JP5836227B2 - refrigerator - Google Patents

refrigerator Download PDF

Info

Publication number
JP5836227B2
JP5836227B2 JP2012188199A JP2012188199A JP5836227B2 JP 5836227 B2 JP5836227 B2 JP 5836227B2 JP 2012188199 A JP2012188199 A JP 2012188199A JP 2012188199 A JP2012188199 A JP 2012188199A JP 5836227 B2 JP5836227 B2 JP 5836227B2
Authority
JP
Japan
Prior art keywords
refrigerator
path
air
refrigerator compartment
damper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012188199A
Other languages
Japanese (ja)
Other versions
JP2014044035A (en
Inventor
公平 薄野
公平 薄野
良二 河井
良二 河井
大平 昭義
昭義 大平
慎一郎 岡留
慎一郎 岡留
康位 山崎
康位 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2012188199A priority Critical patent/JP5836227B2/en
Publication of JP2014044035A publication Critical patent/JP2014044035A/en
Application granted granted Critical
Publication of JP5836227B2 publication Critical patent/JP5836227B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、冷蔵庫に関する。   The present invention relates to a refrigerator.

本技術分野の背景技術として、特開2012−26677号公報(特許文献1)及び特開平10−54642号公報(特許文献2)がある。   As background art in this technical field, there are JP 2012-26677 A (Patent Document 1) and JP 10-54642 A (Patent Document 2).

特許文献1には、冷蔵室に奥側吹き出し風路と、天井側吹き出し風路と、風路を切り替えるツインダクトダンパを備え、奥側吹き出し風路の奥側温度センサと天井側吹き出し風路の天井側温度センサの検出温度に基づいてツインダクトダンパを制御して冷蔵室内の冷気量を制御する冷凍冷蔵庫が開示されている(特許文献1、第6図等)。   In Patent Document 1, a refrigerating room is provided with a rear-side blowing air passage, a ceiling-side blowing air passage, and a twin duct damper for switching the air passage. A refrigerator-freezer is disclosed in which the twin duct damper is controlled based on the temperature detected by the ceiling-side temperature sensor to control the amount of cold air in the refrigerator compartment (Patent Document 1, FIG. 6, etc.).

また、特許文献2には、各箇所毎に温度検出手段と各区画毎に冷風を送る開閉ダンパとダクトを設け、検出された温度によって冷風を送るか送らないかをコントロールした冷凍冷蔵庫が開示されている(特許文献2、第1図等)。   Patent Document 2 discloses a refrigerator-freezer in which a temperature detecting means is provided for each location, an open / close damper and a duct for sending cool air for each section, and whether the cool air is sent or not is controlled according to the detected temperature. (Patent Document 2, FIG. 1, etc.).

特開2012−26677号公報JP 2012-26677 A 特開平10−54642号公報JP-A-10-54642

しかしながら、特許文献1及び特許文献2のいずれに記載の冷蔵庫(冷凍冷蔵庫)であっても、風路の構成に対する配慮が十分なされておらず、冷却効率が十分高くならない場合があった。   However, even if it is a refrigerator (refrigeration refrigerator) as described in either patent document 1 and patent document 2, consideration with respect to the structure of an air path is not enough, and cooling efficiency may not become high enough.

本発明は上記課題に鑑みてなされたものであり、単一の貯蔵室に対する風路を切り替えて冷却する冷蔵庫において、高い冷却効率を得ることを目的とする。   This invention is made | formed in view of the said subject, and it aims at obtaining high cooling efficiency in the refrigerator which switches and cools the air path with respect to a single store room.

上記課題を解決するために、例えば特許請求の範囲に記載の構成を採用する。本願は上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、貯蔵室と、冷却器と、前記冷却器と熱交換した冷気を送風する送風機と、前記貯蔵室の背面から前記貯蔵室へ冷気を導く送風経路と、前記貯蔵室の冷気を前記冷却器に戻す戻り経路と、前記貯蔵室の背面断熱壁内の真空断熱材と、を備え、前記送風経路と前記戻り経路の少なくとも一方は、冷気の通過する経路が分岐した分岐経路を有し、該分岐経路の風路抵抗を制御する風路抵抗制御手段を備え、前記貯蔵室は、前記分岐経路のうちの一方の経路を通過する冷気によって冷却される第一の独立冷却領域と、前記分岐経路のうちの他方の経路を通過する冷気によって冷却される第二の独立冷却領域と、前記分岐経路のいずれの経路を通過する冷気によっても冷却される共通冷却領域とを有し、前記一方の経路の最小流路断面積は、前記他方の最小流路断面積より大きく、前記分岐経路を前記真空断熱材側に投影した際に、前記分岐経路の少なくとも一方の経路は前記真空断熱材の外周との最短距離が50mm以上離間するようにしたことを特徴とする。
In order to solve the above problems, for example, the configuration described in the claims is adopted. The present application includes a plurality of means for solving the above-mentioned problems. To give an example, a storage chamber, a cooler, a blower that blows cold air that exchanges heat with the cooler, and a back surface of the storage chamber. A ventilation path that guides cool air to the storage room, a return path that returns the cool air of the storage room to the cooler, and a vacuum heat insulating material in a rear heat insulating wall of the storage room, the ventilation path and the return path At least one of them has a branch path branched from the path through which the cool air passes, and includes air path resistance control means for controlling the air path resistance of the branch path, and the storage chamber is one of the branch paths. The first independent cooling region cooled by the cold air passing through the path, the second independent cooling region cooled by the cold air passing through the other path of the branch paths, and any one of the branch paths Cooling even by passing cold air And a common cooling area, the minimum flow path cross-sectional area of the one path is greater than the minimum flow path cross-sectional area of the other, upon projecting the branch path to the vacuum heat insulating material side, the branch path At least one of the paths is characterized in that the shortest distance from the outer periphery of the vacuum heat insulating material is 50 mm or more.

本発明によれば、単一の貯蔵室に対する風路を切り替えて冷却する冷蔵庫において、高い冷却効率を得ることができる。   ADVANTAGE OF THE INVENTION According to this invention, high cooling efficiency can be obtained in the refrigerator which switches and cools the air path with respect to a single store room.

本発明の第一の実施形態に係る冷蔵庫の正面外形図。The front external view of the refrigerator which concerns on 1st embodiment of this invention. 本発明の第一の実施形態に係る冷蔵庫の庫内の構成を表す縦断面図。The longitudinal cross-sectional view showing the structure in the store | warehouse | chamber of the refrigerator which concerns on 1st embodiment of this invention. 本発明の第一の実施形態に係る冷蔵庫の冷蔵室の構成を表す正面図。The front view showing the structure of the refrigerator compartment of the refrigerator which concerns on 1st embodiment of this invention. 本発明の第一の実施形態に係る冷蔵庫の冷気循環経路を示す模式図。The schematic diagram which shows the cold air circulation path | route of the refrigerator which concerns on 1st embodiment of this invention. 本発明の第一の実施形態に係る冷蔵庫の庫内送風機を表す図。The figure showing the internal fan of the refrigerator which concerns on 1st embodiment of this invention. 本発明の第一の実施形態に係る冷蔵庫の冷蔵室ダンパを表す図。The figure showing the refrigerator compartment damper of the refrigerator which concerns on 1st embodiment of this invention. 本発明の第一の実施形態に係る冷蔵庫の真空断熱材を表す図。The figure showing the vacuum heat insulating material of the refrigerator which concerns on 1st embodiment of this invention. 本発明の第一の実施形態に係る冷蔵庫の真空断熱材の実装状態を表す図。The figure showing the mounting state of the vacuum heat insulating material of the refrigerator which concerns on 1st embodiment of this invention. 本発明の第一の実施形態に係る冷蔵庫のダンパ開閉状態の組み合わせを表す図。The figure showing the combination of the damper opened / closed state of the refrigerator which concerns on 1st embodiment of this invention. 本発明の第一の実施形態に係る冷蔵庫の送風機の特性と動作点の説明図。Explanatory drawing of the characteristic and operating point of the air blower of the refrigerator which concerns on 1st embodiment of this invention. 本発明の第一の実施形態に係る冷蔵庫の送風機の吹き出し流れの説明図。Explanatory drawing of the blowing flow of the air blower of the refrigerator which concerns on 1st embodiment of this invention. 本発明の第一の実施形態に係る冷蔵庫の制御を表すフローチャート。The flowchart showing control of the refrigerator which concerns on 1st embodiment of this invention. 本発明の実施形態に係る冷蔵庫の風量測定方法を示す図。The figure which shows the air volume measuring method of the refrigerator which concerns on embodiment of this invention. 本発明の第二の実施形態に係る冷蔵庫の庫内の構成を表す縦断面図。The longitudinal cross-sectional view showing the structure in the store | warehouse | chamber of the refrigerator which concerns on 2nd embodiment of this invention. 本発明の第二の実施形態に係る冷蔵庫の冷蔵室の構成を表す正面図。The front view showing the structure of the refrigerator compartment of the refrigerator which concerns on 2nd embodiment of this invention. 本発明の第二の実施形態に係る冷蔵庫の冷気循環経路を示す模式図。The schematic diagram which shows the cool air circulation path | route of the refrigerator which concerns on 2nd embodiment of this invention. 本発明の第三の実施形態に係る冷蔵庫の庫内の構成を表す縦断面図。The longitudinal cross-sectional view showing the structure in the store | warehouse | chamber of the refrigerator which concerns on 3rd embodiment of this invention. 本発明の第三の実施形態に係る冷蔵庫の冷蔵室の構成を表す正面図。The front view showing the structure of the refrigerator compartment of the refrigerator which concerns on 3rd embodiment of this invention. 本発明の第三の実施形態に係る冷蔵庫の冷気循環経路を示す模式図。The schematic diagram which shows the cold air circulation path | route of the refrigerator which concerns on 3rd embodiment of this invention. 本発明の第三の実施形態に係る冷蔵庫のダンパ開閉状態の組み合わせを表す図。The figure showing the combination of the damper open / close state of the refrigerator which concerns on 3rd embodiment of this invention.

本発明に係る冷蔵庫の第一実施形態を、図1〜図12を参照しながら説明する。   A first embodiment of a refrigerator according to the present invention will be described with reference to FIGS.

図1は本実施形態の冷蔵庫の正面外形図である。図2は本実施形態の冷蔵庫の庫内の構成を表す縦断面図である。図3は本実施形態の冷蔵庫の冷蔵室の構成を表す正面図である。図4は本実施形態の冷蔵庫の風路構成を表す模式図である。図5は本実施形態の冷蔵庫の庫内送風機を表す図である。図6は本実施形態の冷蔵庫の冷凍室ダンパを表す図である。   FIG. 1 is a front outline view of the refrigerator of the present embodiment. FIG. 2 is a vertical cross-sectional view showing the configuration inside the refrigerator of the present embodiment. FIG. 3 is a front view illustrating the configuration of the refrigerator compartment of the refrigerator according to the present embodiment. FIG. 4 is a schematic diagram showing the air path configuration of the refrigerator of the present embodiment. FIG. 5 is a diagram illustrating the internal fan of the refrigerator according to the present embodiment. FIG. 6 is a diagram illustrating the freezer damper of the refrigerator according to the present embodiment.

図1に示すように本実施形態の冷蔵庫本体1は上方から、冷蔵室2、製氷室4及び上段冷凍室5、下段冷凍室6、野菜室8を備えている。なお、製氷室4と上段冷凍室5は、冷蔵室2と下段冷凍室6との間に左右に並べて設けている。冷蔵室2及び野菜室8は、一例として5℃程度の冷蔵温度帯の貯蔵室である。また、製氷室4、上段冷凍室5及び下段冷凍室6は、一例として−18℃から−20℃程度の冷凍温度帯の貯蔵室である(以下、製氷室4、上段冷凍室5、下段冷凍室6の総称を冷凍室7とする)。   As shown in FIG. 1, the refrigerator main body 1 of the present embodiment includes a refrigerator compartment 2, an ice making compartment 4, an upper freezer compartment 5, a lower freezer compartment 6, and a vegetable compartment 8 from above. The ice making chamber 4 and the upper freezer compartment 5 are provided side by side between the refrigerator compartment 2 and the lower freezer compartment 6. The refrigerator compartment 2 and the vegetable compartment 8 are storage rooms in a refrigerator temperature zone of about 5 ° C. as an example. In addition, the ice making room 4, the upper freezing room 5, and the lower freezing room 6 are storage rooms having a freezing temperature range of about −18 ° C. to −20 ° C. as an example (hereinafter referred to as the ice making room 4, the upper freezing room 5, and the lower freezing room). The general name of the chamber 6 is referred to as a freezing chamber 7).

冷蔵室2は、前方側に左右に分割された観音開き型の冷蔵室扉2a、2bを備えている。製氷室4、上段冷凍室5、下段冷凍室6、野菜室8は、それぞれ引き出し式の製氷室扉4a、上段冷凍室扉5a、下段冷凍室扉6a、野菜室扉8aを備えている。   The refrigerating room 2 is provided with double door-type refrigerating room doors 2a and 2b that are divided into left and right on the front side. The ice making room 4, the upper freezing room 5, the lower freezing room 6, and the vegetable room 8 are each provided with a drawer type ice making room door 4a, an upper freezing room door 5a, a lower freezing room door 6a, and a vegetable room door 8a.

図2に示すように、本実施形態の冷蔵庫の庫外と庫内は、外箱1aと内箱1bとの間に発泡断熱材(発泡ポリウレタン)を充填することにより形成される断熱箱体50により隔てられている。また、本実施形態の冷蔵庫は背面に真空断熱材60を実装している(真空断熱材60の実装状態については後述)。   As shown in FIG. 2, the outside of the refrigerator and the inside of the refrigerator of the present embodiment are formed by filling a foam insulation (foamed polyurethane) between the outer box 1a and the inner box 1b. Separated by. Moreover, the refrigerator of this embodiment has mounted the vacuum heat insulating material 60 on the back surface (the mounting state of the vacuum heat insulating material 60 will be described later).

冷蔵室扉2a、2bの貯蔵室内側には、複数の扉ポケット47a〜47cが備えられている。また、冷蔵室2内には複数の棚46a〜46f(棚46a、46dは図3参照)を備えている。   A plurality of door pockets 47a to 47c are provided on the storage room side of the refrigerator compartment doors 2a and 2b. The refrigerator compartment 2 includes a plurality of shelves 46a to 46f (see FIG. 3 for shelves 46a and 46d).

また、製氷室4、上段冷凍室5、下段冷凍室6及び野菜室8は、それぞれの貯蔵室の前方に備えられた扉4a、5a、6a、8aと一体に前後方向に移動する収納容器4b、5b、6b、8bを備えている。扉4a、5a、6a、8aは、それぞれ図示しない取手部に手を掛けて手前側に引き出すことにより、収納容器4b、5b、6b、及び、8bが引き出せるようになっている。   In addition, the ice making room 4, the upper freezing room 5, the lower freezing room 6, and the vegetable room 8 are storage containers 4b that move in the front-rear direction integrally with doors 4a, 5a, 6a, 8a provided in front of the respective storage rooms. 5b, 6b, 8b. Each of the doors 4a, 5a, 6a, and 8a is configured so that the storage containers 4b, 5b, 6b, and 8b can be pulled out by putting a hand on a handle portion (not shown) and pulling it out to the front side.

本実施形態の冷蔵庫は、図2に示すように冷蔵室2と、上段冷凍室5及び製氷室4(図1参照)とが上側断熱仕切壁51によって断熱的に隔てられ、下段冷凍室6と野菜室8とが下側断熱仕切壁52によって断熱的に隔てられている。なお、棚46fと上側断熱仕切壁51の間には、一例として−1〜1℃程度に維持されるチルド室3を備えている。したがって、本実施形態の冷蔵庫では、上側断熱仕切壁51の上方の貯蔵領域のうち、低温に維持されるチルド室3を除く領域が冷蔵温度帯の貯蔵室となる。なお、チルド室3を減圧状態に維持して食品の酸化を抑制する、減圧貯蔵室としてもよい。   As shown in FIG. 2, the refrigerator of the present embodiment includes a refrigerator compartment 2, an upper freezer compartment 5, and an ice making chamber 4 (see FIG. 1) that are adiabatically separated by an upper heat insulating partition wall 51. The vegetable compartment 8 is adiabatically separated by the lower heat insulating partition wall 52. In addition, between the shelf 46f and the upper side heat insulation partition wall 51, the chilled chamber 3 maintained at about -1 to 1 degreeC is provided as an example. Therefore, in the refrigerator of this embodiment, the area | region except the chilled room 3 maintained at low temperature among the storage areas above the upper side heat insulation partition wall 51 becomes a storage room of a refrigeration temperature zone. In addition, it is good also as a reduced pressure storage chamber which maintains the chilled chamber 3 in a pressure-reduced state and suppresses the oxidation of food.

本実施形態の冷蔵庫は、図2に示すように冷凍室7の背部に蒸発器収納室9を備え、蒸発器収納室9内には冷却手段として蒸発器21(一例として、フィンチューブ型熱交換器)を備えている。また、蒸発器21の上方には、送風手段として庫内送風機22を備えている。   As shown in FIG. 2, the refrigerator of the present embodiment includes an evaporator storage chamber 9 at the back of the freezer compartment 7, and an evaporator 21 (as an example, a fin tube type heat exchange) as a cooling means in the evaporator storage chamber 9. Equipment). Further, above the evaporator 21, an internal fan 22 is provided as a blowing means.

本実施形態の冷蔵庫の庫内送風機22は、図5に示すように、外径が110mmの羽根91を中央のモータ収納部92内のモータ(図示せず)により駆動する軸流送風機(プロペラファン)である。なお、モータ収納部92は支持部93によってハウジング94と連結されている。また、吹き出し面積(π×[0.5×羽根外径]2)は一例として9503.3mm2である。 As shown in FIG. 5, the internal fan 22 of the refrigerator of the present embodiment is an axial fan (propeller fan) that drives a blade 91 having an outer diameter of 110 mm by a motor (not shown) in a central motor housing portion 92. ). The motor housing portion 92 is connected to the housing 94 by a support portion 93. The blowing area (π × [0.5 × blade outer diameter] 2 ) is 9503.3 mm 2 as an example.

また、図2に示す通り、蒸発器収納室9の下方には、除霜ヒータ56が備えられている。蒸発器21及びその周辺の蒸発器収納室9の壁に成長した霜は、除霜ヒータ56に通電する除霜運転によって解かされる。霜が融解することで生じた除霜水は、蒸発器収納室9の下部に備えられた樋57に流入した後に、排水管58を介して機械室10に配された蒸発皿59に達する。蒸発皿59内の除霜水は、機械室10内に配設される圧縮機23及び凝縮器(図示せず)の発熱により蒸発する。
本実施形態の冷蔵庫は、機械室10内に配設された圧縮機23と、凝縮器(一例として、フィンチューブ型熱交換器)と、外箱1aと内箱1bの間であって外箱1a面に接するように配設された放熱パイプ(図示せず)と、断熱箱体10の上部断熱仕切壁51の前面や下部断熱仕切壁52の前面等に配設された結露抑制パイプ(図示せず)と、冷媒中の水分を乾燥吸湿するためのドライヤ(図示せず)と、キャピラリチューブ(図示せず)と、蒸発器21を冷媒管で順次接続することで冷凍サイクルを構成している。なお、冷媒はイソブタンである。
Further, as shown in FIG. 2, a defrost heater 56 is provided below the evaporator storage chamber 9. The frost that has grown on the wall of the evaporator 21 and the surrounding evaporator storage chamber 9 is solved by the defrosting operation in which the defrosting heater 56 is energized. The defrost water generated by the melting of the frost flows into the eaves 57 provided at the lower part of the evaporator storage chamber 9 and then reaches the evaporating dish 59 disposed in the machine chamber 10 through the drain pipe 58. The defrost water in the evaporating dish 59 evaporates due to heat generated by the compressor 23 and the condenser (not shown) disposed in the machine room 10.
The refrigerator according to the present embodiment includes a compressor 23 disposed in the machine room 10, a condenser (for example, a finned tube heat exchanger), and an outer box between the outer box 1a and the inner box 1b. A heat radiating pipe (not shown) disposed so as to be in contact with the surface 1a and a dew condensation suppressing pipe (not illustrated) disposed on the front surface of the upper heat insulating partition wall 51 or the front surface of the lower heat insulating partition wall 52 of the heat insulating box 10 (Not shown), a dryer (not shown) for drying and absorbing moisture in the refrigerant, a capillary tube (not shown), and the evaporator 21 are sequentially connected by a refrigerant pipe to constitute a refrigeration cycle. Yes. The refrigerant is isobutane.

図3に示すように、冷蔵室2の背面には、略中央に下方から上方に向かって延在する冷蔵室第一送風ダクト11a、冷蔵室第二送風ダクト11bを備えている。冷蔵室2背面左側の冷蔵室第一送風ダクト11aは、最上段の棚46a,46bより下方で、最下段の棚46fより上方の領域2d(図2及び図3参照)に冷気を吹き出す冷蔵室吹き出し口31a〜31cを備えている。なお、冷蔵室吹き出し口31aの開口面積は1000mm2、冷蔵室吹き出し口31bの開口面積は500mm2、冷蔵室吹き出し口31cの開口面積は200mm2である。また、冷蔵室2背面左側の冷蔵室第二送風ダクト11bは、棚46a、46bの上方の領域2c(図2及び図3参照)に吹き出す冷蔵室吹き出し口31d、31eを備えている。なお、冷蔵室吹き出し口31dの開口面積は500mm2、31eの開口面積は500mm2である。また、冷蔵室第一送風ダクト11a及び冷蔵室第二送風ダクト11bの最小流路断面積は、それぞれ1640mm2及び1110mm2である。 As shown in FIG. 3, the back surface of the refrigerator compartment 2 is provided with the refrigerator compartment 1st ventilation duct 11a and the refrigerator compartment 2nd ventilation duct 11b which are extended toward upper direction from the downward direction in the approximate center. The refrigerating room first air duct 11a on the left side of the refrigerating room 2 is a refrigerating room that blows out cold air to a region 2d (see FIGS. 2 and 3) below the uppermost shelves 46a and 46b and above the lowermost shelves 46f. The blowout ports 31a to 31c are provided. The opening area of the refrigerating compartment outlet 31a is open area of 1000 mm 2, the refrigerating chamber outlet 31b is 500 mm @ 2, the opening area of the refrigerating compartment outlet 31c is 200 mm 2. Moreover, the refrigerator compartment 2nd ventilation duct 11b on the left side back of the refrigerator compartment 2 is provided with refrigerator compartment outlets 31d and 31e that blow out into the region 2c (see FIGS. 2 and 3) above the shelves 46a and 46b. The opening area of the refrigerating compartment outlet 31d is an opening area of 500 mm 2, 31e is 500 mm 2. The minimum flow path cross-sectional area of the first blower duct 11a and the refrigerating compartment the second air duct 11b refrigerating chamber, respectively 1640Mm 2 and 1110mm 2.

ちなみに、棚46a〜46eは所定範囲で高さ位置を変更できるようになっている(なお、棚46fは固定)。したがって、 領域2c及び領域2dの大きさは変化するが、棚46a及び棚46bの可変範囲は、棚46a及び棚46bから上壁に至るそれぞれの距離(図3中に示す高さH1及び高さH2)が、棚46a及び棚46bのそれぞれの奥行寸法より小さくなるようにしている。また、棚46a、46bの設置高さを最も低くした状態における領域2cの容積は50L、領域2dの容積は140L、扉ポケット47b,47cや製氷水タンク55が設置されている領域2eの容積は40Lである。   Incidentally, the height of the shelves 46a to 46e can be changed within a predetermined range (the shelf 46f is fixed). Therefore, although the sizes of the region 2c and the region 2d change, the variable ranges of the shelf 46a and the shelf 46b are the distances from the shelf 46a and the shelf 46b to the upper wall (the height H1 and the height shown in FIG. 3). H2) is made smaller than the respective depth dimensions of the shelf 46a and the shelf 46b. The volume of the area 2c in the state where the installation height of the shelves 46a and 46b is the lowest is 50L, the volume of the area 2d is 140L, and the volume of the area 2e in which the door pockets 47b and 47c and the ice making water tank 55 are installed is 40L.

冷蔵室2への送風を制御する冷蔵室ダンパ24(風路抵抗制御手段)は、図3に示すように、上側断熱仕切壁51の後方投影領域内に備えられている。これにより食品収納スペースの減少を抑えてダンパを実装できる。
また、図6に示すように、冷蔵室ダンパ24は、モータ収納部81の左右に開口82a、82bを備えている。開口82aと開口82bは、開閉板83a、83bによって開閉される。具体的には、モータ収納部81内に設置されたステッピングモータ(図示せず)によって開閉板83a、83bは、それぞれ開角度0度の全閉鎖状態から開角度90度の全開放状態の範囲で制御できるようになっている。以下冷蔵室ダンパ24の機能のうち、開口82aの開閉状態を制御する機能を冷蔵室第一ダンパ24a、開口82bの開閉状態を制御する機能を冷蔵室第二ダンパ24bとする。
The refrigerating room damper 24 (air path resistance control means) for controlling the air blowing to the refrigerating room 2 is provided in the rear projection region of the upper heat insulating partition wall 51 as shown in FIG. Thereby, the damper can be mounted while suppressing the reduction of the food storage space.
As shown in FIG. 6, the refrigerator compartment damper 24 includes openings 82 a and 82 b on the left and right sides of the motor storage portion 81. Opening 82a and opening 82b are opened and closed by opening and closing plates 83a and 83b. Specifically, the open / close plates 83a and 83b are each in a range from a fully closed state with an open angle of 0 degrees to a fully open state with an open angle of 90 degrees by a stepping motor (not shown) installed in the motor storage unit 81. It can be controlled. Hereinafter, of the functions of the refrigerator compartment damper 24, the function of controlling the open / close state of the opening 82a is referred to as the refrigerator compartment first damper 24a, and the function of controlling the open / close state of the opening 82b is referred to as the refrigerator compartment second damper 24b.

図3に示すように、冷蔵室第一ダンパ24a及び冷蔵室第二ダンパ24bは、それぞれ冷蔵室第一送風ダクト11a、及び、冷蔵室第二送風ダクト11bの入口に備えられて、冷蔵室第一送風ダクト11a、及び、冷蔵室第二送風ダクト11bへの送風が制御される。   As shown in FIG. 3, the refrigerator compartment first damper 24a and the refrigerator compartment second damper 24b are provided at the inlets of the refrigerator compartment first air duct 11a and the refrigerator compartment second air duct 11b, respectively. The ventilation to the 1 ventilation duct 11a and the refrigerator compartment 2nd ventilation duct 11b is controlled.

図2及び図3に示すように、最下段の棚46fと下から二段目の棚46dにより区画された領域の背部には、主として領域2dの負荷を検知する冷蔵室第一温度センサ41a(温度検知手段)が備えられている。また、冷蔵室2の上壁には、主として領域2cの負荷を検知する冷蔵室第二温度センサ41b(温度検知手段)が備えられている。さらに、棚46fと上側断熱仕切壁51により区画された領域の背部(チルド室3の背部)には、チルド室温度センサ42(温度検知手段)が備えられている。なお、冷蔵室第一温度センサ41a、冷蔵室第二温度センサ41b、チルド室温度センサ42は、比較的流速が高い冷気が直接当たらない場所に設置することで検知精度を高めている。   As shown in FIGS. 2 and 3, a refrigerator compartment first temperature sensor 41 a (mainly detecting the load of the area 2 d) is provided on the back of the area partitioned by the bottom shelf 46 f and the second shelf 46 d from the bottom. Temperature detecting means). The upper wall of the refrigerating chamber 2 is provided with a refrigerating chamber second temperature sensor 41b (temperature detecting means) that mainly detects the load in the region 2c. Furthermore, a chilled chamber temperature sensor 42 (temperature detecting means) is provided on the back of the region partitioned by the shelf 46f and the upper heat insulating partition wall 51 (the back of the chilled chamber 3). Note that the refrigeration room first temperature sensor 41a, the refrigeration room second temperature sensor 41b, and the chilled room temperature sensor 42 are installed in a place where cold air having a relatively high flow rate is not directly applied to improve detection accuracy.

また、冷凍室7の背部と、野菜室8の背部には、それぞれ冷凍室温度センサ43と、野菜室温度センサ44が備えられている(図2参照)。   Moreover, the freezer compartment temperature sensor 43 and the vegetable compartment temperature sensor 44 are each provided in the back part of the freezer compartment 7 and the back part of the vegetable compartment 8 (refer FIG. 2).

なお、棚46fと上側断熱仕切壁51により区画された領域の左端には製氷用の水を貯留する製氷水タンク55が備えられている。製氷水タンク55内の水は、ポンプ(図示せず)を駆動することにより、配管(図示せず)を介して製氷室4内に備えられた製氷皿(図示せず)に供給される。   An ice making water tank 55 for storing ice making water is provided at the left end of the area defined by the shelf 46f and the upper heat insulating partition wall 51. The water in the ice making water tank 55 is supplied to an ice making tray (not shown) provided in the ice making chamber 4 through a pipe (not shown) by driving a pump (not shown).

図7は本実施形態の冷蔵庫に実装している真空断熱材を表す図である。図8は真空断熱材の実装状態を表す図(図2における領域A近傍の拡大図)である。   FIG. 7 is a diagram illustrating a vacuum heat insulating material mounted on the refrigerator of the present embodiment. FIG. 8 is a view (an enlarged view in the vicinity of the region A in FIG. 2) showing a mounting state of the vacuum heat insulating material.

図7に示すように真空断熱材60は、芯材61(一例としてグラスウール)を、吸着剤62(一例として合成ゼオライト)と共に圧縮密閉し、外包材64(アルミ蒸着フィルム層を含むラミネートフィルム)内に挿入し、真空引き後、端部を熱溶着することで製造される。したがって、真空断熱材の端部には、図7に示す熱溶着部60aが存在するが、本実施形態の冷蔵庫では図8に示すように熱溶着部60aを、庫内側(発泡断熱材側)に折り返して固定した後に、発泡断熱材を内箱1bと外箱1aとの間に充填して、断熱箱体50を形成している。したがって、真空断熱材60は、外周に熱溶着部60aを折り返した折り返し部60bを有する。なお、本実施例では真空断熱材60を外箱1a内面にホットメルト等の接着剤によって貼付しているが、これに限るものではない。例えば、内箱1b内面に貼付する構成や、内箱1bと外箱1aに支持部材を介して配置する構成であってもよく、いずれの構成であっても、熱溶着部60aを庫内側(発泡断熱材側)に折り返して配置する。   As shown in FIG. 7, the vacuum heat insulating material 60 is formed by compressing and sealing a core material 61 (glass wool as an example) together with an adsorbent 62 (synthetic zeolite as an example), and inside an outer packaging material 64 (a laminated film including an aluminum vapor deposited film layer). After evacuation, the end is thermally welded. Therefore, although the heat welding part 60a shown in FIG. 7 exists in the edge part of a vacuum heat insulating material, in the refrigerator of this embodiment, as shown in FIG. 8, the heat welding part 60a is shown inside a warehouse (foaming heat insulating material side). After being folded back and fixed, a foam heat insulating material is filled between the inner box 1b and the outer box 1a to form the heat insulating box 50. Accordingly, the vacuum heat insulating material 60 has a folded portion 60b formed by folding the heat welding portion 60a on the outer periphery. In this embodiment, the vacuum heat insulating material 60 is attached to the inner surface of the outer box 1a with an adhesive such as hot melt, but this is not restrictive. For example, the structure affixed on the inner surface of the inner box 1b or the structure disposed on the inner box 1b and the outer box 1a via a support member may be used. Fold it back on the foam insulation side).

なお、内袋63(一例としてポリエチレン)内に芯材61を収納して仮圧縮状態として外包材64内に収納した後、内袋63及び外包材64内を圧縮密封する構成とすれば、芯材61の取り扱い性が向上して、製造工程を効率化できる。   If the core material 61 is stored in the inner bag 63 (for example, polyethylene) and stored in the outer packaging material 64 in a temporarily compressed state, then the inner bag 63 and the outer packaging material 64 are compressed and sealed. The handleability of the material 61 is improved, and the manufacturing process can be made efficient.

図3中に破線で示すように、真空断熱材60は冷蔵庫の背面断熱壁内に実装されるが、外周には上述の折り返し部60b(内側の破線と外側の破線で囲まれる領域)を有する。
本実施形態の冷蔵庫では、図3に示す通り、冷蔵室第一送風ダクト11aを後方の真空断熱材60に投影した際に、冷蔵室第一送風ダクト11a端部から真空断熱材60の端部に至る最短距離Lを100mmとしている。また、冷蔵室第一送風ダクト11aは真空断熱材60の折り返し部60bよりも内側に収まるようにしている。これにより、真空断熱材60の外包材64における金属層を通じて熱が伝わる、いわゆるヒートブリッジ現象による影響が、冷蔵室第一送風ダクト11aに及ばないように抑制できる。詳細は後述する。
As shown by a broken line in FIG. 3, the vacuum heat insulating material 60 is mounted in the rear heat insulating wall of the refrigerator, but has the above-described folded portion 60 b (region surrounded by the inner broken line and the outer broken line) on the outer periphery. .
In the refrigerator according to the present embodiment, as shown in FIG. 3, when the refrigerator compartment first air duct 11 a is projected onto the rear vacuum insulator 60, the end of the vacuum insulator 60 from the refrigerator compartment first fan duct 11 a end. The shortest distance L to reach 100 mm. Moreover, the refrigerator compartment 1st ventilation duct 11a is made to fit inside the folding | returning part 60b of the vacuum heat insulating material 60. FIG. Thereby, it can suppress that the influence by what is called a heat bridge phenomenon in which heat is transmitted through the metal layer in the outer packaging material 64 of the vacuum heat insulating material 60 does not reach the refrigerator compartment 1st ventilation duct 11a. Details will be described later.

次に図4と、適宜図2及び図3を参照しながら、本実施形態の冷蔵庫の冷気循環経路について説明する。   Next, the cold air circulation path of the refrigerator of this embodiment will be described with reference to FIG. 4 and FIGS. 2 and 3 as appropriate.

図4に示すように、蒸発器21と熱交換した冷気は、庫内送風機22によって昇圧され、冷蔵室第一ダンパ24aが開放状態では、冷蔵室第一送風ダクト11aを流れて冷蔵室吹き出し口31a〜31cから冷蔵室内の領域2d(図2及び図3参照)に吹き出す。領域2dに吹き出した冷気は、扉ポケット47b、47cや製氷水タンク55が設置されている領域2e(図2及び図3参照)、チルド室3を流れて、冷蔵室戻り口35に至る。一方、冷蔵室第二ダンパ24bが開放状態では、冷蔵室第二送風ダクト11bを流れて冷蔵室吹き出し口31d、31eから冷蔵室内の領域2c(図2及び図3参照)に吹き出す。
領域2cに吹き出した冷気は、扉ポケット47b、47cや製氷水タンク55が設置されている領域2e(図2及び図3参照)、チルド室3を流れて、冷蔵室戻り口35に至る。
As shown in FIG. 4, the cold air exchanged with the evaporator 21 is pressurized by the internal fan 22 and flows through the refrigerating chamber first air duct 11a in the open state of the refrigerating chamber first damper 24a so as to return to the refrigerating chamber outlet. It blows out from 31a-31c to the area | region 2d (refer FIG.2 and FIG.3) in a refrigerator compartment. The cold air blown out into the region 2d flows through the region 2e (see FIGS. 2 and 3) where the door pockets 47b and 47c and the ice making water tank 55 are installed, through the chilled chamber 3, and reaches the refrigerating chamber return port 35. On the other hand, when the refrigerating room second damper 24b is open, the refrigerating room second air duct 11b flows through the refrigerating room outlet 31d, 31e and blows out to the area 2c in the refrigerating room (see FIGS. 2 and 3).
The cold air blown out into the area 2c flows through the area 2e (see FIGS. 2 and 3) where the door pockets 47b and 47c and the ice making water tank 55 are installed, through the chilled chamber 3, and reaches the refrigerating room return port 35.

領域2c、2d、2e及びチルド室3を冷却した冷気は、冷蔵室戻り口35から冷蔵室戻りダクト15(一例として最小流路断面積1700mm2)に入り、蒸発器収納室9に至って再び蒸発器21と熱交換する。
次に、冷凍室ダンパ26が開放状態では、庫内送風機22によって昇圧された冷気は、冷凍室送風ダクト13を流れて冷凍室吹き出し口33a〜33c(図2参照)から冷凍室7に吹き出す。冷凍室7を冷却した冷気は、冷凍室戻り口36から蒸発器収納室9に戻って再び蒸発器21と熱交換する。
The cold air that has cooled the regions 2c, 2d, and 2e and the chilled chamber 3 enters the refrigerating chamber return duct 15 (for example, the minimum flow passage cross-sectional area of 1700 mm 2 ) from the refrigerating chamber return port 35, reaches the evaporator storage chamber 9, and evaporates again. Heat exchange with the vessel 21.
Next, in the open state of the freezer damper 26, the cold air boosted by the internal fan 22 flows through the freezer air blower duct 13 and blows out from the freezer outlets 33a to 33c (see FIG. 2) to the freezer compartment 7. The cold air that has cooled the freezer compartment 7 returns to the evaporator storage chamber 9 from the freezer return port 36 and exchanges heat with the evaporator 21 again.

野菜室ダンパ27が開放状態では、庫内送風機22によって昇圧された冷気は、野菜室送風ダクト14を流れて野菜室吹き出し口34から野菜室8に吹き出す。野菜室8を冷却した冷気は、野菜室戻り口37から野菜室戻りダクト17に入り、蒸発器収納室9に至って再び蒸発器21と熱交換する。   When the vegetable compartment damper 27 is in an open state, the cold air boosted by the internal fan 22 flows through the vegetable compartment air duct 14 and blows out from the vegetable compartment outlet 34 to the vegetable compartment 8. The cold air that has cooled the vegetable compartment 8 enters the vegetable compartment return duct 17 from the vegetable compartment return port 37, reaches the evaporator storage chamber 9, and exchanges heat with the evaporator 21 again.

次に本実施形態の冷蔵庫の庫内送風機の特性と、庫内各風路の風路抵抗について図9〜図11を参照しながら説明する。   Next, the characteristics of the internal fan of the refrigerator of the present embodiment and the air path resistance of each internal air path will be described with reference to FIGS.

図9はダンパの開閉状態の組み合わせを表す図であり、図10は、庫内送風機22の風量−静圧特性と動作点の関係を示す図である。また、図11は庫内送風機22から吹き出される空気の吹き出し流れを示す模式図である。   FIG. 9 is a diagram showing combinations of damper open / close states, and FIG. 10 is a diagram showing the relationship between the air flow-static pressure characteristics of the internal fan 22 and the operating point. FIG. 11 is a schematic diagram showing the flow of air blown out from the internal fan 22.

冷気循環経路の風路抵抗はダンパの開閉状態によって変化する。本実施形態の冷蔵庫は、冷蔵室第一ダンパ24a、冷蔵室第二ダンパ24b、冷凍室ダンパ26、野菜室ダンパ27を備え、それぞれが開放状態と閉鎖状態の2つの状態を取ることから、ダンパの開閉状態の組み合わせは16通りとなる。図9は、これらのうち、冷蔵室第一ダンパ24a、または、冷蔵室第二ダンパ24bの少なくとも一方が開放状態で、冷蔵室2への送風が行われる状態となる組み合わせを示している。   The air path resistance of the cold air circulation path varies depending on the open / close state of the damper. The refrigerator according to the present embodiment includes a refrigerator compartment first damper 24a, a refrigerator compartment second damper 24b, a freezer compartment damper 26, and a vegetable compartment damper 27, each of which takes two states: an open state and a closed state. There are 16 combinations of open / close states. FIG. 9 shows a combination in which at least one of the refrigerator compartment first damper 24a or the refrigerator compartment second damper 24b is in an open state and air is sent to the refrigerator compartment 2.

図9に示すように、冷蔵室2への送風が行われる状態は状態1〜状態12の12通りあり、各状態における冷気循環経路の風路抵抗をR1〜R12とする。なお、「風路抵抗の大きさ」欄は、R1〜R12に関して、風路抵抗が小さい順に1〜12の番号を付けている。すなわち、R1〜R12の大小関係は、「R6<R12<R4<R10<R5<R11<R3<R9<R1<R7<R2<R8」となる。   As shown in FIG. 9, there are twelve states, state 1 to state 12, in which ventilation to the refrigerator compartment 2 is performed, and the air path resistance of the cold air circulation path in each state is R <b> 1 to R <b> 12. In the “air path resistance magnitude” column, numbers 1 to 12 are assigned to R1 to R12 in ascending order of the air path resistance. That is, the magnitude relationship between R1 to R12 is “R6 <R12 <R4 <R10 <R5 <R11 <R3 <R9 <R1 <R7 <R2 <R8”.

図10は、庫内送風機22の風量−静圧特性と、図9中に示す状態1〜状態6とした際の動作点を示す図である。   FIG. 10 is a diagram showing the air volume-static pressure characteristics of the internal fan 22 and the operating points when the states 1 to 6 shown in FIG. 9 are set.

庫内送風機22の風量−静圧特性は、図10中に示す通り、大風量側に勾配が上昇から下降に転じる極大点、小風量側に勾配が下降から上昇に転じる極小点を有する。これは一般的な軸流送風機に見られる特性であり、静圧が0の開放点から風量を減少させていくと、所定風量に到達した時点で羽根から流れが剥離する失速が生じる。失速が生じる点を失速点と呼び、一般には風量−静圧特性の極大点が失速点とみなされる。失速点より風量を減少させると、静圧が低下する領域(右上がり特性域)が現れ、極小点に至った後に再び遠心作用で静圧が上昇し、風量が0の締切点に至る。また、開放点から極大点に至るまでの大風量側では、図11(a)中に矢印で示すように庫内送風機22からの吹き出される空気は軸方向に流れ、極小点から締切点に至る小風量側では、図11(b)中に矢印で示すように庫内送風機22からの吹き出される空気は径方向(遠心方向)に広がって流れる。したがって、以下では、開放点から極大点までを「軸流域」、極大点から極小点までを「右上がり特性域」、極小点から締切点までを「遠心流域」と呼ぶことにする。   As shown in FIG. 10, the air volume-static pressure characteristics of the internal fan 22 have a maximum point at which the gradient turns from rising to falling on the large air volume side, and a minimum point at which the gradient turns from falling to rising on the small air volume side. This is a characteristic found in a general axial fan. When the air volume is decreased from the open point where the static pressure is zero, a stall occurs in which the flow is separated from the blades when the predetermined air volume is reached. The point where stall occurs is called the stall point, and the maximum point of the airflow-static pressure characteristic is generally regarded as the stall point. When the air volume is decreased from the stall point, a region where the static pressure decreases (rising region to the right) appears, and after reaching the minimum point, the static pressure rises again by centrifugal action and reaches the closing point where the air volume is zero. On the large air volume side from the open point to the maximum point, as shown by the arrow in FIG. 11 (a), the air blown out from the internal fan 22 flows in the axial direction, from the minimum point to the cut-off point. On the small air volume side, the air blown out from the internal fan 22 flows in the radial direction (centrifugal direction) and flows as indicated by arrows in FIG. Therefore, hereinafter, the range from the open point to the maximum point will be referred to as the “axial flow region”, the range from the maximum point to the minimum point will be referred to as the “right upward characteristic range”, and the range from the minimum point to the cut-off point will be referred to as “centrifugal flow range”.

図10に示す状態1〜状態6における抵抗R1〜R6の抵抗曲線と、庫内送風機22の風量−静圧特性曲線との交点が各状態における動作点となる。したがって、各ダンパを状態1〜状態6とした場合の風量は、図10中に示すQ1〜Q6となり、何れの動作点も遠心流域となる。また、風量の大小関係は「Q6>Q4>Q5>Q3>Q1>Q2」となる。ちなみに、図10中では省略したが、抵抗R7〜R12の風量をQ7〜Q12として、風量の大小関係を示すと、「Q6>Q12>Q4>Q10>Q5>Q11>Q3>Q9>Q1>Q7>Q2>Q8」となる。すなわち、各状態の風路抵抗の大きさが小さい順に、風量が大きくなる傾向となる。   The intersection between the resistance curves of the resistors R1 to R6 in the states 1 to 6 shown in FIG. 10 and the air volume-static pressure characteristic curve of the internal fan 22 is an operating point in each state. Therefore, the air volume when each damper is in the state 1 to the state 6 is Q1 to Q6 shown in FIG. 10, and any operating point is a centrifugal flow region. Further, the magnitude relationship between the air volumes is “Q6> Q4> Q5> Q3> Q1> Q2.” Incidentally, although omitted in FIG. 10, the magnitude of the air volume is shown as Q 7 to Q 12 with the air volumes of the resistors R 7 to R 12 as “Q 6> Q 12> Q 4> Q 10> Q 5> Q 11> Q 3> Q 9> Q 1> Q 7. > Q2> Q8 ”. That is, the air volume tends to increase in ascending order of the wind path resistance in each state.

本実施形態の冷蔵庫は、冷蔵室2、チルド室3、冷凍室7や野菜室8の温度設定をする温度設定器等(図示せず)を備えており、冷蔵庫本体1の上壁の上部後方側にはCPU、ROMやRAM等のメモリ、インターフェース回路等を搭載した制御基板49が配置されている(図2参照)。制御基板49は、前記した冷蔵室第一温度センサ41a、冷蔵室第二温度センサ41b、チルド室温度センサ42、冷凍室温度センサ43、野菜室温度センサ44、及び、冷蔵室扉2aや庫内に設けられた温度設定器等と接続される。   The refrigerator of the present embodiment includes a temperature setter (not shown) for setting the temperature of the refrigerator compartment 2, the chilled compartment 3, the freezer compartment 7 and the vegetable compartment 8, and the upper rear of the upper wall of the refrigerator body 1. On the side, a control board 49 on which a CPU, a memory such as a ROM and a RAM, an interface circuit and the like are mounted is disposed (see FIG. 2). The control board 49 includes the refrigeration room first temperature sensor 41a, the refrigeration room second temperature sensor 41b, the chilled room temperature sensor 42, the freezer room temperature sensor 43, the vegetable room temperature sensor 44, and the refrigeration room door 2a and the inside of the refrigerator. Connected to a temperature setter or the like provided in

圧縮機23のON/OFF、冷蔵室ダンパ24、冷凍室ダンパ26、及び野菜室ダンパ27を稼動するそれぞれのアクチュエータ(図示せず)の制御、庫内送風機22のON/OFF制御や回転速度制御、扉開放状態を報知するアラームのON/OFF等の制御は、ROMに予め搭載されたプログラムにより行われて、これらによって制御装置が構成される。   ON / OFF of compressor 23, control of each actuator (not shown) which operates refrigerator compartment damper 24, freezer compartment damper 26, and vegetable compartment damper 27, ON / OFF control and rotation speed control of internal fan 22 Further, control such as ON / OFF of an alarm for notifying the door open state is performed by a program previously installed in the ROM, and a control device is configured by these.

次に、本実施形態の冷蔵庫の制御について図12を参照しながら説明する。   Next, control of the refrigerator of this embodiment will be described with reference to FIG.

図12は本実施形態の冷蔵庫の冷却運転中の制御を表す制御フローチャートである。本実施形態の冷蔵庫は、電源の投入により圧縮機23が駆動して冷却運転が開始する(スタート)。ここでは、庫内が十分冷えるまでの制御状態については省略し、庫内が十分冷却され、圧縮機23が停止している状態から圧縮機23が駆動する条件が満足した時点から説明を開始する。圧縮機23の駆動条件が満足した場合(圧縮機23の駆動条件については後述)、圧縮機23及び庫内送風機22が駆動し(ステップS101)、冷蔵室第一ダンパ24aの開放条件が成立しているか否かが判定される(ステップS102)。本実施形態の冷蔵庫では、冷蔵室第一ダンパ24aの開放条件は、「圧縮機23停止状態、冷蔵室第一温度センサ41a検知温度がTr1_a以上(本実施形態の冷蔵庫ではTr1_a=3℃)」、または、「圧縮機23駆動状態、冷凍室ダンパ26閉鎖状態、冷蔵室第一温度センサ41a検知温度がTr1_a以上」、または、「圧縮機23駆動状態、冷凍室ダンパ26開放状態、冷蔵室第一温度センサ41a検知温度がTr1_b以上(本実施形態の冷蔵庫ではTr1_b=7℃)」の場合に成立する。ステップS102が成立した場合(Yes)、冷蔵室第一ダンパ24aが開放され(ステップS103)、冷蔵室2内の領域2d(図2または図3参照)に冷気が送られる。   FIG. 12 is a control flowchart showing control during the cooling operation of the refrigerator of the present embodiment. In the refrigerator of the present embodiment, the compressor 23 is driven by turning on the power and the cooling operation is started (start). Here, the control state until the inside of the refrigerator is sufficiently cooled is omitted, and the description is started from the time when the interior of the refrigerator is sufficiently cooled and the condition for driving the compressor 23 is satisfied from the state where the compressor 23 is stopped. . When the driving conditions of the compressor 23 are satisfied (the driving conditions of the compressor 23 will be described later), the compressor 23 and the internal fan 22 are driven (step S101), and the opening condition of the refrigerator compartment first damper 24a is established. It is determined whether or not (step S102). In the refrigerator of the present embodiment, the open condition of the refrigerator compartment first damper 24a is “the compressor 23 is stopped, the temperature detected by the refrigerator compartment first temperature sensor 41a is equal to or higher than Tr1_a (Tr1_a = 3 ° C. in the refrigerator of this embodiment)” Or “the compressor 23 is driven, the freezer damper 26 is closed, and the temperature detected by the first temperature sensor 41a is not less than Tr1_a”, or “the compressor 23 is driven, the freezer damper 26 is open, This is established when the detected temperature of the one temperature sensor 41a is equal to or higher than Tr1_b (Tr1_b = 7 ° C. in the refrigerator of the present embodiment). When step S102 is established (Yes), the refrigerator compartment first damper 24a is opened (step S103), and cold air is sent to the region 2d (see FIG. 2 or FIG. 3) in the refrigerator compartment 2.

続いて、冷蔵室第二ダンパ24bの開放条件が成立しているか否かが判定される(ステップS104)。本実施形態の冷蔵庫では、冷蔵室第二ダンパ24bの開放条件は、「圧縮機23停止状態、冷蔵室第二温度センサ41b検知温度がTr2_a以上(本実施形態の冷蔵庫ではTr2_a=4℃)」、または、「圧縮機23駆動状態、冷凍室ダンパ26閉鎖状態、冷蔵室第二温度センサ41b検知温度がTr2_a以上」、または、「圧縮機23駆動状態、冷凍室ダンパ26開放状態、冷蔵室第二温度センサ41b検知温度がTr2_b以上(本実施形態の冷蔵庫ではTr2_b=8℃)」の場合に成立する。ステップS104が成立した場合(Yes)、冷蔵室第二ダンパ24bが開放され(ステップS105)、冷蔵室2内の領域2c(図2または図3参照)に冷気が送られる。   Subsequently, it is determined whether or not the condition for opening the second refrigerator 24b is satisfied (step S104). In the refrigerator of this embodiment, the open condition of the refrigerator second damper 24b is “the compressor 23 is stopped, the temperature detected by the refrigerator second temperature sensor 41b is equal to or higher than Tr2_a (Tr2_a = 4 ° C. in the refrigerator of this embodiment)”. Or “compressor 23 drive state, freezer compartment damper 26 closed state, second temperature sensor 41b detection temperature of the refrigerator compartment is Tr2_a or higher” or “compressor 23 drive state, freezer compartment damper 26 open state, refrigerator compartment first state” This is established when the temperature detected by the two-temperature sensor 41b is equal to or higher than Tr2_b (Tr2_b = 8 ° C. in the refrigerator of the present embodiment). When step S104 is established (Yes), the refrigerating chamber second damper 24b is opened (step S105), and the cool air is sent to the region 2c in the refrigerating chamber 2 (see FIG. 2 or FIG. 3).

次に、冷蔵室第一ダンパ24aの閉鎖条件が成立しているか否かが判定される(ステップS106)。本実施形態の冷蔵庫では、冷蔵室第一ダンパ24aの閉鎖条件は、「冷蔵室第一温度センサ41a検知温度がTr1_c以下(本実施形態の冷蔵庫ではTr1_c=2℃)」、または、「チルド室温度センサ42検知温度がTc_a以下(本実施形態の冷蔵庫ではTc_a=−1℃)」の場合に成立する。ステップS106が成立した場合(Yes)、冷蔵室第一ダンパ24aが閉鎖される(ステップS107)。   Next, it is determined whether or not the closing condition for the refrigerator compartment first damper 24a is satisfied (step S106). In the refrigerator of this embodiment, the closing condition of the refrigerator compartment first damper 24a is “the temperature detected by the refrigerator compartment first temperature sensor 41a is equal to or lower than Tr1_c (Tr1_c = 2 ° C. in the refrigerator of this embodiment)” or “chilled chamber This is established when the temperature detected by the temperature sensor 42 is equal to or lower than Tc_a (Tc_a = −1 ° C. in the refrigerator of the present embodiment). When step S106 is established (Yes), the refrigerator compartment first damper 24a is closed (step S107).

続いて、冷蔵室第二ダンパ24bの閉鎖条件が成立しているか否かが判定される(ステップS108)。本実施形態の冷蔵庫では、冷蔵室第二ダンパ24bの閉鎖条件は、「冷蔵室第二温度センサ41b検知温度がTr2_c以下(本実施形態の冷蔵庫ではTr2_c=3℃)」、または、「チルド室温度センサ42検知温度がTc_a以下」の場合に成立する。ステップS108が成立した場合(Yes)、冷蔵室第二ダンパ24bが閉鎖される(ステップS109)。   Subsequently, it is determined whether or not a condition for closing the second refrigerator 24b is satisfied (step S108). In the refrigerator of the present embodiment, the refrigerating chamber second damper 24b is closed under the condition that “the temperature detected by the second refrigerator temperature sensor 41b is Tr2_c or less (Tr2_c = 3 ° C. in the refrigerator of the present embodiment)” or “chilled chamber This holds true when the temperature detected by the temperature sensor 42 is Tc_a or less. When step S108 is established (Yes), the refrigerator second damper 24b is closed (step S109).

次に、冷凍室ダンパ26の開放条件が成立しているか否かが判定される(ステップS110)。本実施形態の冷蔵庫では、冷凍室ダンパ26の開放条件は、「圧縮機23駆動状態、冷蔵室第一ダンパ24a閉鎖状態、冷蔵室第二ダンパ24b閉鎖状態」、または、「圧縮機駆動状態、冷凍室温度センサ43検知温度がTf_a以上(本実施形態の冷蔵庫ではTf_a=−14℃)」の場合に成立する。ステップS110が成立した場合(Yes)、冷凍室ダンパ26が開放され、冷凍室7に冷気が送られる(ステップS111)。   Next, it is determined whether or not a condition for opening the freezer damper 26 is satisfied (step S110). In the refrigerator of the present embodiment, the open condition of the freezer compartment damper 26 is “compressor 23 drive state, refrigerator compartment first damper 24a closed state, refrigerator compartment second damper 24b closed state”, or “compressor drive state, This is established when the temperature detected by the freezer temperature sensor 43 is equal to or higher than Tf_a (Tf_a = −14 ° C. in the refrigerator of the present embodiment) ”. When step S110 is established (Yes), the freezer compartment damper 26 is opened and cold air is sent to the freezer compartment 7 (step S111).

続いて、庫内送風機22の停止条件が成立しているか否かが判定される(ステップS112)。本実施形態の冷蔵庫では、庫内送風機22の停止条件は、「圧縮機23停止状態、冷蔵室第一ダンパ24a閉鎖状態、冷蔵室第二ダンパ24b閉鎖状態」の場合に成立する。ステップS112が成立した場合(Yes)、庫内送風機22が停止される。   Subsequently, it is determined whether a stop condition for the internal fan 22 is satisfied (step S112). In the refrigerator of the present embodiment, the stop condition of the internal fan 22 is established when the compressor 23 is stopped, the refrigerator compartment first damper 24a is closed, and the refrigerator compartment second damper 24b is closed. When step S112 is established (Yes), the internal fan 22 is stopped.

次に、圧縮機23の停止条件が成立しているか否かが判定される(ステップS114)。本実施形態の冷蔵庫では、圧縮機23の停止条件は、「冷凍室温度センサ43検知温度がTf_b以下(本実施形態の冷蔵庫ではTf_b=−20℃)」の場合に成立する。ステップS114が成立しない場合(No)、再びステップS102の判定に戻る。   Next, it is determined whether a stop condition for the compressor 23 is satisfied (step S114). In the refrigerator of this embodiment, the stop condition of the compressor 23 is established when “the temperature detected by the freezer temperature sensor 43 is equal to or lower than Tf_b (Tf_b = −20 ° C. in the refrigerator of this embodiment)”. When step S114 is not established (No), the process returns to the determination of step S102 again.

ステップS114が成立した場合(Yes)、圧縮機23が停止し、冷凍室ダンパ26が閉鎖される(ステップS115)。続いて圧縮機23の駆動条件が成立するか否かが判定される(ステップS116)。本実施形態の冷蔵庫では、圧縮機23の駆動条件は、「冷凍室温度センサ43検知温度がTf_c以上(本実施形態の冷蔵庫ではTf_c=−16℃)」の場合に成立する。ステップS116が成立しない場合(No)、再びステップS102の判定に戻る。また、ステップS116が成立した場合(Yes)、ステップS101によって圧縮機23、庫内送風22が駆動して、ステップS102の判定に移る。   When Step S114 is established (Yes), the compressor 23 is stopped and the freezer damper 26 is closed (Step S115). Subsequently, it is determined whether or not the driving condition of the compressor 23 is satisfied (step S116). In the refrigerator of the present embodiment, the driving condition of the compressor 23 is established when “the temperature detected by the freezer temperature sensor 43 is Tf_c or higher (Tf_c = −16 ° C. in the refrigerator of the present embodiment)”. When step S116 is not established (No), the process returns to the determination of step S102 again. Moreover, when step S116 is materialized (Yes), the compressor 23 and the internal ventilation 22 are driven by step S101, and the process proceeds to step S102.

なお、以上の制御フローでは、野菜室ダンパ26の動作の説明を省略したが、本実施形態の冷蔵庫において野菜室ダンパ26は、冷蔵室第一ダンパ24a、または、冷蔵室第二ダンパ24bの開放と連動して開放され、野菜室温度センサ44の検知温度が下限温度Tv(本実施形態の冷蔵庫ではTv=3℃)より低くなった場合に閉鎖される。   In the above control flow, the description of the operation of the vegetable compartment damper 26 is omitted. However, in the refrigerator of the present embodiment, the vegetable compartment damper 26 opens the refrigerator compartment first damper 24a or the refrigerator compartment second damper 24b. And is closed when the temperature detected by the vegetable room temperature sensor 44 is lower than the lower limit temperature Tv (Tv = 3 ° C. in the refrigerator of the present embodiment).

以上で、本実施形態の冷蔵庫の構成を説明したが、以下では、本実施形態の冷蔵庫の奏する効果について説明する。   Although the structure of the refrigerator of this embodiment was demonstrated above, the effect which the refrigerator of this embodiment plays is demonstrated below.

本実施形態の冷蔵庫は、冷蔵室第一ダンパ24a、または、冷蔵室第二ダンパ24bの少なくとも一方が開放状態時には、動作点が庫内送風機22の風量−静圧特性における極小点より小風量側(遠心流域)になるようにしている(図10参照)。これにより、冷却効率の高い冷蔵庫を提供することができる。理由を以下で説明する。   In the refrigerator of the present embodiment, when at least one of the refrigerator compartment first damper 24a or the refrigerator compartment second damper 24b is in an open state, the operating point is smaller than the minimum point in the air volume-static pressure characteristics of the internal fan 22. (Refer to FIG. 10). Thereby, a refrigerator with high cooling efficiency can be provided. The reason will be explained below.

本実施形態の冷蔵庫は、冷蔵室2への送風経路として独立した冷蔵室第一送風ダクト11aと第冷蔵室第二送風ダクト11bを備えており、主に冷蔵室第一送風ダクト11aによって冷却される領域2dに温度を検知する冷蔵室第一温度センサ41aと、主に冷蔵室第二送風ダクト11bによって冷却される領域2cに温度を検知する冷蔵室第二温度センサ42bを備える。冷蔵室第一温度センサ41aと冷蔵室第二温度センサ42bの検知温度に基づいて、冷蔵室第一ダンパ24a、冷蔵室第二ダンパ24bの開閉状態を制御している(図12参照)。これによって、冷蔵室2内の領域2cと領域2d(図2または図3参照)は、送風量が過大であれば、短時間で冷却が完了し、送風量が過小であれば、冷却時間は延びるが確実に所定値まで冷却できる。すなわち、領域2c、領域2dに関しては、送風量によらず冷却の過不足がなくなるため高効率な冷却状態が得られる。一方で、冷蔵室第一ダンパ24aと冷蔵室第二ダンパ24bの何れを開放状態としても共通に冷気が通過する領域2eは、冷蔵室第一ダンパ24aと冷蔵室第二ダンパ24bの何れか一方でも開放された状態であれば冷却されるため、送風状態を切り替えることで冷却の過不足を抑制することができない。例えば、領域2eへの送風量が過大になると、領域2cあるいは領域2dが十分冷却された時点で、領域2eは過剰に冷却された状態となり、送風量が過小になると領域2cあるいは領域2dが十分冷却された時点で、領域2eは冷却不足の状態となる。特に、本実施形態の冷蔵庫のように、製氷水タンク55を共通に冷気が通過する領域2eに備える場合は、領域2eが過剰に冷却されると、製氷水タンク55内の水が凍結する場合がある。したがって、製氷水タンク55内の凍結を防止するためにヒータ等による加熱を要するため、その分熱負荷が増加して冷却効率が低下する。   The refrigerator of the present embodiment includes an independent refrigeration chamber first air duct 11a and a second refrigeration chamber second air duct 11b as air passages to the refrigerator compartment 2, and is mainly cooled by the refrigerator compartment first air duct 11a. The region 2d is provided with a refrigerating chamber first temperature sensor 41a for detecting the temperature, and a region 2c cooled mainly by the refrigerating chamber second air duct 11b is provided with a refrigerating chamber second temperature sensor 42b. Based on the detected temperatures of the refrigerator compartment first temperature sensor 41a and the refrigerator compartment second temperature sensor 42b, the open / close state of the refrigerator compartment first damper 24a and refrigerator compartment second damper 24b is controlled (see FIG. 12). As a result, the region 2c and the region 2d (see FIG. 2 or 3) in the refrigerator compartment 2 are cooled in a short time if the air flow rate is excessive, and if the air flow rate is too small, the cooling time is Although it extends, it can be reliably cooled to a predetermined value. That is, with respect to the region 2c and the region 2d, a cooling state with high efficiency can be obtained because there is no excessive or insufficient cooling regardless of the air flow rate. On the other hand, the region 2e through which the cold air passes in common regardless of whether the first refrigerator 24a or the second refrigerator 24b is opened is either the first refrigerator 24a or the second refrigerator 24b. However, since it will be cooled if it is in the open state, it is not possible to suppress over- and under-cooling by switching the blowing state. For example, when the air flow rate to the region 2e becomes excessive, the region 2c or the region 2d is sufficiently cooled when the region 2c or the region 2d is sufficiently cooled, and when the air flow rate becomes excessively small, the region 2c or the region 2d is sufficient. At the time of cooling, the region 2e is in a state of insufficient cooling. In particular, when the ice making water tank 55 is provided in the area 2e through which the cold air passes in common as in the refrigerator of the present embodiment, when the area 2e is excessively cooled, the water in the ice making water tank 55 is frozen. There is. Therefore, since heating with a heater or the like is required to prevent freezing in the ice making water tank 55, the heat load increases correspondingly, and the cooling efficiency is lowered.

そこで、共通に冷気が通過する領域2eを過不足なく冷却できる送風量となるように、冷蔵室第一ダンパ24a、冷蔵室第二ダンパ24bを開放した状態における冷気循環経路の風路抵抗や庫内送風機22の回転速度を調整することが求められる。   Therefore, the air path resistance and the warehouse of the cold air circulation path in a state in which the refrigerator compartment first damper 24a and the refrigerator compartment second damper 24b are opened so that the air flow rate that can cool the region 2e through which the cold air passes in common can be obtained without excess or deficiency. It is required to adjust the rotational speed of the inner blower 22.

一般に、庫内送風機の風量−静圧特性と風路抵抗(図10における抵抗曲線)により定まる動作点が安定していれば、送風量は庫内送風機の回転速度に比例するため、回転速度を変えることで容易に送風量を調整できる。   In general, if the operating point determined by the air volume-static pressure characteristics and the air path resistance (resistance curve in FIG. 10) of the internal fan is stable, the air flow is proportional to the rotational speed of the internal fan, so the rotational speed is The air flow can be easily adjusted by changing.

一方、動作点が大きく変化する場合は、庫内送風機の回転速度と送風量の関係が変化するため、所定の送風量を得ることが難しくなる。従来の冷蔵庫(例えば特許文献1あるいは特許文献2に記載の冷蔵庫)では、以下に述べる理由により、冷気循環経路の動作点が大きく変化することがあり、それに伴う冷却効率の低下が問題となっていた。   On the other hand, when the operating point changes greatly, the relationship between the rotational speed of the internal fan and the air flow rate changes, and it becomes difficult to obtain a predetermined air flow rate. In a conventional refrigerator (for example, the refrigerator described in Patent Document 1 or Patent Document 2), the operating point of the cold air circulation path may change greatly for the reasons described below, and the accompanying decrease in cooling efficiency is a problem. It was.

軸流送風機は、一般に、失速点より大風量側の軸流域(図10参照)で使用する送風機である。したがって、比較のために、まず、冷気循環経路の風路抵抗を小さく抑えて、動作点が軸流域となるように風路を構成する場合について説明する。   An axial blower is a blower generally used in an axial flow region (see FIG. 10) on the larger air volume side than the stall point. Therefore, for comparison, first, a case will be described in which the air path is configured so that the operating point becomes an axial flow region while suppressing the air path resistance of the cold air circulation path to be small.

冷蔵庫では、冷却運転中に蒸発器に霜が成長するため、風路抵抗は霜の成長に伴って次第に増加することが避けられない。このとき、動作点を軸流域とするために風路抵抗が小さく抑えられていると、蒸発器に成長した霜に起因する風路抵抗の増加度合いが大きくなり、霜の成長に伴って動作点が大きく小風量側に変化する。したがって、冷蔵室第一ダンパ24aと冷蔵室第二ダンパ24bの何れを開放状態としても共通に冷気が通過する領域2eへの送風量が大きく変化して、冷却効率の低下を招く。   In the refrigerator, since frost grows in the evaporator during the cooling operation, it is inevitable that the air path resistance gradually increases as the frost grows. At this time, if the air path resistance is kept small in order to set the operating point as the axial flow region, the increase degree of the air path resistance due to the frost grown on the evaporator increases, and the operating point increases with the growth of the frost. Changes to the small air volume side. Accordingly, even if either the refrigerator compartment first damper 24a or the refrigerator compartment second damper 24b is in an open state, the amount of air blown to the region 2e through which the cold air passes is greatly changed, leading to a reduction in cooling efficiency.

そこで、本実施形態の冷蔵庫のように、風路抵抗を比較的大きくして、動作点が遠心流域となるように風路を構成した場合、霜が成長しても、ベースとなる風路抵抗が比較的大きいために、霜の成長に起因する風路抵抗の増加度合いは相対的に小さくなる。したがって、風量の減少度合いは小さくなるため、冷蔵室第一ダンパ24aと冷蔵室第二ダンパ24bの何れを開放状態としても共通に冷気が通過する領域2eの冷却効率の低下を抑制できる。   Therefore, as in the refrigerator of the present embodiment, when the air path resistance is relatively large and the air path is configured so that the operating point is in the centrifugal flow region, the air path resistance that is the base even if frost grows. Is relatively large, the degree of increase in wind path resistance due to frost growth is relatively small. Accordingly, since the degree of decrease in the air volume becomes small, it is possible to suppress a decrease in the cooling efficiency of the region 2e through which the cold air passes in common regardless of which of the refrigerator compartment first damper 24a and the refrigerator compartment second damper 24b is opened.

また、軸流域と遠心流域の間の右上がり特性域は動作が不安定となることがある。したがって、一般に、安定した送風量を得るためには避けることが望ましいが、動作点が軸流域となるように風路を構成した場合、霜の成長に伴って風路抵抗が増加して、右上がり特性域に動作点が入ることで領域2eへの安定した送風量が得られなくなる事態に至ることがある。   Moreover, the operation | movement to the right rising characteristic area between an axial flow area and a centrifugal flow area may become unstable. Therefore, in general, it is desirable to avoid it in order to obtain a stable air flow rate, but when the air passage is configured so that the operating point is an axial flow region, the air passage resistance increases as frost grows, When the operating point enters the rising characteristic area, there may be a situation where a stable air flow rate to the area 2e cannot be obtained.

したがって、本実施形態の冷蔵庫のように、動作点が遠心流域となるようにすれば、霜の成長に伴って風路抵抗が増加しても、風量の減少度合いは小さく抑えられ、また、動作が不安定となることがある右上がり特性域に入ることも避けられるため、冷蔵室第一ダンパ24aと冷蔵室第二ダンパ24bの何れを開放状態としても共通に冷気が通過する領域2eを過不足なく冷却できる冷却効率の高い冷蔵庫となる。   Therefore, as in the refrigerator of the present embodiment, if the operating point is in the centrifugal flow region, even if the air path resistance increases with the growth of frost, the degree of decrease in the air volume can be kept small, and the operation Therefore, it is also possible to avoid the region 2e through which the cold air passes in common regardless of whether the first refrigerator 24a or the second refrigerator 24b is opened. It becomes a refrigerator with high cooling efficiency that can be cooled without shortage.

なお、動作点が遠心流域にあることは、例えば、以下のように判別すれば良い。   In addition, what is necessary is just to discriminate | determine that an operating point exists in a centrifugal flow area as follows, for example.

はじめに、庫内送風機単体の風量−静圧特性を、JISB8330:2000に則って測定する。次に、冷蔵庫の風量を測定する。図13は本実施形態の冷蔵庫の冷蔵室戻り口35を流れる風量を測定している状態を表す模式図である。   First, the air volume-static pressure characteristic of the internal fan is measured according to JISB 8330: 2000. Next, the air volume of the refrigerator is measured. FIG. 13 is a schematic diagram showing a state in which the amount of air flowing through the refrigerator compartment return port 35 of the refrigerator of this embodiment is being measured.

図13に示すように、冷蔵室扉2a、2bを開放して、ダクト100が冷蔵室戻り口35を覆うように設置し、ダクト100の内部の圧力と外部の圧力(大気圧)の差圧を測定する第一差圧計103と、上流側と下流側の差圧に基づいて風量を算出できるオリフィス102と、オリフィス102の上流側と下流側の差圧を測定する第二差圧計104と、オリフィスの上流側に送風機101によって構成される風量測定装置を用いて風量を測定する。具体的には、第一差圧計103の差圧がゼロになるように送風機101を調整して、その際の第二差圧計104に基づいて冷蔵室戻り口35を流れる風量を測定することができる。なお、冷蔵室扉2a、2bは開放状態となるが、第一差圧計の差圧がゼロとなるように調整しているので、冷蔵室扉2a、2bを閉鎖した状態とほぼ同等の状態とみなせる。ちなみに、オリフィス102と、送風機101を図13に記載の設置状態から反転させてダクト100内の空気を吸い出すようにすることで、吹き出し口から吹き出される風量を測定することもできる。例えば、冷蔵室第一送風ダクト11aの吹き出し口31a〜31cからの送風を導くようにダクト100を設置して、第一差圧計103の差圧がゼロになるように送風機101を調整すれば、第二差圧計104の差圧に基づいて冷蔵室第一送風ダクト11aからの吹き出し風量を測定することもできる。なお、ここでは、絞り機構による風量測定方法の一例を説明したが、例えば熱式流量計等の他の手段を用いて風量を測定しても良い。   As shown in FIG. 13, the refrigerator compartment doors 2a and 2b are opened so that the duct 100 covers the refrigerator compartment return port 35, and the pressure difference between the internal pressure of the duct 100 and the external pressure (atmospheric pressure). A first differential pressure gauge 103 for measuring the pressure, an orifice 102 capable of calculating an air volume based on the differential pressure on the upstream side and the downstream side, a second differential pressure gauge 104 for measuring the differential pressure on the upstream side and the downstream side of the orifice 102, The air volume is measured using an air volume measuring device constituted by the blower 101 on the upstream side of the orifice. Specifically, adjusting the blower 101 so that the differential pressure of the first differential pressure gauge 103 becomes zero, and measuring the amount of air flowing through the refrigerating chamber return port 35 based on the second differential pressure gauge 104 at that time. it can. In addition, although the refrigerator compartment doors 2a and 2b are in an open state, since the differential pressure of the first differential pressure gauge is adjusted to be zero, the state is almost the same as the state in which the refrigerator compartment doors 2a and 2b are closed. It can be considered. Incidentally, the air volume blown out from the outlet can also be measured by reversing the orifice 102 and the blower 101 from the installation state shown in FIG. 13 and sucking out the air in the duct 100. For example, if the duct 100 is installed so as to guide the air from the outlets 31a to 31c of the refrigerator compartment first air duct 11a and the blower 101 is adjusted so that the differential pressure of the first differential pressure gauge 103 becomes zero, Based on the differential pressure of the second differential pressure gauge 104, the amount of air blown from the refrigerator compartment first air duct 11a can also be measured. Although an example of the air volume measurement method using the throttle mechanism has been described here, the air volume may be measured using other means such as a thermal flow meter.

以上の方法によって、送風機単体の風量−静圧特性と、冷蔵庫の動作風量とが明らかとなるので、両者から、動作点が遠心流域となるか否かを実用上十分な精度で判別することができる。   With the above method, the air volume-static pressure characteristics of the blower alone and the operating air volume of the refrigerator are clarified. From both, it is possible to determine whether the operating point is in the centrifugal flow region with sufficient accuracy in practice. it can.

なお、軸流送風機の単体性能において、極大点と極小点が明確に現れなかった場合、次のようにして遠心流域であることを確認できる。   In addition, in the single unit performance of an axial-flow fan, when the local maximum point and local minimum point do not appear clearly, it can confirm that it is a centrifugal flow area as follows.

軸流送風機は、一般に、軸流域では軸方向に流れが吹き出し、遠心流域では径方向に流れが吹き出す(図11参照)。したがって、極大点と極小点が明確に現れない風量−静圧特性を有する送風機の場合は、吹き出し流れの変化によって軸流域と遠心流域を判別できる。具体的には、図11中に示すように、軸流送風機22の羽根外周の前縁91aの前方から45度傾斜した仮想面(円錐台面)を考え、面の内側(前方)を前方領域、面の外側を径方向領域として、前方領域に流れが吹き出す場合は動作点が軸流域にあり、径方向領域に流れが吹き出す場合には遠心流域に動作点があると判定する。したがって、例えば、送風機単体の風量−静圧特性の測定とともに、羽根外周の前縁91aから一定距離の子午面上の風速を測定して、風速の最大値を示す点が前方領域に入る場合は軸流域、径方向領域に入る場合は遠心流域と判定すればよい。ちなみに、送風機から吹き出される風速は、軸方向成分、径方向(遠心方向)成分、及び、周方向成分を有している。したがって、例えば無指向性の風速計で測定すると、これらの成分が合成された風速が計測されるが、軸方向に向かう流れが相対的に小さくなり、径方向に向かう流れが形成される遠心流域にあることは判別が可能である。   In the axial blower, generally, the flow blows out in the axial direction in the axial flow region, and the flow blows out in the radial direction in the centrifugal flow region (see FIG. 11). Therefore, in the case of a blower having an air volume-static pressure characteristic in which the maximum point and the minimum point do not appear clearly, the axial flow region and the centrifugal flow region can be distinguished from each other by the change in the blowing flow. Specifically, as shown in FIG. 11, a virtual surface (conical surface) inclined 45 degrees from the front of the front edge 91a of the outer periphery of the blade of the axial blower 22 is considered, and the inner side (front) of the surface is the front region, When the flow is blown out to the front region with the outside of the surface as the radial region, it is determined that the operating point is in the axial flow region, and when the flow is blown out in the radial region, it is determined that the operating point is in the centrifugal flow region. Therefore, for example, when the wind speed on the meridian plane at a certain distance from the front edge 91a of the blade outer periphery is measured together with the measurement of the air volume-static pressure characteristics of the blower alone, and the point indicating the maximum value of the wind speed enters the forward region What is necessary is just to determine with a centrifugal flow area, when entering into an axial flow area and a radial direction area | region. Incidentally, the wind speed blown out from the blower has an axial component, a radial (centrifugal) component, and a circumferential component. Therefore, for example, when measured with an omnidirectional anemometer, the wind speed in which these components are combined is measured, but the axial flow is relatively small, and the centrifugal flow region where the radial flow is formed It is possible to determine that the

本実施形態の冷蔵庫は、背面断熱壁内に真空断熱材60を備え、冷蔵室第一送風ダクト11aを後方の真空断熱材60に投影した際に、冷蔵室第一送風ダクト11a端部から真空断熱材60の端部に至る最短距離Lを50mm以上(本実施形態の冷蔵庫はL=100mm)離間させるようにしている。この状態で、冷蔵室第一送風ダクト11aに送風する冷蔵室第一ダンパ24aを開放状態、冷蔵室第二送風ダクト12aに送風する冷蔵室第二ダンパ24bを閉鎖状態とする運転モードを実施する(図3及び図12参照)。これにより、冷却効率の高い冷蔵庫を提供することができる。理由を以下で説明する。   The refrigerator of the present embodiment includes a vacuum heat insulating material 60 in the rear heat insulating wall, and when the refrigerator compartment first air duct 11a is projected onto the rear vacuum heat insulator 60, a vacuum is applied from the end of the refrigerator compartment first air duct 11a. The shortest distance L to the end of the heat insulating material 60 is set to be 50 mm or more (L = 100 mm in the refrigerator of this embodiment). In this state, an operation mode is implemented in which the refrigerator compartment first damper 24a that sends air to the refrigerator compartment first air duct 11a is opened, and the refrigerator compartment second damper 24b that sends air to the refrigerator compartment second air duct 12a is closed. (See FIGS. 3 and 12). Thereby, a refrigerator with high cooling efficiency can be provided. The reason will be explained below.

本実施形態の冷蔵庫の真空断熱材60(図7参照)のように、熱伝導率が高い金属層を含む外包材(本実施形態の冷蔵庫ではアルミ蒸着フィルム層を含むラミネートフィルム)により覆われた真空断熱材は、外周から50mm未満の領域は、外包材を介して熱が多く移動するために断熱性能が低くなる、いわゆるヒートブリッジ領域となる。したがって、ヒートブリッジ領域の前方にダクトを配設すると、熱損失が大きくなり冷却効率が低下する。したがって、ヒートブリッジ領域の前方にダクトを配設しないように配慮することが望ましい。しかしながら、冷蔵室内の冷却を良好に行うためには、所定位置までダクトで冷気を導くことが必要となる。特に、自然対流によって冷気が届き難くなる冷蔵室の上方の領域(本実施形態の冷蔵庫における領域2c)に確実に冷気を届けるためには、ダクトを冷蔵室の上部にまで配置させる必要がある。これに伴って、ヒートブリッジ領域の前方にダクトが配設されることとなる。   Like the vacuum heat insulating material 60 (see FIG. 7) of the refrigerator of the present embodiment, it is covered with an outer packaging material including a metal layer having a high thermal conductivity (a laminate film including an aluminum deposited film layer in the refrigerator of the present embodiment). The region of less than 50 mm from the outer periphery of the vacuum heat insulating material becomes a so-called heat bridge region in which the heat insulating performance is lowered because a large amount of heat moves through the outer packaging material. Therefore, if a duct is provided in front of the heat bridge region, heat loss increases and cooling efficiency decreases. Therefore, it is desirable to take care not to dispose a duct in front of the heat bridge region. However, in order to satisfactorily cool the inside of the refrigerator compartment, it is necessary to guide the cold air to the predetermined position with a duct. In particular, in order to reliably deliver cold air to the region above the refrigerator compartment (region 2c in the refrigerator of the present embodiment) where the cold air is difficult to reach due to natural convection, it is necessary to arrange the duct up to the upper portion of the refrigerator compartment. Along with this, a duct is disposed in front of the heat bridge region.

そこで、本実施形態の冷蔵庫では、冷蔵室第一送風ダクト11aを後方の真空断熱材60に投影した際に、冷蔵室第一送風ダクト11a端部から真空断熱材60の端部に至る最短距離Lを50mm以上離間させるようにして、冷蔵室第一送風ダクト11aを熱損失が小さい高断熱風路として、領域2cの冷却を行う必要がない状態では、冷蔵室第一送風ダクト11aに送風する冷蔵室第一ダンパ24aを開放状態、冷蔵室第二送風ダクト12aに送風する冷蔵室第二ダンパ24bを閉鎖状態とする運転モードを実施することで、ヒートブリッジによる熱損失を抑えた冷却効率が高い冷蔵庫となる。   So, in the refrigerator of this embodiment, when the refrigerator compartment 1st ventilation duct 11a is projected on the vacuum insulation material 60 of the back, the shortest distance from the edge part of the refrigerator compartment 1st ventilation duct 11a to the edge part of the vacuum insulation material 60 L is separated by 50 mm or more, and the refrigerator compartment first air duct 11a is made as a highly insulated air passage with small heat loss, and air is sent to the refrigerator compartment first air duct 11a in a state where it is not necessary to cool the region 2c. By implementing the operation mode in which the refrigerator compartment first damper 24a is in the open state and the refrigerator compartment second damper 24b for blowing air to the refrigerator compartment second air duct 12a is in the closed state, the cooling efficiency that suppresses heat loss due to the heat bridge is achieved. It becomes a high refrigerator.

また、背面断熱壁内に真空断熱材60を備え、冷蔵室第一送風ダクト11aを後方の真空断熱材60に投影した際に、真空断熱材60の折り返し部60bの内側の領域に冷蔵室第一送風ダクト11aが収まるように構成して、冷蔵室第一送風ダクト11aに送風する冷蔵室第一ダンパ24aを開放状態、冷蔵室第二送風ダクト12aに送風する冷蔵室第二ダンパ24bを閉鎖状態とする運転モードを実施する(図2、図3、図8及び図12参照)。真空断熱材の折り返し部は、外包材が重なるためにヒートブリッジの影響が大きくなる。そこで、本実施形態の冷蔵庫では上記構成を採用することで、折り返し部60bに起因するヒートブリッジによる熱損失を抑えた冷却運転を実施することで、冷蔵室第一送風ダクト11aを熱損失が小さい高断熱風路として、冷却効率を向上させている。   Moreover, when the vacuum heat insulating material 60 is provided in the back heat insulating wall and the refrigerating chamber first air duct 11a is projected onto the rear vacuum heat insulating material 60, the refrigerating chamber second is formed in the area inside the folded portion 60b of the vacuum heat insulating material 60. It is configured so that one air duct 11a can be accommodated, the refrigerating room first damper 24a for blowing air to the refrigerating room first air duct 11a is opened, and the refrigerating room second damper 24b for air blowing to the refrigerating room second air duct 12a is closed. The operation mode to be set is performed (see FIGS. 2, 3, 8, and 12). The folded portion of the vacuum heat insulating material is greatly affected by the heat bridge because the outer packaging material overlaps. Therefore, in the refrigerator of the present embodiment, by adopting the above-described configuration, the cooling operation that suppresses the heat loss due to the heat bridge caused by the folded portion 60b is performed, so that the refrigerating chamber first air duct 11a has a small heat loss. Cooling efficiency is improved as a highly insulated air passage.

また、最上段の棚46a、46bより上方の領域2cに送風する冷蔵室第二送風ダクト11bと、最上段の棚46a、46bより下方の領域2dに送風する冷蔵室第一送風ダクト11aを備え、冷蔵室第一送風ダクト11aに送風する冷蔵室第一ダンパ24aを開放状態、冷蔵室第二送風ダクト12aに送風する冷蔵室第二ダンパ24bを閉鎖状態とする運転モードを実施する(図2、図3及び図12参照)。これにより、領域2cの冷却を行う必要がない状態では、最上段の棚46a、46bより上方の領域2cの空気層が、冷蔵室2の上壁からの熱影響が領域2dに及ぶことを抑制する断熱層として作用するので、効率の良い冷却が可能となる。   Moreover, the refrigerator compartment 2nd ventilation duct 11b which ventilates the area | region 2c above the uppermost shelf 46a, 46b, and the refrigerator compartment 1st ventilation duct 11a which ventilates the area | region 2d below the uppermost shelf 46a, 46b is provided. Then, an operation mode is implemented in which the refrigerator compartment first damper 24a that sends air to the refrigerator compartment first air duct 11a is opened, and the refrigerator compartment second damper 24b that sends air to the refrigerator compartment second air duct 12a is closed (FIG. 2). FIG. 3 and FIG. 12). Thereby, in a state where it is not necessary to cool the region 2c, the air layer in the region 2c above the uppermost shelves 46a and 46b suppresses the heat effect from the upper wall of the refrigerator compartment 2 from reaching the region 2d. Therefore, efficient cooling is possible.

また、棚46a及び棚46bから上壁に至るそれぞれの距離(図3中に示すH1及びH2)が棚46a及び棚46bのそれぞれの奥行寸法より小さくなるようにしている。これにより、冷蔵室第一送風ダクト11aに送風する冷蔵室第一ダンパ24aを開放状態、冷蔵室第二送風ダクト12aに送風する冷蔵室第二ダンパ24bを閉鎖状態とする運転モードを実施して、領域2cの空気層を断熱層として作用させる際に、領域2c内の対流が生じ難くなるので、領域2cによる断熱効果が高められ、より効率の良い冷却が可能となる。   Further, the respective distances (H1 and H2 shown in FIG. 3) from the shelf 46a and the shelf 46b to the upper wall are made smaller than the respective depth dimensions of the shelf 46a and the shelf 46b. As a result, an operation mode in which the refrigerator compartment first damper 24a for blowing air to the refrigerator compartment first air duct 11a is opened and the refrigerator compartment second damper 24b for sending air to the refrigerator compartment second air duct 12a is closed is performed. When the air layer in the region 2c is caused to act as a heat insulating layer, convection in the region 2c is hardly generated, so that the heat insulating effect by the region 2c is enhanced and more efficient cooling is possible.

また、冷蔵室第一ダンパ24aと冷蔵室第二ダンパ24bの何れを開放状態としても共通に冷気が通過する領域の容積(領域2eの容積)が、冷蔵室第一ダンパ24aと冷蔵室第二ダンパ24bの開閉状態によって独立に送風が制御される領域の容積(領域2cと領域2dを併せた容積)より小さくなるようにしている。これにより、霜の成長に伴って動作点がやや小風量側に変化しても、冷却効率の低下の影響が顕著に現れることを抑制できる。   In addition, the volume of the region through which the cold air passes in common (the volume of the region 2e) regardless of which of the refrigerator compartment first damper 24a and the refrigerator compartment second damper 24b is in the open state is the refrigerator compartment first damper 24a and the refrigerator compartment second. The volume is made smaller than the volume of the area where the air flow is controlled independently by the open / close state of the damper 24b (the volume of the area 2c and the area 2d). Thereby, even if an operating point changes to a small air volume side with the growth of frost, it can suppress that the influence of the fall of cooling efficiency appears notably.

また、冷蔵室第一送風ダクト11a及び冷蔵室第二送風ダクト11bの最小流路断面積を、庫内送風機22の吹き出し面積よりも小さくしている。これにより、ダクト占有体積を抑えつつ、冷蔵室2の冷気循環系路の風路抵抗を大きくしている。したがって、冷却効率とスペース効率が高い冷蔵庫となる。   Moreover, the minimum flow path cross-sectional area of the refrigerator compartment 1st ventilation duct 11a and the refrigerator compartment 2nd ventilation duct 11b is made smaller than the blowing area of the fan 22 in a store | warehouse | chamber. Thereby, the air path resistance of the cold air circulation system path of the refrigerator compartment 2 is made large, suppressing the duct occupation volume. Therefore, it becomes a refrigerator with high cooling efficiency and space efficiency.

また、冷蔵室戻りダクト15の最小流路断面積を、庫内送風機22の吹き出し面積よりも小さくしている。これによりダクト占有体積を抑えつつ、冷蔵室2の冷気循環系路の風路抵抗を大きくしている。したがって、冷却効率とスペース効率が高い冷蔵庫となる。   Moreover, the minimum flow path cross-sectional area of the refrigerator compartment return duct 15 is made smaller than the blowing area of the internal fan 22. Thereby, the air path resistance of the cold air circulation system path of the refrigerator compartment 2 is increased while suppressing the duct occupation volume. Therefore, it becomes a refrigerator with high cooling efficiency and space efficiency.

また、冷蔵室第一送風ダクト11aの最小流路断面積を、冷蔵室第二送風ダクト11bの最小流路断面積より大きくしている。これにより冷蔵室第一ダンパ24aと冷蔵室第二ダンパ24bの双方が開放状態となった場合に、高断熱風路である冷蔵室第一送風ダクト11aにより多くの冷気が流れるので、熱損失を抑えた冷却効率が高い冷却運転を実施することができる。   Moreover, the minimum flow path cross-sectional area of the refrigerator compartment 1st ventilation duct 11a is made larger than the minimum flow path cross-sectional area of the refrigerator compartment 2nd ventilation duct 11b. As a result, when both the refrigerator compartment first damper 24a and the refrigerator compartment second damper 24b are opened, a large amount of cold air flows through the refrigerator compartment first air duct 11a, which is a highly insulated air passage. A cooling operation with high cooling efficiency can be performed.

また、冷蔵室第一送風ダクト11aから送風される冷気と、冷蔵室第二送風ダクト11bから送風される冷気が共通に流れる経路(領域2e、チルド室3、冷蔵室戻り口35、冷蔵室戻りダクト15)に温度センサ(チルド室温度センサ42)を備え、所定温度以下(Tc_a以下)にセンサ検知温度が低下した場合には、冷蔵室第一送風ダクト11aに送風する冷蔵室第一ダンパ24a、冷蔵室第二送風ダクト12aに送風する冷蔵室第二ダンパ24bの何れも閉鎖状態とするようにしている(図2、図3、図4及び図12参照)。これにより、冷蔵室第一送風ダクト11aと冷蔵室第二送風ダクト11bからの送風によって共通に冷却される領域(本実施形態の冷蔵庫の冷蔵室内の領域2eやチルド室3)が過度に冷却され、凍結に至るといった不具合が生じないようできる。   Also, a path (region 2e, chilled chamber 3, refrigerator compartment return port 35, refrigerator compartment return) through which the cold air blown from the refrigerator compartment first air duct 11a and the cold air blown from the refrigerator compartment second air duct 11b flow in common. The duct 15) is provided with a temperature sensor (chilled chamber temperature sensor 42), and when the sensor detection temperature drops below a predetermined temperature (Tc_a or less), the refrigerator compartment first damper 24a that sends air to the refrigerator compartment first air duct 11a. All of the refrigerator compartment second dampers 24b that send air to the refrigerator compartment second air duct 12a are in a closed state (see FIGS. 2, 3, 4, and 12). Thereby, the area | region (The area | region 2e and the chilled room 3 in the refrigerator compartment of the refrigerator of this embodiment) cooled in common by the ventilation from the refrigerator compartment 1st ventilation duct 11a and the refrigerator compartment 2nd ventilation duct 11b is excessively cooled. The problem of freezing can be avoided.

なお、本実施形態の冷蔵庫では、チルド室3は冷気の吹き出し口を備えなくても所定温度に冷却できるため、チルド室に吹き出す吹き出し口を備えていないが、冷蔵室第一送風ダクト11a、あるいは、冷蔵室第二送風ダクト11bにチルド室吹き出し口を備えても良い。また、チルド室吹き出し口からの送風を制御するためのチルド室ダンパを備えて、所定温度に維持し易い構成としても良い。   In the refrigerator of the present embodiment, since the chilled chamber 3 can be cooled to a predetermined temperature without having a cold air outlet, the chilled chamber 3 does not have an outlet that blows out into the chilled chamber. The chilled chamber second air duct 11b may be provided with a chilled chamber outlet. Moreover, it is good also as a structure which is equipped with the chilled chamber damper for controlling the ventilation from a chilled chamber blowing outlet, and is easy to maintain at predetermined temperature.

本発明に係る冷蔵庫の第二実施形態を、図14〜図16を参照しながら説明する。図14は第二実施形態の冷蔵庫の冷蔵室の構成を表す縦断面である。図15は第二実施形態の冷蔵庫の冷蔵室の構成を表す正面図である。図16は第二実施形態の冷蔵庫の風路構成を表す模式図である。なお、図14〜図16に示す構成以外は、第一実施形態の冷蔵庫と同一であるため説明を省略する。また、図14〜図16において、第一実施形態の冷蔵庫と同一機能部品については、同一符号を付して説明を省略する。   A second embodiment of the refrigerator according to the present invention will be described with reference to FIGS. FIG. 14 is a longitudinal section showing the configuration of the refrigerator compartment of the refrigerator of the second embodiment. FIG. 15 is a front view illustrating the configuration of the refrigerator compartment of the refrigerator according to the second embodiment. FIG. 16 is a schematic diagram showing the air path configuration of the refrigerator of the second embodiment. In addition, since it is the same as that of the refrigerator of 1st embodiment except the structure shown in FIGS. 14-16, description is abbreviate | omitted. Moreover, in FIGS. 14-16, about the same functional component as the refrigerator of 1st embodiment, the same code | symbol is attached | subjected and description is abbreviate | omitted.

本実施形態の冷蔵庫は、冷蔵室2の背面に下方から上方に延伸する冷蔵室送風ダクト11(最小流路断面積1700mm2)を備えている(図14及び図15参照)。冷蔵室送風ダクト11には冷蔵室吹き出し口31a〜31cが備えられている(図14参照)。冷蔵室送風ダクト11の右側に隣接して冷蔵室第一戻りダクト15a(最小流路断面積1640mm2)が配設されている。冷蔵室第一戻りダクト15aの上部には戻り口35a、35bが備えられている。また、チルド室背面には冷蔵室第二戻りダクト15b(最小流路断面積及び1400mm2)が備えられており、冷蔵室第二戻りダクト15bには戻り口35cが備えられている(図15参照)。冷蔵室第一戻りダクト15aと冷蔵室第二戻りダクト15bへの戻り冷気の流入は、上側断熱仕切壁51の後方投影領域内に配設された冷蔵室第一ダンパ24a、冷蔵室第二ダンパ24b(図15参照)の開閉状態によって制御される。 The refrigerator of this embodiment is provided with a refrigerator compartment air duct 11 (minimum channel cross-sectional area of 1700 mm 2 ) that extends upward from below on the back of the refrigerator compartment 2 (see FIGS. 14 and 15). The refrigerator compartment air duct 11 is provided with refrigerator compartment outlets 31a to 31c (see FIG. 14). A refrigerator compartment first return duct 15a (minimum channel cross-sectional area 1640 mm 2 ) is disposed adjacent to the right side of the refrigerator compartment air duct 11. Return ports 35a and 35b are provided in the upper part of the refrigerator compartment first return duct 15a. In addition, a refrigeration chamber second return duct 15b (minimum channel cross-sectional area and 1400 mm 2 ) is provided on the rear surface of the chilled chamber, and a return port 35c is provided in the refrigeration chamber second return duct 15b (FIG. 15). reference). The inflow of the return cold air to the refrigerator compartment first return duct 15a and the refrigerator compartment second return duct 15b is caused by the refrigerator compartment first damper 24a and the refrigerator compartment second damper disposed in the rear projection region of the upper heat insulating partition wall 51. It is controlled by the open / closed state of 24b (see FIG. 15).

次に図16と、適宜図14及び図15を参照しながら、本実施形態の冷蔵庫の冷蔵室を冷却する冷気の循環経路について説明する。   Next, with reference to FIG. 16 and FIGS. 14 and 15 as appropriate, a circulation path of cold air for cooling the refrigerator compartment of the refrigerator of the present embodiment will be described.

図16に示すように、蒸発器21と熱交換した冷気は、庫内送風機22によって昇圧され、冷蔵室第一ダンパ24aが開放状態では、冷蔵室送風ダクト11を流れて冷蔵室吹き出し口31a〜31cから冷蔵室内の最上段の棚46a,46bより下方で、最下段の棚46fより上方の領域2d(図14及び図15参照)に吹き出す。領域2dに吹き出した冷気は、扉ポケット47bが設置されている領域2e(図14参照)を流れて、棚46a、46bより上方の領域2c(図14及び図15参照)を経て、冷蔵室戻り口35a、35b(図15参照)に至る。冷蔵室戻り口35a、35b(図15参照)から冷蔵室第一戻りダクト15a(図15参照)に流入した冷気は、蒸発器収納室9に戻って再び蒸発器21と熱交換する。   As shown in FIG. 16, the cold air exchanged with the evaporator 21 is boosted by the internal fan 22, and flows in the refrigerating room air duct 11 in the open state of the refrigerating room first damper 24 a to refrigerating room outlets 31 a to 31-. From 31c, it blows out to the area | region 2d (refer FIG.14 and FIG.15) below the uppermost shelf 46a, 46b in the refrigerator compartment, and upper than the lowermost shelf 46f. The cold air blown out into the region 2d flows through the region 2e (see FIG. 14) where the door pocket 47b is installed, returns to the refrigerator compartment through the region 2c (see FIGS. 14 and 15) above the shelves 46a and 46b. It reaches the mouths 35a and 35b (see FIG. 15). The cold air flowing into the refrigerator compartment first return duct 15a (see FIG. 15) from the refrigerator compartment return ports 35a and 35b (see FIG. 15) returns to the evaporator storage chamber 9 and exchanges heat with the evaporator 21 again.

また、冷蔵室第二ダンパ24bが開放状態では、冷気は、冷蔵室送風ダクト11を流れて冷蔵室吹き出し口31a〜31cから領域2dに吹き出す。領域2dに吹き出した冷気は、領域2eを流れて、扉ポケット47cや製氷水タンク55が設置されている領域2f(図14及び図15参照)を経て、チルド室3を冷却して冷蔵室戻り口35c(図15参照)に至る。冷蔵室戻り口35cから冷蔵室第二戻りダクト15b(図15参照)に流入した冷気は、蒸発器収納室9に戻って再び蒸発器21と熱交換する。   Moreover, in the open state of the refrigerator compartment second damper 24b, the cold air flows through the refrigerator compartment air duct 11 and blows out from the refrigerator compartment outlets 31a to 31c to the region 2d. The cold air blown out into the region 2d flows through the region 2e, passes through the region 2f (see FIGS. 14 and 15) where the door pocket 47c and the ice making water tank 55 are installed, cools the chilled chamber 3, and returns to the refrigerator compartment. It reaches the mouth 35c (see FIG. 15). The cold air that has flowed into the refrigerator second return duct 15b (see FIG. 15) from the refrigerator return port 35c returns to the evaporator storage chamber 9 and exchanges heat with the evaporator 21 again.

また、本実施形態の冷蔵庫では、図15に示す通り、冷蔵室送風ダクト11を後方の真空断熱材60に投影した際に、冷蔵室送風ダクト11端部から真空断熱材60の端部に至る最短距離Lを100mmとしている。また、冷蔵室第一送風ダクト11aは真空断熱材60の折り返し部60bの内側に収まるようにしている。   Moreover, in the refrigerator of this embodiment, when the refrigerator compartment air duct 11 is projected on the back vacuum heat insulating material 60 as shown in FIG. 15, it reaches from the refrigerator compartment air duct 11 end part to the vacuum heat insulating material 60 end part. The shortest distance L is 100 mm. Moreover, the refrigerator compartment 1st ventilation duct 11a is settled inside the folding | returning part 60b of the vacuum heat insulating material 60. FIG.

以上のように、本実施形態の冷蔵庫は、冷蔵室送風ダクト11と、冷蔵室第一戻りダクト15aと、冷蔵室第二戻りダクト15bを備えて、冷蔵室送風ダクト11を後方の真空断熱材60に投影した際に、冷蔵室送風ダクト11端部から真空断熱材60の端部に至る最短距離Lを50mm以上としている。また、冷蔵室送風ダクト11を後方の真空断熱材60に投影した際に、真空断熱材60の折り返し部60bの内側の領域に冷蔵室送風ダクトが収まるようにしている。これにより、低温の冷気が流れる冷蔵室送風ダクト11をヒートブリッジによる熱損失を抑えた位置に配設することで、冷却効率の高い冷蔵庫とすることができる。   As described above, the refrigerator of the present embodiment includes the refrigerator compartment air duct 11, the refrigerator compartment first return duct 15a, and the refrigerator compartment second return duct 15b. When projected onto 60, the shortest distance L from the end of the refrigerating chamber blower duct 11 to the end of the vacuum heat insulating material 60 is set to 50 mm or more. Further, when the refrigerator compartment air duct 11 is projected onto the rear vacuum heat insulating material 60, the refrigerator compartment air duct is accommodated in a region inside the folded portion 60 b of the vacuum heat insulating material 60. Thereby, it can be set as the refrigerator with high cooling efficiency by arrange | positioning the refrigerator compartment air duct 11 into which the cool air of a low temperature flows in the position which suppressed the heat loss by a heat bridge.

また、本実施形態の冷蔵庫では、冷蔵室第二ダンパ24bの開閉状態によって製氷水タンク55設置部周辺(領域2f)への送風を制御できるようにしている。すなわち、冷蔵室第一ダンパ24a及び冷蔵室第二ダンパ24bの何れが開放状態であっても共通に冷気が通過する領域(領域2d、2f)に製氷水タンク55を設置していない。これにより、製氷水タンク55周辺が過剰に冷却され難くなり、製氷水タンク55内の水が凍結することを防止するためのヒータ等による加熱を抑えられるので、冷却効率が高い冷蔵庫となる。   Moreover, in the refrigerator of this embodiment, it can be made to control ventilation to the ice-making water tank 55 installation part periphery (area | region 2f) by the opening / closing state of the refrigerator compartment 2nd damper 24b. That is, the ice making water tank 55 is not installed in a region (regions 2d and 2f) through which cold air passes in common regardless of which of the first refrigerator 24a and the second refrigerator 24b is open. As a result, the periphery of the ice making water tank 55 is hardly cooled excessively, and heating by a heater or the like for preventing water in the ice making water tank 55 from being frozen can be suppressed, so that a refrigerator with high cooling efficiency is obtained.

本発明に係る冷蔵庫の第三実施形態を、図17〜図20を参照しながら説明する。図17は第三実施形態の冷蔵庫の庫内の構成を表す縦断面図、図18は第三実施形態の冷蔵庫の冷蔵室の構成を表す正面図、図19は第三実施形態の冷蔵庫の風路構成を表す模式図である。また、図20は第三実施形態の冷蔵庫のダンパの開閉状態の組み合わせを表す図である。なお、図17〜図20において、第一実施形態の冷蔵庫と同一機能部品については、同一符号を付して説明を省略する。   A third embodiment of the refrigerator according to the present invention will be described with reference to FIGS. FIG. 17 is a longitudinal cross-sectional view illustrating the configuration of the refrigerator according to the third embodiment, FIG. 18 is a front view illustrating the configuration of the refrigerator compartment of the refrigerator according to the third embodiment, and FIG. 19 illustrates the wind of the refrigerator according to the third embodiment. It is a schematic diagram showing a road configuration. Moreover, FIG. 20 is a figure showing the combination of the open / closed state of the damper of the refrigerator of 3rd embodiment. In addition, in FIGS. 17-20, about the same functional component as the refrigerator of 1st embodiment, the same code | symbol is attached | subjected and description is abbreviate | omitted.

本実施形態の冷蔵庫は、図18に示すように、冷蔵室2の背面略中央に、冷蔵室2の下方から上方に延伸する冷蔵室第一送風ダクト11aと、冷蔵室第一送風ダクト11a(最小流路断面積1400mm2)の上部に冷蔵室第二送風ダクト11b(最小流路断面積1400mm2)を備えており、冷蔵室第一送風ダクト11a及び冷蔵室第二送風ダクト11bの入口部にはそれぞれ冷蔵室第一ダンパ24a、及び、冷蔵室第二ダンパ24bを備えている。なお、図17及び図18に示すように、冷蔵室第一ダンパ24aは、上側断熱仕切壁51の後方投影領域内に配設され、冷蔵室第二ダンパ24bは、及び、冷蔵室棚46冷蔵室第一ダンパ24bは棚46aの略背部(棚46aの高さ位置を下端にした場合)に配設されている。 As shown in FIG. 18, the refrigerator of the present embodiment includes a refrigerator compartment first air duct 11 a extending from the lower side of the refrigerator compartment 2 to the upper side and a refrigerator compartment first fan duct 11 a ( on top of the minimum flow path cross-sectional area 1400 mm 2) comprises a refrigerating chamber second air duct 11b (minimum flow path cross-sectional area 1400 mm 2), the refrigerating compartment inlet of the first blower duct 11a and the refrigerating compartment the second air duct 11b Each has a refrigerator compartment first damper 24a and a refrigerator compartment second damper 24b. 17 and 18, the refrigerator compartment first damper 24a is disposed in the rear projection area of the upper heat insulating partition wall 51, and the refrigerator compartment second damper 24b and the refrigerator compartment shelf 46 are refrigerated. The chamber first damper 24b is disposed substantially on the back of the shelf 46a (when the height of the shelf 46a is at the lower end).

次に図19と、適宜図17及び図18を参照しながら、本実施形態の冷蔵庫の冷気循環経路について説明する。   Next, the cold air circulation path of the refrigerator of the present embodiment will be described with reference to FIG. 19 and FIGS. 17 and 18 as appropriate.

図19に示すように、蒸発器21と熱交換した冷気は、庫内送風機22によって昇圧され、冷蔵室第一ダンパ24aが開放状態で、冷蔵室第二ダンパ24bが閉鎖状態では、冷蔵室第一送風ダクト11aを流れて冷蔵室吹き出し口31a〜31c(図18参照)から冷蔵室内の領域2d(図17及び図18参照)のみに吹き出す。領域2dに吹き出した冷気は、扉ポケット47b、47cが設置されている領域2e(図17参照)、チルド室3を流れて、冷蔵室戻り口35に至る。また、冷蔵室第一ダンパ24aが開放状態で、且つ、冷蔵室第二ダンパ24bが開放状態では、冷気は、冷蔵室第一送風ダクト11aを流れて冷蔵室吹き出し口31a〜31cから領域2dに吹き出すとともに、冷蔵室第二送風ダクト11bを流れて冷蔵室吹き出し口31d、31eから冷蔵室内の領域2c(図17及び図18参照)に吹き出す。領域2cに吹き出した冷気は、扉ポケット47b、47cや製氷水タンク55が設置されている領域2e、チルド室3を流れて、冷蔵室戻り口35に至る。   As shown in FIG. 19, the cold air exchanged with the evaporator 21 is boosted by the internal fan 22, and the refrigerator compartment first damper 24 a is in the open state and the refrigerator compartment second damper 24 b is in the closed state. It flows through one ventilation duct 11a, and blows off only to the area | region 2d (refer FIG.17 and FIG.18) in a refrigerator compartment from the refrigerator compartment outlet 31a-31c (refer FIG.18). The cold air blown out into the region 2d flows through the region 2e (see FIG. 17) where the door pockets 47b and 47c are installed, the chilled chamber 3, and reaches the refrigerating chamber return port 35. When the refrigerator compartment first damper 24a is in the open state and the refrigerator compartment second damper 24b is in the open state, the cold air flows through the refrigerator compartment first air duct 11a and enters the region 2d from the refrigerator compartment outlets 31a to 31c. While blowing out, it flows through the refrigerator compartment 2nd ventilation duct 11b, and blows off from the refrigerator compartment outlet 31d and 31e to the area | region 2c (refer FIG.17 and FIG.18) in a refrigerator compartment. The cold air blown out into the region 2c flows through the region 2e where the door pockets 47b and 47c and the ice making water tank 55 are installed, the chilled chamber 3, and reaches the refrigerating chamber return port 35.

領域2c、2d、2e及びチルド室3を冷却した冷気は、冷蔵室戻り口35から冷蔵室戻りダクト15(最小流路断面積1700mm2)に入り、蒸発器収納室9に至って再び蒸発器21と熱交換する。 The cold air that has cooled the regions 2c, 2d, and 2e and the chilled chamber 3 enters the refrigerating chamber return duct 15 (minimum channel cross-sectional area 1700 mm 2 ) from the refrigerating chamber return port 35, reaches the evaporator storage chamber 9, and again reaches the evaporator 21. Exchange heat with.

なお、本実施形態の冷蔵庫においても、冷蔵室第一ダンパ24a、冷蔵室第二ダンパ24b、冷凍室ダンパ26、野菜室ダンパ27を備え、それぞれが開放状態と閉鎖状態の2つの状態を取ることから、ダンパの開閉状態の組み合わせは16通りとなるが、冷蔵室第二ダンパ24bは冷蔵室第一ダンパ24aの下流に位置するため、冷蔵室第一ダンパ24aが開放状態の場合のみ、冷蔵室第二ダンパ24bを開放して冷蔵室第二送風ダクト11bを介した送風が可能となる。   In addition, the refrigerator of this embodiment is also provided with a refrigerator compartment first damper 24a, a refrigerator compartment second damper 24b, a freezer compartment damper 26, and a vegetable compartment damper 27, each taking two states, an open state and a closed state. Therefore, there are 16 combinations of damper open / close states, but since the refrigerator second damper 24b is located downstream of the refrigerator first damper 24a, the refrigerator compartment is only in the case where the refrigerator first damper 24a is open. The 2nd damper 24b is open | released and ventilation can be performed through the refrigerator compartment 2nd ventilation duct 11b.

図20は、冷蔵室第一ダンパ24aが開放状態で、冷蔵室2への送風が行われる状態となる組み合わせを示している。図20に示すように、冷蔵室2への送風が行われる状態は状態1〜状態8の8通りあり、各状態における冷気循環経路の風路抵抗をR1〜R8とする。なお、「風路抵抗の大きさ」欄は、R1〜R8に関して、風路抵抗が小さい順に1〜8の番号を付けている。すなわち、R1〜R8の大小関係は、「R4<R8<R3<R7<R2<R6<R1<R5」となる。本実施形態の冷蔵庫では、状態1〜状態8における抵抗R1〜R8の抵抗曲線と、庫内送風機22の風量−静圧特性曲線との交点により定まる動作点は、何れも遠心流域となる。
以上のように本実施形態の冷蔵庫では、冷蔵室第二ダンパ24bは冷蔵室第一ダンパ24aの下流に位置するため、冷蔵室第一送風ダクト11aと冷蔵室第二送風ダクト11bを併設する必要がなくなる。したがって、冷蔵室送風ダクトをコンパクトに配設できるので食品収納スペースの減少を抑えた冷蔵庫となる。
FIG. 20 shows a combination in which the refrigeration chamber first damper 24a is in an open state and the refrigeration chamber 2 is blown. As shown in FIG. 20, there are eight states, state 1 to state 8, where air is blown into the refrigerator compartment 2, and the air path resistance of the cold air circulation path in each state is R1 to R8. In the “air path resistance magnitude” column, numbers 1 to 8 are assigned to R1 to R8 in ascending order of the air path resistance. That is, the magnitude relationship between R1 to R8 is “R4 <R8 <R3 <R7 <R2 <R6 <R1 <R5”. In the refrigerator of this embodiment, the operating point determined by the intersection of the resistance curves of the resistors R1 to R8 in the states 1 to 8 and the air volume-static pressure characteristic curve of the internal fan 22 is a centrifugal flow region.
As described above, in the refrigerator of the present embodiment, since the refrigerator compartment second damper 24b is located downstream of the refrigerator compartment first damper 24a, it is necessary to provide the refrigerator compartment first air duct 11a and the refrigerator compartment second air duct 11b. Disappears. Therefore, since the refrigerator compartment air duct can be arranged in a compact manner, the refrigerator has a reduced food storage space.

以上より、本発明の各実施例は以下の効果を奏することができる。   As mentioned above, each Example of this invention can have the following effects.

すなわち、貯蔵室(冷蔵室2、チルド室3)と、冷却器21と、冷却器21と熱交換した冷気を送風する軸流送風機22と、軸流送風機22で送風された冷気を貯蔵室へ導く送風経路11と、貯蔵室に送風された冷気を冷却器21に戻す戻り経路15と、を備え、送風経路11と戻り経路15の少なくとも一方は、冷気の通過する経路が分岐した分岐経路(冷蔵室第一送風ダクト11a、冷蔵室第二送風ダクト11b)を有し、分岐経路の風路抵抗を制御する風路抵抗制御手段24を備え、貯蔵室は、分岐経路のうちの一方の経路(冷蔵室第一送風ダクト11a)を通過する冷気によって冷却される第一の独立冷却領域2dと、分岐経路のうちの他方の経路(冷蔵室第二送風ダクト11b)を通過する冷気によって冷却される第二の独立冷却領域2cと、分岐経路のいずれの経路を通過する冷気によっても冷却される共通冷却領域2eとを有し、第一の独立冷却領域2d、第二の独立冷却領域2c及び共通冷却領域2eのいずれか1つ又は複数を組み合わせて冷却する複数の送風モードを有し、該複数の送風モードのいずれの場合でも軸流送風機22は風量−静圧特性曲線の極小点より小風量側の動作点となるように制御する。   That is, the storage room (the refrigeration room 2 and the chilled room 3), the cooler 21, the axial blower 22 that blows the cold air heat-exchanged with the cooler 21, and the cold air blown by the axial blower 22 to the storage room And a return path 15 for returning the cool air blown into the storage chamber to the cooler 21, and at least one of the blow path 11 and the return path 15 is a branch path (a path through which the cool air passes is branched ( The first air duct 11a and the second air duct 11b) are provided with air passage resistance control means 24 for controlling the air passage resistance of the branch path, and the storage room is one of the branch paths. The first independent cooling region 2d cooled by the cold air passing through the (refrigeration room first air duct 11a) and the cold air passing through the other of the branch paths (the cold room second air duct 11b). Second independent cooling Area 2c and common cooling area 2e cooled by the cold air passing through any of the branch paths, and any of first independent cooling area 2d, second independent cooling area 2c, and common cooling area 2e One or a plurality of air blowing modes for cooling in combination, and in any of the plurality of air blowing modes, the axial blower 22 has an operating point on the small air volume side from the minimum point of the air volume-static pressure characteristic curve. Control to be.

これにより、風量の減少度合いは小さくなるため、複数の送風モードのいずれの場合でも(冷蔵室第一ダンパ24aと冷蔵室第二ダンパ24bの何れを開放状態としても)、共通に冷気が通過する領域2eの冷却効率の低下を抑制できる。   As a result, since the degree of decrease in the air volume is reduced, the cold air passes in common in any of a plurality of air blowing modes (either the first refrigerator 24a or the second refrigerator 24b is opened). A decrease in the cooling efficiency of the region 2e can be suppressed.

なお、冷蔵室2、チルド室3に限らず、その他の貯蔵室にも上記構成を適用することで、同様に高い冷却効率を得ることができる。   In addition, not only the refrigerator compartment 2 and the chilled room 3 but the above structure is applied also to other storage rooms, and similarly high cooling efficiency can be obtained.

また、貯蔵室(冷蔵室2、チルド室3)と、冷却器21と、冷却器21と熱交換した冷気を送風する軸流送風機22と、軸流送風機22で送風された冷気を貯蔵室へ導く送風経路11と、貯蔵室に送風された冷気を冷却器21に戻す戻り経路15と、を備え、送風経路11と戻り経路15の少なくとも一方は、冷気の通過する経路が分岐した分岐経路(冷蔵室第一送風ダクト11a、冷蔵室第二送風ダクト11b)を有し、分岐経路の風路抵抗を制御する風路抵抗制御手段24を備え、貯蔵室は、分岐経路のうちの一方の経路(冷蔵室第一送風ダクト11a)を通過する冷気によって冷却される第一の独立冷却領域2dと、分岐経路のうちの他方の経路(冷蔵室第二送風ダクト11b)を通過する冷気によって冷却される第二の独立冷却領域2cと、分岐経路のいずれの経路を通過する冷気によっても冷却される共通冷却領域2eとを有し、第一の独立冷却領域2d、第二の独立冷却領域2c及び共通冷却領域2eのいずれか1つ又は複数を組み合わせて冷却する複数の送風モードを有し、該複数の送風モードのいずれの場合でも軸流送風機22の吹き出し流れが遠心流域となる動作点とする。   In addition, the storage room (the refrigeration room 2 and the chilled room 3), the cooler 21, the axial blower 22 that blows the cold air heat-exchanged with the cooler 21, and the cold air blown by the axial blower 22 to the storage room And a return path 15 for returning the cool air blown into the storage chamber to the cooler 21, and at least one of the blow path 11 and the return path 15 is a branch path (a path through which the cool air passes is branched ( The first air duct 11a and the second air duct 11b) are provided with air passage resistance control means 24 for controlling the air passage resistance of the branch path, and the storage room is one of the branch paths. The first independent cooling region 2d cooled by the cold air passing through the (refrigeration room first air duct 11a) and the cold air passing through the other of the branch paths (the cold room second air duct 11b). Second independent cooling zone c and a common cooling region 2e that is cooled by the cold air passing through any of the branch paths, and any one of the first independent cooling region 2d, the second independent cooling region 2c, and the common cooling region 2e It has a plurality of air blowing modes that cool by combining one or a plurality, and in any case of the plurality of air blowing modes, the blowout flow of the axial flow fan 22 is set as an operating point that becomes a centrifugal flow region.

これにより、動作点が遠心流域となるようにすれば、霜の成長に伴って風路抵抗が増加しても、風量の減少度合いは小さく抑えられ、また、動作が不安定となることがある右上がり特性域に入ることも避けられるため、複数の送風モードのいずれの場合でも(冷蔵室第一ダンパ24aと冷蔵室第二ダンパ24bの何れを開放状態としても)、共通に冷気が通過する領域2eを過不足なく冷却できる冷却効率の高い冷蔵庫となる。   As a result, if the operating point is in the centrifugal flow region, even if the wind path resistance increases with the growth of frost, the degree of decrease in the air volume can be kept small, and the operation may become unstable. Since it is also possible to avoid entering into the upwardly rising characteristic region, the cold air passes in common in any of a plurality of air blowing modes (whichever of the refrigerator compartment first damper 24a and the refrigerator compartment second damper 24b is opened). A refrigerator with high cooling efficiency capable of cooling the region 2e without excess or deficiency.

また、共通冷却領域2eの容積が、第一の独立冷却領域2d及び第二の独立冷却領域2cの容積より小さくなるようにした。これにより、霜の成長に伴って動作点がやや小風量側に変化しても、冷却効率の低下の影響が顕著に現れることを抑制できる。   Further, the volume of the common cooling region 2e is made smaller than the volumes of the first independent cooling region 2d and the second independent cooling region 2c. Thereby, even if an operating point changes to a small air volume side with the growth of frost, it can suppress that the influence of the fall of cooling efficiency appears notably.

また、共通冷却領域2e、又は複数の送風モードのいずれの場合でも共通に冷気が流れる戻り経路15の領域に温度検知手段42を備え、温度検知手段42により検知される温度が所定温度以下になった場合、貯蔵室への送風を停止する。これにより、共通冷却領域2e、又は複数の送風モードのいずれの場合でも共通に冷気が流れる戻り経路15の領域を過度に冷却して凍結することを防止でき、冷却効率を向上できる。   Further, the temperature detection means 42 is provided in the area of the return path 15 through which the cold air flows in common in any of the common cooling area 2e and the plurality of air blowing modes, and the temperature detected by the temperature detection means 42 becomes a predetermined temperature or less. If this happens, stop blowing to the storage room. Thereby, it can prevent that the area | region of the return path | route 15 into which cold air | flow flows in common in any case of the common cooling area | region 2e or a some ventilation mode can be prevented from being overcooled and frozen, and cooling efficiency can be improved.

なお、本発明は上記した各実施例に限定されるものではなく、様々な変形例が含まれる。例えば、軸流送風機の風量−静圧特性と風路抵抗により定まる動作点が遠心流域となれば、使用する軸流送風機の風量−静圧特性に基づいて風路構成を定めても良いし、風路構成を定めた後に、動作点が遠心流域となる軸流送風機を設計あるいは選定しても良い。あるいは、動作点が遠心流域とならないダンパの開閉状態の組み合わせが生じる場合は、その組み合わせの使用を回避するように制御したり、ダンパを半開状態(例えば開角度45゜)として、軸流域や右上がり特性域の動作点を遠心流域となるように調整しても良い。
また、送風ダクトや戻りダクトの分割数を増しても良い。また、温度検知手段として、サーミスタ(thermistor)、熱電対、半導体温度センサ、デジタル温度センサ、アナログ温度センサ等、公知の温度センサを適用することができる。また、光センサ、赤外線センサ等の貯蔵物を検知する手段を備え、検知した貯蔵物の配置と温度検知手段の検知温度とを組み合わせることで、これらに基いてダンパの開閉や送風を制御する構成としてもよい。
すなわち、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。
In addition, this invention is not limited to each above-mentioned Example, Various modifications are included. For example, if the operating point determined by the airflow-static pressure characteristics and the airflow resistance of the axial flow fan is a centrifugal flow region, the airway configuration may be determined based on the airflow-static pressure characteristics of the axial flow fan used, After determining the air path configuration, an axial blower whose operating point is the centrifugal flow region may be designed or selected. Alternatively, when a combination of damper open / close states where the operating point is not in the centrifugal flow region occurs, control is performed so as to avoid the use of the combination, or the damper is set in a half-open state (for example, an open angle of 45 °), The operating point in the ascending characteristic range may be adjusted to be the centrifugal flow range.
Moreover, you may increase the division | segmentation number of a ventilation duct or a return duct. As the temperature detection means, a known temperature sensor such as a thermistor, a thermocouple, a semiconductor temperature sensor, a digital temperature sensor, an analog temperature sensor, or the like can be applied. Also, it has a means for detecting stored items such as an optical sensor and an infrared sensor, and controls the opening and closing of the damper and the ventilation based on these by combining the arrangement of the detected stored items and the detected temperature of the temperature detecting means. It is good.
That is, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.

1 冷蔵庫本体
2 冷蔵室
2c 領域(第二の独立冷却領域)
2d 領域(第一の独立冷却領域)
2e 領域(共通冷却領域)
3 チルド室
7 冷凍室
9 蒸発器収納室
11 冷蔵室送風ダクト(送風経路)
11a 冷蔵室第一送風ダクト(分岐経路)
11b 冷蔵室第二送風ダクト(分岐経路)
15 冷蔵室戻りダクト(戻り経路)
21 蒸発器(冷却器)
22 庫内送風機(軸流送風機)
24 冷蔵室ダンパ(風路抵抗制御手段)
24a 冷蔵室第一ダンパ
24b 冷蔵室第二ダンパ
31 冷蔵室吹き出し口
35 冷蔵室戻り口
41a 冷蔵室第一温度センサ(温度検知手段)
41b 冷蔵室第二温度センサ(温度検知手段)
42 チルド室温度センサ(温度検知手段)
46 棚
47 扉ポケット
49 制御基板
50 断熱箱体
51 上側断熱仕切壁(仕切部)
52 下側断熱仕切壁(仕切部)
55 製氷水タンク
60 真空断熱材
1 refrigerator body 2 refrigerator compartment 2c area (second independent cooling area)
2d region (first independent cooling region)
2e area (common cooling area)
3 Chilled room 7 Freezer room 9 Evaporator storage room 11 Refrigeration room air duct (air flow path)
11a Refrigeration room first air duct (branch route)
11b Refrigerating room second air duct (branch route)
15 Refrigerating room return duct (return path)
21 Evaporator (cooler)
22 Internal fan (axial fan)
24 Cold room damper (wind resistance control means)
24a refrigerator compartment first damper 24b refrigerator compartment second damper 31 refrigerator compartment outlet 35 refrigerator compartment return port 41a refrigerator compartment first temperature sensor (temperature detection means)
41b Second temperature sensor in the refrigerator compartment (temperature detection means)
42 Chilled chamber temperature sensor (temperature detection means)
46 Shelf 47 Door pocket 49 Control board 50 Heat insulation box 51 Upper heat insulation partition wall (partition)
52 Lower heat insulation partition wall (partition)
55 Ice making water tank 60 Vacuum insulation

Claims (2)

貯蔵室と、冷却器と、前記冷却器と熱交換した冷気を送風する送風機と、前記貯蔵室の背面から前記貯蔵室へ冷気を導く送風経路と、前記貯蔵室の冷気を前記冷却器に戻す戻り経路と、前記貯蔵室の背面断熱壁内の真空断熱材と、を備え、
前記送風経路と前記戻り経路の少なくとも一方は、冷気の通過する経路が分岐した分岐経路を有し、
該分岐経路の風路抵抗を制御する風路抵抗制御手段を備え、
前記貯蔵室は、前記分岐経路のうちの一方の経路を通過する冷気によって冷却される第一の独立冷却領域と、前記分岐経路のうちの他方の経路を通過する冷気によって冷却される第二の独立冷却領域と、前記分岐経路のいずれの経路を通過する冷気によっても冷却される共通冷却領域とを有し、
前記一方の経路の最小流路断面積は、前記他方の最小流路断面積より大きく、
前記分岐経路を前記真空断熱材側に投影した際に、前記分岐経路の少なくとも前記一方の経路は前記真空断熱材の外周との最短距離が50mm以上離間するようにしたことを特徴とする冷蔵庫。
A storage chamber, a cooler, a blower that blows cool air heat-exchanged with the cooler, a ventilation path that guides cool air from the back of the storage chamber to the storage chamber, and returns the cool air in the storage chamber to the cooler A return path and a vacuum heat insulating material in the rear heat insulating wall of the storage room,
At least one of the air blowing path and the return path has a branch path in which a path through which cool air passes is branched,
Air path resistance control means for controlling the air path resistance of the branch path;
The storage chamber is cooled by cold air passing through one of the branch paths and cooled by cold air passing through the other of the branch paths, and a second independent cooling region cooled by cold air passing through the other path of the branch paths. An independent cooling region, and a common cooling region that is cooled by cold air passing through any of the branch paths,
The minimum channel cross-sectional area of the one path is larger than the other minimum channel cross-sectional area,
Upon projecting the branch path to the vacuum heat insulating material side, refrigerator wherein at least said one path branch path, characterized in that the shortest distance between the outer periphery of the vacuum heat insulating material was made to separated at least 50 mm.
貯蔵室と、冷却器と、前記冷却器と熱交換した冷気を送風する送風機と、前記貯蔵室の背面から前記貯蔵室へ冷気を導く送風経路と、前記貯蔵室の冷気を前記冷却器に戻す戻り経路と、前記貯蔵室の背面断熱壁内の真空断熱材と、を備え、
前記送風経路と前記戻り経路の少なくとも一方は、冷気の通過する経路が分岐した分岐経路を有し、
該分岐経路の風路抵抗を制御する風路抵抗制御手段を備え、
前記貯蔵室は、前記分岐経路のうちの一方の経路を通過する冷気によって冷却される第一の独立冷却領域と、前記分岐経路のうちの他方の経路を通過する冷気によって冷却される第二の独立冷却領域と、前記分岐経路のいずれの経路を通過する冷気によっても冷却される共通冷却領域とを有し、
前記一方の経路の最小流路断面積は、前記他方の最小流路断面積より大きく、
前記分岐経路を前記真空断熱材側に投影した際に、前記分岐経路の少なくとも前記一方の経路は前記真空断熱材の折り返し部の内側に収まるようにしたことを特徴とする冷蔵庫。
A storage chamber, a cooler, a blower that blows cool air heat-exchanged with the cooler, a ventilation path that guides cool air from the back of the storage chamber to the storage chamber, and returns the cool air in the storage chamber to the cooler A return path and a vacuum heat insulating material in the rear heat insulating wall of the storage room,
At least one of the air blowing path and the return path has a branch path in which a path through which cool air passes is branched,
Air path resistance control means for controlling the air path resistance of the branch path;
The storage chamber is cooled by cold air passing through one of the branch paths and cooled by cold air passing through the other of the branch paths, and a second independent cooling region cooled by cold air passing through the other path of the branch paths. An independent cooling region, and a common cooling region that is cooled by cold air passing through any of the branch paths,
The minimum channel cross-sectional area of the one path is larger than the other minimum channel cross-sectional area,
Upon projecting the branch path to the vacuum heat insulating material side, at least the one path of the branch path refrigerator is characterized in that to fit the inside of the folded portion of the vacuum heat insulating material.
JP2012188199A 2012-08-29 2012-08-29 refrigerator Active JP5836227B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012188199A JP5836227B2 (en) 2012-08-29 2012-08-29 refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012188199A JP5836227B2 (en) 2012-08-29 2012-08-29 refrigerator

Publications (2)

Publication Number Publication Date
JP2014044035A JP2014044035A (en) 2014-03-13
JP5836227B2 true JP5836227B2 (en) 2015-12-24

Family

ID=50395417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012188199A Active JP5836227B2 (en) 2012-08-29 2012-08-29 refrigerator

Country Status (1)

Country Link
JP (1) JP5836227B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109974375A (en) * 2019-03-26 2019-07-05 澳柯玛股份有限公司 A kind of pre- boxing device of binary channels air door for refrigerator

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5832705B1 (en) * 2014-04-15 2015-12-16 三菱電機株式会社 refrigerator
JP2017215119A (en) * 2016-06-02 2017-12-07 パナソニックIpマネジメント株式会社 refrigerator
JP7057294B2 (en) * 2019-01-23 2022-04-19 日立グローバルライフソリューションズ株式会社 refrigerator
CN112449939B (en) * 2020-11-25 2022-04-08 德州市农业科学研究院 High-yield cherry planting greenhouse

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3399243B2 (en) * 1996-08-08 2003-04-21 三菱電機株式会社 Freezer refrigerator
JPH10205995A (en) * 1997-01-20 1998-08-04 Sanyo Electric Co Ltd Refrigerator
JP2007009928A (en) * 2005-06-28 2007-01-18 Hitachi Appliances Inc Vacuum heat insulating material, its manufacturing method, and refrigerator
JP2009052855A (en) * 2007-08-29 2009-03-12 Hitachi Appliances Inc Refrigerator
JP2011102663A (en) * 2009-11-10 2011-05-26 Toshiba Corp Refrigerator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109974375A (en) * 2019-03-26 2019-07-05 澳柯玛股份有限公司 A kind of pre- boxing device of binary channels air door for refrigerator

Also Published As

Publication number Publication date
JP2014044035A (en) 2014-03-13

Similar Documents

Publication Publication Date Title
JP5530852B2 (en) refrigerator
KR101260277B1 (en) Refrigerator
JP5836227B2 (en) refrigerator
JP5909426B2 (en) refrigerator
TWI716636B (en) refrigerator
JP6157903B2 (en) refrigerator
JP2017072336A (en) refrigerator
JP7126675B2 (en) refrigerator
JP2012237520A (en) Refrigerator
JP6165427B2 (en) refrigerator
JP5039761B2 (en) refrigerator
JP7364459B2 (en) refrigerator
JP4281003B2 (en) refrigerator
JP2019132503A (en) refrigerator
JP2001280794A (en) Refrigerator
JP7454458B2 (en) refrigerator
JP2019027649A (en) refrigerator
JP2018124060A (en) refrigerator
JP2006023035A (en) Refrigerator
JP7463217B2 (en) refrigerator
JP7374141B2 (en) refrigerator
JP5634359B2 (en) refrigerator
JP7369520B2 (en) refrigerator
JP6975735B2 (en) refrigerator
KR100597292B1 (en) Refrigerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151102

R150 Certificate of patent or registration of utility model

Ref document number: 5836227

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350