WO2015093244A1 - Measurement probe and shape measurement device - Google Patents

Measurement probe and shape measurement device Download PDF

Info

Publication number
WO2015093244A1
WO2015093244A1 PCT/JP2014/081192 JP2014081192W WO2015093244A1 WO 2015093244 A1 WO2015093244 A1 WO 2015093244A1 JP 2014081192 W JP2014081192 W JP 2014081192W WO 2015093244 A1 WO2015093244 A1 WO 2015093244A1
Authority
WO
WIPO (PCT)
Prior art keywords
axis
stylus
axis direction
guide
measurement
Prior art date
Application number
PCT/JP2014/081192
Other languages
French (fr)
Japanese (ja)
Inventor
橋本 直樹
俊一郎 吉田
誠司 曽和
克司 渡邊
章弘 藤本
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Publication of WO2015093244A1 publication Critical patent/WO2015093244A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/004Measuring arrangements characterised by the use of mechanical techniques for measuring coordinates of points
    • G01B5/008Measuring arrangements characterised by the use of mechanical techniques for measuring coordinates of points using coordinate measuring machines
    • G01B5/012Contact-making feeler heads therefor

Definitions

  • the present invention relates to a measurement probe and a shape measuring apparatus suitable for measuring a three-dimensional shape of, for example, an optical element or its mold.
  • a measuring probe having a stylus having a substantially spherical tip is brought into contact with the workpiece surface, and scanning (scanning) is performed along the surface, with an arbitrary pitch.
  • scanning scanning
  • a three-dimensional measurement technique is known in which the three-dimensional coordinate position of the stylus position is acquired and the discrete point cloud is used as the contour shape of the workpiece surface.
  • a three-dimensional measuring apparatus that performs such a measurement generally has a measuring probe configured such that the stylus is movable only in the vertical direction with respect to the probe.
  • it is not suitable for measurement of a vertical plane parallel to the direction, and the measurable inclination angle is generally limited. Therefore, with this type of three-dimensional measuring apparatus, it is difficult to scan a surface shape with an angle exceeding 80 ° in the periphery, such as an optical surface close to a hemisphere of a high NA lens used in an optical pickup device. .
  • Patent Document 1 has the following problems.
  • the support member that supports the stylus is also of relatively low rigidity, and if an unexpected external force is applied to the support member, the support member may easily be deformed.
  • a member such as a leaf spring
  • plastic deformation may be caused and the performance of the probe may be impaired.
  • the stylus is replaced with a lock member that prevents the stylus from being tilted more than expected, while the deformation of the support member is suppressed. Deteriorating.
  • Patent Document 1 the center of inclination is determined by using a needle-like projection and a conical groove as the means.
  • the center of the tilt is generally stable, but the problem is that deterioration of measurement accuracy due to wear of needle-like protrusions and wear due to needle-shaped special notes and conical groove contact is inevitable. There is.
  • the tip of the stylus that comes into contact with the object to be measured is generally generally spherical.
  • the reason for this is that if the shape measurement data of the non-measurement surface obtained and the position (posture) of the stylus are known, the radius of the tip spherical part is corrected to make the actual shape of the non-measurement surface highly accurate. It is because it is obtained.
  • the stylus PLB capable of measuring from the horizontal plane HP to the vertical plane VP of the object OBJ has secured a certain degree of rigidity above the spherical portion SP at the tip in consideration of deformation.
  • the shaft TS having an arbitrary length and a diameter smaller than the diameter of the spherical portion SP is provided.
  • an axis FS having a diameter larger than the diameter of the tip spherical portion SP is provided above the shaft FS, and an attachment portion of the stylus PLB is often configured.
  • the reason why the shaft TS having an arbitrary length and a smaller diameter than the spherical portion SP at the tip is necessary is to prevent the shaft TS from contacting the vertical surface VP prior to the spherical portion SP when measuring the vertical surface VP. It is.
  • the contact amount (tilt amount) of the stylus must always be constant for highly accurate measurement. This is because the contact position of the tip spherical portion is different if the contact amount changes even if the same location is being measured.
  • the spherical part at the tip of the stylus can be manufactured as a single unit with high accuracy with a sphericity of less than submicron if the diameter is on the order of 1 mm.
  • the diameter of the tip sphere is on the order of less than 0.1 mm, it is difficult to bond to the shaft portion, and in general, the shaft portion and the spherical portion are often processed integrally. However, in the integral processing with the shaft portion, it is difficult to form a spherical portion having a sphericity of micron order.
  • the distance between the contact position and the center of the sphere changes each time the stylus tilt changes and the contact position changes. Measurement accuracy will be reduced.
  • the accuracy required for the detection means and the control means to keep the inclination constant increases.
  • An object of the present invention has been made in view of the above-described problems, and a measurement probe and a shape measuring apparatus capable of measuring the shape of an object to be measured without inclining the stylus according to a technical idea different from the prior art. Is to provide.
  • a measurement probe reflecting one aspect of the present invention is a measurement probe used for obtaining three-dimensional coordinates of an arbitrary point on the surface of an object to be measured, A stylus having a spherical surface to be in contact with the object to be measured;
  • the Z-axis direction is substantially coincident with the gravitational acceleration direction and the X-axis direction and the Y-axis direction orthogonal to each other are defined as directions orthogonal to the Z-axis direction
  • An X-axis biasing mechanism that biases the stylus part to a reference position in
  • the present inventors have found a technique for measuring the shape of the vertical surface of the object to be measured without inclining the stylus part, based on a technical idea different from the prior art. If the stylus part is not inclined as in the prior art, it is not necessary to use a shaft part with a diameter much smaller than the diameter of the spherical part as described above, and high sphericity of the stylus part can be secured even at a low cost. . In addition, if the shaft portion is thick, it is possible to suppress twisting of the stylus portion during scanning measurement of a cylindrical surface, and more accurate measurement is possible, and for example, the stylus to a deeper position of the object to be measured. Departments can be reached and measurement restrictions are relaxed. Furthermore, there is no need to support the stylus part with a low-rigid elastic material or the like, and the stylus part can be easily replaced.
  • a mechanism for guiding the stylus part in a horizontal direction while maintaining the posture of the stylus part (the Y-axis guide and The X-axis guide may be provided.
  • a predetermined contact pressure cannot be secured to the stylus part and the object to be measured simply by providing a guide mechanism. Therefore, in the present invention, the X-axis biasing mechanism that biases the stylus part to the reference position in the X-axis direction, and the stylus part and the X-axis guide are biased to the reference position in the Y-axis direction.
  • Y-axis urging mechanism Z-axis urging mechanism for urging the stylus part, the Y-axis guide, and the X-axis guide in a direction opposite to the gravitational acceleration direction so as to load a part of its own weight Is provided.
  • it can always be made to contact with predetermined contact pressure, without making a stylus part incline to the perpendicular surface etc. of a to-be-measured object.
  • the present invention it is possible to provide a measurement probe and a shape measuring apparatus capable of measuring the shape of an object to be measured without tilting the stylus according to a technical idea different from the prior art.
  • FIG. 1 is an exploded perspective view of a probe unit (measurement probe) 100.
  • FIG. FIG. 4 is a part of a cross-sectional view cut along a plane indicated by line IV-IV in FIG. 3.
  • FIG. 5 is an exploded perspective view showing the case 111 removed from the movable unit 110 and is shown together with the frame 101.
  • 3 is an exploded perspective view of a movable unit 110.
  • FIG. 3 is an exploded perspective view of a movable unit 110.
  • FIG. FIG. 4 is an axial sectional view of a Y-axis slider 116 and a Y-axis hydrostatic bearing 117 in the assembled state. It is a figure which expands and shows the front-end
  • the Z-axis direction is a vertical direction
  • the X-axis direction and the Y-axis direction are horizontal directions.
  • FIG. 2 is a perspective view showing the shape measuring apparatus of the present embodiment.
  • a pair of pillars 11 are erected on the surface plate 10.
  • the beam member 12 extends horizontally so as to connect the upper ends of the pair of columns 11.
  • a Z-axis stage 15 is provided in the center of the beam member 12 via a holder 13.
  • the Z-axis stage 15 is configured such that a probe unit (measuring probe) 100 with a stylus protruding downward can be moved in the Z-axis direction with respect to the surface plate 10.
  • a mirror MZ is provided on the upper surface of the probe unit 100.
  • a laser length measuring device (Z-axis sensor) LZ provided on the holder 13 is opposed to the mirror MZ, and passes through the spherical center of the stylus part described later.
  • the Z-axis direction displacement amount of the probe unit 100 relative to the fixed holder 13 can be measured at a position on the axis along the vertical direction (Z-axis measurement unit).
  • an X-axis stage 17 movable in the X-axis direction and a Y-axis stage 18 movable in the Y-axis direction are stacked, and the mounting surface on the uppermost surface thereof.
  • the object to be measured OBJ placed on 19 can be displaced independently in the X-axis direction and the Y-axis direction.
  • the mounting surface 19 is provided with a mirror MX facing the X-axis direction and a mirror MY facing the Y-axis direction.
  • a laser length measuring device LX provided on the surface plate 10 faces the mirror MX
  • a laser length measuring device LY provided on the surface plate 10 faces the mirror MY.
  • the X-axis direction displacement amount and the Y-axis direction displacement amount of the mounting surface 19 can be measured.
  • FIG. 3 is an exploded perspective view of the probe unit 100.
  • FIG. 4 is a part of a cross-sectional view taken along the line IV-IV in FIG.
  • the probe unit 100 includes a frame 101 fixed to the Z-axis stage 15 and a movable unit 110 accommodated in the frame 101.
  • the frame 101 has a rectangular tube shape, and its lower end is closed by a lower plate 102 having an opening 102a.
  • the movable unit 110 has a case 111 housed in the frame 101 and movable in the Z-axis direction.
  • the case 111 has a rectangular tube shape, and its lower end is closed by a lower plate 112, and its upper end is closed by an upper plate 113 on which a mirror MZ is placed.
  • a stepped portion 111a is formed with the upper portion protruding.
  • a step 101a is formed on the inner periphery of the side wall of the frame 101 corresponding to the step 111a, and an opening 101b connecting the air introduction connector 103 is formed below the step 101a.
  • the frame 101 and the case 111 constitute a Z-axis guide.
  • the air When air is introduced between the frame 101 and the case 111 below the stepped portion 101a from the air pressure source (not shown) through the connector 103 and the opening 101b with the case 111 inserted into the frame 101, the air is It functions to expand upward by applying air pressure between the opposed step portions 111a and 101a. As a result, most of the weight of the movable unit 110 can be supported with respect to the frame 101. However, when a load that cannot be supported remains, another case is used to supplement the case with the frame 101 using a spring or the like. It is also possible to bias 111 upward, and the contact pressure of the stylus part described later can be kept within a predetermined range.
  • the connector 103, the opening 101b, and the step portions 111a and 101a constitute a Z-axis direction urging mechanism.
  • the frame 101 has notches 101c to 101e formed on the side surfaces.
  • FIG. 5 is an exploded perspective view of the movable unit 110 with the case 111 removed and shown together with the frame 101.
  • the lower plate 112 that closes the lower end of the case 111 in the movable unit 110 has an opening 112a.
  • the case 111 has notches 111b to 111d and an opening 111f formed on the side surface.
  • FIGS. 6 and 7 are exploded perspective views of the movable unit 110, but the case 111 is omitted.
  • a Y-axis sensor 115 and a prismatic Y-axis slider 116 are attached to a support plate 114 extending downward from the lower surface of the upper plate 113 of the case 111 side by side.
  • the central axis of the Y-axis sensor 115 is arranged so as to be parallel to the vertical axis of the Y-axis slider 116.
  • a rectangular cylindrical Y-axis hydrostatic bearing 117 which is sealed except for the inner peripheral surface surrounds the Y-axis slider 116 with a gap of several ⁇ m interposed on the inner peripheral surface. It is attached in this way.
  • a connector 118 is provided to supply air into the Y-axis hydrostatic bearing 117. Air introduced into the Y-axis hydrostatic bearing 117 from the air pressure source (not shown) through the connector 118 is discharged from the porous inner peripheral surface with uniform pressure, and the Y-axis slider 116 is in a non-contact state. Thus, it is held so as to be relatively movable in the Y-axis direction.
  • the Y axis slider 116 and the Y axis hydrostatic bearing 117 constitute a Y axis guide.
  • FIG. 8 is a sectional view in the axial direction of the Y-axis slider 116 and the Y-axis hydrostatic bearing 117 in the assembled state.
  • a magnet MG1 is arranged on the upper surface of the Y-axis slider 116 so that N poles are arranged on both sides of the S pole.
  • a magnet MG2 is arranged on the inner peripheral surface of the Y-axis hydrostatic bearing 117 so that the S poles are arranged on both sides of the N pole.
  • the Y-axis slider 116 and the Y-axis hydrostatic bearing 117 are stably stopped at the position (reference position) shown in FIG.
  • Magnets MG1 and MG2 constitute a Y-axis direction biasing mechanism.
  • a Y-axis sensor 115 which is a capacitance sensor, measures the distance to a point PY where the central axis intersects the end surface of the Y-axis hydrostatic bearing 117, and transmits it to the CPU.
  • a point PY which is a measurement unit of the Y-axis sensor 115, is projected in the Y-axis direction, it intersects with a vertical axis passing through the spherical center of a stylus unit 125 described later.
  • An X-axis sensor 120 and a prismatic X-axis slider 121 are mounted side by side on a support plate 119 attached to the side surface of the hydrostatic bearing 117 and extending downward.
  • the central axis of the X-axis sensor 120 is arranged in parallel with the central axis of the X-axis slider 121 and overlapping in the vertical direction.
  • a rectangular tube-shaped X-axis hydrostatic bearing 122 which is sealed except for the inner peripheral surface surrounds the X-axis slider 121 with a gap of several ⁇ m interposed on the inner peripheral surface. It is attached in this way.
  • a connector 123 is provided to supply air into the X-axis hydrostatic bearing 122. Air introduced into the X-axis hydrostatic bearing 122 from the pneumatic source (not shown) through the connector 123 is discharged from the porous inner peripheral surface with uniform pressure, and the X-axis slider 121 is in a non-contact state. Thus, it is held so as to be relatively movable in the X-axis direction.
  • the X axis slider 121 and the X axis hydrostatic bearing 122 constitute an X axis guide.
  • a pair of magnets similar to those shown in FIG. 8 are arranged as an X-axis direction biasing mechanism between the X-axis slider 121 and the X-axis hydrostatic bearing 122 in the assembled state.
  • the X-axis hydrostatic bearing 122 is biased toward the reference position with respect to the X-axis slider 121.
  • the movable portion may be biased to the reference position using a pair of springs.
  • the X-axis sensor 120 which is a capacitance sensor, measures the distance to the point PX where the central axis intersects the end surface of the X-axis hydrostatic bearing 122, and transmits it to the CPU.
  • a point PX which is a measurement part of the X-axis sensor 120, is projected in the X-axis direction, it intersects with a vertical axis passing through the spherical center of a stylus part 125 described later.
  • the plate member 126 attached to the X-axis hydrostatic bearing 122 at the end opposite to the support plate 119 functions as a stopper that restricts relative movement between the X-axis hydrostatic bearing 122 and the X-axis slider 121. To do.
  • the Y-axis sensor 115 is exposed to the outside through the notch 111d of the case 111 and the notch 101e of the frame 101, and does not interfere with the case 111 or the frame 101 even if the stylus part is displaced.
  • the connector 118 is exposed to the outside through the notch 111c of the case 111 and the notch 101d of the frame 101, and does not interfere with the case 111 or the frame 101 even if the stylus part is displaced.
  • the connector 123 is exposed to the outside through the opening 111f of the case 111 and the notch 101c of the frame 101, and does not interfere with the case 111 or the frame 101 even if the stylus part is displaced.
  • the X-axis sensor 120 is exposed to the outside through the notch 111b of the case 111 and the notch 101c of the frame 101, and does not interfere with the case 111 or the frame 101 even if the stylus part is displaced.
  • a holding plate 124 is fixed to the lower surface of the X-axis hydrostatic bearing 122.
  • a stylus portion 125 is attached to the holding plate 124 so as to extend downward, and protrudes downward through an opening 112a of the case 111 and an opening 102a of the frame 101 provided for avoiding interference.
  • the stylus portion 125 extends from a main body 125b whose upper end is screwed to the tip of a root portion 124a formed to protrude from the center of the lower surface of the holding plate 124, and a conical lower end of the main body 125b. It consists of a thin-shaft tip portion 125c.
  • a spherical portion 125d is formed at the tip of the tip portion 125c.
  • the main body 125b and the front end portion 125c are manufactured separately from the spherical body portion 125d, and both can be integrated by adhesion.
  • the main body 125b and the tip portion 125c and the spherical portion 125d may be integrally formed.
  • the distal end portion 125c is deformed or damaged, it can be easily replaced by removing the main body 125b from the root portion 124a.
  • the diameter of the tip portion 125c is 70% or more of the diameter of the spherical portion 125d, but less than 100%.
  • output signals of sensors that detect the movement amounts of the X-axis stage 17 and the Y-axis stage 18 and the movement amounts of the stylus part 125 in the X-axis direction, the Y-axis direction, and the Z-axis direction are input to the CPU.
  • air is introduced between the frame 101 and the case 111 from a pneumatic source (not shown) via the connector 103 and the opening 101b, so that the case 111 receives a force directed upward in the vertical direction with respect to the frame 101. Further, air is introduced into the Y-axis hydrostatic bearing 117 from the air pressure source (not shown) via the connector 118, so that the Y-axis hydrostatic bearing 117 is not in contact with the Y-axis slider 116 in the Y-axis direction. It is held so that it can be moved relatively.
  • the stylus part 125 can move arbitrarily in the three-dimensional directions of the Z-axis direction, the Y-axis direction, and the X-axis direction by applying a light external force while maintaining a posture extending in the vertical direction. It has become.
  • the stylus portion 125 is urged by a magnetic force so as to return to the reference position (origin) in the X-axis direction and the Y-axis direction by an X-axis urging mechanism including a magnet (not shown) and a Y-axis urging mechanism. ing. Therefore, a strong biasing force is generated as the stylus part 125 moves away from the reference position. However, since the displacement amount of the stylus part 125 can be detected at the time of measurement, the CPU prevents the displacement amount from becoming excessive. It is preferable to control the contact pressure of the stylus part 125 at the time of measurement to be 0.098 mN to 0.98 mN by appropriately driving the X-axis stage 17 and the Y-axis stage 18 by the above signal.
  • the Z-axis stage 15, the X-axis stage 17, and the Y-axis stage 18 are driven, for example, the sphere part 125 d of the stylus part 125 is brought into contact with one of the objects to be measured OBJ. Then, the X-axis stage 17 (or Y-axis stage 18) is driven, and the CPU reads the three-dimensional information of the stylus part 125 intermittently (touch method) or continuously (scan method).
  • FIG. 9 is an enlarged view showing the tip of the stylus part 125 in a state where the X-axis stage 17 and the Y-axis stage 18 are moved to arbitrary positions.
  • the movement amount of the X-axis stage 17 read by the laser length measuring device LX is X1
  • the movement amount of the Y-axis stage 18 read by the laser length measuring device LY is Y1.
  • This amount corresponds to the amount of movement of the object to be measured OBJ relative to the surface plate 10, but is different from the relative amount of movement of the stylus part 125.
  • the reason is that if the surface of the measurement object OBJ with which the stylus part 125 abuts is inclined in an arbitrary direction, the stylus part 125 receives the reaction force RF from the surface of the measurement object OBJ and moves slightly. Because it does.
  • the reaction force RF is decomposed into a Z-axis direction component Rz, a Y-axis direction component Ry, and an X-axis direction component Rx.
  • both the Y-axis direction component Ry and the X-axis direction component Rx are zero.
  • the stylus 125 moves from the reference position to the Y-axis stage 18 along the moving direction of the Y-axis stage 18. Since the movement amount y is moved in the axial direction (y is a negative value when moving in the reverse direction), the movement amount Y of the Y-axis stage 18 is corrected accordingly. This movement amount y can be detected by the Y-axis sensor 115.
  • the stylus part 125 is moved to the reference position along the moving direction of the X-axis stage 17. Therefore, the movement amount X of the X-axis stage 17 is corrected by that amount.
  • This movement amount x can be detected by the X-axis sensor 120.
  • the amount of movement of the stylus 125 in the Z-axis direction is the reading Z1 itself of the laser length measuring device LZ.
  • the center of the spherical part 125d of the stylus part 125 is located at the coordinates (X1-x, Y1-y, Z1).
  • the three-dimensional coordinates of the surface of the object OBJ with which the spherical portion 125d is in contact can be obtained.
  • the entire surface shape of the object to be measured OBJ can be obtained.
  • the Y-axis urging mechanism that urges the stylus part 125 to the reference position in the Y-axis direction
  • the spherical body part 125d comes into contact with the surface of the object OBJ
  • the spherical portion 125d is formed on the surface of the object OBJ.
  • the stylus part preferably has an axis having a diameter of 70% or more and less than 100% of the diameter of the spherical surface.
  • the rigidity of the stylus part can be increased, and precise measurement can be performed up to a deeper position of the object to be measured.
  • the diameter of the said stylus part being 75% or more of the diameter of the said spherical surface.
  • At least one of the Y-axis sensor and the X-axis sensor is a non-contact type. Thereby, the influence of the detection on a measurement can be suppressed.
  • the measurement point of the Y-axis sensor is projected in the Y-axis direction, it intersects with a vertical axis passing through the spherical center of the stylus part.
  • the measurement point of the X-axis sensor is projected in the X-axis direction, it intersects with a vertical axis passing through the spherical center of the stylus part.
  • the shape measuring apparatus includes the above-described measurement probe, a Z-axis stage that moves in the Z-axis direction while holding the measurement probe, and the object to be measured mounted on the X-axis direction and the Y-axis direction independently.
  • An XY stage that moves.
  • a Z-axis sensor In the shape measuring apparatus, it is preferable to arrange a Z-axis sensor on a vertical axis passing through the spherical center of the stylus part. As a result, Abbe error can be reduced and precise measurement can be performed.
  • the Z-axis direction substantially coincides with the gravitational acceleration direction includes the case where the Z-axis direction and the gravitational acceleration direction completely coincide with each other and the case where the Z-axis direction is tilted within 10 ° with respect to the gravitational acceleration direction.
  • the Y-axis sensor preferably measures the displacement of a movable part that moves together with the Z-axis guide and the stylus part with respect to the fixed part of the Y-axis guide.
  • the X-axis sensor preferably measures the displacement of a movable part that moves together with the Y-axis guide, the Z-axis guide, and the stylus part with respect to the fixed part of the X-axis guide.
  • the Z-axis sensor includes a length measuring mirror attached above the movable part of the Z-axis guide that supports the stylus part, a laser displacement meter attached to the measuring device in a state independent of the probe, and the like.
  • a length measuring mirror is disposed on a vertical axis passing through substantially the center of the movable portion of the Y-axis direction guide and the X-axis guide.
  • At least one of the Y-axis biasing mechanism and the Z-axis biasing mechanism is disposed between a fixed portion and a movable portion of each axis guide, and the movable portion is moved to a reference position with respect to the fixed portion by a spring.
  • a permanent magnet or air pressure generating means is preferable.
  • the Z-axis biasing mechanism is preferably a compression spring that is placed between the fixed portion and the movable portion of the Z-axis guide and biases the movable portion in a direction opposite to the direction of gravity acceleration. Due to the elastic force of the compression spring, it is possible to generate a force that pushes up the movable part of the Z-axis guide together with the stylus part.
  • the Z-axis urging mechanism is preferably a permanent magnet that is placed between the fixed part and the movable part of the Z-axis guide and urges the movable part in the direction opposite to the gravitational acceleration direction.
  • the force of pushing up the movable part of the Z-axis guide together with the stylus part can be generated by the magnetic force of the permanent magnet.
  • the Z-axis urging mechanism is preferably an air pressure generating means that is placed between the fixed portion and the movable portion of the Z-axis guide and urges the movable portion in a direction opposite to the gravitational acceleration direction.
  • the air pressure generated by the air pressure generating means can generate a force that pushes up the movable part of the Z-axis guide together with the stylus part.
  • the air pressure generating means As an example of the air pressure generating means, a part of an arbitrary surface of the movable portion of the Z-axis guide is cut out to form a surface having an arbitrary area toward the lower surface in the vertical direction, and the fixed portion of the Z-axis guide
  • the upward levitation force due to the compressed air can be adjusted by adjusting the pressure of the compressed air supplied by controlling a valve provided in the compressed air piping supplied from the compressed air source by voltage control or the like. Precise levitation control is possible.
  • Two or more examples of the above Z-axis biasing mechanism can be used in combination. By using a spring and air pressure together, vibration can be suppressed and damping can be effectively performed.
  • a sensor for detecting the contact pressure of the stylus part may be provided separately to control the air pressure or the like so as to maintain the contact pressure substantially constant. In this case, it is preferable to smooth the sensor signal by passing it through a vibration suppression filter or the like.
  • At least one of the Y-axis guide and the X-axis guide is a static pressure guide using compressed air.
  • the static pressure guide is provided in the X-axis guide
  • the X-axis cylindrical member movable part of the X-axis guide
  • the Y-axis guide It can be formed from an X-axis slide member (fixed part of the X-axis guide) connected to the movable part and surrounded by the X-axis tube member.
  • the compressed air is discharged from the porous inner peripheral surface of the X-axis cylinder member with a uniform pressure. It can be supported so as to be movable with low friction in the direction.
  • the X-axis cylinder member and the X-axis slide member may be in an opposite relationship.
  • the static pressure guide provided in the Y-axis guide includes a Y-axis cylindrical member (movable part of the Y-axis guide) having an inner surface that supports the fixed part of the X-axis guide so as to be movable, and the Z-axis guide.
  • a Y-axis slide member (fixed portion of the Y-axis guide) connected to the movable portion of the shaft guide and surrounded by the Y-axis cylindrical member can be formed.
  • the Z-axis guide can also be configured by a Z-axis stage provided in the shape measuring apparatus.
  • the frame constitutes the fixed part of the Z-axis guide
  • the Z-axis stage constitutes the movable part.
  • the movable part is moved with low friction with respect to the fixed part.
  • a magnetic bearing that can be supported may be used. In such a case, the contact pressure can be easily controlled by generating the magnetic force with an electromagnet.
  • a hydrostatic bearing and a magnetic bearing may be used in combination.
  • the movable part is supported to be movable with low friction with respect to the fixed part.
  • An elastic spring that can be used may be used.
  • the shape measuring device is not limited to the touch type but may be a scan type.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • A Measuring Device Byusing Mechanical Method (AREA)

Abstract

Provided are a measurement probe and shape measurement device that use a technical concept not present in the prior art to make it possible to measure the shape of an object under measurement without tilting a probe. A measurement probe has: a probe part provided with a spherical surface to be brought into contact with an object under measurement; an X-axis guide for holding the probe part so as to be movable in an X-axis direction, a Y-axis guide for holding the probe part and X-axis guide so as to be movable in a Y-axis direction, and a Z-axis guide for holding the probe part, the X-axis guide, and the Y-axis guide so as to be movable in a Z-axis direction, where the Z-axis is made to roughly coincide with the gravitational acceleration direction and the X-axis direction and the Y-axis direction, which are perpendicular to each other, are made to be perpendicular to the Z-axis direction; an X-axis biasing mechanism for biasing the probe part toward an X-axis direction reference position, a Y-axis biasing mechanism for biasing the probe part and the X-axis guide toward a Y-axis direction reference position, and a Z-axis biasing mechanism for biasing, in a direction opposite from the gravitational acceleration direction, the probe part, the Y-axis guide, and the X-axis guide so as to bear a portion of the weight of the same; and a Y-axis sensor for detecting the position of the probe part in the Y-axis direction and an X-axis sensor for detecting the position of the probe part in the X-axis direction.

Description

測定プローブ及び形状測定装置Measuring probe and shape measuring device
 本発明は、例えば光学素子やその金型等の3次元形状を測定するのに好適な測定プローブ及び形状測定装置に関する。 The present invention relates to a measurement probe and a shape measuring apparatus suitable for measuring a three-dimensional shape of, for example, an optical element or its mold.
 例えば光学素子などのワーク表面形状の測定技術として、先端が略球形状の触針(スタイラス)を有する測定プローブをワーク表面に接触させ、表面に沿わせたまま走査(スキャン)し、任意のピッチでその触針位置の3次元座標位置を取得し、その離散的な点群をワーク表面の輪郭形状とする3次元測定技術が知られている。 For example, as a technique for measuring the shape of a workpiece surface such as an optical element, a measuring probe having a stylus having a substantially spherical tip is brought into contact with the workpiece surface, and scanning (scanning) is performed along the surface, with an arbitrary pitch. Thus, a three-dimensional measurement technique is known in which the three-dimensional coordinate position of the stylus position is acquired and the discrete point cloud is used as the contour shape of the workpiece surface.
 通常、このような測定を行う3次元測定装置は、プローブに対し鉛直方向のみに触針が可動な形で測定プローブが構成されるのが一般的であるが、このタイプの測定プローブは、鉛直方向に平行な垂直面等の測定には適さず、測定可能な傾斜角が制限されるのが一般的である。よって、このタイプの3次元測定装置で、例えば光ピックアップ装置に用いられる高NAレンズの半球に近い光学面のように、周辺で80゜を超える角度の面形状をスキャンすることは困難であった。 In general, a three-dimensional measuring apparatus that performs such a measurement generally has a measuring probe configured such that the stylus is movable only in the vertical direction with respect to the probe. In general, it is not suitable for measurement of a vertical plane parallel to the direction, and the measurable inclination angle is generally limited. Therefore, with this type of three-dimensional measuring apparatus, it is difficult to scan a surface shape with an angle exceeding 80 ° in the periphery, such as an optical surface close to a hemisphere of a high NA lens used in an optical pickup device. .
 これに対し、特許文献1のようにプローブに対し触針を傾斜させその傾き量を傾き検出手段で取得する事で、傾斜角が90゜の壁面でも測定可能かつ鉛直方向にも可動であり、水平面の測定が可能な測定装置が開発されている。 On the other hand, by tilting the stylus with respect to the probe as in Patent Document 1 and acquiring the amount of inclination by the inclination detecting means, it is possible to measure even on a wall surface having an inclination angle of 90 ° and to move in the vertical direction. A measuring device capable of measuring a horizontal plane has been developed.
特開2010-286475号公報JP 2010-286475 A
 ところで、触針で傾斜した面を測定する為には、一般的に触針を弾性的に支持する必要があるが、樹脂製の被測定物の変形を回避するために触針の接触力はきわめて小さくすることが重要で、そのためには触針を弾性的に支持する支持部材の剛性を可能な限り低くする事が望ましいとされる。しかしながら、特許文献1の技術では以下のような問題がある。 By the way, in order to measure an inclined surface with a stylus, it is generally necessary to elastically support the stylus, but the contact force of the stylus is to avoid deformation of the resin object to be measured. It is important to make it extremely small. For this purpose, it is desirable to make the support member for elastically supporting the stylus as low as possible. However, the technique of Patent Document 1 has the following problems.
 まず、支持部材の剛性を低くした事による弊害として、破損した触針の交換作業性が低下するという問題がある。光学素子などを被測定物とする場合、測定による変形を抑制するためには測定時に触針から付与されるべき力は極めて小さいことが好ましい。このため、触針を支持する支持部材も比較的低い剛性のものとなっており、想定外の外力が支持部材に加われば、容易にその変形を招く恐れがある。特に、板ばねのような部材を支持部材とした場合は、触針の交換時に想定外の外力が付与されると塑性変形を招き、プローブの性能が損なわれてしまう恐れがある。これに対し、触針の想定以上の傾斜を防ぐようなロック部材を介し、支持部材の変形を抑えた状態で触針の交換を行うようにするという方法もあるが、それにより交換作業性の悪化を招く。 First, as an adverse effect of lowering the rigidity of the support member, there is a problem that workability for replacing a damaged stylus is lowered. When using an optical element or the like as an object to be measured, it is preferable that the force to be applied from the stylus during measurement is extremely small in order to suppress deformation due to measurement. For this reason, the support member that supports the stylus is also of relatively low rigidity, and if an unexpected external force is applied to the support member, the support member may easily be deformed. In particular, when a member such as a leaf spring is used as the support member, if an unexpected external force is applied at the time of replacement of the stylus, plastic deformation may be caused and the performance of the probe may be impaired. On the other hand, there is a method in which the stylus is replaced with a lock member that prevents the stylus from being tilted more than expected, while the deformation of the support member is suppressed. Deteriorating.
 次に、例えば円柱の壁面に触針を接触させた状態で、壁面円周上を走査しながら任意のピッチにて触針の傾斜を傾き検出手段で測定する場合、弾性支持部材に支持された触針に鉛直方向に平行な軸を回転中心とするねじれ力が発生する。この影響は触針を弾性支持する支持部材の剛性が低いほど大きくなり、測定誤差を生じることとなる。またその検出手段の構成も困難で複雑となる。また、触針の傾斜の中心を決定付ける要素が必要であり、それが無ければ触針の横ずれが発生してしまう。その場合は、触針の傾き検出手段だけでは正確な触針の位置を求めることは困難である。 Next, for example, when measuring the inclination of the stylus with an arbitrary pitch while scanning the circumference of the wall surface in a state where the stylus is in contact with the wall surface of the cylinder, it is supported by the elastic support member. A torsional force about the axis parallel to the vertical direction is generated on the stylus. This influence becomes larger as the rigidity of the support member that elastically supports the stylus becomes lower, resulting in a measurement error. Further, the configuration of the detecting means is difficult and complicated. Further, an element that determines the center of inclination of the stylus is necessary, and without it, lateral displacement of the stylus will occur. In that case, it is difficult to obtain an accurate stylus position only with the stylus inclination detecting means.
 これに対し特許文献1では、その手段として針状突起と円錐溝を用いる事で傾斜の中心が決まるようになっている。しかし針状突起と円錐溝のような手段を用いると傾斜の中心は概ね安定するが、針状突起の破損や針状特記及び円錐溝の接触による摩耗による測定精度の劣化は避けられないという問題がある。 On the other hand, in Patent Document 1, the center of inclination is determined by using a needle-like projection and a conical groove as the means. However, when using means such as needle-like protrusions and conical grooves, the center of the tilt is generally stable, but the problem is that deterioration of measurement accuracy due to wear of needle-like protrusions and wear due to needle-shaped special notes and conical groove contact is inevitable. There is.
 更に、被測定物に接触する触針の先端は、一般的に球形状である事が多い。その理由は、得られた非測定面の形状測定データと、触針の位置(姿勢)がわかればその先端球状部の半径分を補正する事で、実際の非測定面の形状を高精度に得られるからである。また、図1を参照して、被測定物OBJの水平面HPから鉛直面VPまでを測定可能な触針PLBは、先端の球状部SPの上方に、変形を考慮し有る程度の剛性を確保した上で任意の長さで球状部SPの直径よりも細い径の軸TSが設けられることが多い。更に、その上方で先端球状部SPの直径よりも太い径の軸FSが設けられ、触針PLBの取付部等が構成されること多い。任意の長さで先端の球状部SPよりも細径の軸TSが必要なのは、鉛直面VPを測定する際に、球状部SPより先に軸TSが鉛直面VPに接触する事を回避する為である。 Furthermore, the tip of the stylus that comes into contact with the object to be measured is generally generally spherical. The reason for this is that if the shape measurement data of the non-measurement surface obtained and the position (posture) of the stylus are known, the radius of the tip spherical part is corrected to make the actual shape of the non-measurement surface highly accurate. It is because it is obtained. Further, referring to FIG. 1, the stylus PLB capable of measuring from the horizontal plane HP to the vertical plane VP of the object OBJ has secured a certain degree of rigidity above the spherical portion SP at the tip in consideration of deformation. In many cases, the shaft TS having an arbitrary length and a diameter smaller than the diameter of the spherical portion SP is provided. Furthermore, an axis FS having a diameter larger than the diameter of the tip spherical portion SP is provided above the shaft FS, and an attachment portion of the stylus PLB is often configured. The reason why the shaft TS having an arbitrary length and a smaller diameter than the spherical portion SP at the tip is necessary is to prevent the shaft TS from contacting the vertical surface VP prior to the spherical portion SP when measuring the vertical surface VP. It is.
 しかしながら、特許文献1のように触針を傾斜させて測定を行う測定装置の場合、球状部の上方の軸部は、被測定面に接触し傾く分近づいてしまうという問題がある。その為、軸部は、その傾斜分を考慮した細い径にしなくてはならない。軸部を細くする事は直ちに触針の剛性の低下に繋がり測定誤差を招くこととなるから、精度良い測定を行うためには軸部の長さを短くする必要がある。つまり傾斜分がそのまま測定可能な深さの制約になると言える。 However, in the case of a measuring apparatus that performs measurement by tilting the stylus as in Patent Document 1, there is a problem in that the shaft portion above the spherical portion comes into contact with the surface to be measured and approaches. For this reason, the shaft portion must have a small diameter in consideration of the inclination. Narrowing the shaft portion immediately leads to a decrease in the stiffness of the stylus and causes a measurement error. Therefore, in order to perform accurate measurement, it is necessary to shorten the length of the shaft portion. In other words, it can be said that the inclination becomes the limit of the depth that can be measured as it is.
 また、同様に触針を傾斜させて測定を行う場合、その触針の接触状態を検知(タッチ測定)或いは接触状態を制御して維持しつつ走査(スキャン測定)するような測定方法が一般的である。そのいずれの手段においても、高精度な測定には触針の接触量(傾き量)が常に一定でなければならない。同じ個所を測定しているつもりでも接触量が変われば先端球状部の接触位置が異なる為である。通常、触針先端の球状部は、1mmオーダーの径であれば単体で真球度がサブミクロン未満のオーダーで高精度に製作でき、別途製作した軸部と例えば接着等で接合し、触針として使用できる。しかし先端球の径が0.1mm未満のオーダーとなってくると、軸部との接着が困難となり、一般的には軸部と球状部は一体で加工されることが多い。しかしながら、軸部との一体加工では、真球度としてミクロンオーダーを持つ球状部の形成は困難となる。球状部の真球度が劣る触針を傾けながら被測定物を測定すると、触針の傾斜が変わり接触位置が変わる度に、接触位置と球の中心との距離が変化することとなり、これにより測定精度の低下を招くこととなる。また、傾斜を一定に保つよう検知手段及び制御手段に求められる精度も高くなってしまうという別な問題もある。 Similarly, when measuring by tilting the stylus, a measurement method that scans (scans) while detecting the contact state of the stylus (touch measurement) or controlling and maintaining the contact state is common. It is. In any of these means, the contact amount (tilt amount) of the stylus must always be constant for highly accurate measurement. This is because the contact position of the tip spherical portion is different if the contact amount changes even if the same location is being measured. Normally, the spherical part at the tip of the stylus can be manufactured as a single unit with high accuracy with a sphericity of less than submicron if the diameter is on the order of 1 mm. Can be used as However, when the diameter of the tip sphere is on the order of less than 0.1 mm, it is difficult to bond to the shaft portion, and in general, the shaft portion and the spherical portion are often processed integrally. However, in the integral processing with the shaft portion, it is difficult to form a spherical portion having a sphericity of micron order. When the object to be measured is measured while tilting the stylus with inferior sphericity of the spherical part, the distance between the contact position and the center of the sphere changes each time the stylus tilt changes and the contact position changes. Measurement accuracy will be reduced. In addition, there is another problem that the accuracy required for the detection means and the control means to keep the inclination constant increases.
 本発明の目的は、上述した課題に鑑みてなされたものであり、従来技術とは異なる技術思想により、触針を傾けることなく被測定物の形状測定を行うことができる測定プローブ及び形状測定装置を提供することである。 An object of the present invention has been made in view of the above-described problems, and a measurement probe and a shape measuring apparatus capable of measuring the shape of an object to be measured without inclining the stylus according to a technical idea different from the prior art. Is to provide.
  上述した目的のうち少なくとも一つを実現するために、本発明の一側面を反映した測定プローブは、被測定物の表面における任意の点の3次元座標を求めるために用いる測定プローブであって、
 被測定物に接触させる球面を備えた触針部と、
 Z軸方向を重力加速度方向と略一致させ、互いに直交するX軸方向及びY軸方向を、前記Z軸方向に対して直交する方向としたときに、
 前記触針部を前記X軸方向に移動可能に保持するX軸ガイドと、前記触針部及び前記X軸ガイドを前記Y軸方向に移動可能に保持するY軸ガイドと、前記触針部、前記X軸ガイド及び前記Y軸ガイドを前記Z軸方向に移動可能に保持するZ軸ガイドと、
 前記触針部を前記X軸方向の基準位置に付勢するX軸付勢機構と、前記触針部と前記X軸ガイドを前記Y軸方向の基準位置に付勢するY軸付勢機構と、前記触針部と前記Y軸ガイドと前記X軸ガイドを、その自重の一部を負荷するように重力加速度方向に対して逆方向に付勢するZ軸付勢機構と、
 前記触針部の前記Y軸方向における位置を検出するY軸センサと、前記触針部の前記X軸方向における位置を検出するX軸センサと、を有することを特徴とする。
In order to realize at least one of the above-described objects, a measurement probe reflecting one aspect of the present invention is a measurement probe used for obtaining three-dimensional coordinates of an arbitrary point on the surface of an object to be measured,
A stylus having a spherical surface to be in contact with the object to be measured;
When the Z-axis direction is substantially coincident with the gravitational acceleration direction and the X-axis direction and the Y-axis direction orthogonal to each other are defined as directions orthogonal to the Z-axis direction,
An X-axis guide that holds the stylus part movably in the X-axis direction, a Y-axis guide that holds the stylus part and the X-axis guide movably in the Y-axis direction, the stylus part, A Z-axis guide that holds the X-axis guide and the Y-axis guide movably in the Z-axis direction;
An X-axis biasing mechanism that biases the stylus part to a reference position in the X-axis direction; a Y-axis biasing mechanism that biases the stylus part and the X-axis guide to a reference position in the Y-axis direction; A Z-axis biasing mechanism that biases the stylus part, the Y-axis guide, and the X-axis guide in a direction opposite to the gravitational acceleration direction so as to load a part of its own weight;
A Y-axis sensor that detects a position of the stylus part in the Y-axis direction, and an X-axis sensor that detects a position of the stylus part in the X-axis direction.
 本発明者らは、従来技術とは異なる技術思想に基づき、触針部を傾斜させることなく、被測定物の鉛直面などの形状を測定する技術を見いだした。従来技術のように触針部を傾斜させなければ、上述したように球状部の径より格段に細い径の軸部とする必要はなく、低コストでも触針部の高い真球度を確保できる。又、軸部が太くなれば円柱面のスキャン測定時などに、触針部の捻れを招くことが抑制され、より精密な測定が可能になるとともに、例えば被測定物のより深い位置まで触針部が届くようになり、測定上の制限が緩和される。更に、低剛性の弾性材などで触針部を支持する必要もなくなり、触針部の容易な交換を行うことができる。 The present inventors have found a technique for measuring the shape of the vertical surface of the object to be measured without inclining the stylus part, based on a technical idea different from the prior art. If the stylus part is not inclined as in the prior art, it is not necessary to use a shaft part with a diameter much smaller than the diameter of the spherical part as described above, and high sphericity of the stylus part can be secured even at a low cost. . In addition, if the shaft portion is thick, it is possible to suppress twisting of the stylus portion during scanning measurement of a cylindrical surface, and more accurate measurement is possible, and for example, the stylus to a deeper position of the object to be measured. Departments can be reached and measurement restrictions are relaxed. Furthermore, there is no need to support the stylus part with a low-rigid elastic material or the like, and the stylus part can be easily replaced.
 ここで、触針部を傾斜させずに被測定物の鉛直面などの形状の測定を実現しようとする場合、触針部の姿勢を維持したまま水平方向にガイドする機構(前記Y軸ガイド及び前記X軸ガイド)を設ければ良い。しかしながら、単にガイド機構を設けたのみでは、前記触針部と被測定物に所定の接触圧を確保できない。そこで、本発明では、前記触針部を前記X軸方向の基準位置に付勢するX軸付勢機構と、前記触針部と前記X軸ガイドを前記Y軸方向の基準位置に付勢するY軸付勢機構と、前記触針部と前記Y軸ガイドと前記X軸ガイドを、その自重の一部を負荷するように重力加速度方向に対して逆方向に付勢するZ軸付勢機構とを設けているのである。これにより、被測定物の鉛直面などに触針部を傾斜させずに、常に所定の接触圧で接触させることができる。 Here, when measuring the shape of the vertical surface of the object to be measured without tilting the stylus part, a mechanism for guiding the stylus part in a horizontal direction while maintaining the posture of the stylus part (the Y-axis guide and The X-axis guide may be provided. However, a predetermined contact pressure cannot be secured to the stylus part and the object to be measured simply by providing a guide mechanism. Therefore, in the present invention, the X-axis biasing mechanism that biases the stylus part to the reference position in the X-axis direction, and the stylus part and the X-axis guide are biased to the reference position in the Y-axis direction. Y-axis urging mechanism, Z-axis urging mechanism for urging the stylus part, the Y-axis guide, and the X-axis guide in a direction opposite to the gravitational acceleration direction so as to load a part of its own weight Is provided. Thereby, it can always be made to contact with predetermined contact pressure, without making a stylus part incline to the perpendicular surface etc. of a to-be-measured object.
 本発明によれば、従来技術とは異なる技術思想により、触針を傾けることなく被測定物の形状測定を行うことができる測定プローブ及び形状測定装置を提供することができる。 According to the present invention, it is possible to provide a measurement probe and a shape measuring apparatus capable of measuring the shape of an object to be measured without tilting the stylus according to a technical idea different from the prior art.
従来技術の触針部近傍を示す図である。It is a figure which shows the stylus part vicinity of a prior art. 本実施形態の形状測定装置を示す斜視図である。It is a perspective view which shows the shape measuring apparatus of this embodiment. プローブユニット(測定プローブ)100の分解斜視図である。1 is an exploded perspective view of a probe unit (measurement probe) 100. FIG. 図3のIV-IV線で示す面で切断した断面図の一部である。FIG. 4 is a part of a cross-sectional view cut along a plane indicated by line IV-IV in FIG. 3. 可動ユニット110からケース111を取り外して示す分解斜視図であり、フレーム101とともに示している。FIG. 5 is an exploded perspective view showing the case 111 removed from the movable unit 110 and is shown together with the frame 101. 可動ユニット110の分解斜視図である。3 is an exploded perspective view of a movable unit 110. FIG. 可動ユニット110の分解斜視図である。3 is an exploded perspective view of a movable unit 110. FIG. 組み付けた状態でのY軸スライダ116とY軸静圧軸受117の軸線方向断面図である。FIG. 4 is an axial sectional view of a Y-axis slider 116 and a Y-axis hydrostatic bearing 117 in the assembled state. X軸ステージ17及びY軸ステージ18を任意の位置へと移動した状態における触針部125の先端を拡大して示す図である。It is a figure which expands and shows the front-end | tip of the stylus part 125 in the state which moved the X-axis stage 17 and the Y-axis stage 18 to arbitrary positions.
 以下、図面を参照しながら本発明にかかる実施形態について説明する。ただし、以下に述べる実施形態には、本発明を実施するために技術的に好ましい種々の限定が付されているが、発明の範囲は以下の実施形態及び図示例に限定されるものではない。ここでは、Z軸方向を鉛直方向とし、X軸方向及びY軸方向を水平方向とする。 Embodiments according to the present invention will be described below with reference to the drawings. However, although various technically preferable limitations for carrying out the present invention are given to the embodiments described below, the scope of the invention is not limited to the following embodiments and illustrated examples. Here, the Z-axis direction is a vertical direction, and the X-axis direction and the Y-axis direction are horizontal directions.
 図2は、本実施形態の形状測定装置を示す斜視図である。図2において、定盤10上に、一対の柱11が立設されている。一対の柱11の上端を連結するようにして梁部材12が水平に延在している。梁部材12の中央には、ホルダ13を介してZ軸ステージ15が設けられている。Z軸ステージ15は、触針部を下方に突出させたプローブユニット(測定プローブ)100を、定盤10に対してZ軸方向に移動可能としている。プローブユニット100の上面にはミラーMZが設けられ、更にミラーMZには、ホルダ13上に設けられたレーザ測長器(Z軸センサ)LZが対向し、後述する触針部の球面中心を通り、鉛直方向に沿った軸上の位置(Z軸測定部)で、固定されたホルダ13に対するプローブユニット100のZ軸方向変位量を測定可能となっている。 FIG. 2 is a perspective view showing the shape measuring apparatus of the present embodiment. In FIG. 2, a pair of pillars 11 are erected on the surface plate 10. The beam member 12 extends horizontally so as to connect the upper ends of the pair of columns 11. A Z-axis stage 15 is provided in the center of the beam member 12 via a holder 13. The Z-axis stage 15 is configured such that a probe unit (measuring probe) 100 with a stylus protruding downward can be moved in the Z-axis direction with respect to the surface plate 10. A mirror MZ is provided on the upper surface of the probe unit 100. Further, a laser length measuring device (Z-axis sensor) LZ provided on the holder 13 is opposed to the mirror MZ, and passes through the spherical center of the stylus part described later. The Z-axis direction displacement amount of the probe unit 100 relative to the fixed holder 13 can be measured at a position on the axis along the vertical direction (Z-axis measurement unit).
 定盤10上には、X軸方向に可動なX軸ステージ17と、Y軸方向に可動なY軸ステージ18とが積層された状態で載置されており、その最上面にある載置面19上に載置された被測定物OBJをX軸方向とY軸方向に独立して変位させることができるようになっている。又、載置面19にはX軸方向を向いたミラーMXと、Y軸方向を向いたミラーMYとが設けられている。ミラーMXには、定盤10上に設けられたレーザ測長器LXが対向し、ミラーMYには、定盤10上に設けられたレーザ測長器LYが対向し、それぞれ定盤10に対する載置面19のX軸方向変位量とY軸方向変位量とを測定可能となっている。 On the surface plate 10, an X-axis stage 17 movable in the X-axis direction and a Y-axis stage 18 movable in the Y-axis direction are stacked, and the mounting surface on the uppermost surface thereof. The object to be measured OBJ placed on 19 can be displaced independently in the X-axis direction and the Y-axis direction. Further, the mounting surface 19 is provided with a mirror MX facing the X-axis direction and a mirror MY facing the Y-axis direction. A laser length measuring device LX provided on the surface plate 10 faces the mirror MX, and a laser length measuring device LY provided on the surface plate 10 faces the mirror MY. The X-axis direction displacement amount and the Y-axis direction displacement amount of the mounting surface 19 can be measured.
 図3は、プローブユニット100の分解斜視図である。図4は、図3のIV-IV線で示す面で切断した断面図の一部である。図3に示すように、プローブユニット100は、Z軸ステージ15に対して固定されたフレーム101と、フレーム101内に収容される可動ユニット110とを有する。フレーム101は角筒状であって、その下端が開口102aを有する下板102にて閉止されている。 FIG. 3 is an exploded perspective view of the probe unit 100. FIG. 4 is a part of a cross-sectional view taken along the line IV-IV in FIG. As shown in FIG. 3, the probe unit 100 includes a frame 101 fixed to the Z-axis stage 15 and a movable unit 110 accommodated in the frame 101. The frame 101 has a rectangular tube shape, and its lower end is closed by a lower plate 102 having an opening 102a.
 可動ユニット110は、フレーム101内に収容されZ軸方向に移動可能となっているケース111を有する。ケース111は、角筒状であって、その下端が下板112にて閉止され、その上端はミラーMZを載置した上板113により閉止されている。ケース111の側壁には、上方が張り出した段部111aが形成されている。一方、図4に示すように、フレーム101の側壁内周には、段部111aに対応して段部101aが形成されており、その下方でエア導入用のコネクタ103を連結した開口101bが形成されている。開口101bの下方では、フレーム101とケース111との間隙は狭くなっている。フレーム101とケース111とでZ軸ガイドを構成する。 The movable unit 110 has a case 111 housed in the frame 101 and movable in the Z-axis direction. The case 111 has a rectangular tube shape, and its lower end is closed by a lower plate 112, and its upper end is closed by an upper plate 113 on which a mirror MZ is placed. On the side wall of the case 111, a stepped portion 111a is formed with the upper portion protruding. On the other hand, as shown in FIG. 4, a step 101a is formed on the inner periphery of the side wall of the frame 101 corresponding to the step 111a, and an opening 101b connecting the air introduction connector 103 is formed below the step 101a. Has been. Below the opening 101b, the gap between the frame 101 and the case 111 is narrow. The frame 101 and the case 111 constitute a Z-axis guide.
 フレーム101内にケース111を挿入した状態で、不図示の空気圧源よりコネクタ103及び開口101bを介して、段部101aの下方でフレーム101とケース111との間にエアを導入すると、かかるエアは上方に向かい、対向する段部111a、101a間に空気圧を作用させて両者を広げるように機能する。これにより、フレーム101に対して可動ユニット110の自重の殆どを支持することができるが、支持しきれない負荷が残る場合、別な手段としてバネなどを用いて補助的にフレーム101に対してケース111を上方に付勢するようにも出来、後述する触針部の接触圧を所定範囲に収めることができる。コネクタ103及び開口101b、段部111a、101aが、Z軸方向付勢機構を構成する。 When air is introduced between the frame 101 and the case 111 below the stepped portion 101a from the air pressure source (not shown) through the connector 103 and the opening 101b with the case 111 inserted into the frame 101, the air is It functions to expand upward by applying air pressure between the opposed step portions 111a and 101a. As a result, most of the weight of the movable unit 110 can be supported with respect to the frame 101. However, when a load that cannot be supported remains, another case is used to supplement the case with the frame 101 using a spring or the like. It is also possible to bias 111 upward, and the contact pressure of the stylus part described later can be kept within a predetermined range. The connector 103, the opening 101b, and the step portions 111a and 101a constitute a Z-axis direction urging mechanism.
 なお、図3に示すように、フレーム101は、側面に切欠101c~101eを形成している。 As shown in FIG. 3, the frame 101 has notches 101c to 101e formed on the side surfaces.
 図5は、可動ユニット110からケース111を取り外して示す分解斜視図であり、フレーム101とともに示している。可動ユニット110におけるケース111の下端を閉止する下板112は、開口112aを有する。ケース111は、側面に切欠111b~111dと、開口111fを形成している。 FIG. 5 is an exploded perspective view of the movable unit 110 with the case 111 removed and shown together with the frame 101. The lower plate 112 that closes the lower end of the case 111 in the movable unit 110 has an opening 112a. The case 111 has notches 111b to 111d and an opening 111f formed on the side surface.
 図6,7は、可動ユニット110の分解斜視図であるが、ケース111を省略している。ケース111の上板113の下面から下方に延在する支持板114に、Y軸センサ115と、角柱状のY軸スライダ116が上下に並んで取り付けられている。Y軸センサ115の中心軸は、Y軸スライダ116の中心軸と平行で且つ鉛直方向に重なるように配置されている。 6 and 7 are exploded perspective views of the movable unit 110, but the case 111 is omitted. A Y-axis sensor 115 and a prismatic Y-axis slider 116 are attached to a support plate 114 extending downward from the lower surface of the upper plate 113 of the case 111 side by side. The central axis of the Y-axis sensor 115 is arranged so as to be parallel to the vertical axis of the Y-axis slider 116.
 全体的に多孔質部材からなるが、内周面を除きシール処理された角筒状のY軸静圧軸受117が、内周面に数μmの間隙を介在させつつY軸スライダ116を包囲するようにして取り付けられている。Y軸静圧軸受117の内部にエアを供給するために、コネクタ118が設けられている。不図示の空気圧源よりコネクタ118を介して、Y軸静圧軸受117内に導入されたエアは、その多孔質状の内周面から均一な圧力で吐出し、Y軸スライダ116を非接触状態でY軸方向に相対移動可能に保持するようになっている。Y軸スライダ116とY軸静圧軸受117とでY軸ガイドを構成する。 Although formed entirely of a porous member, a rectangular cylindrical Y-axis hydrostatic bearing 117 which is sealed except for the inner peripheral surface surrounds the Y-axis slider 116 with a gap of several μm interposed on the inner peripheral surface. It is attached in this way. A connector 118 is provided to supply air into the Y-axis hydrostatic bearing 117. Air introduced into the Y-axis hydrostatic bearing 117 from the air pressure source (not shown) through the connector 118 is discharged from the porous inner peripheral surface with uniform pressure, and the Y-axis slider 116 is in a non-contact state. Thus, it is held so as to be relatively movable in the Y-axis direction. The Y axis slider 116 and the Y axis hydrostatic bearing 117 constitute a Y axis guide.
 図8は、組み付けた状態でのY軸スライダ116とY軸静圧軸受117の軸線方向断面図である。Y軸スライダ116の上面には、図8に示すように、S極を挟んで両側にN極が並ぶように磁石MG1を配置してなる。一方、それに対向して、Y軸静圧軸受117の内周面には、N極を挟んで両側にS極が並ぶように磁石MG2を配置してなる。磁石MG1、MG2のS極とN極との間に作用する吸引力によって、Y軸スライダ116とY軸静圧軸受117とは図8に示す位置(基準位置)で安定して静止する。これに対し、Y軸スライダ116に対してY軸静圧軸受117が、図8で左右方向に変位すると、磁石MG1、MG2の同極同士が対向し反発力が生じ、基準位置へと付勢されるようになっている。
磁石MG1、MG2がY軸方向付勢機構を構成する。
FIG. 8 is a sectional view in the axial direction of the Y-axis slider 116 and the Y-axis hydrostatic bearing 117 in the assembled state. As shown in FIG. 8, a magnet MG1 is arranged on the upper surface of the Y-axis slider 116 so that N poles are arranged on both sides of the S pole. On the other hand, on the inner peripheral surface of the Y-axis hydrostatic bearing 117, a magnet MG2 is arranged so that the S poles are arranged on both sides of the N pole. The Y-axis slider 116 and the Y-axis hydrostatic bearing 117 are stably stopped at the position (reference position) shown in FIG. 8 by the attractive force acting between the S pole and the N pole of the magnets MG1 and MG2. On the other hand, if the Y-axis hydrostatic bearing 117 is displaced in the left-right direction in FIG. It has come to be.
Magnets MG1 and MG2 constitute a Y-axis direction biasing mechanism.
 図7において、静電容量センサであるY軸センサ115は、その中心軸線がY軸静圧軸受117の端面と交差する点PYまでの距離を測定して、CPUに送信するようになっている。Y軸センサ115の測定部である点PYをY軸方向に投影したときに、後述する触針部125の球面中心を通る鉛直方向の軸と交わるようになっている。 In FIG. 7, a Y-axis sensor 115, which is a capacitance sensor, measures the distance to a point PY where the central axis intersects the end surface of the Y-axis hydrostatic bearing 117, and transmits it to the CPU. . When a point PY, which is a measurement unit of the Y-axis sensor 115, is projected in the Y-axis direction, it intersects with a vertical axis passing through the spherical center of a stylus unit 125 described later.
 静圧軸受117の側面に取り付けられて下方に延在する支持板119に、X軸センサ120と、角柱状のX軸スライダ121が上下に並んで取り付けられている。X軸センサ120の中心軸は、X軸スライダ121の中心軸と平行で且つ鉛直方向に重なるように配置されている。 An X-axis sensor 120 and a prismatic X-axis slider 121 are mounted side by side on a support plate 119 attached to the side surface of the hydrostatic bearing 117 and extending downward. The central axis of the X-axis sensor 120 is arranged in parallel with the central axis of the X-axis slider 121 and overlapping in the vertical direction.
 全体的に多孔質部材からなるが、内周面を除きシール処理された角筒状のX軸静圧軸受122が、内周面に数μmの間隙を介在させつつX軸スライダ121を包囲するようにして取り付けられている。X軸静圧軸受122の内部にエアを供給するために、コネクタ123が設けられている。不図示の空気圧源よりコネクタ123を介して、X軸静圧軸受122内に導入されたエアは、その多孔質状の内周面から均一な圧力で吐出し、X軸スライダ121を非接触状態でX軸方向に相対移動可能に保持するようになっている。X軸スライダ121とX軸静圧軸受122とでX軸ガイドを構成する。 Although formed entirely of a porous member, a rectangular tube-shaped X-axis hydrostatic bearing 122 which is sealed except for the inner peripheral surface surrounds the X-axis slider 121 with a gap of several μm interposed on the inner peripheral surface. It is attached in this way. A connector 123 is provided to supply air into the X-axis hydrostatic bearing 122. Air introduced into the X-axis hydrostatic bearing 122 from the pneumatic source (not shown) through the connector 123 is discharged from the porous inner peripheral surface with uniform pressure, and the X-axis slider 121 is in a non-contact state. Thus, it is held so as to be relatively movable in the X-axis direction. The X axis slider 121 and the X axis hydrostatic bearing 122 constitute an X axis guide.
 なお、組み付けた状態でのX軸スライダ121とX軸静圧軸受122の間には、図8に示すものと同様な一対の磁石が、X軸方向付勢機構として配置されており、これによりX軸スライダ121に対してX軸静圧軸受122が基準位置へと付勢されるようになっている。Y軸方向付勢機構、X軸方向付勢機構として、一対のバネを用いて基準位置に可動部を付勢するようにしても良い。 A pair of magnets similar to those shown in FIG. 8 are arranged as an X-axis direction biasing mechanism between the X-axis slider 121 and the X-axis hydrostatic bearing 122 in the assembled state. The X-axis hydrostatic bearing 122 is biased toward the reference position with respect to the X-axis slider 121. As the Y-axis direction biasing mechanism and the X-axis direction biasing mechanism, the movable portion may be biased to the reference position using a pair of springs.
 静電容量センサであるX軸センサ120は、その中心軸線がX軸静圧軸受122の端面と交差する点PXまでの距離を測定して、CPUに送信するようになっている。X軸センサ120の測定部である点PXをX軸方向に投影したときに、後述する触針部125の球面中心を通る鉛直方向の軸と交わるようになっている。なお、支持板119とは反対側の端部において、X軸静圧軸受122に取り付けられた板部材126は、X軸静圧軸受122とX軸スライダ121との相対移動を制限するストッパとして機能する。 The X-axis sensor 120, which is a capacitance sensor, measures the distance to the point PX where the central axis intersects the end surface of the X-axis hydrostatic bearing 122, and transmits it to the CPU. When a point PX, which is a measurement part of the X-axis sensor 120, is projected in the X-axis direction, it intersects with a vertical axis passing through the spherical center of a stylus part 125 described later. The plate member 126 attached to the X-axis hydrostatic bearing 122 at the end opposite to the support plate 119 functions as a stopper that restricts relative movement between the X-axis hydrostatic bearing 122 and the X-axis slider 121. To do.
 ここで、Y軸センサ115は、ケース111の切欠111dとフレーム101の切欠101eとを介して外部に露出しており、触針部が変位してもケース111又はフレーム101と干渉することはない。又、コネクタ118は、ケース111の切欠111cとフレーム101の切欠101dとを介して外部に露出しており、触針部が変位してもケース111又はフレーム101と干渉することはない。更に、コネクタ123は、ケース111の開口111fとフレーム101の切欠101cとを介して外部に露出しており、触針部が変位してもケース111又はフレーム101と干渉することはない。又、X軸センサ120は、ケース111の切欠111bとフレーム101の切欠101cとを介して外部に露出しており、触針部が変位してもケース111又はフレーム101と干渉することはない。 Here, the Y-axis sensor 115 is exposed to the outside through the notch 111d of the case 111 and the notch 101e of the frame 101, and does not interfere with the case 111 or the frame 101 even if the stylus part is displaced. . Further, the connector 118 is exposed to the outside through the notch 111c of the case 111 and the notch 101d of the frame 101, and does not interfere with the case 111 or the frame 101 even if the stylus part is displaced. Further, the connector 123 is exposed to the outside through the opening 111f of the case 111 and the notch 101c of the frame 101, and does not interfere with the case 111 or the frame 101 even if the stylus part is displaced. Further, the X-axis sensor 120 is exposed to the outside through the notch 111b of the case 111 and the notch 101c of the frame 101, and does not interfere with the case 111 or the frame 101 even if the stylus part is displaced.
 X軸静圧軸受122の下面には、保持板124が固定されている。保持板124には、下方に延在するようにして触針部125が取り付けられ、干渉回避の為に設けたケース111の開口112a及びフレーム101の開口102aを介して下方に突出している。具体的な構成として、触針部125は、保持板124の下面中央に突出形成された根元部124aの先端に上端を螺合された本体125bと、本体125bの円錐状の下端から延在する細軸状の先端部125cとからなる。先端部125cの先端には、球体部125dが形成されている。本体125b及び先端部125cは、球体部125dとは別個に製作され、両者は接着により一体化することができる。もしくは、球体部125dの径が比較的小さい場合、本体125b及び先端部125cと、球体部125dとは一体で形成されても良い。先端部125cに変形や破損が生じた場合、根元部124aから本体125bを取り外すことで、容易に交換を行える。なお、先端部125cの径は、球体部125dの径の70%以上であるが、100%未満である。また、X軸ステージ17、Y軸ステージ18の移動量及び触針部125のX軸方向、Y軸方向、Z軸方向の移動量を検出するセンサの出力信号は、CPUに入力される。 A holding plate 124 is fixed to the lower surface of the X-axis hydrostatic bearing 122. A stylus portion 125 is attached to the holding plate 124 so as to extend downward, and protrudes downward through an opening 112a of the case 111 and an opening 102a of the frame 101 provided for avoiding interference. As a specific configuration, the stylus portion 125 extends from a main body 125b whose upper end is screwed to the tip of a root portion 124a formed to protrude from the center of the lower surface of the holding plate 124, and a conical lower end of the main body 125b. It consists of a thin-shaft tip portion 125c. A spherical portion 125d is formed at the tip of the tip portion 125c. The main body 125b and the front end portion 125c are manufactured separately from the spherical body portion 125d, and both can be integrated by adhesion. Alternatively, when the diameter of the spherical portion 125d is relatively small, the main body 125b and the tip portion 125c and the spherical portion 125d may be integrally formed. When the distal end portion 125c is deformed or damaged, it can be easily replaced by removing the main body 125b from the root portion 124a. Note that the diameter of the tip portion 125c is 70% or more of the diameter of the spherical portion 125d, but less than 100%. Further, output signals of sensors that detect the movement amounts of the X-axis stage 17 and the Y-axis stage 18 and the movement amounts of the stylus part 125 in the X-axis direction, the Y-axis direction, and the Z-axis direction are input to the CPU.
 次に、本実施形態の測定動作について説明する。まず、不図示の空気圧源よりコネクタ103及び開口101bを介して、フレーム101とケース111との間にエアを導入することで、フレーム101に対してケース111は鉛直方向上方に向かう力を受ける。又、不図示の空気圧源よりコネクタ118を介して、Y軸静圧軸受117内にエアを導入することにより、Y軸方向においてY軸スライダ116に対してY軸静圧軸受117が非接触状態で相対移動可能に保持される。更に、不図示の空気圧源よりコネクタ123を介して、X軸静圧軸受122内にエアを導入することにより、X軸方向においてX軸スライダ121に対してX軸静圧軸受122が非接触状態で相対移動可能に保持される。つまり、触針部125は,鉛直方向に延在する姿勢を維持しつつ、軽い外力を与えられることでZ軸方向,Y軸方向、X軸方向の3次元方向に任意に移動しうる状態となっている。なお、触針部125は、不図示の磁石を含むX軸付勢機構とY軸付勢機構によりX軸方向及びY軸方向の基準位置(原点)に、それぞれ戻るように磁力により付勢されている。よって、触針部125が基準位置から離れるにつれて、強い付勢力が発生するようになるが、測定時に、触針部125の変位量を検出できるため、当該変位量が過大とならないよう、CPUからの信号によりX軸ステージ17、Y軸ステージ18を適宜駆動させることで、測定時の触針部125の接触圧が0.098mN~0.98mNになるよう制御することが好ましい。 Next, the measurement operation of this embodiment will be described. First, air is introduced between the frame 101 and the case 111 from a pneumatic source (not shown) via the connector 103 and the opening 101b, so that the case 111 receives a force directed upward in the vertical direction with respect to the frame 101. Further, air is introduced into the Y-axis hydrostatic bearing 117 from the air pressure source (not shown) via the connector 118, so that the Y-axis hydrostatic bearing 117 is not in contact with the Y-axis slider 116 in the Y-axis direction. It is held so that it can be moved relatively. Further, air is introduced into the X-axis hydrostatic bearing 122 from the air pressure source (not shown) via the connector 123, so that the X-axis hydrostatic bearing 122 is not in contact with the X-axis slider 121 in the X-axis direction. It is held so that it can be moved relatively. That is, the stylus part 125 can move arbitrarily in the three-dimensional directions of the Z-axis direction, the Y-axis direction, and the X-axis direction by applying a light external force while maintaining a posture extending in the vertical direction. It has become. The stylus portion 125 is urged by a magnetic force so as to return to the reference position (origin) in the X-axis direction and the Y-axis direction by an X-axis urging mechanism including a magnet (not shown) and a Y-axis urging mechanism. ing. Therefore, a strong biasing force is generated as the stylus part 125 moves away from the reference position. However, since the displacement amount of the stylus part 125 can be detected at the time of measurement, the CPU prevents the displacement amount from becoming excessive. It is preferable to control the contact pressure of the stylus part 125 at the time of measurement to be 0.098 mN to 0.98 mN by appropriately driving the X-axis stage 17 and the Y-axis stage 18 by the above signal.
 ここでZ軸ステージ15、X軸ステージ17、Y軸ステージ18を駆動して、例えば、触針部125の球体部125dを被測定物OBJのいずれかに当接させ、ここを原点として、ここからX軸ステージ17(又はY軸ステージ18)を駆動して、間欠的に(タッチ方式)又は連続的に(スキャン方式)により、CPUが触針部125の3次元情報を読み出す。 Here, the Z-axis stage 15, the X-axis stage 17, and the Y-axis stage 18 are driven, for example, the sphere part 125 d of the stylus part 125 is brought into contact with one of the objects to be measured OBJ. Then, the X-axis stage 17 (or Y-axis stage 18) is driven, and the CPU reads the three-dimensional information of the stylus part 125 intermittently (touch method) or continuously (scan method).
 図9は、X軸ステージ17及びY軸ステージ18を任意の位置へと移動した状態における触針部125の先端を拡大して示す図である。ここで、レーザ測長器LXにより読み取ったX軸ステージ17の移動量がX1であり、レーザ測長器LYにより読み取ったY軸ステージ18の移動量がY1であるとする。この量は、定盤10に対する被測定物OBJの移動量に相当するが、触針部125の相対移動量とは異なる。その理由は、触針部125が当接する被測定物OBJの表面が任意の方向に傾斜しているとすると、触針部125が、被測定物OBJの表面から反力RFを受けて微小移動するからである。かかる反力RFを、Z軸方向成分Rz,Y軸方向成分Ry,X軸方向成分Rxとに分解する。明らかであるが、被測定物OBJの頂点に球体部125dが位置するときは、Y軸方向成分Ry,X軸方向成分Rxともにゼロである。 FIG. 9 is an enlarged view showing the tip of the stylus part 125 in a state where the X-axis stage 17 and the Y-axis stage 18 are moved to arbitrary positions. Here, it is assumed that the movement amount of the X-axis stage 17 read by the laser length measuring device LX is X1, and the movement amount of the Y-axis stage 18 read by the laser length measuring device LY is Y1. This amount corresponds to the amount of movement of the object to be measured OBJ relative to the surface plate 10, but is different from the relative amount of movement of the stylus part 125. The reason is that if the surface of the measurement object OBJ with which the stylus part 125 abuts is inclined in an arbitrary direction, the stylus part 125 receives the reaction force RF from the surface of the measurement object OBJ and moves slightly. Because it does. The reaction force RF is decomposed into a Z-axis direction component Rz, a Y-axis direction component Ry, and an X-axis direction component Rx. Obviously, when the spherical portion 125d is located at the apex of the object OBJ, both the Y-axis direction component Ry and the X-axis direction component Rx are zero.
 分解されたY軸方向成分Ryに基づき、Y軸スライダ116に対してY軸静圧軸受117が押圧されるので、Y軸ステージ18の移動方向に沿って、触針部125は基準位置からY軸方向に移動量yだけ移動させられる(逆方向の移動の際のyは負値)から、その分だけY軸ステージ18の移動量Yに対して補正を行う。この移動量yは、Y軸センサ115により検出できる。一方、分解されたX軸方向成分Rxに基づき、X軸スライダ121に対してX軸静圧軸受122が押圧されるので、X軸ステージ17の移動方向に沿って、触針部125は基準位置からX軸方向に移動量xだけ移動させられる(逆方向の移動の際のxは負値)から、その分だけX軸ステージ17の移動量Xに対して補正を行う。この移動量xは、X軸センサ120により検出できる。なお、触針部125のZ軸方向移動量は、レーザ測長器LZの読み値Z1そのものとなる。 Since the Y-axis hydrostatic bearing 117 is pressed against the Y-axis slider 116 based on the decomposed Y-axis direction component Ry, the stylus 125 moves from the reference position to the Y-axis stage 18 along the moving direction of the Y-axis stage 18. Since the movement amount y is moved in the axial direction (y is a negative value when moving in the reverse direction), the movement amount Y of the Y-axis stage 18 is corrected accordingly. This movement amount y can be detected by the Y-axis sensor 115. On the other hand, since the X-axis hydrostatic bearing 122 is pressed against the X-axis slider 121 based on the decomposed X-axis direction component Rx, the stylus part 125 is moved to the reference position along the moving direction of the X-axis stage 17. Therefore, the movement amount X of the X-axis stage 17 is corrected by that amount. This movement amount x can be detected by the X-axis sensor 120. The amount of movement of the stylus 125 in the Z-axis direction is the reading Z1 itself of the laser length measuring device LZ.
 以上より、触針部125の球体部125dの中心は、座標(X1-x,Y1-y,Z1)に位置することとなる。これに球体部125dの半径を考慮することで、球体部125dの当接した被測定物OBJの表面の3次元座標が分かる。得られた3次元座標群をつなぎ合わせることで、被測定物OBJの表面形状全体を求めることができる。測定が完了して、球体部125dが被測定物より離れると、触針部125は基準位置へと戻るようになっている。 From the above, the center of the spherical part 125d of the stylus part 125 is located at the coordinates (X1-x, Y1-y, Z1). By considering the radius of the spherical portion 125d, the three-dimensional coordinates of the surface of the object OBJ with which the spherical portion 125d is in contact can be obtained. By connecting the obtained three-dimensional coordinate groups, the entire surface shape of the object to be measured OBJ can be obtained. When the measurement is completed and the spherical part 125d is separated from the object to be measured, the stylus part 125 returns to the reference position.
 本実施形態によれば、触針部125をY軸方向の基準位置に付勢するY軸付勢機構を設けているので、被測定物OBJの表面に球体部125dが当接した際に、Y軸方向に所定の押圧力を付与し、また触針部125をX軸方向の基準位置に付勢するX軸付勢機構を設けているので、被測定物OBJの表面に球体部125dが当接した際に、X軸方向に所定の押圧力を付与することができ、これにより被測定物OBJの鉛直面に近い傾斜面であっても、測定時に球体部125dが離れることがなく安定して高精度な形状測定が可能になる。 According to the present embodiment, since the Y-axis urging mechanism that urges the stylus part 125 to the reference position in the Y-axis direction is provided, when the spherical body part 125d comes into contact with the surface of the object OBJ, Since a predetermined pressing force is applied in the Y-axis direction and an X-axis urging mechanism for urging the stylus part 125 to the reference position in the X-axis direction is provided, the spherical portion 125d is formed on the surface of the object OBJ. When abutting, a predetermined pressing force can be applied in the X-axis direction, so that even if the inclined surface is close to the vertical surface of the object to be measured OBJ, the spherical portion 125d does not leave during measurement and is stable. Thus, highly accurate shape measurement becomes possible.
 以下、好ましい態様についてまとめて説明する。 Hereinafter, preferred embodiments will be described together.
 前記測定プローブにおいて、前記触針部は、前記球面の径の70%以上、100%未満の径の軸を持つことが好ましい。これにより前記触針部の剛性を高めることができ、被測定物のより深い位置まで精密な測定が可能になる。なお、前記触針部の径が前記球面の径の75%以上であると、より好ましい。 In the measurement probe, the stylus part preferably has an axis having a diameter of 70% or more and less than 100% of the diameter of the spherical surface. Thereby, the rigidity of the stylus part can be increased, and precise measurement can be performed up to a deeper position of the object to be measured. In addition, it is more preferable in the diameter of the said stylus part being 75% or more of the diameter of the said spherical surface.
 また、前記Y軸センサと、前記X軸センサの少なくとも1つは非接触式であることが好ましい。これにより測定への検出の影響を抑制できる。 Further, it is preferable that at least one of the Y-axis sensor and the X-axis sensor is a non-contact type. Thereby, the influence of the detection on a measurement can be suppressed.
 また、前記Y軸センサの測定点を前記Y軸方向に投影したときに、前記触針部の球面中心を通る鉛直方向の軸と交わることが好ましい。 Further, it is preferable that when the measurement point of the Y-axis sensor is projected in the Y-axis direction, it intersects with a vertical axis passing through the spherical center of the stylus part.
 また、前記X軸センサの測定点を前記X軸方向に投影したときに、前記触針部の球面中心を通る鉛直方向の軸と交わることが好ましい。 Moreover, it is preferable that when the measurement point of the X-axis sensor is projected in the X-axis direction, it intersects with a vertical axis passing through the spherical center of the stylus part.
 本形状測定装置は、上述の測定プローブと、前記測定プローブを保持しつつZ軸方向に移動するZ軸ステージと、前記被測定物を載置してX軸方向及びY軸方向に独立して移動するXYステージと、を有する。 The shape measuring apparatus includes the above-described measurement probe, a Z-axis stage that moves in the Z-axis direction while holding the measurement probe, and the object to be measured mounted on the X-axis direction and the Y-axis direction independently. An XY stage that moves.
 前記形状測定装置において、前記触針部の球面中心を通る鉛直方向の軸上にZ軸センサを配置することが好ましい。これによりアッベ誤差を低減して、精密な測定を行える。 In the shape measuring apparatus, it is preferable to arrange a Z-axis sensor on a vertical axis passing through the spherical center of the stylus part. As a result, Abbe error can be reduced and precise measurement can be performed.
 「Z軸方向が重力加速度方向と略一致する」とは、Z軸方向と重力加速度方向とが完全に一致する他、重力加速度方向に対して10°以内で傾いている場合も含む。 “The Z-axis direction substantially coincides with the gravitational acceleration direction” includes the case where the Z-axis direction and the gravitational acceleration direction completely coincide with each other and the case where the Z-axis direction is tilted within 10 ° with respect to the gravitational acceleration direction.
 前記Y軸センサは、前記Y軸ガイドの固定部に対して、前記Z軸ガイド及び前記触針部とともに移動する可動部の変位を測定すると好ましい。又、前記X軸センサは、前記X軸ガイドの固定部に対して、前記Y軸ガイド,前記Z軸ガイド及び前記触針部とともに移動する可動部の変位を測定すると好ましい。 The Y-axis sensor preferably measures the displacement of a movable part that moves together with the Z-axis guide and the stylus part with respect to the fixed part of the Y-axis guide. The X-axis sensor preferably measures the displacement of a movable part that moves together with the Y-axis guide, the Z-axis guide, and the stylus part with respect to the fixed part of the X-axis guide.
 前記Z軸センサは、前記触針部を支持する前記Z軸ガイドの可動部の上方に取り付けられた測長用ミラーと、プローブと独立した状態で測定装置に取り付けられたレーザー変位計などにより、前記Z軸ガイドの上方から測長用ミラーの変位を取得することで、前記Z軸方向の変位を得ることが可能である。また、前記Y軸方ガイド及び前記X軸ガイドの可動部の略中央を通る鉛直軸上に、測長用ミラーが配置されると好ましい。 The Z-axis sensor includes a length measuring mirror attached above the movable part of the Z-axis guide that supports the stylus part, a laser displacement meter attached to the measuring device in a state independent of the probe, and the like. By obtaining the displacement of the length measuring mirror from above the Z-axis guide, the displacement in the Z-axis direction can be obtained. Further, it is preferable that a length measuring mirror is disposed on a vertical axis passing through substantially the center of the movable portion of the Y-axis direction guide and the X-axis guide.
 前記Y軸付勢機構と前記Z軸付勢機構の少なくとも一方は、各軸ガイドの固定部と可動部との間に配置され、前記固定部に対して前記可動部を基準位置へとバネ、永久磁石、又は空気圧発生手段であると好ましい。 At least one of the Y-axis biasing mechanism and the Z-axis biasing mechanism is disposed between a fixed portion and a movable portion of each axis guide, and the movable portion is moved to a reference position with respect to the fixed portion by a spring. A permanent magnet or air pressure generating means is preferable.
 前記Z軸付勢機構は、前記Z軸ガイドの固定部と可動部との間に載置され、前記可動部を重力加速度方向と逆方向に付勢する圧縮バネであると好ましい。この圧縮バネの弾性力により前記Z軸ガイドの可動部を前記触針部とともに上方に押し上げる力を発生させることができる。 The Z-axis biasing mechanism is preferably a compression spring that is placed between the fixed portion and the movable portion of the Z-axis guide and biases the movable portion in a direction opposite to the direction of gravity acceleration. Due to the elastic force of the compression spring, it is possible to generate a force that pushes up the movable part of the Z-axis guide together with the stylus part.
 前記Z軸付勢機構は、前記Z軸ガイドの固定部と可動部との間に載置され、前記可動部を重力加速度方向と逆方向に付勢する永久磁石であると好ましい。この永久磁石の磁力により前記Z軸ガイドの可動部を前記触針部とともに上方に押し上げる力を発生させることができる。 The Z-axis urging mechanism is preferably a permanent magnet that is placed between the fixed part and the movable part of the Z-axis guide and urges the movable part in the direction opposite to the gravitational acceleration direction. The force of pushing up the movable part of the Z-axis guide together with the stylus part can be generated by the magnetic force of the permanent magnet.
 前記Z軸付勢機構は、前記Z軸ガイドの固定部と可動部との間に載置され、前記可動部を重力加速度方向と逆方向に付勢する空気圧発生手段であると好ましい。この空気圧発生手段により発生した空気圧により前記Z軸ガイドの可動部を前記触針部とともに上方に押し上げる力を発生させることができる。 The Z-axis urging mechanism is preferably an air pressure generating means that is placed between the fixed portion and the movable portion of the Z-axis guide and urges the movable portion in a direction opposite to the gravitational acceleration direction. The air pressure generated by the air pressure generating means can generate a force that pushes up the movable part of the Z-axis guide together with the stylus part.
 前記空気圧発生手段の一例としては、前記Z軸ガイドの可動部の任意の面の一部を切り欠き鉛直方向下面側に向かって任意の面積を有する面を形成し、前記Z軸ガイドの固定部から圧縮空気を供給することで圧縮空気により鉛直方向可動部を上方に押し上げる力を発生することができる。この圧縮空気による上方への浮上力は、圧縮空気源より供給される圧縮空気の配管に設けた弁を電圧制御等により制御して、供給される圧縮空気の圧力を調整することができ、より精密な浮上力制御を行うことが可能である。以上のZ軸付勢機構の例を2つ以上併用することが可能である。バネと空気圧とを併用することで、振動を抑制でき減衰を有効に行える。 As an example of the air pressure generating means, a part of an arbitrary surface of the movable portion of the Z-axis guide is cut out to form a surface having an arbitrary area toward the lower surface in the vertical direction, and the fixed portion of the Z-axis guide By supplying the compressed air from the above, it is possible to generate a force that pushes the vertically movable portion upward by the compressed air. The upward levitation force due to the compressed air can be adjusted by adjusting the pressure of the compressed air supplied by controlling a valve provided in the compressed air piping supplied from the compressed air source by voltage control or the like. Precise levitation control is possible. Two or more examples of the above Z-axis biasing mechanism can be used in combination. By using a spring and air pressure together, vibration can be suppressed and damping can be effectively performed.
 なお、前記触針部の接触圧を検出するセンサを別に設けて、接触圧を略一定に維持するように空気圧等を制御するようにしても良い。この場合、センサの信号を、振動抑制用のフィルタなどを通すことで平滑化を行うと好ましい。 Note that a sensor for detecting the contact pressure of the stylus part may be provided separately to control the air pressure or the like so as to maintain the contact pressure substantially constant. In this case, it is preferable to smooth the sensor signal by passing it through a vibration suppression filter or the like.
 前記Y軸ガイドと前記X軸ガイドの少なくとも一方は、圧縮空気を用いた静圧案内を用いると好ましい。前記X軸ガイドに設ける場合の静圧案内は、前記触針部を移動可能に支持する内表面が多孔質状であるX軸筒部材(X軸ガイドの可動部)と、前記Y軸ガイドの可動部に連結され前記X軸筒部材に包囲されたX軸スライド部材(X軸ガイドの固定部)とから形成できる。外部から前記X軸筒部材の内部に圧縮空気を供給することにより、前記X軸筒部材の多孔質内周面から均一な圧力で圧縮空気を吐出し、これにより前記X軸筒部材をX軸方向に低フリクションで移動可能に支持することができる。X軸筒部材とX軸スライド部材とは逆の関係でもよい。 It is preferable that at least one of the Y-axis guide and the X-axis guide is a static pressure guide using compressed air. When the static pressure guide is provided in the X-axis guide, the X-axis cylindrical member (movable part of the X-axis guide) whose inner surface that supports the stylus portion so as to be movable is porous, and the Y-axis guide It can be formed from an X-axis slide member (fixed part of the X-axis guide) connected to the movable part and surrounded by the X-axis tube member. By supplying compressed air from the outside to the inside of the X-axis cylinder member, the compressed air is discharged from the porous inner peripheral surface of the X-axis cylinder member with a uniform pressure. It can be supported so as to be movable with low friction in the direction. The X-axis cylinder member and the X-axis slide member may be in an opposite relationship.
 前記Y軸ガイドに設ける場合の静圧案内は、前記X軸ガイドの固定部を移動可能に支持する内表面が多孔質状であるY軸筒部材(Y軸ガイドの可動部)と、前記Z軸ガイドの可動部に連結され前記Y軸筒部材に包囲されたY軸スライド部材(Y軸ガイドの固定部)とから形成できる。外部から前記Y軸筒部材の内部に圧縮空気を供給することにより、前記Y軸筒部材の多孔質内周面から均一な圧力で圧縮空気を吐出し、これにより前記Y軸筒部材をY軸方向に低フリクションで移動可能に支持することができる。Y軸筒部材とY軸スライド部材とは逆の関係でもよい。なお、静圧軸受のために供給される圧縮エアの配管にオイルミストフィルタを設けて、オイルの進入を抑制することが望ましい。 The static pressure guide provided in the Y-axis guide includes a Y-axis cylindrical member (movable part of the Y-axis guide) having an inner surface that supports the fixed part of the X-axis guide so as to be movable, and the Z-axis guide. A Y-axis slide member (fixed portion of the Y-axis guide) connected to the movable portion of the shaft guide and surrounded by the Y-axis cylindrical member can be formed. By supplying compressed air to the inside of the Y-axis cylinder member from the outside, the compressed air is discharged from the porous inner peripheral surface of the Y-axis cylinder member with a uniform pressure. It can be supported so as to be movable with low friction in the direction. The Y-axis cylinder member and the Y-axis slide member may have an opposite relationship. It is desirable to provide an oil mist filter in the compressed air piping supplied for the hydrostatic bearing to suppress the ingress of oil.
 前記Z軸ガイドは、形状測定装置に設けられたZ軸ステージでも構成できる。この場合、フレームがZ軸ガイドの固定部を構成し、Z軸ステージが可動部を構成する。 The Z-axis guide can also be configured by a Z-axis stage provided in the shape measuring apparatus. In this case, the frame constitutes the fixed part of the Z-axis guide, and the Z-axis stage constitutes the movable part.
 以上により、前記触針部を水平面上で直交する2軸に沿って移動可能な、水平方向倣いプローブを実現できる。 As described above, it is possible to realize a horizontal scanning probe capable of moving the stylus part along two axes orthogonal to each other on a horizontal plane.
 又、前記Y軸ガイドと前記X軸ガイドの少なくとも一方に、可動部と固定部との間に磁気反発力又は磁気吸引力を付与することで、固定部に対して可動部を低フリクションで移動可能に支持することができる磁気軸受を用いても良い。かかる場合、磁力の発生を電磁石で行うことで、接触圧の制御が容易になる。静圧軸受と磁気軸受とを併用しても良い。 Further, by applying a magnetic repulsive force or a magnetic attractive force between the movable part and the fixed part to at least one of the Y-axis guide and the X-axis guide, the movable part is moved with low friction with respect to the fixed part. A magnetic bearing that can be supported may be used. In such a case, the contact pressure can be easily controlled by generating the magnetic force with an electromagnet. A hydrostatic bearing and a magnetic bearing may be used in combination.
 又、前記Y軸ガイドと前記X軸ガイドの少なくとも一方に、可動部と固定部との間に弾性力を付与することで、固定部に対して可動部を低フリクションで移動可能に支持することができる弾性バネを用いても良い。 Further, by applying an elastic force between the movable part and the fixed part to at least one of the Y-axis guide and the X-axis guide, the movable part is supported to be movable with low friction with respect to the fixed part. An elastic spring that can be used may be used.
 また、上記形状測定装置は、タッチ式に限らずスキャン式であっても良い。 Further, the shape measuring device is not limited to the touch type but may be a scan type.
 本発明は、本明細書に記載の実施形態に限定されるものではなく、他の実施形態・変形例を含むことは、本明細書に記載された実施形態や技術思想から本分野の当業者にとって明らかである。 The present invention is not limited to the embodiments described in the present specification, and includes other embodiments and modifications based on the embodiments and technical ideas described in the present specification. It is obvious to
10        定盤
11        柱
12        梁部材
13        ホルダ
15        Z軸ステージ
17        X軸ステージ
18        Y軸ステージ
19        載置面
100       プローブユニット(測定プローブ)
101       フレーム
101a      段部
101b      開口
101c-101e 切欠
102       下板
102a      開口
103       コネクタ
110       可動ユニット
111       ケース
111a      段部
111b-111d 切欠
111f      開口
112       下板
112a      開口
113       上板
114       支持板
115       Y軸センサ
116       Y軸スライダ
117       Y軸静圧軸受
118       コネクタ
119       支持板
120       X軸センサ
121       X軸スライダ
122       X軸静圧軸受
123       コネクタ
126       板部材
124       保持板
124a      根元部
125       触針部
125b      本体
125c      先端部
125d      球体部
LX        レーザ測長器
LY        レーザ測長器
LZ        レーザ測長器
MG1,MG2   磁石
MX        ミラー
MY        ミラー
MZ        ミラー
OBJ       被測定物
DESCRIPTION OF SYMBOLS 10 Surface plate 11 Column 12 Beam member 13 Holder 15 Z-axis stage 17 X-axis stage 18 Y-axis stage 19 Mounting surface 100 Probe unit (measurement probe)
101 Frame 101a Step 101b Opening 101c-101e Notch 102 Lower plate 102a Opening 103 Connector 110 Movable unit 111 Case 111a Step 111b-111d Notch 111f Opening 112 Lower plate 112a Opening 113 Upper plate 114 Support plate 115 Y axis sensor 116 Y axis Slider 117 Y-axis hydrostatic bearing 118 Connector 119 Support plate 120 X-axis sensor 121 X-axis slider 122 X-axis hydrostatic bearing 123 Connector 126 Plate member 124 Holding plate 124a Root part 125 Contact point part 125b Body 125c Tip part 125d Spherical part LX Laser length measuring device LY Laser length measuring device LZ Laser length measuring device MG1, MG2 Magnetism Stone MX Mirror MY Mirror MZ Mirror OBJ DUT

Claims (7)

  1.  被測定物の表面における任意の点の3次元座標を求めるために用いる測定プローブであって、
     被測定物に接触させる球面を備えた触針部と、
     Z軸方向を重力加速度方向と略一致させ、互いに直交するX軸方向及びY軸方向を、前記Z軸方向に対して直交する方向としたときに、
     前記触針部を前記X軸方向に移動可能に保持するX軸ガイドと、前記触針部及び前記X軸ガイドを前記Y軸方向に移動可能に保持するY軸ガイドと、前記触針部、前記X軸ガイド及び前記Y軸ガイドを前記Z軸方向に移動可能に保持するZ軸ガイドと、
     前記触針部を前記X軸方向の基準位置に付勢するX軸付勢機構と、前記触針部と前記X軸ガイドを前記Y軸方向の基準位置に付勢するY軸付勢機構と、前記触針部と前記Y軸ガイドと前記X軸ガイドを、その自重の一部を負荷するように重力加速度方向に対して逆方向に付勢するZ軸付勢機構と、
     前記触針部の前記Y軸方向における位置を検出するY軸センサと、前記触針部の前記X軸方向における位置を検出するX軸センサと、を有することを特徴とする測定プローブ。
    A measurement probe used for obtaining the three-dimensional coordinates of an arbitrary point on the surface of the object to be measured,
    A stylus having a spherical surface to be in contact with the object to be measured;
    When the Z-axis direction is substantially coincident with the gravitational acceleration direction and the X-axis direction and the Y-axis direction orthogonal to each other are defined as directions orthogonal to the Z-axis direction,
    An X-axis guide that holds the stylus part movably in the X-axis direction, a Y-axis guide that holds the stylus part and the X-axis guide movably in the Y-axis direction, the stylus part, A Z-axis guide that holds the X-axis guide and the Y-axis guide movably in the Z-axis direction;
    An X-axis biasing mechanism that biases the stylus part to a reference position in the X-axis direction; a Y-axis biasing mechanism that biases the stylus part and the X-axis guide to a reference position in the Y-axis direction; A Z-axis biasing mechanism that biases the stylus part, the Y-axis guide, and the X-axis guide in a direction opposite to the gravitational acceleration direction so as to load a part of its own weight;
    A measurement probe comprising: a Y-axis sensor that detects a position of the stylus part in the Y-axis direction; and an X-axis sensor that detects a position of the stylus part in the X-axis direction.
  2.  前記触針部は、前記球面の径の70%以上、100%未満の径の軸を持つ請求項1に記載の測定プローブ。 The measurement probe according to claim 1, wherein the stylus portion has an axis having a diameter of 70% or more and less than 100% of the diameter of the spherical surface.
  3.  前記Y軸センサと、前記X軸センサの少なくとも1つは非接触式である請求項1又は2に記載の測定プローブ。 3. The measurement probe according to claim 1, wherein at least one of the Y-axis sensor and the X-axis sensor is a non-contact type.
  4.  前記Y軸センサの測定点を前記Y軸方向に投影したときに、前記触針部の球面中心を通る鉛直方向の軸と交わる請求項1~3のいずれか一項に記載の測定プローブ。 The measurement probe according to any one of claims 1 to 3, wherein when the measurement point of the Y-axis sensor is projected in the Y-axis direction, the measurement probe intersects with a vertical axis passing through the spherical center of the stylus part.
  5.  前記X軸センサの測定点を前記X軸方向に投影したときに、前記触針部の球面中心を通る鉛直方向の軸と交わる請求項1~4のいずれか一項に記載の測定プローブ。 The measurement probe according to any one of claims 1 to 4, wherein when the measurement point of the X-axis sensor is projected in the X-axis direction, the measurement probe intersects with a vertical axis passing through the spherical center of the stylus part.
  6.  請求項1~5のいずれか一項に記載の測定プローブと、前記測定プローブを保持しつつZ軸方向に移動するZ軸ステージと、前記被測定物を載置してX軸方向及びY軸方向に独立して移動するXYステージと、を有する形状測定装置。 The measurement probe according to any one of claims 1 to 5, a Z-axis stage that moves in the Z-axis direction while holding the measurement probe, and an X-axis direction and a Y-axis on which the object to be measured is placed And a XY stage that moves independently in a direction.
  7.  前記触針部の球面中心を通る鉛直方向の軸上にZ軸センサを配置した請求項6に記載の形状測定装置。 The shape measuring device according to claim 6, wherein a Z-axis sensor is arranged on a vertical axis passing through a spherical center of the stylus part.
PCT/JP2014/081192 2013-12-18 2014-11-26 Measurement probe and shape measurement device WO2015093244A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-260840 2013-12-18
JP2013260840 2013-12-18

Publications (1)

Publication Number Publication Date
WO2015093244A1 true WO2015093244A1 (en) 2015-06-25

Family

ID=53402597

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/081192 WO2015093244A1 (en) 2013-12-18 2014-11-26 Measurement probe and shape measurement device

Country Status (1)

Country Link
WO (1) WO2015093244A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5888604A (en) * 1981-11-21 1983-05-26 Toyoda Mach Works Ltd Tracer head
JPS62147302A (en) * 1985-12-20 1987-07-01 Tokyo Seimitsu Co Ltd Electronic sensor
JP2006078367A (en) * 2004-09-10 2006-03-23 Matsushita Electric Ind Co Ltd Measuring probe
WO2007135857A1 (en) * 2006-05-18 2007-11-29 Panasonic Corporation Probe for shape measuring apparatus, and shape measuring apparatus
JP2009536325A (en) * 2006-05-10 2009-10-08 カール ツァイス インドゥストリーレ メステクニーク ゲーエムベーハー Method and apparatus for contacting a surface point of a workpiece

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5888604A (en) * 1981-11-21 1983-05-26 Toyoda Mach Works Ltd Tracer head
JPS62147302A (en) * 1985-12-20 1987-07-01 Tokyo Seimitsu Co Ltd Electronic sensor
JP2006078367A (en) * 2004-09-10 2006-03-23 Matsushita Electric Ind Co Ltd Measuring probe
JP2009536325A (en) * 2006-05-10 2009-10-08 カール ツァイス インドゥストリーレ メステクニーク ゲーエムベーハー Method and apparatus for contacting a surface point of a workpiece
WO2007135857A1 (en) * 2006-05-18 2007-11-29 Panasonic Corporation Probe for shape measuring apparatus, and shape measuring apparatus

Similar Documents

Publication Publication Date Title
EP1936321B1 (en) Three-dimensional measurement probe
JP4427580B2 (en) Probe for shape measuring device and shape measuring device
Weckenmann et al. Probing systems for dimensional micro-and nano-metrology
US7398603B2 (en) Distance measuring probe with air discharge system
EP2251635B1 (en) Probe for three-dimensional shape measuring apparatus and three-dimensional shape measuring apparatus.
JP5143931B2 (en) 3D shape measuring device
Li et al. An analogue contact probe using a compact 3D optical sensor for micro/nano coordinate measuring machines
WO2006098123A1 (en) Scanning probe microscope and its measuring method
JP4663378B2 (en) Shape measuring apparatus and method
KR101330468B1 (en) Three dimensional shape measuring apparatus
Li et al. Design of a large-scanning-range contact probe for nano-coordinate measurement machines
JP2006118911A (en) Surface roughness/contour measuring instrument
JP5171108B2 (en) 3D shape measuring device
CN205373641U (en) Three -dimensional micro -nano formula probe that triggers
JP5154149B2 (en) 3D measurement probe
WO2015093244A1 (en) Measurement probe and shape measurement device
KR102228711B1 (en) Shape measuring probe
Hausotte et al. Surface and coordinate measurements with nanomeasuring machines
JP6437498B2 (en) measuring device
JP2008298506A (en) Shape measuring device
JP2007218881A (en) Shape measuring apparatus
JP2009229246A (en) Shape-measuring apparatus
WO2015093459A1 (en) Probe unit and shape-measuring device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14872296

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14872296

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP