JP5834436B2 - Strength evaluation method of laser lap weld joint - Google Patents

Strength evaluation method of laser lap weld joint Download PDF

Info

Publication number
JP5834436B2
JP5834436B2 JP2011063680A JP2011063680A JP5834436B2 JP 5834436 B2 JP5834436 B2 JP 5834436B2 JP 2011063680 A JP2011063680 A JP 2011063680A JP 2011063680 A JP2011063680 A JP 2011063680A JP 5834436 B2 JP5834436 B2 JP 5834436B2
Authority
JP
Japan
Prior art keywords
evaluation
stress
laser
weld
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011063680A
Other languages
Japanese (ja)
Other versions
JP2012198164A (en
Inventor
塩崎 毅
毅 塩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2011063680A priority Critical patent/JP5834436B2/en
Publication of JP2012198164A publication Critical patent/JP2012198164A/en
Application granted granted Critical
Publication of JP5834436B2 publication Critical patent/JP5834436B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、有限要素法を用いたレーザ重ね溶接継手の強度評価方法に関する。   The present invention relates to a method for evaluating the strength of a laser lap weld joint using a finite element method.

レーザ溶接は主に生産コスト上のメリットから自動車車体の一部に組立て溶接法として適用されている。   Laser welding is applied as an assembly welding method to parts of automobile bodies mainly because of the merit of production cost.

非特許文献1は、自動車車体の組立て溶接法として、更に、レーザ溶接の適用範囲を拡大する場合、レーザ溶接部の強度特性を解明する必要性を指摘し、レーザ重ね継手の継手強度を予測する手法において溶接ビードの寸法と継手強度(引張剪断強度)との関係について力学的モデルを用いて述べている。   Non-Patent Document 1 points out the necessity of elucidating the strength characteristics of the laser welded part and predicts the joint strength of the laser lap joint when the application range of laser welding is further expanded as an assembly welding method for an automobile body. The method describes the relationship between weld bead dimensions and joint strength (tensile shear strength) using a mechanical model.

一般的に、強度評価を行う場合、有力な手段として有限要素法を用いることが多い。特許文献1には自動車車体のスポット溶接部の疲労寿命予測法が述べられている。スポット溶接部の有限要素法解析用シェルモデル(以下、FEMモデル)を形成し、荷重データを与えることで有限要素法線形弾性解析を行い、スポット溶接部の6分力と節点変位を求めている。   In general, when strength evaluation is performed, a finite element method is often used as an effective means. Patent Document 1 describes a fatigue life prediction method for spot welds of an automobile body. A shell model for finite element analysis (hereinafter referred to as FEM model) of spot welds is formed, and finite element method linear elasticity analysis is performed by giving load data to find the 6 component forces and nodal displacement of spot welds. .

また、特許文献2は、建設機械のフロント構造物等における疲労寿命を推定する方法に関し、有限要素法で求めた応力値を部材S−N線図に代入して求める際、溶接形状によって変化する切欠き係数で前記応力値を補正することが述べられている。   Further, Patent Document 2 relates to a method for estimating the fatigue life of a front structure or the like of a construction machine, and when the stress value obtained by the finite element method is obtained by substituting it into a member SN diagram, it changes depending on the welding shape. It is stated that the stress value is corrected by a notch coefficient.

構造物の応力集中部における局所形状に応じて設定された応力集中率と構造物の疲労寿命評価線図を予め記憶し、この応力集中率と疲労寿命評価線図、および有限要素法による応力解析値に基づいて各局所形状に対応した疲労寿命を評価する。例えば、有限要素法による応力解析値は隅肉溶接、突合せ溶接の溶接止端部に相当する位置のシェル要素の応力とする。   The stress concentration rate set according to the local shape in the stress concentration part of the structure and the fatigue life evaluation diagram of the structure are stored in advance, and this stress concentration rate and fatigue life evaluation diagram, and stress analysis by the finite element method The fatigue life corresponding to each local shape is evaluated based on the value. For example, the stress analysis value by the finite element method is the stress of the shell element at the position corresponding to the weld toe of fillet welding or butt welding.

特許第3842621号公報Japanese Patent No. 3842621 特許第3842621号公報Japanese Patent No. 3842621

宮崎等「レーザ重ね継手の引張せん断強度」新日鉄技報第385号2006年Miyazaki et al. "Tensile shear strength of laser lap joints" Nippon Steel Technical Report No. 385 2006

上述したように、レーザ溶接重ね継手の継手強度の解明が進められているが、適用範囲拡大のため、疲労特性などの強度評価も重要で、有限要素法を適用した高精度評価技術の確立が要望されている。   As described above, the joint strength of laser welded lap joints has been elucidated, but in order to expand the scope of application, it is also important to evaluate the strength of fatigue characteristics, etc. It is requested.

有限要素法で算出する応力は要素重心における応力であるため、FEMモデルのシェル要素のメッシュ寸法の採り方によって、溶接線(止端部)から要素重心までの距離が変化することから、計算される応力値も大きく異なり安定した精度の高い強度評価ができていなかった。   Since the stress calculated by the finite element method is the stress at the center of gravity of the element, the distance from the weld line (toe) to the center of gravity of the element varies depending on the mesh size of the shell element of the FEM model. The stress values differed greatly and stable and accurate strength evaluation could not be performed.

なお、特許文献1記載の方法は、疲労亀裂の発生位置をT字、十字、突合せ継手の溶接止端部としたもので、上下の板が重ね合わさって接触しているところの板表面から亀裂が生じるレーザ重ね溶接継手にそのまま適用することはできない。   In addition, the method described in Patent Document 1 uses a welded toe of a T-shape, cross, and butt joint as the fatigue crack occurrence position, and cracks occur from the plate surface where the upper and lower plates are in contact with each other. It cannot be applied as it is to a laser lap welded joint.

そこで、本発明は、有限要素法を用いてレーザ重ね溶接継手の応力分布を精度よく求め、引張り剪断強度、疲労特性などの強度評価を行うレーザ重ね溶接継手の強度評価方法を提供することを目的とする。   Therefore, the present invention has an object to provide a strength evaluation method for a laser lap weld joint that accurately obtains a stress distribution of a laser lap weld joint using a finite element method and evaluates strength such as tensile shear strength and fatigue characteristics. And

本発明の課題は以下の手段で達成可能である。
1.以下の手順を備えることを特徴とする有限要素法によるレーザ重ね溶接継手の強度評価方法。
手順1:レーザ重ね溶接継手を構成する上下の金属板とレーザ溶接部のFEMモデルを作成する。
手順2:前記モデルで構造解析を行い、前期金属板をモデル化したシェル要素と前記レーザ溶接部をモデル化したシェル要素の共有節点の位置で、前記金属板のシェル要素から応力を算出する。
手順3:算出された前記応力から評価応力を算出し、端部を除いたレーザ溶接部の評価応力分布を求める。
手順4:前記評価応力分布からレーザ溶接部端部の評価応力を外挿により求めて、溶接部全長の評価応力分布を作成し、強度評価を行う。
2.前記共有節点それぞれの評価応力は、前記共有節点につながる前記金属板をモデル化したシェル要素から得られる主応力の絶対値が最大値であることを特徴とする1に記載のレーザ重ね溶接継手の強度評価方法。
The object of the present invention can be achieved by the following means.
1. A method for evaluating the strength of a laser lap weld joint by a finite element method, comprising the following procedure.
Procedure 1: Create FEM models of upper and lower metal plates and laser welds that constitute a laser lap weld joint.
Procedure 2: The structural analysis is performed with the model, and the stress is calculated from the shell element of the metal plate at the position of the common node of the shell element that models the metal plate and the shell element that models the laser weld.
Procedure 3: An evaluation stress is calculated from the calculated stress, and an evaluation stress distribution of the laser welded portion excluding the end is obtained.
Procedure 4: The evaluation stress at the end of the laser weld is obtained by extrapolation from the evaluation stress distribution, an evaluation stress distribution for the entire length of the weld is created, and the strength is evaluated.
2. 2. The laser lap weld joint according to 1, wherein the evaluation stress of each of the joint nodes is a maximum value of a principal stress obtained from a shell element obtained by modeling the metal plate connected to the joint node. Strength evaluation method.

本発明によれば、FEMモデルのシェル要素のメッシュ寸法によらず精度良くレーザ重ね溶接継手の溶接部の評価応力を求めることが可能なため、有限要素法を用いた強度評価の精度を高めることができ、産業上極めて有用である。   According to the present invention, since the evaluation stress of the welded portion of the laser lap weld joint can be obtained accurately regardless of the mesh size of the shell element of the FEM model, the accuracy of strength evaluation using the finite element method can be improved. It is extremely useful in industry.

レーザ重ね溶接継手を説明する図。The figure explaining a laser lap welding joint. レーザ溶接継手のFEMモデルの一例で拡大された溶接部近傍を示す図。The figure which shows the welding part vicinity expanded by an example of the FEM model of a laser welding joint. 構造解析で得られる共有節点位置の主応力のうち絶対値が最大である主応力の分布を示す図。The figure which shows distribution of the principal stress whose absolute value is the maximum among the principal stress of the shared node position obtained by structural analysis. 図3の評価応力分布から溶接部の端部となる共有節点における評価応力を外挿により求めて作成した溶接部全長の評価応力分布を示す図。The figure which shows the evaluation stress distribution of the welding part full length created by calculating | requiring the evaluation stress in the shared node used as the edge part of a welding part by extrapolation from the evaluation stress distribution of FIG. 実施例(FEMモデル)。Example (FEM model). 実施例(4ケースのFEMモデルで得られる共有節点位置の評価応力分布を示す図)。Example (a figure showing an evaluation stress distribution of a shared node position obtained by an FEM model of 4 cases).

本発明は、FEMモデルの弾塑性解析よるレーザ重ね溶接継手の溶接始終端部における評価応力を、その前後までの評価応力分布から外挿して求めることを特徴とする。以下、図面を適宜参照しつつ詳細に説明する。   The present invention is characterized in that an evaluation stress at a welding start / end portion of a laser lap weld joint obtained by elasto-plastic analysis of an FEM model is obtained by extrapolating from an evaluation stress distribution before and after that. Hereinafter, it will be described in detail with appropriate reference to the drawings.

本発明は、まず、レーザ重ね溶接継手を構成する上下の金属板とレーザ溶接部のFEMモデルを作成する(手順1)。図1はレーザ重ね溶接継手を説明する図で、上板(薄板A)と下板(薄板B)の重ね合わせ部をレーザ溶接する。レーザ溶接は貫通溶接で、上板(薄板A)と下板(薄板B)の外表面のそれぞれに溶接ビード(以下、溶接部)が形成される。   In the present invention, first, an FEM model of upper and lower metal plates and a laser welded part constituting a laser lap weld joint is created (procedure 1). FIG. 1 is a diagram for explaining a laser lap weld joint, in which an overlap portion of an upper plate (thin plate A) and a lower plate (thin plate B) is laser-welded. Laser welding is through welding, and weld beads (hereinafter referred to as welds) are formed on the outer surfaces of the upper plate (thin plate A) and the lower plate (thin plate B).

FEMモデルは通常の溶接部の有限要素解析に用いられるシェル要素を用いて作成する。
図2は、レーザ溶接継手の溶接部近傍を拡大したもののFEMモデルの一例で、上板(薄板A)または下板(薄板B)およびレーザ溶接部をシェル要素でモデル化したものを示す。
レーザ溶接部は板状で、上板(薄板A)または下板(薄板B)に対し直立した板状とし、その下部は上板(薄板A)または下板(薄板B)と共有節点を有するとした。
The FEM model is created using a shell element used for a finite element analysis of a normal weld.
FIG. 2 shows an example of an FEM model in which the vicinity of the welded portion of the laser welded joint is enlarged, and shows an upper plate (thin plate A) or lower plate (thin plate B) and a laser welded portion modeled by shell elements.
The laser welded portion is plate-shaped and is upright with respect to the upper plate (thin plate A) or lower plate (thin plate B), and the lower part has a common node with the upper plate (thin plate A) or lower plate (thin plate B). Then.

次に、前記FEMモデルを用いて、荷重を与えた場合の構造解析を行い、レーザ溶接の端部となる共有節点を除いた、他の共有節点について、薄板のシェル要素から主応力を求める。一つの共有節点には薄板B(A)をモデル化した複数のシェル要素がつながり、それぞれのシェル要素から共有節点位置での主応力が得られるが、そのうちで絶対値が最大のものをその共有節点の評価応力とする。そして、溶接部端部を除いた溶接部の評価応力分布を求める(手順2、3)。   Next, using the FEM model, structural analysis is performed when a load is applied, and principal stresses are obtained from the shell elements of the thin plate for other shared nodes excluding the shared nodes that are the ends of laser welding. A plurality of shell elements that model the thin plate B (A) are connected to one shared node, and the principal stress at the shared node position can be obtained from each shell element, but the one with the largest absolute value is shared The evaluation stress at the nodal point. And the evaluation stress distribution of the welding part except a welding part edge part is calculated | required (procedures 2 and 3).

図3に、評価応力を共有節点位置の絶対値が最大である主応力とした場合の評価応力分布を示す。図における主応力はレーザー溶接部のシェル要素が存在する薄板B(A)の表面での値である。   FIG. 3 shows an evaluation stress distribution when the evaluation stress is a main stress having the maximum absolute value of the shared node position. The principal stress in the figure is a value on the surface of the thin plate B (A) where the shell element of the laser weld exists.

最後に、図4に示すように、評価応力分布から溶接部の端部となる共有節点における評価応力を外挿により求め、溶接部全長の評価応力分布を作成する。得られた評価応力分布を用いて強度評価を行う(手順4)。強度評価は、引張剪断強度、疲労強度などの評価が対象となる。   Finally, as shown in FIG. 4, the evaluation stress at the common node that becomes the end of the weld is extrapolated from the evaluation stress distribution, and the evaluation stress distribution of the entire length of the weld is created. Strength evaluation is performed using the obtained evaluation stress distribution (procedure 4). The strength evaluation is an evaluation of tensile shear strength, fatigue strength, and the like.

板厚0.7mmの薄板(幅40mm、全長145mm)の一部を重ね合わせて作成したレーザ溶接重ね継手をFEMモデル化し、引張荷重を負荷した場合の応力解析を行った。   A laser welded lap joint created by overlapping a portion of a thin plate (width 40 mm, total length 145 mm) having a thickness of 0.7 mm was converted into an FEM model, and stress analysis was performed when a tensile load was applied.

レーザ溶接部は溶接長10mmで引張荷重方向と直角となるように貫通溶接を行ったものとした。   The laser welded portion was welded to have a welding length of 10 mm and through-welded so as to be perpendicular to the tensile load direction.

FEMモデル化はシェル要素寸法を0.5mm、1mm、1.25mm、2.5mmとする4ケースについて実施した。   FEM modeling was performed for four cases with shell element dimensions of 0.5 mm, 1 mm, 1.25 mm, and 2.5 mm.

図5にFEMモデルの一例を、図6に4ケースについて共有節点位置の評価応力分布を示す。シェル要素寸法が異なってもレーザ溶接部の端に対応する位置を除いて応力分布はよく一致している。得られた評価応力分布からレーザ溶接部端での評価応力を外挿すればシェル要素寸法にかかわらずその値は一致することが認められる。   FIG. 5 shows an example of the FEM model, and FIG. 6 shows the evaluation stress distribution at the shared node position for four cases. Even if the shell element dimensions are different, the stress distributions are well matched except for the position corresponding to the end of the laser weld. It can be seen that if the evaluation stress at the end of the laser weld is extrapolated from the obtained evaluation stress distribution, the values match regardless of the shell element dimensions.

すなわち、本発明によれば、FEMモデルのシェル要素寸法によらず、同じ評価応力分布が得られるので、当該評価応力分布を用いれば安定した強度評価が可能である。   That is, according to the present invention, the same evaluation stress distribution can be obtained regardless of the shell element dimensions of the FEM model. Therefore, stable strength evaluation can be performed by using the evaluation stress distribution.

Claims (2)

以下の手順を備えることを特徴とする有限要素法によるレーザ重ね溶接継手の強度評価方法。
手順1:レーザ重ね溶接継手を構成する上下の金属板とレーザ溶接部をシェル要素でモデル化する。
手順2:前記モデルで構造解析を行い、前記金属板をモデル化したシェル要素と前記レーザ溶接部をモデル化したシェル要素は共有節点を有し、当該位置で、前記金属板のシェル要素から応力を算出する。
手順3:算出された前記応力から評価応力を算出し、端部を除いた他の前記共有点についてレーザ溶接部の評価応力分布を求める。
手順4:前記評価応力分布からレーザ溶接部端部となる共有点における評価応力を外挿により求めて、溶接部全長の評価応力分布を作成し、強度評価を行う。
A method for evaluating the strength of a laser lap weld joint by a finite element method, comprising the following procedure.
Procedure 1: Model the upper and lower metal plates and laser welds constituting the laser lap weld joint with shell elements.
Step 2: Structural analysis is performed with the model, and the shell element that models the metal plate and the shell element that models the laser weld have a common node, and stress is applied from the shell element of the metal plate at this position. Is calculated.
Step 3: calculating an evaluation stress from the calculated said stress, obtains the evaluation stress distribution of the laser welds for other of the shared node points excluding the ends.
Step 4: The evaluation stress in shared node points from the evaluation stress distribution serving as a laser weld end and extrapolated to create an evaluation stress distribution of the weld total length, performs strength evaluation.
前記共有節点それぞれの評価応力は、前記共有節点につながる前記金属板をモデル化したシェル要素から得られる主応力の絶対値が最大値であることを特徴とする請求項1に記載のレーザ重ね溶接継手の強度評価方法。   2. The laser lap welding according to claim 1, wherein an absolute value of a principal stress obtained from a shell element obtained by modeling the metal plate connected to the shared node is a maximum value for the evaluation stress of each of the shared nodes. Joint strength evaluation method.
JP2011063680A 2011-03-23 2011-03-23 Strength evaluation method of laser lap weld joint Active JP5834436B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011063680A JP5834436B2 (en) 2011-03-23 2011-03-23 Strength evaluation method of laser lap weld joint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011063680A JP5834436B2 (en) 2011-03-23 2011-03-23 Strength evaluation method of laser lap weld joint

Publications (2)

Publication Number Publication Date
JP2012198164A JP2012198164A (en) 2012-10-18
JP5834436B2 true JP5834436B2 (en) 2015-12-24

Family

ID=47180531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011063680A Active JP5834436B2 (en) 2011-03-23 2011-03-23 Strength evaluation method of laser lap weld joint

Country Status (1)

Country Link
JP (1) JP5834436B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6070514B2 (en) * 2013-11-07 2017-02-01 Jfeスチール株式会社 Fatigue life prediction method of laser lap weld joint
JP6546420B2 (en) * 2015-03-23 2019-07-17 三菱重工業株式会社 Fretting fatigue evaluation method
JP7217544B2 (en) * 2018-07-19 2023-02-03 国立研究開発法人産業技術総合研究所 BONDING STATE DETECTION MEMBRANE, BONDING STATE DETECTION DEVICE, AND BONDING STATE DETECTION METHOD
CN113295688A (en) * 2021-04-16 2021-08-24 开封大学 Detection system and detection method for fatigue strength of welding part

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04169836A (en) * 1990-11-01 1992-06-17 Mitsubishi Heavy Ind Ltd Method for estimating occurring time of fatigue damage
JP2003149130A (en) * 2001-11-12 2003-05-21 Univ Nihon Fatigue life predicting method for spot welding structure
JP4743112B2 (en) * 2006-12-26 2011-08-10 Jfeスチール株式会社 Fatigue life prediction method for spot welded structures
JP2009099132A (en) * 2007-09-28 2009-05-07 Toray Ind Inc Calculating method of adhesive characteristic, calculation device, program and recording medium
JP5053164B2 (en) * 2008-04-28 2012-10-17 新日本製鐵株式会社 Fracture prediction method and apparatus, program, and recording medium

Also Published As

Publication number Publication date
JP2012198164A (en) 2012-10-18

Similar Documents

Publication Publication Date Title
JP6070514B2 (en) Fatigue life prediction method of laser lap weld joint
Lazzarin et al. A notch intensity factor approach to the stress analysis of welds
KR101967571B1 (en) Structure for bonding press-molded article, structural article for automobile having said bonding structure, and method for manufacturing bonded article
JP4165551B2 (en) Spot weld fracture analysis method
JP4743112B2 (en) Fatigue life prediction method for spot welded structures
JP5834436B2 (en) Strength evaluation method of laser lap weld joint
TWI405964B (en) Fracture analysis method, device, computer program and computer-readable recording medium
Fermer et al. Industrial experiences of FE‐based fatigue life predictions of welded automotive structures
JP6119451B2 (en) Fatigue life prediction method for thin plate laser welds
JP6202232B1 (en) Fracture prediction method and apparatus, program, and recording medium
JP2008292206A (en) Crack propagation prediction method
JP5573633B2 (en) Method for predicting fatigue life of welded structures
JP6350270B2 (en) Fracture prediction method for adhesive joints
JP7054199B2 (en) Residual stress distribution measurement method, calculation method and program
Nagy et al. LEFM based fatigue design for welded connections in orthotropic steel bridge decks
JP2009244957A (en) Strength evaluation method of truck frame
CN113971361A (en) Structural stress-based anti-fatigue design method for complex welding joint
JP6561813B2 (en) Through-diaphragm welded jointed steel pipe column and manufacturing method of through-diaphragm welded jointed steel pipe column
Joshi et al. Influence of variations in geometric parameters and an alternative design for improved fatigue life of a mining dragline joint
JP2007093286A (en) Method for analyzing spot welding fracture
SHANG et al. Analysis of fatigue crack behaviour based on dynamic response simulations and experiments for tensile‐shear spot‐welded joints
JP6251999B2 (en) Fracture prediction method for adhesive joints
JP2021091002A (en) Welded structural member and method for manufacturing welded structural member
JP2007090366A (en) Analysis method for spot welding fracture
Nie et al. Ultimate capacity of bulge formed T-joints under brace axial compressive loading

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141021

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150324

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151019

R150 Certificate of patent or registration of utility model

Ref document number: 5834436

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250