the horizontal direction and one of the swing-side member, and the swing portion facing has a vertical surface facing spaced said vertical plane and horizontal side members, and a plurality of arm-side member that is configured to generate the oscillating portion side member and the magnetic attraction force, each other And a plurality of spheres made of a magnetic material that are arranged between the swinging member side member and the arm side member facing each other and are attracted to and contact the vertical surface by the magnetic attraction force.

具体的には、1個の前記揺動部側部材と、それと対向する1個の前記アーム側部材と、これらの前記揺動部側部材と前記アーム側部材との間に配置された1個の前記球から構成された磁力セットが5組あり、前記磁力セットは、5組のうちの任意の1組が他の4組により拘束される自由度と一致しない方向の自由度を拘束する位置および方向に配置されている。 Specifically, one said rocking | swiveling part side member, one said arm side member facing it, and one piece arrange | positioned between these said rocking | swiveling part side member and said arm side member There the magnetic force sets 5 sets constructed from said ball member, said force sets, for any pair of the five pairs restrains the degree of freedom in a direction that does not match the degrees of freedom are constrained by other four sets Arranged in position and direction.

本構成によって、前記球は、前記揺動部側部材と、前記アーム側部材の間で、その鉛直面上で接触しながら転がる。これにより、前記揺動部に対して、前記アーム支持部が鉛直軸上で移動可能となる。また、前記揺動部側部材と、前記アーム側部材との間に磁気的吸引力が働くために、前記アーム支持部が鉛直軸上で移動し、前記揺動部側部材と前記アーム側部材が離れた場合、近づく方向に復元力が働く。水平面測定時の測定力は、前記揺動部に対して鉛直軸方向にのみ移動可能に保持された前記アーム支持部が、鉛直軸方向の中立位置への磁気的吸引力で付勢されることで生じる。個々の磁力セットを構成する揺動側部材、アーム側部材、および球は、それぞれ点接触であるが、剛体どうしの接触であるため、鉛直軸方向の以外の5自由度の移動、回転に対して剛性を上げることができる。これにより、アーム支持部に設けられた位置検出ミラーの傾き、鉛直軸方向移動のみを、検出することにより、スタイラスの位置を高精度に検出できる。また、磁力セットは、アーム支持部および、アーム、スタイラス、ミラーを保持できるだけの磁気的吸引力があればいいため、例えば直径1mm程度の永久磁石と鋼球を使用すれば良い。これにより、可動部の質量が小さくなり、固有振動数を高くすることが出来、振動が発生しにくくなる。また、磁気的吸引力による復元力を小さくすることが出来、測定力を例えば0.3gf以下と小さくすることが出来る。 This structure, the ball body, said swinging portion side member, between said arm member, rolls while contacting on the vertical plane. Thereby, the arm support portion can move on the vertical axis with respect to the swinging portion. In addition, since a magnetic attractive force acts between the swing part side member and the arm side member, the arm support part moves on a vertical axis, and the swing part side member and the arm side member When is separated, restoring force works in the approaching direction. The measuring force at the time of horizontal plane measurement is that the arm support portion held so as to be movable only in the vertical axis direction with respect to the swinging portion is biased by a magnetic attraction force toward a neutral position in the vertical axis direction. It occurs in. Swinging portion side member constituting the individual magnetic set, the arm member, and the sphere body, but each point contact, since the contact of the rigid body with each other, the movement of the five degrees of freedom other than the vertical direction, the rotation The rigidity can be increased. Thereby, the position of the stylus can be detected with high accuracy by detecting only the inclination of the position detection mirror provided in the arm support portion and the movement in the vertical axis direction. In addition, the magnetic force set only needs to have a magnetic attractive force sufficient to hold the arm support portion and the arm, stylus, and mirror. For example, a permanent magnet having a diameter of about 1 mm and a steel ball may be used. Thereby, the mass of a movable part becomes small, a natural frequency can be made high, and it becomes difficult to generate | occur | produce a vibration. In addition, the restoring force due to the magnetic attractive force can be reduced, and the measuring force can be reduced to 0.3 gf or less, for example.

代案として、前記揺動部側部材と前記アーム側部材は、一方が永久磁石で構成され、他方が磁性体で構成されていてもよい。   As an alternative, one of the swinging member side member and the arm side member may be formed of a permanent magnet, and the other may be formed of a magnetic material.

前記揺動部側部材と、前記アーム側部材と、前記球の5対の配置は、鉛直平面a上に3対、前記鉛直平面aに交差する鉛直平面b上に2対を配置されていてもよい。 And the swing-side member, and the arm member, 5 pair arrangement of the ball body, vertical plane a on the three pairs, are arranged two pairs vertically on the plane b intersecting the vertical plane a May be.

本発明の三次元形状測定装置用プローブによれば、スタイラスと測定物の接触力、すなわち測定力を小さくできるため、高精度に測定でき、また微小なスタイラスでも破損することなく、測定することが出来る。また、可動部の固有振動数を低く出来るため、振動が発生しにくくなり、高精度な測定ができる。   According to the probe for the three-dimensional shape measuring apparatus of the present invention, since the contact force between the stylus and the measurement object, that is, the measurement force can be reduced, it is possible to measure with high accuracy, and even a minute stylus can be measured without being damaged. I can do it. In addition, since the natural frequency of the movable part can be reduced, vibration is less likely to occur, and high-precision measurement can be performed.

本発明の実施の形態における三次元形状測定装置用プローブの斜視図。The perspective view of the probe for three-dimensional shape measuring apparatuses in embodiment of this invention. 図1における三次元形状測定装置用プローブをA−A面で切断したときの斜視図。The perspective view when the probe for three-dimensional shape measuring apparatuses in FIG. 1 is cut | disconnected by the AA surface. 図1における三次元形状測定装置用プローブをB−B面における断面図。Sectional drawing in the BB surface of the probe for three-dimensional shape measuring apparatuses in FIG. 図1における主要部を分解した斜視図。The perspective view which decomposed | disassembled the principal part in FIG. 図4における永久磁石53a、54a、鋼球55aの位置関係を示す図。The figure which shows the positional relationship of the permanent magnets 53a and 54a and the steel ball 55a in FIG. 図5の上下移動機構の移動後の状態を示す図。It shows the state after the movement of the vertical movement Organization of FIG. 図1に示すプローブを備えた形状測定装置の一例を示す図。The figure which shows an example of the shape measuring apparatus provided with the probe shown in FIG. 図7に示す形状測定装置に備わる測定点情報決定部およびプローブ光学部の構成を示す図。The figure which shows the structure of the measurement point information determination part with which the shape measuring apparatus shown in FIG. 7 is provided, and a probe optical part. 図1に示すプローブにて被測定面の測定を行うときのプローブの傾斜角度を説明するための図であり、測定物を平面図にて表した図。It is a figure for demonstrating the inclination angle of a probe when measuring a to-be-measured surface with the probe shown in FIG. 1, and the figure which represented the to-be-measured object with the top view. 図1に示すプローブにて被測定面の測定を行うときのプローブの傾斜角度を説明するための図であり、測定物を側面図にて表した図。It is a figure for demonstrating the inclination-angle of a probe when measuring a to-be-measured surface with the probe shown in FIG. 1, and the figure which represented the to-be-measured object with the side view. 代案の上下移動機構を示す斜視図。The perspective view which shows the alternative up-and-down moving mechanism. 図11aの正面図。11b is a front view of FIG. 図11aの平面図。FIG. 11B is a plan view of FIG. 従来の三次元形状測定装置用プローブの一例の斜視図。The perspective view of an example of the conventional probe for three-dimensional shape measuring apparatuses. 図12の従来の三次元形状測定装置用プローブをA−A面で切断したときの斜視図。FIG. 13 is a perspective view when the conventional probe for a three-dimensional shape measuring apparatus in FIG. 12 is cut along an AA plane.

以下本発明の実施の形態における三次元形状測定装置用プローブ(以下プローブ1という)について、図面を参照しながら説明する。   Hereinafter, a probe for a three-dimensional shape measuring apparatus (hereinafter referred to as a probe 1) according to an embodiment of the present invention will be described with reference to the drawings.

まず、図1から図4を参照してプローブ1について説明する。図1は、本発明の実施の形態1におけるプローブ1の外観を示す斜視図である。図2は、図1の一部をA−A面(XZ平面)でプローブ1を切断した斜視図である。図3は、図1のB−B面(YZ平面)における断面図である。図4は、図1における可動部分のみを分解した斜視図である。   First, the probe 1 will be described with reference to FIGS. FIG. 1 is a perspective view showing an external appearance of a probe 1 according to Embodiment 1 of the present invention. FIG. 2 is a perspective view of a part of FIG. 1 cut along the AA plane (XZ plane). 3 is a cross-sectional view taken along the BB plane (YZ plane) of FIG. 4 is an exploded perspective view of only the movable part in FIG.

図1において、プローブ1は全体として両端開口の筒状である取付部2により、三次元形状測定装置201に着脱可能に取り付けられる。取付部2の下部には閉鎖部材5の上端側が固定して取り付けられている。閉鎖部材5の下端側には載置台41が固定して取り付けられている。載置台41に対して、下端にスタイラス21を備えるアーム22が揺動、上下移動可能に取り付けられている。三次元形状測定装置201からは測定用レーザ光111が発せられ、アーム22とスタイラス21の揺動と上下方向の変位を検出する。プローブ1はスタイラス21を測定対象となる測定物60の被測定面61a、61bに接触させながら、その三次元形状を測定する。 In FIG. 1, the probe 1 is detachably attached to the three-dimensional shape measuring apparatus 201 by means of a mounting part 2 having a cylindrical shape with openings at both ends. The upper end side of the closing member 5 is fixedly attached to the lower portion of the attachment portion 2. A mounting table 41 is fixedly attached to the lower end side of the closing member 5. An arm 22 having a stylus 21 at the lower end is attached to the mounting table 41 so as to swing and move up and down. A laser beam 111 for measurement is emitted from the three-dimensional shape measuring apparatus 201 to detect the swinging and vertical displacement of the arm 22 and the stylus 21. The probe 1 measures its three-dimensional shape while bringing the stylus 21 into contact with the measurement surfaces 61a and 61b of the measuring object 60 to be measured.

以下、プローブ1の構造の詳細を図2、図3、図4を参照しながら説明する。   Details of the structure of the probe 1 will be described below with reference to FIGS.

図2において、プローブ1は、取付部2およびそれに固定された部材と、下部材3a、可動側保持部3cを含む揺動部3およびそれに固定された部材と、アーム支持部20およびそれに固定された部材とを備える。揺動部は取付部2に対して揺動運動を行い、アーム支持部20は揺動部に対して上下運動を行なう。以下にその構成を示す。   In FIG. 2, the probe 1 includes an attachment portion 2 and a member fixed thereto, a swinging portion 3 including a lower member 3 a and a movable side holding portion 3 c and members fixed thereto, an arm support portion 20, and a member fixed thereto. And a member. The swinging part performs a swinging movement with respect to the mounting part 2, and the arm support part 20 performs a vertical movement with respect to the swinging part. The configuration is shown below.

取付部2は、上部に三次元形状測定装置201に取り付けられるように円筒部を形成し、その中央部には測定用レーザ光111が通過し、揺動部の可動側保持部3cと接触しないように、空洞部11を有する。取付部2の下部には概ねリング形状の固定側保持部材33が固定して取り付けられている。固定側保持部材33には、固定側磁石52が4個保持されている。固定側磁石52は、プローブ1の中心軸を中心とする円周上に、90度間隔に配置されている。また取付部2の下部の開口部には、閉鎖部材5が固定されている。閉鎖部材5の下部には、揺動部3の下部材3aが接触しないように揺動用貫通穴5aが開いている。閉鎖部材5には水平方向に延びる角柱である載置台41が固定され、載置台41のプローブ1の中心軸上に円錐溝41aが形成されている。   The attachment portion 2 forms a cylindrical portion so that the attachment portion 2 can be attached to the three-dimensional shape measuring apparatus 201, and the measurement laser beam 111 passes through the central portion thereof and does not contact the movable side holding portion 3c of the swinging portion. As described above, the cavity portion 11 is provided. A substantially ring-shaped fixed-side holding member 33 is fixedly attached to the lower portion of the attachment portion 2. The fixed side holding member 33 holds four fixed side magnets 52. The fixed side magnets 52 are arranged at intervals of 90 degrees on the circumference centered on the central axis of the probe 1. A closing member 5 is fixed to the opening at the bottom of the mounting portion 2. In the lower part of the closing member 5, a swinging through hole 5 a is opened so that the lower member 3 a of the swinging part 3 does not come into contact. A mounting table 41, which is a prism that extends in the horizontal direction, is fixed to the closing member 5, and a conical groove 41 a is formed on the central axis of the probe 1 of the mounting table 41.

揺動部3の可動側保持部3cは、上部にリング形状が形成され、可動側部材の一例である4個の可動側磁石51が、固定側磁石52と同様にプローブ1の中心軸を中心とする円周上に、90度間隔に保持されている。可動側磁石51と固定側磁石52は対をなしている。つまり、個々の可動側磁石51は対応する固定側磁石52とプローブ1の中心軸の方向(上下方向ないし鉛直方向)に互いに対向している。下部材3aは、図3に示す延伸部3bを介して、可動側保持部材3cに固定されている。下部材3aには、揺動部側部材として、永久磁石53a〜e(永久磁石53a、53bは図4を参照のこと)が埋め込まれている。また、下部材3aの一部にはプローブ中心軸上に、鉛直方向下向きに突出する針状の突起で構成された支点部材42が固定されている。 The movable side holding part 3 c of the swing part 3 has a ring shape at the top, and the four movable side magnets 51, which are examples of the movable side member, have the center axis of the probe 1 as well as the fixed side magnet 52. It is held at 90 degree intervals on the center circle. The movable side magnet 51 and the fixed side magnet 52 make a pair. That is, the individual movable side magnets 51 are opposed to each other in the direction of the central axis (vertical direction or vertical direction) of the corresponding fixed side magnet 52 and the probe 1. The lower member 3a is fixed to the movable side holding member 3c via the extending portion 3b shown in FIG. Permanent magnets 53a to 53e (for permanent magnets 53a and 53b, see FIG. 4) are embedded in the lower member 3a as swinging member side members. Further, a fulcrum member 42 constituted by a needle-like protrusion that protrudes downward in the vertical direction is fixed to a part of the lower member 3a on the probe central axis.

アーム支持部20は、その下面にスタイラス21を下端に有するアーム22が垂下して取り付けられている。また、アーム支持部20の上面にはアーム支持部の上下移動位置、傾きを検出する測定用レーザ光111を反射するための位置検出ミラー23が固定されている。また、図4に最も明瞭に示すように、アーム支持部20には、アーム側部材として永久磁石54a〜eが埋め込まれている。アーム支持部20は中央に水平方向に延在する貫通穴24が設けられている。連結機構を構成する載置台41、支点部材42、および支点部材42を固定する揺動部3の下部材3aの一部は、貫通穴24の中に隙間を保ちながら位置する。つまり、載置台41は貫通穴24を貫通して延在する。揺動部3の下部材3aの支点部材42を固定する部分は、角柱の形状であり、支点部材42をその下部に固定する。また、支点部材42の上方で貫通穴24を貫通して延在する。   An arm 22 having a stylus 21 at the lower end is attached to the lower surface of the arm support portion 20 in a suspended manner. Further, a position detection mirror 23 for reflecting the measurement laser beam 111 for detecting the vertical movement position and inclination of the arm support portion is fixed to the upper surface of the arm support portion 20. Further, as shown most clearly in FIG. 4, permanent magnets 54 a to 54 e are embedded in the arm support portion 20 as arm side members. The arm support part 20 is provided with a through hole 24 extending in the horizontal direction in the center. The mounting table 41, the fulcrum member 42, and a part of the lower member 3a of the swinging unit 3 that fixes the fulcrum member 42 are positioned in the through hole 24 while maintaining a gap. That is, the mounting table 41 extends through the through hole 24. The portion for fixing the fulcrum member 42 of the lower member 3a of the swinging portion 3 has a prismatic shape, and the fulcrum member 42 is fixed to the lower portion thereof. Further, it extends through the through hole 24 above the fulcrum member 42.

下部材3aに埋め込まれた永久磁石53a〜eとアーム支持部20に埋め込まれた永久磁石54a〜eの間には鋼球55a〜e(鋼球55b、55d、55eは図4に図示する)が接触して保持されている。   Steel balls 55a-e (steel balls 55b, 55d, 55e are shown in FIG. 4) between the permanent magnets 53a-e embedded in the lower member 3a and the permanent magnets 54a-e embedded in the arm support portion 20. Is held in contact.

図3において、前述したように揺動部3の可動側保持部3cは、揺動部の延伸部3bを介して、揺動部3の下部材3aと固定されている。また、載置台41は、閉鎖部材5の下部にその両端がネジ止めされている。載置台41の円錐溝41aの最下点に支点部材42の尖端位置が接触するように構成される。このような構成とすることによって、揺動部の下部材3aと取付部2とは、支点部材42と円錐溝41aとの接触部分を揺動中心として、揺動可能に連結される。なお、揺動部3の下部材3aは、支点部材42が載置台41の円錐溝41aに嵌入して連結した場合、アーム22が鉛直方向を向くように、重心が支点部材42の先端を通る鉛直軸に位置するように構成されていることが好ましい。   In FIG. 3, as described above, the movable side holding portion 3c of the oscillating portion 3 is fixed to the lower member 3a of the oscillating portion 3 via the extending portion 3b of the oscillating portion. The mounting table 41 is screwed at both ends to the lower part of the closing member 5. The tip position of the fulcrum member 42 is configured to contact the lowest point of the conical groove 41 a of the mounting table 41. With such a configuration, the lower member 3a of the swinging portion and the mounting portion 2 are connected so as to be swingable with the contact portion between the fulcrum member 42 and the conical groove 41a as the swing center. The lower member 3a of the swinging portion 3 has a center of gravity passing through the tip of the fulcrum member 42 so that the arm 22 faces in the vertical direction when the fulcrum member 42 is fitted and connected to the conical groove 41a of the mounting table 41. It is preferable to be configured to be positioned on the vertical axis.

4個の可動側磁石51と4個の固定側磁石52はそれぞれ、同軸上に一定の距離をもって配置されている。また、個々の対について、互いに吸引力が働く向きに配置される。本実施形態においては、全ての可動側磁石51および固定側磁石52の上がN極、下がS極になるように配置されている。   The four movable side magnets 51 and the four fixed side magnets 52 are coaxially arranged with a certain distance. Moreover, about each pair, it arrange | positions in the direction which a suction force works mutually. In the present embodiment, all the movable side magnets 51 and the fixed side magnets 52 are arranged so that the top is the N pole and the bottom is the S pole.

図4は、図1におけるプローブ1の取付部2、固定側保持部材33、固定側磁石52、閉鎖部材5、載置台41からなる固定部(三次元形状測定装置201に固定された部分)以外の可動部の分解斜視図である。   4 is a view other than the fixed portion (the portion fixed to the three-dimensional shape measuring apparatus 201) including the mounting portion 2, the fixed-side holding member 33, the fixed-side magnet 52, the closing member 5, and the mounting table 41 in FIG. It is a disassembled perspective view of the movable part.

図4において揺動部の下部材3aは、支点部材42を固定する角柱部分と、アーム支持部20を保持する部分とを備える。アーム支持部20を保持する部分はアーム支持部20を内側に囲む形状からなり、図4に示すYZ平面に平行な鉛直面49と、XZ平面に平行な鉛直面50とを備える。鉛直面(第1面)49と鉛直面(第2面)50は、平面視で、すなわちZ軸方向から見たときに、互いに直交する。これらの鉛直面49,50に、揺動部側部材として、合計5個の円柱形の永久磁石53a〜eが埋め込まれている。そのうち3個の永久磁石53a〜cは、その片方の平面が鉛直面49と同一面になるように、埋め込まれて固定されている。残りの2個の永久磁石53d、53eは、その片方の平面が鉛直面50と同一面になるように、埋め込まれ固定されている。鉛直面50は、鉛直面49に直交する面である。5個の永久磁石53は円筒軸方向に極性を持つ。   In FIG. 4, the lower member 3 a of the swing portion includes a prismatic portion that fixes the fulcrum member 42 and a portion that holds the arm support portion 20. The portion for holding the arm support portion 20 has a shape surrounding the arm support portion 20 inside, and includes a vertical surface 49 parallel to the YZ plane and a vertical surface 50 parallel to the XZ plane shown in FIG. The vertical surface (first surface) 49 and the vertical surface (second surface) 50 are orthogonal to each other when viewed in plan, that is, when viewed from the Z-axis direction. A total of five columnar permanent magnets 53a to 53e are embedded in these vertical surfaces 49 and 50 as swinging member side members. Among them, the three permanent magnets 53 a to 53 c are embedded and fixed so that one of the planes is flush with the vertical plane 49. The remaining two permanent magnets 53 d and 53 e are embedded and fixed so that one of the planes thereof is flush with the vertical plane 50. The vertical surface 50 is a surface orthogonal to the vertical surface 49. The five permanent magnets 53 have polarity in the cylindrical axis direction.

図4に示すアーム支持部20は、揺動部の下部材3aの内側に保持されるとともに、鉛直面56,57が形成されている。鉛直面(第3面)56はYZ平面に平行な面で、鉛直面(第4面)57はXZ平面に鉛直な面であり、鉛直面56,57は平面視で互いに直交している。また、鉛直面56,57はそれぞれ、揺動部の下部材3aに形成された鉛直面49,50に水平方向に間隔を隔てて平行に対向する。詳細には、鉛直面56は下部材3aの鉛直面49に対してX軸方向に対向し、鉛直面57は下部材3aの鉛直面50に対してY軸方向に対向している。アーム支持部20の鉛直面56,57には、アーム側部材として合計5個の円柱形の永久磁石54a〜eが、埋め込まれて固定されている。そのうち3個の永久磁石54a〜cはその片方の平面が、鉛直面56と同一面になるように埋め込まれて固定されている。残りの2個の永久磁石54d、54eはその片方の平面が、鉛直面57と同一面になるように埋め込まれて固定されている。これにより、揺動部の下部材3aに埋め込まれた永久磁石53a〜eと、アーム支持部20に埋め込まれた永久磁石54a〜eは、それぞれに水平方向に間隔を隔てて対向する位置となる。5個の永久磁石54a〜eは円柱軸方向に極性を持ち、その方向は対向する永久磁石53a〜eと同一方向、かつ同軸である。つまり、永久磁石54a〜eと永久磁石53a〜eは鋼球55a〜eを挟んで異極が対向している(図5参照)。また、それぞれの永久磁石53a〜e、54a〜eの対向する面は、互いに平行、かつ鉛直な面である。   The arm support portion 20 shown in FIG. 4 is held inside the lower member 3a of the swing portion, and has vertical surfaces 56 and 57 formed therein. The vertical surface (third surface) 56 is a surface parallel to the YZ plane, the vertical surface (fourth surface) 57 is a surface perpendicular to the XZ plane, and the vertical surfaces 56 and 57 are orthogonal to each other in plan view. Further, the vertical surfaces 56 and 57 respectively face the vertical surfaces 49 and 50 formed on the lower member 3a of the swinging portion in parallel with a horizontal interval. Specifically, the vertical surface 56 faces the vertical surface 49 of the lower member 3a in the X-axis direction, and the vertical surface 57 faces the vertical surface 50 of the lower member 3a in the Y-axis direction. A total of five columnar permanent magnets 54a to 54e are embedded and fixed on the vertical surfaces 56 and 57 of the arm support portion 20 as arm side members. Among them, the three permanent magnets 54 a to 54 c are embedded and fixed so that one of the planes is flush with the vertical surface 56. The remaining two permanent magnets 54 d and 54 e are embedded and fixed so that one of the planes thereof is flush with the vertical surface 57. As a result, the permanent magnets 53a to 53e embedded in the lower member 3a of the swinging part and the permanent magnets 54a to 54e embedded in the arm support part 20 are positioned to face each other at an interval in the horizontal direction. . The five permanent magnets 54a to 54e have a polarity in the cylinder axis direction, and the direction thereof is the same direction and coaxial with the opposing permanent magnets 53a to 53e. That is, the permanent magnets 54a to 54e and the permanent magnets 53a to 53e are opposite to each other with the steel balls 55a to 55e interposed therebetween (see FIG. 5). The opposing surfaces of the permanent magnets 53a to 54e and 54a to 54e are parallel and vertical surfaces.

図4に示す永久磁石53a〜e、54a〜eの対向する鉛直面間には、磁性体である球として5個の鋼球55a〜eが磁気により吸引された状態で、挟まれている。それぞれ永久磁石53a〜e、54a〜eの対向する鉛直面間には、鋼球55a〜eから構成される5組の組み合わせ(磁力セット)のうちの1組を構成する永久磁石53a,54a、鋼球55aを図5に示す。鋼球55aは2つの永久磁石と点接触しながら、接触面である鉛直面上で転がることが出来る。これにより、揺動部の下部材3aに対して、アーム支持部20が鉛直面上で移動可能となる。図4において下部材3aの鉛直面49とアーム支持部20の鉛直面56とに設けられた3組の永久磁石53a〜c,54a〜cと鋼球55a〜cにより、アーム支持部20は、揺動部の下部材3aに対して鉛直面49と平行にのみ移動可能となる。ただし、3組の永久磁石、球の配置が鉛直面上で一つの直線上に配置された場合は、その直線まわりの回転の拘束ができないため、3対の配置は一直線上に並ばないことが必要である。本実施形態では、永久磁石53a,54aと鋼球55aからなる組(第1の組)と永久磁石53b,54bと鋼球55bからなる組(第2の組)は、Y軸方向に延びる一直線上に配置されているが、残りの1組(第3の組)を構成する永久磁石53c,54cと鋼球55cは、このY軸方向の直線に対してZ軸方向に外れた位置(図において下方)であり、かつ第1の組および第2の組のいずれに対してもY軸方向に外れた位置に配置されている。一方、鉛直面50,57に設けられた2対の永久磁石53d〜e,54d〜eと鋼球55d〜eにより、アーム支持部20は、揺動部の下部材3aに対して鉛直面49と平行にのみ移動可能となる。鉛直面49と鉛直面50は直交した面であるため、揺動部の下部材3aに対して、アーム支持部20は鉛直軸方向にのみ移動可能となる。本実施形態では、鉛直面49,50は平面視で直交しているが、必ずしも直交している必要はない。鉛直面49,50は平面視で一定の角度をもって交差する面であれば、同様にアーム支持部20は鉛直軸方向にのみ移動可能となる。また、永久磁石53a,54aのいずれか一方を磁性体で置き換えてもよい。   Five steel balls 55a to 55e are sandwiched between the opposing vertical surfaces of the permanent magnets 53a to e and 54a to e shown in FIG. 4 as magnetic balls. Between the opposing vertical surfaces of the permanent magnets 53a to 54e and 54a to 54e, the permanent magnets 53a and 54a constituting one set of five sets (magnetic force set) composed of the steel balls 55a to 55e, The steel ball 55a is shown in FIG. The steel ball 55a can roll on a vertical surface as a contact surface while making point contact with two permanent magnets. Thereby, the arm support portion 20 can move on the vertical surface with respect to the lower member 3a of the swinging portion. In FIG. 4, the arm support portion 20 is formed by three sets of permanent magnets 53 a to 53 c and 54 a to c and steel balls 55 a to 55 c provided on the vertical surface 49 of the lower member 3 a and the vertical surface 56 of the arm support portion 20. It can move only in parallel with the vertical surface 49 with respect to the lower member 3a of the swinging portion. However, if the arrangement of three sets of permanent magnets and spheres is arranged on one straight line on the vertical plane, the rotation around the straight line cannot be restricted, so the three pairs of arrangements may not line up on a straight line. is necessary. In the present embodiment, the group (first group) composed of the permanent magnets 53a, 54a and the steel balls 55a and the group (second group) composed of the permanent magnets 53b, 54b and the steel balls 55b are straight lines extending in the Y-axis direction. The permanent magnets 53c, 54c and the steel ball 55c, which are arranged on the line but constitute the remaining one set (third set), deviate from the straight line in the Y-axis direction in the Z-axis direction (see FIG. In the Y-axis direction with respect to both the first set and the second set. On the other hand, the arm support portion 20 has a vertical surface 49 with respect to the lower member 3a of the swing portion by the two pairs of permanent magnets 53d to e and 54d to e and the steel balls 55d to e provided on the vertical surfaces 50 and 57. Can move only in parallel. Since the vertical surface 49 and the vertical surface 50 are orthogonal surfaces, the arm support portion 20 can move only in the vertical axis direction with respect to the lower member 3a of the swinging portion. In the present embodiment, the vertical surfaces 49 and 50 are orthogonal in a plan view, but are not necessarily orthogonal. If the vertical surfaces 49 and 50 are surfaces that intersect at a certain angle in plan view, similarly, the arm support portion 20 can move only in the vertical axis direction. Further, either one of the permanent magnets 53a and 54a may be replaced with a magnetic material.

以上のように構成された本実施形態のプローブ1は、以下のように動作する。   The probe 1 of the present embodiment configured as described above operates as follows.

図2に示す揺動部3の下部材3a、可動側保持部3cは、取付部2に対して、支点部材42の尖端を中心として、測定用レーザ光111に対して交差するいずれの方向にも揺動可能である。なお、本実施形態では、測定用レーザ光の光軸は、鉛直方向であるZ軸方向に一致する。揺動部3が支点部材42の尖端を中心として水平方向に傾いた場合、可動側磁石51と固定側磁石52の距離が遠ざかることになり、磁石の性質により、一対の磁石51,52を互いに近づける方向に復元力が働く。その結果、揺動部3全体に対して傾きを戻す方向(アーム22が鉛直方向に延在する中立位置となる方向)の磁気的な復元力が働く。同様に、揺動部が支点部材42の尖端を中心として鉛直軸まわりに回転した場合、可動側磁石51と固定側磁石52の間の磁力により、揺動部3に対して回転を戻す方向(搖動部3の鉛直軸回りの姿勢を戻す方向)の磁気的な復元力が働く。これらの磁気的な復元力により、非測定時の揺動部はアーム22の延在方向が鉛直方向に一致する姿勢で保持される。 The lower member 3a and the movable side holding portion 3c of the swinging portion 3 shown in FIG. 2 are in any direction that intersects the measuring laser beam 111 with respect to the attachment portion 2 with the point of the fulcrum member 42 as the center. Can also be swung. In the present embodiment, the optical axis of the measurement laser beam coincides with the Z-axis direction that is the vertical direction. When the oscillating portion 3 is tilted in the horizontal direction around the point of the fulcrum member 42, the distance between the movable side magnet 51 and the fixed side magnet 52 is increased. Restoring force works in the direction of approach. As a result, a magnetic restoring force acts in a direction in which the inclination is returned to the entire swinging unit 3 (a direction in which the arm 22 is in a neutral position extending in the vertical direction). Similarly, when the oscillating portion rotates around the vertical axis around the point of the fulcrum member 42, the direction of returning rotation to the oscillating portion 3 by the magnetic force between the movable side magnet 51 and the fixed side magnet 52 ( A magnetic restoring force in a direction in which the posture of the peristaltic unit 3 around the vertical axis is returned. Due to these magnetic restoring forces, the swinging portion during non-measurement is held in a posture in which the extending direction of the arm 22 coincides with the vertical direction.

前述したように、図2に示す揺動部3の下部材3aに対して、アーム支持部20、アーム22、およびスタイラス21は、鉛直軸上に移動可能である。揺動部側部材である永久磁石53a〜eと、アーム側部材である永久磁石54a〜eとの間に磁気的吸引力が働くために、アーム支持部20が鉛直軸上で移動し、永久磁石53a〜eと永久磁石54a〜eが鉛直軸方向に離れた場合、永久磁石53a〜eと永久磁石54a〜eが互いに近づく方向に復元力が働く。図6に永久磁石53a,54aと鋼球55aで構成する組について、その様子を示す。図6はアーム支持部20が揺動部に対して、鉛直下方向にΔZだけ移動した状態である。この時、球55aは永久磁石53a,54aの先端面上を転がりながら、ΔZの2分の1の距離だけ鉛直下方向に移動する。この状態では、永久磁石53aの磁気軸と永久磁石54aの磁気軸がΔZだけずれているため、磁石の性質により、磁気軸が一致する方向、つまりアーム支持部20を鉛直上向きに移動させる方向に復元力Fが働く。また、鋼球55aの移動は転がり接触であるため、摩擦力は非常に小さく、アーム支持部20は下部材3aに対してわずかな力で移動することが出来る。   As described above, the arm support portion 20, the arm 22, and the stylus 21 are movable on the vertical axis with respect to the lower member 3a of the swinging portion 3 shown in FIG. Since the magnetic attractive force acts between the permanent magnets 53a to 53e that are the swinging part side members and the permanent magnets 54a to 54e that are the arm side members, the arm support part 20 moves on the vertical axis and becomes permanent. When the magnets 53a to 53e and the permanent magnets 54a to 54e are separated from each other in the vertical axis direction, a restoring force acts in a direction in which the permanent magnets 53a to 53e and the permanent magnets 54a to 54e approach each other. FIG. 6 shows the state of a set composed of permanent magnets 53a and 54a and a steel ball 55a. FIG. 6 shows a state in which the arm support portion 20 has moved by ΔZ vertically downward with respect to the swinging portion. At this time, the sphere 55a moves vertically downward by a distance that is ½ of ΔZ while rolling on the tip surfaces of the permanent magnets 53a and 54a. In this state, the magnetic axis of the permanent magnet 53a and the magnetic axis of the permanent magnet 54a are deviated by ΔZ. Therefore, due to the nature of the magnet, the magnetic axis is aligned, that is, the arm support 20 is moved vertically upward. Restoring force F works. Further, since the movement of the steel ball 55a is rolling contact, the frictional force is very small, and the arm support portion 20 can move with a slight force against the lower member 3a.

以上のように、揺動部に対してとアーム支持部20は、鉛直軸方向にのみ移動可能であり、磁気的吸引力により鉛直軸方向に復元力をもつ。   As described above, the arm support portion 20 can move only in the vertical axis direction with respect to the swinging portion, and has a restoring force in the vertical axis direction by a magnetic attraction force.

図2により、その動作を説明する。測定物の鉛直方向又は略鉛直方向に延在する面(鉛直面:図2の測定物60の場合、被測定面61a)の形状を測定する際には、スタイラス21を被測定面に押し付ける測定力が以下のようにして得られる。スタイラス21を被測定面61aに接触させた状態で取付部2を測定物60側へ水平方向に僅かに移動させると、支点部材42の尖端を中心にして揺動部3の下部材3aと可動側保持部3cが傾くことで、アーム22が水平方向に傾斜する。揺動部3が傾くと、揺動部3の可動側部材3cに設けた可動側磁石51と取付部2に設けた固定側磁石52との間の磁気的吸引力により、アーム22が鉛直方向に延在するような初期状態の中立位置へ揺動部3a〜cを復元させる復元力を生じる。この磁気的な復元力により、スタイラス21は被測定面61aに対して所定の測定力で押圧される。 The operation will be described with reference to FIG. When measuring the shape of a surface (vertical surface: surface to be measured 61a in the case of the object to be measured 60 in FIG. 2) extending in the vertical direction or the substantially vertical direction of the object to be measured, the stylus 21 is pressed against the surface to be measured. The force is obtained as follows. When the attachment portion 2 is slightly moved in the horizontal direction toward the measurement object 60 in a state where the stylus 21 is in contact with the surface to be measured 61a, the movable member 3 is movable with the lower member 3a of the swinging portion 3 around the point of the fulcrum member 42. As the side holding portion 3c is inclined, the arm 22 is inclined in the horizontal direction. When the oscillating portion 3 is tilted, the arm 22 is moved in the vertical direction by the magnetic attractive force between the movable side magnet 51 provided on the movable side member 3c of the oscillating portion 3 and the fixed side magnet 52 provided on the mounting portion 2. A restoring force that restores the oscillating portions 3a to 3c to the neutral position in the initial state that extends in the range is generated. Due to this magnetic restoring force, the stylus 21 is pressed against the surface to be measured 61a with a predetermined measuring force.

このように、鉛直面測定時の測定力は、連結機構によって取付部2に揺動可能に連結された揺動部3a〜cが可動側および固定側磁石51,52の磁気的吸引力で付勢されることで生じる。鉛直面測定時の測定力は、可動側磁石51と固定側磁石52の磁力および、両者の間隔により調整することができる。例えば本実施形態においては、スタイラス21の先端を0.3mNで押したときに、スタイラスの水平方向変位が10μmになるように、可動側磁石51と固定側磁石52の磁力と距離を設定している。このように、本実施形態のプローブ1は、小さい測定力により鉛直面の形状測定が可能である。   As described above, the measuring force at the time of measuring the vertical plane is applied by the magnetic attractive force of the movable side and fixed side magnets 51 and 52 by the swinging portions 3a to 3c that are swingably connected to the mounting portion 2 by the connecting mechanism. It is caused by being energized. The measuring force at the time of measuring the vertical plane can be adjusted by the magnetic force of the movable side magnet 51 and the fixed side magnet 52 and the distance between them. For example, in this embodiment, the magnetic force and distance between the movable side magnet 51 and the fixed side magnet 52 are set so that the horizontal displacement of the stylus becomes 10 μm when the tip of the stylus 21 is pushed at 0.3 mN. Yes. As described above, the probe 1 of the present embodiment can measure the shape of the vertical plane with a small measuring force.

測定物の水平方向又は略水平方向に延在する面(水平面:図1の測定物60の場合、被測定面61b)の形状を測定する際には、スタイラス21を被測定面に押し付ける測定力は以下のようにして得られる。非測定時にはアーム支持部20は、その重量(重力)により鉛直方向下向きに移動し、一つの組を構成する永久磁石53a,54aと球55aの位置関係は図6のようになる。しかし、移動量ΔZの増加に伴って、磁気的な復元力Fも増加する。そのため、ある一定の位置で、復元力Fと、重力がつり合う。スタイラス21を被測定面61bに接触させた状態で取付部2を測定物60側へ鉛直下方向に僅かに移動させると、ΔZが小さくなり、復元力Fの方が、アーム支持部20に加わる重力よりも弱くなる。その差分が測定力となり、スタイラス21が被測定面61bに押し付けられる。   When measuring the shape of the surface (horizontal plane: surface to be measured 61b in the case of the object to be measured 60 in FIG. 1) extending in the horizontal direction or substantially horizontal direction of the measurement object, the measuring force that presses the stylus 21 against the surface to be measured Is obtained as follows. At the time of non-measurement, the arm support portion 20 moves downward in the vertical direction due to its weight (gravity), and the positional relationship between the permanent magnets 53a and 54a and the ball 55a constituting one set is as shown in FIG. However, the magnetic restoring force F increases as the movement amount ΔZ increases. Therefore, the restoring force F and gravity are balanced at a certain position. If the mounting portion 2 is slightly moved vertically downward toward the measurement object 60 with the stylus 21 being in contact with the surface to be measured 61b, ΔZ becomes smaller and the restoring force F is applied to the arm support portion 20. It becomes weaker than gravity. The difference becomes a measuring force, and the stylus 21 is pressed against the surface to be measured 61b.

このように、水平面測定時の測定力は、2つの永久磁石間の磁気軸のずれで生じる弾性的な力がアーム支持部20を付勢することで生じる。アーム支持部20の鉛直方向の剛性は、アーム支持部20自体と、アーム22およびスタイラス21の重量を支持できる程度であればよい。つまり、永久磁石53,54が支持する必要がある重量が軽い。そのため、永久磁石53,54の磁力を弱くして、磁気軸のずれによる弾性的な付勢力を小さくできる。従って、本実施形態のプローブ1は、小さい測定力で水平面の形状測定が可能である。   As described above, the measurement force at the time of horizontal plane measurement is generated by the elastic force generated by the deviation of the magnetic axis between the two permanent magnets urging the arm support portion 20. The rigidity of the arm support portion 20 in the vertical direction is not limited as long as it can support the weight of the arm support portion 20 itself, the arm 22 and the stylus 21. That is, the weight that the permanent magnets 53 and 54 need to support is light. Therefore, the magnetic force of the permanent magnets 53 and 54 can be weakened to reduce the elastic biasing force due to the magnetic axis deviation. Therefore, the probe 1 of this embodiment can measure the shape of the horizontal plane with a small measuring force.

以上のように、本実施形態のプローブ1は、鉛直面および水平面のいずれについても小さい測定力による高精度の測定が可能である。   As described above, the probe 1 of the present embodiment can perform high-accuracy measurement with a small measurement force on both the vertical plane and the horizontal plane.

図4に示すアーム支持部20の鉛直軸方向以外の動きを拘束する磁石53,54と球55の組合せは、それぞれ剛体であるため、鉛直軸方向以外の移動方向および回転に対して剛性を十分高くすることができる。鉛直面測定時にスタイラス21に作用する測定力の反力によるアーム支持部20の水平方向のずれ、およびそれに伴う位置検出ミラー23の水平方向の変位、鉛直軸まわりの回転は、後述する形状測定装置201の測定用レーザ光111では検出できないため、測定誤差となる。しかし、本実施形態のプローブ1は、アーム支持部20の水平方向移動及び回転に対する剛性が高いので、測定力の反力による位置検出ミラー23の水平方向の変位、鉛直軸まわりの回転を小さくすることができ、測定物60の鉛直な被測定面61bの形状を高精度で測定できる。   Since the combination of the magnets 53 and 54 and the sphere 55 that restrain the movement of the arm support portion 20 other than in the vertical axis direction shown in FIG. 4 is a rigid body, the rigidity is sufficient with respect to the movement direction and rotation other than the vertical axis direction. Can be high. The horizontal displacement of the arm support portion 20 due to the reaction force of the measurement force acting on the stylus 21 during the measurement of the vertical plane, the horizontal displacement of the position detection mirror 23 and the rotation around the vertical axis will be described later. Since it cannot be detected by the measurement laser beam 111 of 201, a measurement error occurs. However, since the probe 1 of the present embodiment has high rigidity with respect to the horizontal movement and rotation of the arm support portion 20, the horizontal displacement of the position detection mirror 23 caused by the reaction force of the measuring force and the rotation around the vertical axis are reduced. It is possible to measure the shape of the vertical measurement surface 61b of the measurement object 60 with high accuracy.

次に、本実施形態のプローブ1を備えた形状測定装置について図7および図8を用いて説明する。   Next, the shape measuring apparatus provided with the probe 1 of this embodiment will be described with reference to FIGS.

一般に、三次元形状測定装置201は、プローブ1を測定物60に接触させ、スタイラス21を被測定面61a、61bに押し付ける測定力がほぼ一定になるようにプローブ1の移動を制御しつつ、被測定面61a,61bに沿って移動させて測定を行なう。レーザ測長器により、プローブ1の三次元空間における位置を検出し、プローブ1に対するスタイラス21の変位をそのプローブ1の位置座標に加算することで、被測定面61a,61bの表面形状データが得られる。 In general, the three-dimensional shape measuring apparatus 201 controls the movement of the probe 1 while controlling the movement of the probe 1 so that the measurement force pressing the stylus 21 against the measurement surfaces 61a and 61b is substantially constant by bringing the probe 1 into contact with the measurement object 60. Measurement is performed by moving along the measurement surfaces 61a and 61b. By detecting the position of the probe 1 in the three-dimensional space by the laser length measuring device and adding the displacement of the stylus 21 relative to the probe 1 to the position coordinates of the probe 1, surface shape data of the measured surfaces 61a and 61b is obtained. It is done.

このような形状測定装置の一例として、前述した特許文献1(特開2010−286475号公報)に開示されたものは、図7のように測定物60を定盤上に固定して、プローブをX軸、Y軸、およびZ軸の全方向に移動させるタイプである。この他、測定物60をX軸、Y軸に移動させ、プローブをZ軸に移動させるタイプもある。   As an example of such a shape measuring apparatus, the one disclosed in Patent Document 1 (Japanese Patent Laid-Open No. 2010-286475) described above is such that a measuring object 60 is fixed on a surface plate as shown in FIG. This type moves in all directions of the X axis, Y axis, and Z axis. In addition, there is a type in which the measurement object 60 is moved to the X axis and the Y axis, and the probe is moved to the Z axis.

図7に示す三次元形状測定装置201は、石定盤292上に設置されX軸およびY軸方向に可動なX−ステージ2951およびY−ステージ2952を有するステージ295を備える。このステージ295に、Z−テーブル293、He−Neレーザ(レーザ光発生部)210、測定点情報決定部220、およびプローブ光学部231を載置している。よって、ステージ295は、Z−テーブル293、He−Neレーザ210、測定点情報決定部220、およびプローブ光学部231をX軸およびY軸方向に移動させることができる。 The three-dimensional shape measuring apparatus 201 shown in FIG. 7 includes a stage 295 having an X-stage 2951 and a Y-stage 2952 that are installed on a stone surface plate 292 and movable in the X-axis and Y-axis directions. On this stage 295, a Z-table 293, a He-Ne laser (laser light generation unit) 210, a measurement point information determination unit 220, and a probe optical unit 231 are mounted. Therefore, the stage 295 can move the Z-table 293, the He-Ne laser 210, the measurement point information determination unit 220, and the probe optical unit 231 in the X-axis and Y-axis directions.

測定点情報決定部220およびプローブ光学部231について、図7および図8を参照して詳しく説明する。図8に示すように、測定点情報決定部220は、被測定面61a,61bの位置情報を得るための光学系221と、位置座標測定部224と、加算部225とを有する。プローブ光学部231は、ミラー位置傾き検出部226と、スタイラス位置演算部223と、ダイクロイックミラー2211aと、フォーカスレンズ17とを有する。プローブ光学部231は、プローブ1とともに、Z−テーブル293の可動側に取り付けられる。ミラー位置傾き検出部226、スタイラス位置演算部223、位置座標測定部224、および加算部225は、光学系221に接続され、測定時のスタイラスの位置情報を求めるための構成部分である。   The measurement point information determination unit 220 and the probe optical unit 231 will be described in detail with reference to FIGS. As shown in FIG. 8, the measurement point information determination unit 220 includes an optical system 221 for obtaining position information of the measured surfaces 61 a and 61 b, a position coordinate measurement unit 224, and an addition unit 225. The probe optical unit 231 includes a mirror position inclination detection unit 226, a stylus position calculation unit 223, a dichroic mirror 2211 a, and a focus lens 17. The probe optical unit 231 is attached to the movable side of the Z-table 293 together with the probe 1. The mirror position tilt detection unit 226, the stylus position calculation unit 223, the position coordinate measurement unit 224, and the addition unit 225 are connected to the optical system 221 and are components for obtaining stylus position information at the time of measurement.

He−Neレーザ210が発生した測定用レーザ光111は、測定物60の被測定面61a,61bの三次元座標位置を求めるため、光学系221にて4つに分光される。光学系221は、ステージ295(図7参照)のX軸方向およびY軸方向における移動量、つまり被測定面61a,61bのX軸方向およびY軸方向における座標値を検出するため、図示を省略しているがX軸方向に直交する鏡面からなる基準面を有するX軸基準板、およびY軸方向に直交する鏡面にてなる基準面を有するY軸基準板を有する。また、さらに、光学系221には、Z軸方向に直交する鏡面からなるZ基準板230(図7参照)も設けられている。各基準板の基準面は、平坦度が0.01ミクロンオーダーに構成されている。   The measurement laser beam 111 generated by the He—Ne laser 210 is split into four beams by the optical system 221 in order to obtain the three-dimensional coordinate positions of the measurement target surfaces 61 a and 61 b of the measurement object 60. The optical system 221 detects the amount of movement of the stage 295 (see FIG. 7) in the X-axis direction and Y-axis direction, that is, the coordinate values of the measured surfaces 61a and 61b in the X-axis direction and Y-axis direction, and is not shown. However, it has an X-axis reference plate having a reference surface made of a mirror surface orthogonal to the X-axis direction, and a Y-axis reference plate having a reference surface made of a mirror surface orthogonal to the Y-axis direction. Further, the optical system 221 is also provided with a Z reference plate 230 (see FIG. 7) having a mirror surface orthogonal to the Z-axis direction. The reference surface of each reference plate has a flatness of the order of 0.01 microns.

被測定面61a,61bの形状測定方法では、例えば特開平10−170243号公報に記載されるように、X軸、Y軸、およびZ軸の各基準面にレーザ光を照射し、照射するレーザ光と各基準面で反射されたレーザ光との干渉信号を計数することで、反射されたレーザ光の位相の変化を検出する公知のレーザ測長方法を用いる。より具体的には、このレーザ測長方法では、例えば特開平4−1503号公報に開示されるように、各基準面へ照射されるレーザ光をプリズム等の分岐部材にて参照光と測定光とに分け、かつ参照光と測定光との位相を90度ずらす。そして測定光を基準面へ照射し反射させ、戻って来た反射光と参照光の位相のずれによる干渉光を電気的に検出して、得られた干渉縞信号から作成するリサージュ図形に基づき基準点と前記基準面との距離が測定される。   In the shape measuring method of the measured surfaces 61a and 61b, as described in, for example, Japanese Patent Laid-Open No. 10-170243, a laser beam is irradiated to irradiate each X-axis, Y-axis, and Z-axis reference surface. A known laser length measurement method is used to detect a change in the phase of the reflected laser light by counting interference signals between the light and the laser light reflected by each reference surface. More specifically, in this laser length measurement method, for example, as disclosed in Japanese Patent Laid-Open No. 4-1503, the laser light irradiated to each reference surface is irradiated with reference light and measurement light by a branch member such as a prism. And the phases of the reference light and the measurement light are shifted by 90 degrees. Then, irradiate the measurement light to the reference surface and reflect it, electrically detect the interference light caused by the phase difference between the reflected light and the reference light returning, and based on the Lissajous figure created from the obtained interference fringe signal The distance between the point and the reference plane is measured.

位置座標測定部224は、このような測長方法を実行する部分であり、被測定面61a、61bにおける測定点のX座標値、Y座標値、およびZ座標値の測長を行う検出部224a〜224cを有する。本実施形態では、図7に示すように、石定盤292上に載置された測定物60に対してステージ295が移動することから、上述の測定点におけるX座標値、Y座標値、およびZ座標値は、Z−テーブル293に取り付けられているプローブ1の取付部2の絶対位置座標値と換言することができる。   The position coordinate measurement unit 224 is a part that executes such a length measurement method, and a detection unit 224a that measures the X coordinate value, the Y coordinate value, and the Z coordinate value of the measurement point on the measurement target surfaces 61a and 61b. ~ 224c. In the present embodiment, as shown in FIG. 7, since the stage 295 moves with respect to the measurement object 60 placed on the stone surface plate 292, the X coordinate value, the Y coordinate value, and the The Z coordinate value can be restated as the absolute position coordinate value of the attachment portion 2 of the probe 1 attached to the Z-table 293.

本実施形態では、検出部224cは、プローブ1におけるスタイラス21のZ座標値の測長を行う部分であり、スタイラス位置測定器として機能する。以下、この点について詳述する。図8に示すように、Z−テーブル293の下端に取り付けられているプローブ1のアーム支持部20に取り付けられている位置検出ミラー23の中心点へ、測定用レーザ光111の一部がフォーカスレンズ17を介して照射される。照射された測定用レーザ光111は、位置検出ミラー23にて反射し、該反射光211bは、光分離部であるダイクロイックミラー2211aにて反射されること無く、透過し、ハーフミラー2211bで反射し、検出部224cに照射され、スタイラス21のZ座標値の測長を行うことができる。   In the present embodiment, the detection unit 224c is a part that measures the Z coordinate value of the stylus 21 in the probe 1, and functions as a stylus position measuring device. Hereinafter, this point will be described in detail. As shown in FIG. 8, a part of the measurement laser beam 111 is focused to the center point of the position detection mirror 23 attached to the arm support 20 of the probe 1 attached to the lower end of the Z-table 293. 17 is irradiated. The irradiated measurement laser beam 111 is reflected by the position detection mirror 23, and the reflected light 211b is transmitted without being reflected by the dichroic mirror 2211a which is a light separation unit, and is reflected by the half mirror 2211b. The detection unit 224c is irradiated to measure the Z coordinate value of the stylus 21.

位置検出部224a〜224cの検出結果に基づく位置座標測定部224の演算結果(本実施形態では取付部2のX軸およびY軸座標値とスタイラス21のZ軸座標値)と、ミラー位置傾き検出部226の検出結果に基づくスタイラス位置演算部223の演算結果を加算部225で加算することで被測定面61の形状が演算される。ミラー位置傾き検出部226は、揺動部3a〜cの傾斜に伴うスタイラス21の変位(X軸およびY軸方向)とアーム支持部20の鉛直方向の変位に伴うスタイラス21の変位(Z軸方向)を検出する。   Calculation results of the position coordinate measurement unit 224 based on the detection results of the position detection units 224a to 224c (in this embodiment, the X-axis and Y-axis coordinate values of the mounting unit 2 and the Z-axis coordinate value of the stylus 21) and mirror position inclination detection The calculation result of the stylus position calculation unit 223 based on the detection result of the unit 226 is added by the adding unit 225 to calculate the shape of the measured surface 61. The mirror position inclination detection unit 226 includes a displacement of the stylus 21 (X-axis and Y-axis directions) associated with the inclination of the swinging units 3a to 3c and a displacement of the stylus 21 associated with the vertical displacement of the arm support unit 20 (the Z-axis direction). ) Is detected.

以下、ミラー位置傾き検出部226およびスタイラス位置演算部223について説明する。ミラー位置傾き検出部226は、位置検出ミラー23へ照射する半導体レーザ227、傾斜角度検出部222、上下位置検出部228を備える。He−Neレーザ210と異なる波長の半導体レーザ(レーザ光発生部)227のレーザ光229は、ダイクロイックミラー2211aを介して位置検出ミラー23へ照射される。レーザ光229の位置検出ミラー23により反射された反射光229bは、ダイクロイックミラー2211aで反射された後、傾斜角度検出部222と上下位置検出部228に入射する。 Hereinafter, the mirror position inclination detection unit 226 and the stylus position calculation unit 223 will be described. The mirror position inclination detection unit 226 includes a semiconductor laser 227 that irradiates the position detection mirror 23, an inclination angle detection unit 222, and a vertical position detection unit 228. Laser light 229 of a semiconductor laser (laser light generation unit) 227 having a wavelength different from that of the He-Ne laser 210 is applied to the position detection mirror 23 via the dichroic mirror 2211a. The reflected light 229 b of the laser beam 229 reflected by the position detection mirror 23 is reflected by the dichroic mirror 2211 a and then enters the tilt angle detection unit 222 and the vertical position detection unit 228.

傾斜角度検出部222は、反射光229bを受光し電気信号に変換する傾き検出受光面を有する光検出器にて構成され、傾き検出受光面における反射光229bの位置に応じて、受光面の2次元座標値に対応する電気信号を、前記スタイラス位置演算部223へ送出する。前記2次元座標値は、スタイラス21を保持するアーム22の傾き角度に対応する。スタイラス位置演算部223は、傾斜角度検出部222から入力された角度信号をプローブ1に備わるスタイラス21の変位量に変換する。   The inclination angle detection unit 222 is configured by a photodetector having an inclination detection light receiving surface that receives the reflected light 229b and converts it into an electrical signal. An electrical signal corresponding to the dimension coordinate value is sent to the stylus position calculation unit 223. The two-dimensional coordinate value corresponds to the inclination angle of the arm 22 that holds the stylus 21. The stylus position calculation unit 223 converts the angle signal input from the tilt angle detection unit 222 into a displacement amount of the stylus 21 provided in the probe 1.

スタイラス21は図示のように球状であることから、前記測定X座標値、測定Y座標値、および測定Z座標値は、スタイラス21の中心座標である。従って、被測定面61a上の測定点の真の座標値は、プローブ1の走査方向に垂直な方向に、スタイラス21の半径値だけずらした値となる。   Since the stylus 21 is spherical as shown in the figure, the measured X coordinate value, measured Y coordinate value, and measured Z coordinate value are the center coordinates of the stylus 21. Therefore, the true coordinate value of the measurement point on the measured surface 61a is a value shifted by the radius value of the stylus 21 in the direction perpendicular to the scanning direction of the probe 1.

ミラー位置傾き検出部226が備える上下位置検出部228は、位置検出ミラー23からの反射光229bから、取付部2に対する位置検出ミラー23の上下方向の変位を検出する。検出方法は、特開2008−292236に示されるようなホログラムを用いた方法等、公知の技術で可能である。   The vertical position detection unit 228 included in the mirror position inclination detection unit 226 detects the vertical displacement of the position detection mirror 23 with respect to the mounting unit 2 from the reflected light 229 b from the position detection mirror 23. The detection method may be a known technique such as a method using a hologram as disclosed in JP-A-2008-292236.

以上のように構成される三次元形状測定装置201における動作、すなわち、測定物60の被測定面61a,61bに対する形状測定方法について、以下に説明する。この形状測定方法は、図7に示す制御装置280の動作制御にて実行される。 The operation of the three-dimensional shape measuring apparatus 201 configured as described above, that is, the shape measuring method for the measurement target surfaces 61a and 61b of the measurement object 60 will be described below. This shape measuring method is executed by the operation control of the control device 280 shown in FIG.

まず、鉛直面である被測定面61aを測定する場合について図7および図8を用いて説明する。上述したように、図8に示すスタイラス21を被測定面61aに接触させ、さらに例えば約0.3mN(=30mgf)の測定力にてスタイラス21が被測定面61aを押圧するように、測定物60に対して、プローブ1を取り付けたZ−テーブル293を有するステージ295を相対的に配置する。   First, the case of measuring the measured surface 61a, which is a vertical surface, will be described with reference to FIGS. As described above, the object to be measured is such that the stylus 21 shown in FIG. 8 is brought into contact with the surface to be measured 61a, and the stylus 21 presses the surface to be measured 61a with a measuring force of, for example, about 0.3 mN (= 30 mgf). 60, a stage 295 having a Z-table 293 to which the probe 1 is attached is disposed.

例えば、測定物60の被測定面61aが円筒内周面で、その形状測定を行なう場合を例にとり、図9および図10により説明する。図9のように、スタイラス21が被測定面61aに沿って接触しながら測定を行なう。このとき、プローブ1は矢印121aの方向に沿って進む。このとき、プローブ1をわずかに矢印121bの方向に移動させることにより、図10に示す鉛直方向に対するアーム22の傾きβを一定若しくはほぼ一定に維持しながら進む。すなわち、いずれの方向にもアーム22を傾斜させ、かつ鉛直方向に対する傾きβが一定若しくはほぼ一定に維持されるように、図7に示す制御装置280にてステージ295の駆動部294を制御して、X軸方向およびY軸方向へのステージ295の移動量および移動方向を制御する。なお、本実施形態ではアーム22先端の変位が10μmを保つような角度に調整することにより、測定力を0.3mNに保つことができる。 For example, FIG. 9 and FIG. 10 will be described by taking as an example a case where the measured surface 61a of the measuring object 60 is a cylindrical inner peripheral surface and its shape is measured. As shown in FIG. 9, the measurement is performed while the stylus 21 is in contact with the measured surface 61a. At this time, the probe 1 advances along the direction of the arrow 121a. In this case, by moving in the direction of slightly arrow 121b probe 1, proceeds while maintaining a constant or substantially constant inclination β luer over arm 22 against the vertical direction shown in FIG. 10. In other words, tilting the A over arm 22 in any direction, and so that the inclination β is kept constant or nearly constant with respect to the vertical direction, controls the driving unit 294 of the stage 295 by the control device 280 shown in FIG. 7 Then, the moving amount and moving direction of the stage 295 in the X-axis direction and the Y-axis direction are controlled. In the present embodiment by A over arm 22 distal end of the displacement is adjusted to an angle such as to maintain the 10 [mu] m, it is possible to maintain the measurement force 0.3 mN.

このような測定動作に基づき、前述したように、図8に示すスタイラス位置演算部223および位置座標測定部224を介して、加算部225により、被測定面61aの測定点における、前記測定X座標値、測定Y座標値、および測定Z座標値が求められる。   Based on such a measurement operation, as described above, the measurement X coordinate at the measurement point of the surface 61a to be measured is added by the addition unit 225 via the stylus position calculation unit 223 and the position coordinate measurement unit 224 shown in FIG. A value, a measured Y coordinate value, and a measured Z coordinate value are determined.

次に、水平面である被測定面61bを測定する場合について説明する。この場合、スタイラス21を被測定面61bに押し付ける測定力は、鉛直方向下向きに発生させる必要がある。また、高精度に測定するためには、鉛直方向下向きの測定力を一定にする必要がある。制御装置280にて駆動部294を駆動してステージ295(図7参照)を水平方向に移動させると共に、ミラー位置傾き検出部226の上下位置検出部228の検出結果に基づいて位置検出ミラー23の鉛直方向の変位量が一定となるようにZ−テーブル293を動作させる。例えば、非測定時のアーム支持部20が揺動部3a〜cに対して、重力により100μm鉛直下方向に移動するとき、測定時には90μmの撓みになるように、制御を行うことにより、測定力を3mNに保つことができる。また、被測定面61bの微小な変位に追従してスタイラス21も上下移動するため、スタイラス21と一体となって移動する位置検出ミラー23のZ座標の測長部として機能する検出部224cの検出値により、測定物の微小変位も測定できることになる。   Next, a case where the measurement target surface 61b that is a horizontal plane is measured will be described. In this case, the measurement force that presses the stylus 21 against the surface to be measured 61b needs to be generated downward in the vertical direction. In addition, in order to measure with high accuracy, it is necessary to make the measurement force downward in the vertical direction constant. The controller 280 drives the drive unit 294 to move the stage 295 (see FIG. 7) in the horizontal direction, and the position detection mirror 23 based on the detection result of the vertical position detection unit 228 of the mirror position inclination detection unit 226. The Z-table 293 is operated so that the amount of displacement in the vertical direction is constant. For example, when the arm support portion 20 at the time of non-measurement moves 100 μm vertically downward by gravity with respect to the swinging portions 3a to 3c, the measurement force is controlled by controlling so that the deflection is 90 μm at the time of measurement. Can be kept at 3 mN. In addition, since the stylus 21 also moves up and down following the minute displacement of the surface 61b to be measured, the detection by the detection unit 224c that functions as a length measurement unit for the Z coordinate of the position detection mirror 23 that moves together with the stylus 21. Depending on the value, the minute displacement of the measurement object can also be measured.

また、完全な水平面から傾斜が大きくなった場合、例えば45度程度の傾斜の測定時には、鉛直下方向に押圧力を発生させた場合には、スタイラス21のアーム22に傾きが発生するが、傾斜角度検出部222でアームの傾きを検出しているので、その傾き量をスタイラス変位に換算して補正を加えることにより、高精度な測定が可能となる。しかしながら、この測定方法において、ミラー23のZ軸回りの回転、X,Y軸方向への平行移動のずれは検出できないため、測定誤差となる。前述したように本発明のプローブ1は、永久磁石53a〜e,54a〜eと球55a〜eからなる上下機構部において、Z軸回り、X、Y軸方向への剛性を高くすることができるため、そのようは誤差を低減することができる。アーム支持部20の傾き、上下位置を検出するために、アーム支持部に位置検出ミラーを備えているが、静電容量センサの距離センサを複数個用いて、アーム支持部の複数位置変位を求めることにより検出することも可能である。   Further, when the inclination increases from a complete horizontal plane, for example, when measuring an inclination of about 45 degrees, if a pressing force is generated vertically downward, the arm 22 of the stylus 21 is inclined, but the inclination Since the angle of the arm is detected by the angle detection unit 222, highly accurate measurement is possible by converting the amount of inclination into a stylus displacement and adding correction. However, in this measurement method, a rotation error around the Z axis of the mirror 23 and a shift in translation in the X and Y axis directions cannot be detected, resulting in a measurement error. As described above, the probe 1 of the present invention can increase the rigidity around the Z axis and in the X and Y axis directions in the vertical mechanism portion composed of the permanent magnets 53a to e and 54a to e and the balls 55a to e. Therefore, such an error can be reduced. In order to detect the tilt and vertical position of the arm support unit 20, the arm support unit is provided with a position detection mirror, but a plurality of displacement sensors of the electrostatic capacity sensor are used to obtain a plurality of position displacements of the arm support unit. It is also possible to detect by this.

なお、プローブ1は磁力により、揺動部3a〜cを一定方向に保持し、また、アーム支持部20を一定位置に保持することができるため、スタイラス21が固定されたアーム22の軸は鉛直方向に限らず、傾いた状態での使用も可能である。   The probe 1 can hold the swinging portions 3a to 3c in a certain direction and can hold the arm support portion 20 in a certain position by a magnetic force, so that the axis of the arm 22 to which the stylus 21 is fixed is vertical. It can be used not only in the direction but also in an inclined state.

本実施形態では、2つの平面に5対の磁石を配置したが、代案として、図11a、図11b、図11cのように平行な鉛直曲面と、それに交差する鉛直平面に5対の磁石と鋼球を配置しても、同様の効果を得ることができる。なお、図11aは、揺動部の下部材3a、アーム支持部20、および、磁石53a〜e、54a〜e、球55a〜eからなる上下移動機構の配置を示す斜視図で、図11bはその正面図、図11cはその平面図である。図11cの平面図において、揺動部3の下部材3aに曲面49aが形成されている。曲面49aは、円筒内面でその円筒軸は鉛直方向と一致する。これに対向する曲面56aが、アーム支持部20に形成されている。曲面56aは、曲面49aと同心円筒をなす面である。すなわち、曲面49aと曲面56aは、互いに一定の距離を持った鉛直面である。これらの曲面49a,56aに沿って永久磁石53a〜c,54a〜cが配置され、その間に鋼球55a〜cが磁力により保持されている。永久磁石53d〜e,54d〜eは搖動部3の下部材3aに形成された鉛直面50aとアーム支持部20に形成された鉛直面57aに保持されている。鉛直面50a,57aは、前述の鉛直面50、57(図4)と同様に、たがいに平行な鉛直平面である。このような構成において、永久磁石53a〜c,54a〜cと球55a〜cの3対の永久磁石と球の組み合わせにより、アーム支持部20は、揺動部の下部材3aに対して、曲面49aと曲面56aが一定の距離を保ちながらZ軸方向に移動可能である。しかしながら、これだけではZ軸回りの回転、X軸回りの回転に対しても移動可能である。このため、永久磁石53d〜e,54d〜eと球55d〜eの2対の永久磁石と球の組み合わせを追加し、その回転を拘束することが出来る。これ以外にも永久磁石と球の5対の配置は、鉛直軸以外の自由度を拘束できるものであれば、同様の効果を得ることが出来る。 In this embodiment, five pairs of magnets are arranged on two planes, but as an alternative, as shown in FIGS. 11a, 11b, and 11c, parallel curved surfaces and five pairs of magnets and steel on a perpendicular plane that intersects them. Even if the sphere is arranged, the same effect can be obtained. 11a is a perspective view showing an arrangement of the vertical movement mechanism composed of the lower member 3a of the swinging portion, the arm support portion 20, and the magnets 53a to e, 54a to e, and the balls 55a to 55e, and FIG. The front view and FIG. 11c are plan views thereof. In the plan view of FIG. 11 c, a curved surface 49 a is formed on the lower member 3 a of the rocking portion 3. The curved surface 49a is a cylindrical inner surface, and the cylinder axis thereof coincides with the vertical direction. A curved surface 56 a facing this is formed in the arm support portion 20. The curved surface 56a is a surface that forms a concentric cylinder with the curved surface 49a. That is, the curved surface 49a and the curved surface 56a are vertical surfaces having a certain distance from each other. Permanent magnets 53a-c, 54a-c are arranged along these curved surfaces 49a, 56a, and steel balls 55a-c are held by magnetic force therebetween. The permanent magnets 53 d to e and 54 d to e are held by a vertical surface 50 a formed on the lower member 3 a of the swing unit 3 and a vertical surface 57 a formed on the arm support unit 20. The vertical surfaces 50a and 57a are vertical planes parallel to each other, like the above-described vertical surfaces 50 and 57 (FIG. 4). In such a configuration, the arm support portion 20 is curved with respect to the lower member 3a of the swinging portion by combining the permanent magnets 53a to 53c, 54a to 54c and the three pairs of permanent magnets 55a to 55c. 49a and the curved surface 56a can move in the Z-axis direction while maintaining a certain distance. However, this alone can also move with respect to rotation about the Z axis and rotation about the X axis. For this reason, the combination of two pairs of permanent magnets and spheres of the permanent magnets 53d to e and 54d to e and the spheres 55d to 55e can be added to restrict the rotation thereof. In addition to this, the arrangement of the five pairs of the permanent magnet and the sphere can obtain the same effect as long as the degree of freedom other than the vertical axis can be constrained.

図4、図11a(代案)に示すアーム支持部20は拘束が無い場合、揺動部3に対して、X,Y,Zの3方向の移動に関する3自由度と、X軸回り、Y軸回り、Z軸回りの回転に関する3自由度の合計6自由度で、移動と回転が可能であるが、5組の永久磁石と鋼球により、6自由度のうち、5自由度を拘束し、残りのZ方向の1自由度のみを移動可能に配置することができる。従って、磁石と鋼球の組は、必ず5組は必要であり、逆に6組以上あると、少なくとも1組の磁石と球において、磁石と球が接触せずに浮いてしまい、正確に鉛直軸方向の移動を行なえなくなる。   4 and 11a (alternative), when there is no restraint, the arm support portion 20 has three degrees of freedom related to movement in the three directions of X, Y, and Z with respect to the swing portion 3, the X axis, and the Y axis. It can move and rotate with a total of 6 degrees of freedom with 3 degrees of freedom about rotation and rotation around the Z axis, but with 5 sets of permanent magnets and steel balls, 5 degrees of freedom are constrained, Only the remaining one degree of freedom in the Z direction can be movably arranged. Therefore, 5 pairs of magnets and steel balls are always necessary. Conversely, if there are 6 or more pairs, at least one pair of magnets and spheres will float without contact with each other, and the vertical position will be exactly vertical. Cannot move in the axial direction.

それぞれ磁石と鋼球からなる5組のうち1組が拘束する自由度の方向が、他の4対が拘束する自由度の方向と重なると、拘束が足らなくなり、Z軸方向以外の自由度に移動、または回転可能になってしまう。例えば、図4において、永久磁石53a〜d,54a〜d、球55a〜dの4組によって、アーム支持部20はYZ面上での拘束(すなわちX軸移動、Y軸まわり回転、Z軸まわり回転に対する拘束)と、Y軸移動に対する拘束の4方向の拘束が行なわれる。残りの1組の拘束は永久磁石53e,54eと鋼球55eによって、X軸まわりの回転を拘束する必要がある。そのために永久磁石53d,54dと鋼球55dの下方に、永久磁石53e、54eと鋼球55eを配置している。しかしながら、永久磁石53e、54eと鋼球55eを永久磁石53d、54d、球55dと同じ高さに配置すると、永久磁石53e、54e、球55eはY軸方向の拘束、あるいはZ軸まわりの回転を拘束することになり、他の4対により拘束される自由度の方向と一致する。この場合はX軸まわりの回転の拘束ができず、スタイラス21にY方向の測定力が加わった場合に、X軸まわりに回転を生じ、測定誤差となってしまう。すなわち、5対のうちの任意の1対は、他の4対により拘束される自由度と一致しない方向の自由度を拘束する位置、方向に配置を行なう必要がある。
なお、本実施形態では、スタイラス21は、例えば約0.03mm〜約2mmの直径
を有する球状体であり、アーム22は、一例として、太さが約0.7mmで、アーム支持部20の下面からスタイラス21の中心までの長さが約10mmである棒状の部材である。これらの値は、被測定面61a、61bの形状により適宜変更される。
If the direction of the degree of freedom in which one of the five pairs of magnets and steel balls is constrained overlaps the direction of the degree of freedom in which the other four pairs are constrained, the restraint will be insufficient and the degree of freedom other than in the Z-axis direction will be reduced. It can be moved or rotated. For example, in FIG. 4, the arm support portion 20 is restrained on the YZ plane (that is, X axis movement, rotation around the Y axis, and around the Z axis) by four sets of permanent magnets 53a to d, 54a to d and balls 55a to d. Constraints on rotation) and constraints on Y-axis movement are performed in four directions. The remaining one set of restraints needs to restrain the rotation around the X axis by the permanent magnets 53e, 54e and the steel balls 55e. Therefore, the permanent magnets 53e and 54e and the steel ball 55e are arranged below the permanent magnets 53d and 54d and the steel ball 55d. However, if the permanent magnets 53e and 54e and the steel ball 55e are arranged at the same height as the permanent magnets 53d, 54d and the ball 55d, the permanent magnets 53e, 54e and the ball 55e are restrained in the Y-axis direction or rotated around the Z-axis. It is constrained and coincides with the direction of the degree of freedom constrained by the other four pairs. In this case, the rotation around the X axis cannot be restricted, and when the measuring force in the Y axis direction is applied to the stylus 21, the rotation occurs around the X axis, resulting in a measurement error. That is, any one of the five pairs needs to be arranged in a position and a direction in which the degree of freedom in a direction that does not coincide with the degree of freedom restricted by the other four pairs is constrained.
In the present embodiment, the stylus 21 is a spherical body having a diameter of about 0.03 mm to about 2 mm, for example, and the arm 22 has a thickness of about 0.7 mm as an example, and the lower surface of the arm support portion 20. This is a rod-shaped member having a length from the stylus 21 to the center of the stylus 21 of about 10 mm. These values are appropriately changed depending on the shapes of the measured surfaces 61a and 61b.

以上のように、本発明の三次元形状測定装置用プローブ1を従来の三次元形状測定装置201に取り付けることにより、スタイラス21と測定物60の接触力、すなわち測定力を小さくできるため、高精度に測定でき、また微小なスタイラス21でも破損することなく、測定することができる。また、アーム支持部20の移動を拘束し、復元力を持たせる磁石と鋼球の組み合わせは、それぞれ点接触であるが、剛体どうしの接触であるため、鉛直軸方向の以外の5自由度の移動、回転に対して剛性を上げることができる。これにより、アーム支持部20に設けられた位置検出ミラー23の傾き、鉛直軸方向移動のみを、検出することにより、スタイラス21の位置を高精度に検出できる。磁石と鋼球の組み合わせは一例として直径1mm程度の小さなものを使用することにより、可動部の質量が小さくなり、固有振動数を低くすることが出来る。これにより、振動が発生しにくくなり、高精度な測定ができる。   As described above, since the contact force between the stylus 21 and the measurement object 60, that is, the measurement force can be reduced by attaching the probe 1 for a three-dimensional shape measurement apparatus of the present invention to the conventional three-dimensional shape measurement apparatus 201, high accuracy is achieved. In addition, even a small stylus 21 can be measured without being damaged. In addition, the combination of the magnet and the steel ball that restrains the movement of the arm support portion 20 and gives a restoring force is a point contact, but since it is a contact between rigid bodies, it has 5 degrees of freedom other than in the vertical axis direction. Rigidity can be increased with respect to movement and rotation. Thereby, the position of the stylus 21 can be detected with high accuracy by detecting only the tilt of the position detection mirror 23 provided on the arm support portion 20 and the movement in the vertical axis direction. For example, by using a small combination of a magnet and a steel ball having a diameter of about 1 mm, the mass of the movable part can be reduced and the natural frequency can be lowered. As a result, vibration is less likely to occur and high-precision measurement can be performed.

また、プローブ1に不慮の衝撃が加わり、揺動部3に対してアーム支持部20が大きくずれても、磁石間に挟まれた球はどちらかの磁石に吸着しているので、落ちることはなく、すぐに復帰して使用することができる。   Further, even if an unexpected impact is applied to the probe 1 and the arm support portion 20 is greatly displaced with respect to the swinging portion 3, the ball sandwiched between the magnets is adsorbed to one of the magnets so that it does not fall. It can be used immediately after returning.

本プローブ1において、復元力等に磁力を利用しているが、永久磁石により構成しているので、電磁石のように電流を流すことが無い。これにより構成が簡単になり、電気熱による温度上昇が無く、安定して測定が可能である。   In this probe 1, magnetic force is used for restoring force and the like, but since it is composed of a permanent magnet, current does not flow like an electromagnet. This simplifies the configuration, does not cause a temperature increase due to electric heat, and enables stable measurement.

本発明は、鉛直面の測定時だけでなく、水平面の測定時にも、小さい押圧力で測定でき、また、プローブ内のミラーの水平方向の変位を低減することにより、高精度に測定物の形状を測定できる。任意形状の穴の内面や穴径の測定、および任意形状の外側面の鉛直面の形状測定だけでなく、水平面の形状測定を高精度および低測定力にて走査測定する三次元形状測定装置の三次元形状測定用プローブに適用できる。   The present invention can measure with a small pressing force not only when measuring a vertical plane but also when measuring a horizontal plane, and by reducing the horizontal displacement of the mirror in the probe, the shape of the measured object can be accurately determined. Can be measured. A three-dimensional shape measuring device that scans the shape of the horizontal plane with high precision and low measuring force, as well as the measurement of the inner surface and hole diameter of arbitrary holes and the vertical surface of the outer surface of arbitrary shapes. It can be applied to a probe for three-dimensional shape measurement.

1 三次元形状測定装置用プローブ
2 取付部
3 揺動部
3a 下部材
3b 延伸部
3c 可動側保持部
5 閉鎖部材
5a 揺動用貫通穴
11 空洞部
17 フォーカスレンズ
20 アーム支持部
21 スタイラス
22 アーム
23 位置検出ミラー
24 貫通穴
33 固定側保持部材
41 載置台
41a 円錐溝
42 支点部材
49 鉛直面
50 鉛直面
51 可動側磁石
52 固定側磁石
53a 永久磁石
53b 永久磁石
53c 永久磁石
53d 永久磁石
53e 永久磁石
54a 永久磁石
54b 永久磁石
54c 永久磁石
54d 永久磁石
54e 永久磁石
55a 鋼球
55b 鋼球
55c 鋼球
55d 鋼球
55e 鋼球
56 鉛直面
57 鉛直面
60 測定物
101 三次元形状測定用プローブ
103 揺動部
104 連結機構
109 上下弾性
111 測定用レーザ光
114 固定側保持部材
120 アーム取付部
121 スタイラス
122 アーム
123 ミラー
201 三次元形状測定装置
210 He−Neレーザ
220 測定点情報決定部
221 光学系
222 傾斜角度検出部
223 スタイラス位置演算部
224 位置座標測定部
225 加算部
226 ミラー位置傾き検出部
227 半導体レーザ
228 上下位置検出部
229 レーザ光
230 Z基準板
231 プローブ光学
292 石定盤
293 Z−テーブル
295 ステージ
2951 X−ステージ
2952 Y−ステージ
DESCRIPTION OF SYMBOLS 1 Probe for three-dimensional shape measuring apparatus 2 Attaching part 3 Oscillating part 3a Lower member 3b Extending part 3c Movable side holding part 5 Closing member 5a Oscillating through hole 11 Cavity part 17 Focus lens 20 Arm support part 21 Stylus 22 Arm 23 Position Detection mirror 24 Through hole 33 Fixed side holding member 41 Mounting table 41a Conical groove 42 Supporting point member 49 Vertical surface 50 Vertical surface 51 Movable side magnet 52 Fixed side magnet 53a Permanent magnet 53b Permanent magnet 53c Permanent magnet 53d Permanent magnet 53e Permanent magnet 54a Permanent magnet Magnet 54b Permanent magnet 54c Permanent magnet 54d Permanent magnet 54e Permanent magnet 55a Steel ball 55b Steel ball 55c Steel ball 55d Steel ball 55e Steel ball 56 Vertical surface 57 Vertical surface 60 Measurement object 101 Three-dimensional shape measurement probe 103 Oscillating unit 104 Connection Mechanism 109 Vertical elastic body 111 Measuring laser Light 114 Fixed side holding member 120 Arm mounting portion 121 Stylus 122 Arm 123 Mirror
DESCRIPTION OF SYMBOLS 201 Three-dimensional shape measuring apparatus 210 He-Ne laser 220 Measurement point information determination part 221 Optical system 222 Inclination angle detection part 223 Stylus position calculation part 224 Position coordinate measurement part 225 Adder 226 Mirror position inclination detection part 227 Semiconductor laser 228 Vertical position Detection unit 229 Laser beam 230 Z reference plate 231 Probe optical unit 292 Stone surface plate 293 Z-table 295 Stage 2951 X-stage 2952 Y-stage

Claims (6)

三次元形状測定装置に取り付けられる取付部と、
前記取付部に設けられた載置台と、前記載置台に載置された支点部材とを有し、前記支点部材を支点として前記取付部に揺動可能に連結され、互いに交差する第1面と第2面とを有する揺動部と、
前記揺動部に設けられた可動側部材と、前記取付部に設けられて前記可動側部材に対して間隔を隔てて対向する固定側部材とを備え、前記可動側部材と前記固定側部材は磁気的吸引力を発生するように構成され、当該磁気的吸引力により前記揺動部が一定の方向を向くように前記揺動部を付勢する付勢機構と、
測定物の被測定面に接触するスタイラスが下端に配置されたアームが垂下して取り付けられ、前記第1面と対向する第3面と、前記第2面と対向する第4面とを有するアーム支持部と、
前記揺動部の前記第1面と前記第2面に設けられ、それぞれ鉛直面を有する複数の揺動部側部材と、
前記アーム支持部の前記第3面と前記第4面に設けられ、それぞれ前記揺動部側部材のいずれかと水平方向に間隔を隔てて対向し、かつ対向する前記揺動部側部材の前記鉛直面と水平方向に間隔をあけて対向する鉛直面を有し、前記揺動側部材と磁気的吸引力を発生するように構成された複数のアーム側部材と、
それぞれ互いに対向する前記揺動部側部材と前記アーム側部材との間に配置されて前記磁気的吸引力により前記鉛直面に吸引されて接触する、磁性体からなる複数の球体と
を備えることを特徴とする三次元形状測定装置用プローブ。
A mounting portion attached to the three-dimensional shape measuring apparatus;
A mounting table provided on the mounting unit; and a fulcrum member mounted on the mounting table, the first surface intersecting each other with the fulcrum member as a fulcrum and swingably connected to the mounting unit; A swinging portion having a second surface;
A movable side member provided on the swinging portion; and a fixed side member provided on the mounting portion and opposed to the movable side member with a space therebetween, wherein the movable side member and the fixed side member are An urging mechanism configured to generate a magnetic attraction force, and urges the oscillating portion so that the oscillating portion is directed in a certain direction by the magnetic attraction force;
An arm having a stylus that is in contact with the surface to be measured of the object to be measured and attached to the lower end is suspended and has a third surface that faces the first surface and a fourth surface that faces the second surface. A support part;
A plurality of oscillating part side members provided on the first surface and the second surface of the oscillating part, each having a vertical surface;
Provided on the third surface and the fourth surface of the arm support portion, respectively, are opposed to any one of the oscillating portion side members at an interval in the horizontal direction, and the vertical of the oscillating portion side member facing each other. has a vertical surface facing spaced surfaces and a horizontal direction, a plurality of arm-side member that is configured to generate the oscillating portion side member and the magnetic attraction force,
A plurality of spheres made of a magnetic material, which are arranged between the oscillating portion side member and the arm side member facing each other, and are attracted to and contact the vertical surface by the magnetic attraction force. A characteristic probe for a three-dimensional shape measuring apparatus.
1個の前記揺動部側部材と、それと対向する1個の前記アーム側部材と、これらの前記揺動部側部材と前記アーム側部材との間に配置された1個の前記球から構成された磁力セットが5組あり、
前記磁力セットは、5組のうちの任意の1組が他の4組により拘束される自由度と一致しない方向の自由度を拘束する位置および方向に配置されている請求項1に記載の三次元形状測定装置用プローブ。
And one of the swing-side member, the same one with the arm-side member facing, from one of said ball member disposed between the arm member and those of the oscillating portion side member There are 5 sets of configured magnetic set,
3. The tertiary according to claim 1, wherein the magnetic force set is arranged in a position and a direction that constrain a degree of freedom in a direction in which any one of the five pairs does not coincide with a degree of freedom constrained by the other four pairs. Original shape measuring device probe.
前記揺動側部材と前記アーム側部材は、一方が永久磁石で構成され、他方が磁性体で構成される請求項2記載の三次元形状測定装置用プローブ。 3. The probe for a three-dimensional shape measuring apparatus according to claim 2, wherein one of the swinging part side member and the arm side member is made of a permanent magnet and the other is made of a magnetic material. 前記揺動側部材と前記アーム側部材は、双方ともに永久磁石で構成され、互いに異極が対向するように配置される請求項2記載の三次元形状測定装置用プローブ。 The arm-side member and the swinging portion side member is composed of a permanent magnet in both three-dimensional shape measurement device probe according to claim 2, wherein disposed to different poles face each other. 前記揺動部側部材と、前記磁力セットの配置は、3組を前記第1面および前記第3面上の一直線上に並ばない位置に配置し、2組を前記第2面および前記第4面上の異なる高さに配置した請求項2から4のいずれか一項に記載の三次元形状測定装置用プローブ。   As for the arrangement of the rocking part side member and the magnetic force set, three sets are arranged at positions that do not line up on a straight line on the first surface and the third surface, and two sets are arranged on the second surface and the fourth surface. The probe for a three-dimensional shape measuring apparatus according to any one of claims 2 to 4, which is disposed at different heights on the surface. 前記アーム支持部は、位置検出ミラーを備える請求項1から5のいずれか一項に記載の三次元形状測定装置用プローブ   The said arm support part is provided with a position detection mirror, The probe for three-dimensional shape measuring apparatuses as described in any one of Claim 1 to 5
JP2013007244A 2013-01-18 2013-01-18 Probe for 3D shape measuring equipment Active JP5838370B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2013007244A JP5838370B2 (en) 2013-01-18 2013-01-18 Probe for 3D shape measuring equipment
TW102145674A TWI495844B (en) 2013-01-18 2013-12-11 Probe for three-dimensional shape measurement apparatus
KR1020140005043A KR101514179B1 (en) 2013-01-18 2014-01-15 Probe for three dimensional shape measuring apparatus
CN201410022585.7A CN103940366B (en) 2013-01-18 2014-01-17 Detector used for three-dimensional shape measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013007244A JP5838370B2 (en) 2013-01-18 2013-01-18 Probe for 3D shape measuring equipment

Publications (2)

Publication Number Publication Date
JP2014137330A JP2014137330A (en) 2014-07-28
JP5838370B2 true JP5838370B2 (en) 2016-01-06

Family

ID=51188137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013007244A Active JP5838370B2 (en) 2013-01-18 2013-01-18 Probe for 3D shape measuring equipment

Country Status (4)

Country Link
JP (1) JP5838370B2 (en)
KR (1) KR101514179B1 (en)
CN (1) CN103940366B (en)
TW (1) TWI495844B (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI495839B (en) * 2014-11-21 2015-08-11 Univ Southern Taiwan Sci & Tec Scanning touch probe with 5-axis measuring functions
CN104698632A (en) 2015-03-30 2015-06-10 合肥京东方光电科技有限公司 Substrate detection device and protruding height detection method
KR101799280B1 (en) 2016-03-29 2017-11-20 이노시스 주식회사 High-precision 3D meαsuring system αnd the method thereof
JP6769764B2 (en) * 2016-07-19 2020-10-14 株式会社ミツトヨ Measuring probe and measuring device
JP6797639B2 (en) * 2016-11-02 2020-12-09 株式会社キーエンス Image measuring device
CN108801161B (en) * 2017-04-28 2021-06-29 北京小米移动软件有限公司 Measuring system, method and device, readable storage medium
JP6799815B2 (en) * 2018-05-21 2020-12-16 パナソニックIpマネジメント株式会社 Shape measurement probe
JP7213059B2 (en) * 2018-10-24 2023-01-26 株式会社ミツトヨ Surface texture measuring device and its control method
JP7340761B2 (en) * 2019-10-28 2023-09-08 パナソニックIpマネジメント株式会社 measurement probe
TWI765312B (en) * 2019-11-04 2022-05-21 旺矽科技股份有限公司 Edge sensor and probing method using the same
JP2024140995A (en) * 2023-03-28 2024-10-10 株式会社東京精密 Probes and shape measuring devices

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69201985T2 (en) * 1991-02-25 1995-08-24 Renishaw Metrology Ltd Contact sample.
GB9111382D0 (en) * 1991-05-25 1991-07-17 Renishaw Metrology Ltd Improvements in measuring probes
JP3628938B2 (en) * 2000-06-23 2005-03-16 株式会社ミツトヨ Touch signal probe
EP1443301B1 (en) * 2003-01-29 2010-02-10 Tesa SA Steerable feeler head
CN101322005B (en) * 2006-05-18 2010-12-01 松下电器产业株式会社 Probe for shape measuring apparatus, and shape measuring apparatus
JP4291849B2 (en) * 2006-12-20 2009-07-08 パナソニック株式会社 3D measurement probe
JP5154149B2 (en) 2007-06-20 2013-02-27 パナソニック株式会社 3D measurement probe
JP4850265B2 (en) * 2009-03-12 2012-01-11 パナソニック株式会社 Probe for shape measuring device and shape measuring device
JP5066589B2 (en) * 2009-05-15 2012-11-07 パナソニック株式会社 Probe for three-dimensional shape measuring device and three-dimensional shape measuring device
US9471054B2 (en) * 2011-01-19 2016-10-18 Renishaw Plc Analogue measurement probe for a machine tool apparatus
CN202350746U (en) * 2011-10-28 2012-07-25 合肥工业大学 Three-dimensional micro-nano contact scanning probe

Also Published As

Publication number Publication date
TW201432220A (en) 2014-08-16
CN103940366A (en) 2014-07-23
JP2014137330A (en) 2014-07-28
KR101514179B1 (en) 2015-04-21
KR20140093621A (en) 2014-07-28
TWI495844B (en) 2015-08-11
CN103940366B (en) 2017-01-11

Similar Documents

Publication Publication Date Title
JP5838370B2 (en) Probe for 3D shape measuring equipment
JP4427580B2 (en) Probe for shape measuring device and shape measuring device
JP5066589B2 (en) Probe for three-dimensional shape measuring device and three-dimensional shape measuring device
EP1875158B1 (en) Surface sensing device with optical sensor
JP4486682B2 (en) Measuring probe for use in coordinate measuring instruments
WO2000060310A1 (en) Surface sensing device with optical sensor
CN103256891A (en) Sensor
JP6613162B2 (en) Probe head and contact detection method for three-dimensional coordinate measuring machine
JP4663378B2 (en) Shape measuring apparatus and method
KR101140496B1 (en) Shape measurement device probe and shape measurement device
JP5330297B2 (en) Alignment adjustment mechanism and measuring device
JP5171108B2 (en) 3D shape measuring device
KR101704204B1 (en) Three-dimensional shape measurement apparatus
JP5645349B2 (en) Shape measuring device
JP6294111B2 (en) Surface shape measuring device
WO2013017834A1 (en) Metrological apparatus
WO2015093244A1 (en) Measurement probe and shape measurement device
WO2015093459A1 (en) Probe unit and shape-measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140731

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20141008

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20141014

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150609

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150616

R151 Written notification of patent or utility model registration

Ref document number: 5838370

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151