JP6561813B2 - Through-diaphragm welded jointed steel pipe column and manufacturing method of through-diaphragm welded jointed steel pipe column - Google Patents

Through-diaphragm welded jointed steel pipe column and manufacturing method of through-diaphragm welded jointed steel pipe column Download PDF

Info

Publication number
JP6561813B2
JP6561813B2 JP2015240573A JP2015240573A JP6561813B2 JP 6561813 B2 JP6561813 B2 JP 6561813B2 JP 2015240573 A JP2015240573 A JP 2015240573A JP 2015240573 A JP2015240573 A JP 2015240573A JP 6561813 B2 JP6561813 B2 JP 6561813B2
Authority
JP
Japan
Prior art keywords
steel pipe
tensile strength
diaphragm
groove
weld metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015240573A
Other languages
Japanese (ja)
Other versions
JP2017104882A (en
Inventor
政樹 有田
政樹 有田
聡 北岡
聡 北岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2015240573A priority Critical patent/JP6561813B2/en
Publication of JP2017104882A publication Critical patent/JP2017104882A/en
Application granted granted Critical
Publication of JP6561813B2 publication Critical patent/JP6561813B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Joining Of Building Structures In Genera (AREA)
  • Arc Welding In General (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)

Description

本発明は、溶接継手を具備する溶接継手鋼管柱、及びその製造方法に関し、特にレ形開先(single bevel groove weld)の部分溶け込み溶接による通しダイヤフラム溶接継手鋼管柱、及びその製造方法に関する。   The present invention relates to a welded joint steel pipe column including a welded joint, and a manufacturing method thereof, and more particularly, to a through-diaphragm welded joint steel pipe column by partial penetration welding of a single bevel groove weld and a manufacturing method thereof.

鋼管の小口(端面)とダイヤフラムの面とを付き合わせるようにして全周に亘ってT字形継手で溶接して通しダイヤフラム溶接継手鋼管柱とする。このような鋼管柱では、溶接部に引張応力がかかった場合、破壊が溶接金属ではなく母材である鋼管側から先に発生するように構成する必要がある。   A steel pipe column with a diaphragm welded joint is formed by welding with a T-shaped joint over the entire circumference so that the small end (end face) of the steel pipe and the surface of the diaphragm are brought together. In such a steel pipe column, when a tensile stress is applied to the welded portion, it is necessary to configure the fracture to occur first from the side of the steel pipe, which is the base material, instead of the weld metal.

通しダイヤフラム溶接継手鋼管柱では、通常、レ形開先完全溶け込み溶接を行う。しかしながら、レ形開先完全溶け込み溶接は、組立工程において裏当金の取り付けとルートギャップ(鋼管の端面とダイヤフラムの面との間隙の大きさ)の管理が必要であり、当該鋼管柱の製造を煩雑にする。   In the case of through-diaphragm welded jointed steel pipe columns, a full groove welding is generally performed. However, the complete groove welding of the reshape groove requires the installation of the backing metal and the management of the root gap (the size of the gap between the end surface of the steel pipe and the diaphragm surface) in the assembly process. Make it complicated.

これに対して、部分溶け込み溶接を用いることができれば、裏当金の取り付けやルートギャップの管理が不要となり利便性が高い。しかしながら、部分溶け込み溶接を用いると、ルート側の少なくとも一部に未溶着部が形成される。そのため、従来の継手強度評価によると全強溶接継手(すなわち通しダイヤフラム溶接継手鋼管柱ための溶接継手)として用いることができなかった。   On the other hand, if partial penetration welding can be used, attachment of a backing metal and management of a route gap are unnecessary, and convenience is high. However, when partial penetration welding is used, an unwelded portion is formed on at least a part of the root side. Therefore, according to the conventional joint strength evaluation, it could not be used as a full strength welded joint (that is, a welded joint for through-diaphragm welded steel pipe columns).

特許文献1には、開先溶接継手において、母材の下端部にリップを形成してなることを特徴とした技術が開示されている。これによれば、開先のルート部にリップ状の突出部を設けることで、裏当金によるルートギャップ管理が省略できる。また、開先を狭くすることで従来の完全溶け込み溶接に比べて溶接量が削減できる。   Patent Document 1 discloses a technique characterized in that a lip is formed at the lower end of a base material in a groove welded joint. According to this, the route gap management by the backing metal can be omitted by providing the lip-shaped protrusion on the root portion of the groove. Moreover, the amount of welding can be reduced by narrowing a groove | channel compared with the conventional full penetration welding.

また、特許文献2には完全溶け込み溶接において、アンダーマッチング(溶接金属材料の引張強さが母材の引張強さを下回ること)であっても溶接金属部での破壊を防止し、母材で破壊させることで粘り強い溶接継手を得る技術が開示されている。   Further, Patent Document 2 discloses that in complete penetration welding, even in the case of undermatching (the tensile strength of the weld metal material is lower than the tensile strength of the base material), the weld metal part is prevented from being broken. A technique for obtaining a tenacious welded joint by breaking it is disclosed.

特開平9−174238号公報JP-A-9-174238 特開2015−91599号公報Japanese Patent Laying-Open No. 2015-91599

ところが、特許文献1に記載の発明は内面側の溶接が必須であり、鋼管柱の通しダイヤフラム溶接継手のように閉鎖断面に板で蓋をする場合には内面側に溶接トーチがアクセスできないため、適用できない。
また、特許文献2に記載の発明は完全溶け込み溶接に限定されており、部分溶け込み溶接継手に適用することはできない。
However, the invention described in Patent Document 1 requires welding on the inner surface side, and the welding torch cannot access the inner surface side when the closed cross section is covered with a plate like a through-diaphragm welded joint of a steel pipe column. Not applicable.
Moreover, the invention described in Patent Document 2 is limited to complete penetration welding and cannot be applied to partial penetration welding joints.

そこで、本発明は、レ形開先溶接継手に部分溶け込み溶接を用いた場合でも、母材よりも先に溶接金属の破壊を生じさせない通しダイヤフラム溶接継手鋼管柱を提供することを課題とする。また、当該通しダイヤフラム溶接継手鋼管柱の製造方法を提供する。   SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a through-diaphragm welded joint steel pipe column that does not cause the weld metal to break before the base metal even when partial penetration welding is used for the labyrinth welded joint. Moreover, the manufacturing method of the said through-diaphragm welded joint steel pipe column is provided.

以下、本発明について説明する。   The present invention will be described below.

請求項1に記載の発明は、通しダイヤフラムに鋼管を溶接してなる通しダイヤフラム溶接継手構造体であって、部分溶け込み溶接部のレ形開先の開先角度をα(°)、レ形開先が設けられた鋼管の板厚をt(mm)、溶接金属のうち鋼管の表面から最深部までの距離をt’(mm)、余盛り高さをe(mm)、溶接金属の引張強さをWMσ(N/mm)、及び鋼管の引張強さをBMσ(N/mm)としたとき、
かつ、
である、通しダイヤフラム溶接継手鋼管柱である。ただし、βは、0以上であって下記式を満たすβ’又は前記αの値のうち小さい方の値とする。
The invention according to claim 1 is a through-diaphragm welded joint structure in which a steel pipe is welded to a through-diaphragm, wherein the groove angle of the reshape groove of the partially penetration welded portion is α (°), and the reshape opening is performed. The thickness of the steel pipe provided with the tip is t (mm), the distance from the surface of the steel pipe to the deepest part of the weld metal is t '(mm), the extra height is e (mm), and the tensile strength of the weld metal When the thickness is WM σ u (N / mm 2 ) and the tensile strength of the steel pipe is BM σ u (N / mm 2 ),
And,
It is a through-diaphragm welded joint steel pipe column. However, β is 0 or more and β ′ satisfying the following formula or the smaller one of the α values.

請求項2に記載の発明は、請求項1に記載の通しダイヤフラム溶接継手鋼管柱において、溶接熱影響部の引張強さをHAZσ(N/mm)としたとき、
を満たす。
The invention according to claim 2 is the through-diaphragm welded joint steel pipe column according to claim 1, wherein the tensile strength of the weld heat affected zone is HAZ σ u (N / mm 2 ).
Meet.

請求項3に記載の発明は、請求項1又は2に記載の通しダイヤフラム溶接継手構造体において、鋼管が冷間成形角形鋼管であり、該冷間成形角形鋼管の角部の引張強さをcBMσ(N/mm)、冷間成形加工前の母材の引張強さをfBMσ(N/mm)としたとき、
及び、
が成立する。
The invention according to claim 3 is the through-diaphragm welded joint structure according to claim 1 or 2, wherein the steel pipe is a cold-formed square steel pipe, and the tensile strength of the corner of the cold-formed square steel pipe is expressed as cBM. σ u (N / mm 2 ), when the tensile strength of the base material before cold forming is fBM σ u (N / mm 2 ),
as well as,
Is established.

請求項4に記載の発明は、通しダイヤフラムに鋼管を部分溶け込み溶接で溶接してなる通しダイヤフラム溶接継手構造体を製造する方法であって、部分溶け込み溶接部のレ形開先の開先角度をα(°)、レ形開先が設けられた鋼管の板厚をt(mm)、溶接金属のうち鋼管の表面から最深部までの距離をt’(mm)、余盛り高さをe(mm)、溶接金属の引張強さをWMσ(N/mm)、及び鋼管の引張強さをBMσ(N/mm)としたとき、
かつ、
を満たすように溶接前の開先深さを決めて溶接をおこなう、通しダイヤフラム溶接継手鋼管柱の製造方法である。ただし、前記βは、0以上であって下記式を満たすβ’又は前記αの値のうち小さい方の値とする。
The invention according to claim 4 is a method of manufacturing a through-diaphragm welded joint structure in which a steel pipe is welded to a through-diaphragm by partial penetration welding, and the groove angle of the reshape groove of the partial penetration welded portion is set. α (°), t (mm) for the thickness of the steel pipe provided with the lathe groove, t ′ (mm) for the distance from the surface of the steel pipe to the deepest part of the weld metal, and e ( mm), when the tensile strength of the weld metal is WM σ u (N / mm 2 ), and the tensile strength of the steel pipe is BM σ u (N / mm 2 ),
And,
This is a method of manufacturing a through-diaphragm welded jointed steel pipe column in which welding is performed by determining a groove depth before welding so as to satisfy the above condition. However, β is 0 or more and β ′ that satisfies the following expression or the smaller one of the α values.

請求項5に記載の発明は、請求項4に記載の通しダイヤフラム溶接継手鋼管柱の製造方法において、溶接熱影響部の引張強さをHAZσ(N/mm)としたとき、
をさらに満たすように溶接を行う。
Invention of Claim 5 is the manufacturing method of the through-diaphragm welded joint steel pipe column of Claim 4, When the tensile strength of a welding heat affected zone is set to HAZ (sigma) u (N / mm < 2 >),
Welding is performed to further satisfy

請求項6に記載の発明は、請求項4又は5に記載の通しダイヤフラム溶接継手構造体の製造方法において、鋼管が冷間成形角形鋼管であり、該冷間成形角形鋼管の角部の引張強さをcBMσ(N/mm)、冷間成形加工前の母材の引張強さをfBMσ(N/mm)としたとき、
及び、
がさらに成立するように溶接を行う。
The invention according to claim 6 is the method of manufacturing a through-diaphragm welded joint structure according to claim 4 or 5, wherein the steel pipe is a cold-formed square steel pipe, and the tensile strength of the corner of the cold-formed square steel pipe is When the thickness is cBM σ u (N / mm 2 ) and the tensile strength of the base material before cold forming is fBM σ u (N / mm 2 ),
as well as,
Welding is performed so that

本発明によれば、レ形開先溶接継手に部分溶け込み溶接を用いた場合でも、母材よりも先に溶接金属の破壊を生じさせない通しダイヤフラム溶接継手鋼管柱を提供することができる。   According to the present invention, it is possible to provide a through-diaphragm welded jointed steel pipe column that does not cause the weld metal to break before the base metal even when partial penetration welding is used for the reshape groove welded joint.

図1は通しダイヤフラム溶接継手構造体10の外観斜視図である。FIG. 1 is an external perspective view of a through-diaphragm welded joint structure 10. 通しダイヤフラム溶接継手構造体10の断面を示す図である。1 is a view showing a cross section of a through-diaphragm welded joint structure 10. FIG. 溶接部20の一部を拡大した図である。It is the figure which expanded a part of welding part 20. FIG. 溶接部20について説明する図である。It is a figure explaining the welding part. n−t−w座標系を表した図である。It is a figure showing the ntw coordinate system. 図6(a)は溶接部20をモデル化した図で未溶け込み部がない例、図6(b)は溶接部20をモデル化した図で未溶け込み部がある例である。6A shows an example in which the welded portion 20 is modeled and has no undissolved portion, and FIG. 6B shows an example in which the welded portion 20 is modeled and has an undissolved portion. 図7(a)は母材の破壊に用いるモデルを説明する図で、2次元の座標系、図7(b)はそのn−t−w直交座標系による表示である。FIG. 7A is a diagram for explaining a model used for the destruction of the base material. FIG. 7B is a two-dimensional coordinate system, and FIG. 7B is a display using the nt-w orthogonal coordinate system. 開先に沿った破壊に用いるモデルを説明する図で、2次元の座標系である。It is a figure explaining the model used for the fracture | rupture along a groove | channel, and is a two-dimensional coordinate system. 溶接金属の破壊に用いるモデルを説明する図で2次元の座標系である。It is a figure explaining the model used for destruction of a weld metal, and is a two-dimensional coordinate system. 開先角度と溶け込み深さ比下限値との関係を表した図である。It is a figure showing the relationship between a groove angle and a penetration depth ratio lower limit. 溶け込み深さとマッチング下限値との関係を表した図である。It is a figure showing the relationship between a penetration depth and a matching lower limit. 鋼管角部を説明する図である。It is a figure explaining a steel pipe corner. 冷間加工前の平坦な鋼材の引張強さと鋼管角部の引張強さとの関係を説明する図である。It is a figure explaining the relationship between the tensile strength of the flat steel material before cold work, and the tensile strength of a steel pipe corner. 解析モデルを説明する図である。It is a figure explaining an analysis model.

以下本発明を図面に示す形態に基づき説明する。ただし本発明はこれら形態に限定されるものではない。   The present invention will be described below based on embodiments shown in the drawings. However, the present invention is not limited to these forms.

図1は形態の1つの例を説明する図で、通しダイヤフラム溶接継手鋼管柱10の外観を模式的に表した斜視図である。図2は図1にII−IIで示した線に沿って切断した(すなわち、通しダイヤフラム溶接継手鋼管柱の長手方向に沿った方向に切断した1つの)断面図である。また、図3は図2にIIIで示した部位、すなわち溶接部20に注目して拡大した断面図である。   FIG. 1 is a view for explaining one example of the form, and is a perspective view schematically showing the appearance of a through-diaphragm welded jointed steel pipe column 10. FIG. 2 is a cross-sectional view taken along a line indicated by II-II in FIG. 1 (that is, one cut in a direction along the longitudinal direction of a through-diaphragm welded joint steel pipe column). FIG. 3 is an enlarged cross-sectional view paying attention to the portion indicated by III in FIG.

図1〜図3よりわかるように、本形態では通しダイヤフラム溶接継手鋼管柱10は、角形鋼管11、サイコロ(タイコと呼ばれることもある。)12、梁13、ダイヤフラム14を有して構成されている。ここからわかるように本形態で通しダイヤフラム溶接継手鋼管柱10は通しダイヤフラム形式の溶接継手を用いた角形鋼管柱である。   As can be seen from FIGS. 1 to 3, in this embodiment, the through-diaphragm welded joint steel pipe column 10 includes a square steel pipe 11, a dice (sometimes referred to as a Tyco) 12, a beam 13, and a diaphragm 14. Yes. As can be seen from this, in this embodiment, the through-diaphragm welded joint steel pipe column 10 is a square steel pipe column using a through-diaphragm weld joint.

通しダイヤフラム溶接継手鋼管柱10は、同軸に配置された2つの角形鋼管11の向かい合う端面(小口)間に、サイコロ12が配置される。サイコロ12も形状としては角形鋼管である。これによりサイコロ12の端面と角形鋼管柱11の端面とが対向する部位が2か所形成されるが、ここにそれぞれダイヤフラム14が備えられる。ダイヤフラム14は角形鋼管11及びサイコロ12よりも大きな外形を有する板状の鋼材であり、その一方の板面が角形鋼管柱11の端面に溶接され、他方の板面がサイコロ12の端面に溶接されている。従って、図1〜図3よりわかるように、角形鋼管11及びサイコロ12の外周からダイヤフラム14の外周が突出した形態となる。   In the through-diaphragm welded jointed steel pipe column 10, a dice 12 is arranged between two opposing end surfaces (small openings) of two rectangular steel pipes 11 arranged coaxially. The dice 12 is also a square steel pipe as a shape. As a result, two portions where the end surface of the dice 12 and the end surface of the square steel pipe column 11 are opposed to each other are formed, and a diaphragm 14 is provided here. The diaphragm 14 is a plate-shaped steel material having an outer shape larger than that of the square steel pipe 11 and the dice 12, one plate surface of which is welded to the end surface of the square steel tube column 11, and the other plate surface is welded to the end surface of the dice 12. ing. Accordingly, as can be seen from FIGS. 1 to 3, the outer periphery of the diaphragm 14 protrudes from the outer periphery of the square steel pipe 11 and the dice 12.

図1〜図3よりわかるように、本形態の通しダイヤフラム溶接継手鋼管柱10の溶接継手では、ダイヤフラム14の表裏面では角形鋼管11、及びサイコロ12の端面が付き当てられているT字となった部位で溶接金属21により溶接されて溶接部20が形成されている。この溶接部20は突き当てられた部位の全線(全周)に亘って設けられている。本発明では、溶接部20は部分溶け込み溶接により形成され、溶接部20とは反対側には裏当て金は配置されていない。以下、溶接部20についてさらに詳しく説明する。   As can be seen from FIGS. 1 to 3, in the welded joint of the through-diaphragm welded joint steel pipe column 10 of this embodiment, the square steel pipe 11 and the end face of the dice 12 are attached to the front and back surfaces of the diaphragm 14. The welded portion 20 is formed by welding with the weld metal 21 at the part. The welded portion 20 is provided over the entire line (the entire circumference) of the abutted portion. In the present invention, the welded portion 20 is formed by partial penetration welding, and no backing metal is disposed on the side opposite to the welded portion 20. Hereinafter, the welded portion 20 will be described in more detail.

この図からわかるように、角形鋼管11である母材は、その端面の一部はダイヤフラム14の一方の面に対して傾斜しており、部分的なレ形開先が形成されている。また他の一部はダイヤフラム14の一方の面に対して重なるように形成されている。そしてダイヤフラム14と角形鋼管11の部分的なレ形開先に溶接金属21が介在して接合されている。このとき次の形状、及び値を定義する。図4に模式的な図を表した。   As can be seen from this figure, a part of the end surface of the base material that is the square steel pipe 11 is inclined with respect to one surface of the diaphragm 14, and a partial re-shaped groove is formed. The other part is formed so as to overlap with one surface of the diaphragm 14. The weld metal 21 is joined to the partial groove of the diaphragm 14 and the square steel pipe 11 with the weld metal 21 interposed therebetween. At this time, the following shapes and values are defined. A schematic diagram is shown in FIG.

鋼管厚さ:t(mm)
余盛り高さ:e(mm)
鋼管表面から未溶接部までの厚さ(溶接部厚さ):t’(mm)
開先角度:α(°)(0°≦α<90°)
鋼管の引張強さ:BMσ(N/mm
溶接金属の引張強さ:WMσ(N/mm
Steel pipe thickness: t (mm)
Extra height: e (mm)
Thickness from steel pipe surface to unwelded part (welded part thickness): t ′ (mm)
Groove angle: α (°) (0 ° ≦ α <90 °)
Tensile strength of steel pipe: BM σ u (N / mm 2 )
Tensile strength of weld metal: WM σ u (N / mm 2 )

そして本発明では、式(1)、及び式(2)が成立する。   And in this invention, Formula (1) and Formula (2) are materialized.


ここで、式(2)中のβ(°)は溶接金属における破壊の生じる角度を表し、0≦β≦αであるから、βは下式(3)を満たすβ’、及びαのうち小さい方の値をとる。   Here, β (°) in the formula (2) represents an angle at which fracture occurs in the weld metal, and 0 ≦ β ≦ α. Therefore, β is the smaller of β ′ and α satisfying the following formula (3) Take the value of.

式(1)〜式(3)は、後でその導出について説明するが、鋼管の部分溶け込み溶接の溶接部において溶接金属で破壊することなく母材(鋼管)で破壊するための溶接金属の必要な強度を表わす。これによれば、通しダイヤフラム溶接継手鋼管柱10において、溶接部に部分溶け込み溶接を用いた場合であっても、溶接金属で破壊されることに先んじて、母材(鋼管)から破壊を生じさせることができる。従って、これを満たす限りにおいて公知の材料、及び公知の溶接条件を適用して、通しダイヤフラム溶接継手鋼管柱において、部分溶け込み溶接を適用することができ、裏当て金を用いる必要やルートギャップの調整が不要となる。またこの条件を満たすことにより、より適切な溶接を行う信頼性を向上させることも意味する。そしてその際にも溶接金属の破壊靱性を向上させる等の特別な措置を必要としない。例えば必要以上に高強度で高価な溶接金属を適用しなくてもよい。   Equations (1) to (3) will be described later, but the need for a weld metal to break with the base metal (steel pipe) without breaking with the weld metal in the weld portion of the partial penetration welding of the steel pipe Represents strong strength. According to this, in the through-diaphragm welded jointed steel pipe column 10, even when partial penetration welding is used in the welded portion, the base metal (steel pipe) is broken prior to being broken by the weld metal. be able to. Therefore, as long as this is satisfied, it is possible to apply partial penetration welding in a through-diaphragm welded joint steel pipe column by applying known materials and known welding conditions, and using a backing metal and adjusting the root gap Is no longer necessary. In addition, satisfying this condition also means improving the reliability of performing more appropriate welding. In this case, special measures such as improving the fracture toughness of the weld metal are not required. For example, it is not necessary to apply a weld metal that is stronger and more expensive than necessary.

ここで、より簡便に鋼管11の引張強さBMσ(N/mm)、溶接金属の引張強さWMσ(N/mm)を得る手段として、それぞれのビッカース硬さからの算出を挙げることができる。具体的には式(4)、式(5)を演算すればよい。式(4)、式(5)は、文献(SAE International,SAE J 417、1983)のビッカース硬さHvと引張強さの換算表をもとに、Hvと引張強さを関係式で表わしたものである。 Here, as a means for more easily obtaining the tensile strength BM σ u (N / mm 2 ) of the steel pipe 11 and the tensile strength WM σ u (N / mm 2 ) of the weld metal, calculation from the respective Vickers hardness is performed. Can be mentioned. Specifically, equations (4) and (5) may be calculated. Equations (4) and (5) represent Hv and tensile strength as a relational expression based on a conversion table of Vickers hardness Hv and tensile strength in the literature (SAE International, SAE J 417, 1983). Is.

式中のWMHvは溶接金属21のビッカース硬さ(Hv)であり、BMHvは鋼管のビッカース硬さ(Hv)である。またビッカース硬さの測定は、鋼管11a、溶接部20の溶接金属21の外側表面から深さ2mmの位置でJIS Z2244:2009に基づきおこなった値を用いる。 WM Hv in the equation is the Vickers hardness (Hv) of the weld metal 21, and BM Hv is the Vickers hardness (Hv) of the steel pipe. Further, the measurement of the Vickers hardness uses a value obtained based on JIS Z2244: 2009 at a position 2 mm deep from the outer surface of the weld metal 21 of the steel pipe 11a and the welded portion 20.

次に、式(1)〜式(3)の根拠について説明する。すなわち、部分溶け込み溶接を用いた通しダイヤフラム溶接継手鋼管柱において、部分溶け込み溶接の溶接金属で破壊することなく、母材である鋼管で破壊するための各部が備えるべき強度を極限解析により求めた。   Next, the grounds of Expression (1) to Expression (3) will be described. That is, in a through-diaphragm welded jointed steel pipe column using partial penetration welding, the strength to be provided for each part to be broken by the steel pipe as a base material was obtained by ultimate analysis without being broken by the weld metal of partial penetration welding.

ここでは、以下の(i)〜(v)を前提とする。
(i)Von Misesの降伏条件における降伏応力σを、単軸引張試験から得られる引張強さσに置き換えた式(10)の破壊条件が成り立つ。
Here, the following (i) to (v) are assumed.
(I) The fracture condition of Expression (10) is established, in which the yield stress σ y in the Von Mises yield condition is replaced with the tensile strength σ u obtained from the uniaxial tensile test.

ここで、σ、σ、σは3次元応力状態の主応力である。さらに、式(10)の破壊条件を任意の座標系に対する応力で記述するため、図5に示したn−t−w直交座標系を設定すると、各座標の6つの応力成分(σ、σ、σ、τnt、τtw、τwn)を用いて式(11)で表わされる。 Here, σ 1 , σ 2 , and σ 3 are main stresses in a three-dimensional stress state. Furthermore, in order to describe the fracture condition of the equation (10) with the stress with respect to an arbitrary coordinate system, when the nt-w orthogonal coordinate system shown in FIG. 5 is set, six stress components (σ n , σ (t 1 , σ w , τ nt , τ tw , τ wn )).

(ii)溶接長さはそのビード幅に比べて十分大きく、破壊面での溶接線方向の伸縮は生じないものとする。すなわち、溶接線方向の垂直ひずみは0とする。
(iii)継手には軸方向の引張力のみが作用しているものとする。
(iv)図6(a)、図6(b)に示した溶接部のように、溶接部はレ形開先とし、開先を設ける側の母材板厚をt(mm)、溶接金属のうち母材の表面から最深部までの距離(溶け込み深さ)t’(mm)、開先角度α(°)、余盛り高さはe(mm)とする。なお、図6(a)は、未溶着部がルートフェイス(母材が他方の材料に付き当てられた面)のみからなる例、図6(b)は、未溶着部が未溶け込み部(開先のうち溶接金属が溶け込まなかった部位。通常は間隙)及びルートフェイスからなる例である。何れの場合でも未溶着部はt−t’で算出できる。
(v)溶接金属及び母材はいずれもそれぞれの領域内で強度は均一であるとする。
(Ii) The weld length is sufficiently larger than the bead width, and the weld line does not expand or contract at the fracture surface. That is, the vertical strain in the weld line direction is zero.
(Iii) It is assumed that only the tensile force in the axial direction is acting on the joint.
(Iv) Like the welds shown in FIGS. 6 (a) and 6 (b), the welded portion has a re-shaped groove, the base metal plate thickness on the side where the groove is provided is t (mm), and the weld metal Among them, the distance from the surface of the base material to the deepest part (penetration depth) t ′ (mm), the groove angle α (°), and the surplus height are e (mm). 6 (a) shows an example in which the unwelded portion is composed only of the root face (surface on which the base material is attached to the other material), and FIG. 6 (b) shows that the unwelded portion is not melted (open This is an example consisting of a portion where the weld metal has not melted (usually a gap) and a root face. In any case, the unwelded portion can be calculated by tt ′.
(V) Both the weld metal and the base metal are assumed to have uniform strength within each region.

次に、母材の破壊、母材のうち開先に沿った部位での破壊、及び溶接金属での破壊の3つの破壊について、それぞれ破壊機構を仮定し、モデル化したうえで最大耐力を算出し、関係式を導く。以下にそれぞれについて説明する。   Next, calculate the maximum proof stress after modeling the fracture mechanism for each of the three fractures: fracture of the base metal, fracture of the base metal along the groove, and fracture of the weld metal. And derive the relational expression. Each will be described below.

<母材全厚の破壊耐力>
図7に母材全厚の破壊に用いるモデルを示した。もととなる形状はここでは図6(a)である。ただし図6(b)の例も同じである。図7(a)は2次元の座標系、図7(b)はn−t−w直交座標系による表示である。
図7(a)に示したように、破壊位置の運動的許容状態における荷重作用方向の変位速度をuとし、破壊機構が生ずる角度を板厚方向に対しθとする。さらに、図7(b)に示したように、破壊機構に対し、n軸は破壊機構の直交方向、t軸は破壊機構に沿う方向、w軸は溶接線と平行な方向となるように直交座標系n−t−wをとる。すると、破壊機構に沿う方向(t方向)およびこれに直交する方向(n方向)の速度成分はそれぞれ、u・sinθ、u・cosθとなる。t軸方向の垂直応力σは0とみなされるから、上記式(11)にσ=0を代入して、母材の引張強さをBMσとすれば、破壊条件は式(12)で表わされる。
<Fracture strength of the entire thickness of the base material>
FIG. 7 shows a model used for breaking the entire thickness of the base material. The original shape is shown in FIG. However, the example of FIG. 6B is the same. FIG. 7A shows a display using a two-dimensional coordinate system, and FIG. 7B shows a display using an nt-w orthogonal coordinate system.
As shown in FIG. 7 (a), the displacement speed of the load acting direction and u 1 in motor acceptability condition breaking locations, and θ the angle of fracture mechanism occurs with respect to the thickness direction. Further, as shown in FIG. 7B, the n-axis is orthogonal to the fracture mechanism, the t-axis is perpendicular to the fracture mechanism, and the w-axis is perpendicular to the weld line. Take the coordinate system ntw. Then, the velocity components in the direction along the fracture mechanism (t direction) and the direction orthogonal to the direction (n direction) are u 1 · sin θ and u 1 · cos θ, respectively. Since the normal stress σ t in the t-axis direction is regarded as 0, if σ t = 0 is substituted into the above equation (11) and the tensile strength of the base material is BM σ u , the fracture condition is the equation (12 ).

図7(a)に示す破壊機構は、w軸方向のひずみεは0、t−w平面内のせん断ひずみγtwは0、w−n平面内のせん断ひずみγwnは0なので、式(12)および塑性流れの法線則から、式(13)に示す関係がそれぞれ成立する。 In the fracture mechanism shown in FIG. 7A, the strain ε w in the w-axis direction is 0, the shear strain γ tw in the tw plane is 0, and the shear strain γ wn in the wn plane is 0. 12) and the normal flow law of plastic flow, the relationship shown in equation (13) holds.

式(13)を式(12)に代入すると、破壊条件式は式(14)のようになる。   By substituting equation (13) into equation (12), the destructive conditional equation becomes equation (14).

ここで図7(b)に示した単位長さ(=1)あたりの図7(a)における応力仕事増分Wi1は式(15)で表される。 Here, the stress work increment W i1 in FIG. 7A per unit length (= 1) shown in FIG. 7B is expressed by Expression (15).

ここで、応力σ、τntは破壊条件である式(14)を満たす。塑性流れの法線則から、u・cosθ、及びu・sinθは式(16)のようになる。 Here, the stresses σ n and τ nt satisfy Expression (14) which is a fracture condition. From the normal law of plastic flow, u 1 · cos θ and u 1 · sin θ are as shown in Equation (16).

式(16)からτntはσを用いて式(17)のように表される。 From Expression (16), τ nt is expressed as Expression (17) using σ n .

式(14)及び式(17)から式(18)のようにσ、τntを求め、これを式(15)に代入することにより応力仕事増分は式(19)のようになる。 By calculating σ n and τ nt as in Expression (18) from Expression (14) and Expression (17) and substituting them into Expression (15), the stress work increment becomes as in Expression (19).

一方、外力による仕事増分Wex1は、溶接線方向(w方向)を単位長さとした場合の母材全厚の破壊耐力をPBM1とすると、式(20)により表される。 On the other hand, the work increment W ex1 due to the external force is expressed by Expression (20), where PBM1 is the fracture resistance of the entire thickness of the base material when the weld line direction (w direction) is the unit length.

仮想仕事の原理より、式(19)と式(20)とが等しいので、PBM1について解くと式(21)が得られる。 Since the equation (19) is equal to the equation (20) based on the principle of virtual work, the equation (21) is obtained by solving for PBM1 .

式(21)を最小とするθは0であるから、破壊機構図7(a)、図7(b)に関する破壊耐力はt、BMσを用いて式(22)で表される。 Since θ which minimizes the equation (21) is 0, the fracture proof strength relating to the fracture mechanism FIGS. 7A and 7B is expressed by the equation (22) using t and BM σ u .

<母材の開先に沿った破壊耐力>
図8に母材のうち開先に沿った破壊に用いるモデルを示した。これは図7(a)に相当する図である。これにより破壊耐力を算出する。荷重作用方向の変位速度をuとし、破壊機構の生ずる角度は開先角度αに一致するので、破壊機構に沿う方向および直交方向の応力成分はそれぞれ、u・sinα、u・cosαとなる。上記した例に倣って破壊機構に対し、直交座標系n−t−wを、nは破壊機構の直交方向、tは破壊機構に沿う方向、wは溶接線と平行な方向となるようにとる。上記母材全厚の破壊と同様、t軸方向の垂直応力σtは0、w方向のひずみεwは0、t−w平面内のせん断ひずみγtwは0、w−n平面内のせん断ひずみγwnは0と仮定すると、破壊条件式は母材の引張強さをBMσとすると、式(14)となる。溶接線方向の単位長さあたりの、図8における応力仕事増分Wi2は、次式(23)で表される。
<Fracture strength along the groove of the base material>
FIG. 8 shows a model used for fracture along the groove in the base material. This is a diagram corresponding to FIG. Thereby, the fracture strength is calculated. Since the displacement speed in the load acting direction is u 2 and the angle at which the fracture mechanism is generated coincides with the groove angle α, the stress components in the direction along the fracture mechanism and in the orthogonal direction are u 2 · sin α and u 2 · cos α, respectively. Become. Following the above example, the orthogonal coordinate system nt-w is used for the fracture mechanism, where n is the orthogonal direction of the fracture mechanism, t is the direction along the fracture mechanism, and w is the direction parallel to the weld line. . As in the case of the fracture of the total thickness of the base material, the normal stress σ t in the t-axis direction is 0, the strain ε w in the w direction is 0, the shear strain γ tw in the tw plane is 0, and the shear in the wn plane is Assuming that the strain γ wn is 0, the fracture condition equation is expressed by equation (14), where BM σ u is the tensile strength of the base material. The stress work increment W i2 in FIG. 8 per unit length in the weld line direction is expressed by the following equation (23).

ここで、応力σn、τntは破壊条件である式(14)を満たす。塑性流れの法線則から、σ、τntは上記母材全厚の破壊の場合と同様に考えられ、式(18)式のθをαに置き換えた式で表せるので、式(23)に代入すると、応力仕事増分は下式(24)となる。 Here, the stresses σ n and τ nt satisfy Expression (14) which is a fracture condition. From the normal law of plastic flow, σ n and τ nt can be considered in the same manner as in the case of the destruction of the full thickness of the base material, and can be expressed by an expression in which θ in Expression (18) is replaced with α. Substituting into, the stress work increment is given by the following equation (24).

ここで、lcr2は下式(25)で表わされる。 Here, l cr2 is represented by the following formula (25).

一方、外力による仕事増分Wex2は、溶接継手の溶接線方向単位長さあたりの母材の開先に沿う破壊耐力をPBM2とすると、下式(26)となる。 On the other hand, work increment W ex2 by external force, the fracture strength along the open destination base material per weld line direction unit length of the weld joint and P BM2, the following equation (26).

仮想仕事の原理より、式(24)と式(26)とが等しいとおき、式(25)を代入するとPBM2はt’、α、BMσを用いて下式(27)で表わされる。 Based on the principle of virtual work, assuming that equation (24) and equation (26) are equal, and substituting equation (25), P BM2 is expressed by the following equation (27) using t ′, α, and BM σ u. .

<溶接金属の破壊耐力>
溶接金属の破壊に用いるモデルを図9に示した。図9は図7(a)に相当する図である。
荷重作用方向の塑性変形増分をuとし、破壊機構が生じる角度をβ(0≦β≦α)とする。図7(b)の例に倣って破壊機構に対し、nは破壊機構の直交方向、tは破壊機構に沿う方向、wは溶接線と平行な方向となるように直交座標系n−t−wをとる。すると、上記した母材全厚の破壊の場合と同様に、t軸方向の垂直応力σは0、w方向のひずみεは0、t−w平面内のせん断ひずみγtは0、w−n平面内のせん断ひずみγwnは0と仮定すると、破壊条件式は式(14)の母材引張強さを溶接部の引張強さWMσに置き換え、式(28)となる。
<Fracture strength of weld metal>
A model used for fracture of the weld metal is shown in FIG. FIG. 9 is a diagram corresponding to FIG.
The plastic deformation increment in the load acting direction is u 3 and the angle at which the fracture mechanism occurs is β (0 ≦ β ≦ α). Following the example of FIG. 7B, with respect to the fracture mechanism, n is the orthogonal direction of the fracture mechanism, t is the direction along the fracture mechanism, and w is the direction parallel to the weld line. Take w. Then, as in the case of the base material the total thickness of the fracture above, the t-axis direction of the normal stress sigma t 0, the w direction strain epsilon w is 0, t-w shear strain [gamma] t w in the plane 0, w Assuming that the shear strain γ wn in the −n plane is 0, the fracture condition equation is obtained by replacing the base material tensile strength of Equation (14) with the tensile strength WM σ u of the welded portion, and Equation (28).

溶接線方向の単位長さあたりの、破壊機構図9における応力仕事増分Wi3は、次式(29)で表わせる。 The stress work increment W i3 in the fracture mechanism FIG. 9 per unit length in the weld line direction can be expressed by the following equation (29).

ここで、応力σ、τntは破壊条件である式(28)を満たす。塑性流れの法線則から、σ、τntは式18のθをβに置き換えた式で表せるので、式(29)に代入すると、応力仕事増分は下式(30)となる。 Here, the stresses σ n and τ nt satisfy Expression (28) which is a fracture condition. From the normal law of plastic flow, σ n and τ nt can be expressed by an expression in which θ in Expression 18 is replaced with β. Therefore, when substituting into Expression (29), the stress work increment becomes the following Expression (30).

ここで、lcr3は下式(31)で表わされる。 Here, l cr3 is represented by the following formula (31).

一方、外力による仕事増分Wex3は、溶接継手の溶接線方向単位長さあたりの溶接金属の耐力をPWMとすると、下式(32)となる。 On the other hand, the work increment W ex3 due to the external force is expressed by the following equation (32), where PWM is the proof stress of the weld metal per unit length in the weld line direction of the weld joint.

仮想仕事の原理より、式(30)と式(32)とを等しいとおき、式(31)を代入するとPWMはt’、α、e、β、WMσを用いて下式(33)で表わされる。 Based on the principle of virtual work, assuming that equation (30) and equation (32) are equal and substituting equation (31), P WM uses t ′, α, e, β, WM σ u and the following equation (33 ).

式(33)が最小となるときが破壊機構図9に対応する溶接金属の破壊耐力であり、式(33)をβで偏微分して∂PWM/∂β=0とおき、βについて解くと下式(34)となる。下式(34)を満たすβの時PWMの真の値が求まる。 When the expression (33) is the minimum, the fracture mechanism is the fracture strength of the weld metal corresponding to FIG. 9. The expression (33) is partially differentiated by β to obtain ∂P WM / ∂β = 0 and solved for β. And the following equation (34). When β satisfying the following expression (34) is obtained, the true value of PWM is obtained.

<母材開先沿い及び溶接金属部で破壊しないための条件>
母材開先沿いの破壊より先に母材全厚部が破壊するための母材の開先側表面から溶接金属ルート部までの深さt’(必要溶け込み深さ)は、式(22)、式(27)からPBM1<PBM2として解くと、上記式(1)を得る。
一方、溶接部に先行して母材が破壊するための溶接金属の条件は、式(22)、式(33)からPBM1<PWMとして解くと、上記式(3)を得る。
<Conditions not to break along the base metal groove and weld metal part>
Depth t ′ (necessary penetration depth) from the groove side surface of the base metal to the weld metal root part for the destruction of the full thickness part of the base material before the fracture along the base material groove is expressed by the equation (22). When the equation (27) is solved as P BM1 <P BM2 , the above equation (1) is obtained.
On the other hand, when the condition of the weld metal for the base metal to break prior to the welded part is solved as P BM1 <P WM from the formulas (22) and (33), the above formula (3) is obtained.

図10に、母材全厚部の破断が先行するための、開先角度αに対する必要溶け込み深さの比(式(1)の左辺=右辺となる時のt’/t)を示した。実線は図7、図8に示す破壊機構の境界を示し、この線より上の領域(開区間)の溶け込み深さであれば母材全厚部の破壊、この線より下の領域であれば母材の開先に沿った破壊となることを表わしている。図10から、開先角度αが35度の場合、母材板厚に対し溶け込み深さが約94%以上あれば母材全厚部の破壊となる、すなわち母材の開先に沿った破断は起こらないといえる。また、狭開先化する程、母材全厚部の破壊を実現するためにはより大きい溶け込み深さが必要となることがわかる。   FIG. 10 shows the ratio of the required penetration depth with respect to the groove angle α (t ′ / t when the left side of the equation (1) is equal to the right side) in order to cause the full thickness portion of the base material to break. The solid line indicates the boundary of the fracture mechanism shown in FIGS. 7 and 8. If the penetration depth is in the region above this line (open section), the full thickness of the base material is destroyed, and if the region is below this line This indicates that the fracture occurs along the groove of the base material. From FIG. 10, when the groove angle α is 35 degrees, if the penetration depth is about 94% or more with respect to the base material plate thickness, the entire thickness of the base material is broken, that is, the fracture along the base material groove. Does not happen. It can also be seen that the narrower the groove, the greater the penetration depth is required to achieve the destruction of the entire thickness of the base material.

図11に、母材全厚部の破断が先行するための、溶け込み深さの比t’/tに対する溶接金属強度と母材の強度比(WMσBMσ)の下限値(式(2)の左辺=右辺となる時)を示した。実線は、母材板厚tを32mm、開先角度αを35°とした例である。図11から、開先角度を大きくとるほど、溶け込み深さが小さくても良く、溶け込み深さを大きくするほど溶接金属強度のマッチング下限値は緩和される傾向がわかる。 FIG. 11 shows the lower limit of the weld metal strength to base metal strength ratio ( WM σ u / BM σ u ) with respect to the penetration depth ratio t ′ / t in order to cause the full thickness of the base metal to break. (When the left side of (2) is the right side). The solid line is an example in which the base material plate thickness t is 32 mm and the groove angle α is 35 °. From FIG. 11, it can be seen that the greater the groove angle, the smaller the penetration depth, and the greater the penetration depth, the more relaxed the matching lower limit of weld metal strength.

以上に加えて、HAZ(熱影響部)に沿う破壊を想定してもよい。この場合、式(2)において溶接金属引張強さWMσの代わりにHAZの引張強さHAZσを用いる。その際には、破壊の角度βは開先角度αに一致することから、HAZで破壊することなく母材で破壊するためのHAZの必要な強度として、下式(35)が成立する。 In addition to the above, destruction along HAZ (heat affected zone) may be assumed. In this case, the HAZ tensile strength HAZ σ u is used instead of the weld metal tensile strength WM σ u in the equation (2). In this case, since the fracture angle β coincides with the groove angle α, the following formula (35) is established as the required strength of the HAZ for breaking with the base material without breaking with the HAZ.

この式(35)を満たすことにより、HAZが軟化していても、この関係を満たす限り母材破壊させることができる。   By satisfying this equation (35), even if the HAZ is softened, the base material can be destroyed as long as this relationship is satisfied.

ここで、より簡便にHAZの引張強さHAZσ(N/mm)を得る手段として、ビッカース硬さからの算出を挙げることができる。具体的には、外表面から2mm内面側の位置でJIS Z2244:2009に基づきビッカース硬さ試験を行い、その測定値の最小値から式(36)を演算すればよい。 Here, calculation from Vickers hardness can be mentioned as a means for obtaining the tensile strength HAZ σ u (N / mm 2 ) of HAZ more simply. Specifically, a Vickers hardness test is performed based on JIS Z2244: 2009 at a position on the inner surface side of 2 mm from the outer surface, and Equation (36) may be calculated from the minimum value of the measured values.

さらに、鋼管及びサイコロが角形鋼管の場合、その角部において他の部位に比べて強度が高く、その一方のこの角部から破壊が生じることも多いことから、当該角部について別途検討してもよい。ただし、考え方は上記と同様であり、鋼管角部の引張強さをcBMσとして、式(3)を下式(37)に置き換えればよい。 In addition, when the steel pipe and dice are square steel pipes, the strength is higher at the corners compared to other parts, and fractures often occur from one of the corners. Good. However, the idea is the same as above, and the formula (3) may be replaced with the following formula (37) with the tensile strength of the steel pipe corner being cBM σ u .

ここで鋼管の「角部」は次のように考える。図12に説明のための図を示した。図12は、通しダイヤフラム溶接継手鋼管柱10を図1(a)に矢印XIIで示した方向からみた図のうち、角形鋼管11の一つの角部に注目して表した図である。   Here, the “corner” of the steel pipe is considered as follows. FIG. 12 shows a diagram for explanation. FIG. 12 is a view in which a through-diaphragm welded joint steel pipe column 10 is viewed from the direction indicated by the arrow XII in FIG.

図12からわかるように、角形鋼管11は断面形状が正方形であるが、実際には当該正方形の四隅ではいわゆるフィレット(R(アール)ともいう。)が形成されており、円弧状となっている。
ここで、図12に示したように角形鋼管11の板厚の中心線Cにおいて、形成された円弧の中心をOで表し、円弧が形成されなかった場合における正方形の頂点をAとしたとき、線OAを挟んで一方及び他方にそれぞれ32.5°となる範囲(合計65°)の部位を角形鋼管11の角部(鋼管角部)とする。鋼管角部の曲率半径は特に限定されることはないが、鋼管角部の外側における曲率半径をr、鋼管の板厚をt(mm)としたとき、冷間プレス成形する角形鋼管では、6≦t≦9では3.0t≦r≦4.0t、19<tでは3.1t≦r≦3.9tで管理される。一方冷間ロールで成形される角形鋼管では2.0t≦r≦3.0tで管理されている。
As can be seen from FIG. 12, the square steel pipe 11 has a square cross-sectional shape, but actually, so-called fillets (also referred to as R (R)) are formed at the four corners of the square, and has an arc shape. .
Here, in the center line C of the plate thickness of the square steel pipe 11 as shown in FIG. 12, the center of the formed arc is represented by O, and when the apex of the square when the arc is not formed is A, The part of the range (total 65 degrees) which becomes 32.5 degrees on one side and the other side across the line OA is defined as a corner (steel pipe corner) of the square steel pipe 11. The radius of curvature of the steel pipe corner is not particularly limited, but when the radius of curvature on the outside of the steel pipe corner is r and the plate thickness of the steel pipe is t 1 (mm), in 6 ≦ t 1 ≦ 9 in 3.0t 1 ≦ r ≦ 4.0t 1, 19 <t 1 is managed by 3.1t 1 ≦ r ≦ 3.9t 1. On the other hand, in the square steel pipe formed with a cold roll, 2.0t 1 ≦ r ≦ 3.0t 1 is managed.

さらに、鋼管角部11の引張強さcBMσ(N/mm)を得る他の手段として、実際にJIS Z2241:2011に準拠して鋼管角部における引張強さを得ることもできるが、冷間加工前の平坦な鋼材の引張強さBMσu(N/mm)から下記式(38)を用いて求めることもできる。すなわち角形鋼管を形成する素材の引張強さから鋼管角部の引張強さを得る。 Furthermore, as another means for obtaining the tensile strength cBM σ u (N / mm 2 ) of the steel pipe corner 11, the tensile strength at the steel pipe corner can be actually obtained in accordance with JIS Z2241: 2011. It can also be obtained from the cold working before the flat steel tensile strength f BM σu (N / mm 2 ) using the following equation (38). That is, the tensile strength of the steel pipe corner is obtained from the tensile strength of the material forming the square steel pipe.

この式(38)は次のようにして得た。すなわち、JIS Z2241:2011に準拠して冷間加工前の平坦な鋼材の引張強さfBMσ(N/mm)を測定し、この鋼材を使って角形鋼管を製作する。この製作された角形鋼管についてJIS Z2241:2011に準拠して鋼管角部の引張強さBMσ(N/mm)を測定し、fBMσ(N/mm)と対比する。表1に条件及び結果、図13に結果のグラフを示した。 This equation (38) was obtained as follows. That is, in accordance with JIS Z2241: 2011, the tensile strength fBM σ u (N / mm 2 ) of a flat steel material before cold working is measured, and a square steel pipe is manufactured using this steel material. The tensile strength c BMσ u (N / mm 2 ) of the corner of the steel pipe is measured in accordance with JIS Z2241: 2011 for this manufactured square steel pipe, and compared with fBM σ u (N / mm 2 ). Table 1 shows the conditions and results, and FIG. 13 shows a graph of the results.

表1において、各試験体の材質、板厚、及び機械的質を表した。
また図13のグラフは横軸に冷間加工前の平坦な鋼材の引張強さfBMσ(N/mm)、縦軸に鋼管角部の引張強さcBMσ(N/mm)を取った。
In Table 1, the material, plate thickness, and mechanical quality of each specimen were shown.
The graph of FIG. 13 is a tensile strength of flat steel before cold working horizontal axis fBM σ u (N / mm 2 ), tensile strength of the steel pipe corners on the vertical axis cBM σ u (N / mm 2 ) I took it.

図13に示したように表1の結果に基づいて最小二乗法により破線で示した式(39)を得る。これに対して構造物としての安全側を考慮し、式(39)と各測定値との誤差の標準偏差σを考慮して式(39)に対して2σを加算し、これを式(38)とした。   As shown in FIG. 13, the formula (39) indicated by the broken line is obtained by the least square method based on the result of Table 1. On the other hand, in consideration of the safety side as a structure, 2σ is added to the equation (39) in consideration of the standard deviation σ of the error between the equation (39) and each measured value, and this is expressed by the equation (38). ).

また、通しダイヤフラム溶接継手鋼管柱を製造するに際しては、上記した関係を満たすようにして通しダイヤフラム溶接継手鋼管柱を製造すればよい。ただし、その際には、式(1)及び式(2)における角形鋼管表面から未溶接部までの厚さ(溶接部厚さ)であるt’(mm)が溶接後に得られるように、開先深さt’を予め設定しておく。 Further, when the through-diaphragm welded joint steel pipe column is manufactured, the through-diaphragm welded joint steel pipe column may be manufactured so as to satisfy the above relationship. However, in this case, the thickness t ′ (mm), which is the thickness from the surface of the square steel pipe to the unwelded part (welded part thickness) in formulas (1) and (2), is obtained so that it is obtained after welding. The tip depth t ′ 0 is set in advance.

以上の例では、鋼管として角形鋼管を適用したが、鋼管は丸形鋼管であってもよい。丸形鋼管であっても同様に考えることができる。また、上記した事項は、鋼材の材質(強度レベル)に関係なく同じように考えることができる。すなわち、鋼管柱用の材料として通常用いられる、490N/mm級鋼材〜590N/mm級鋼材のいずれの鋼材についても同様に考えればよい。 In the above example, a square steel pipe is applied as the steel pipe, but the steel pipe may be a round steel pipe. Even a round steel pipe can be considered similarly. The above-mentioned matters can be considered in the same way regardless of the material (strength level) of the steel material. That is, normally used as a material for the steel pipe columns may be considered in the same manner for any steel 490 N / mm 2 class steels ~590N / mm 2 grade steel.

実施例では、3点曲げ試験を想定して数値解析により解析をおこなった。図14に解析モデルを表した。幾何学的な対称性を考慮して試験体全体の1/4をモデル化した。また、表2には鋼管及び溶接部の形態を表した。本解析では、材料特性として490N/mm級のTMCP(Thermo−Mechanical Control Process)鋼を用いた冷間成形角形鋼管(断面サイズ□450mm角、板厚t=32mm)から採取した母材平坦部及び角部の全厚引張試験、溶接金属の丸棒引張試験結果を用いた。通しダイヤフラム溶接部の形態は、No.1では完全溶け込み溶接とし、開先角度αは35°、ルートギャップgは7mm、余盛り高さeは8mm(1/4t)とした。No.2〜No.5は、部分溶け込み溶接とし、従って、ルートギャップgは0mmとなる。溶け込み深さt’を4種類準備し、No.2は32mm、No.3は31mm、No.4は28mm、No.5は25mmである。式(1)、式(2)から、これらを満たすために最小限必要な溶け込み深さは30.2mmであり、No.2及びNo.3は式(1)、式(2)を満たすが、No.4及びNo.5はこれを満たさない。 In the examples, analysis was performed by numerical analysis assuming a three-point bending test. FIG. 14 shows the analysis model. Taking account of geometric symmetry, a quarter of the entire specimen was modeled. Table 2 shows the forms of steel pipes and welds. In this analysis, 490 N / mm grade 2 TMCP (Thermo-Mechanical Control Process) steel is used as a material property. And the full thickness tensile test of a corner | angular part and the round bar tensile test result of the weld metal were used. The form of the through-diaphragm welded part is No. No. 1 was complete penetration welding, the groove angle α was 35 °, the root gap g was 7 mm, and the surplus height e was 8 mm (1/4 t). No. 2-No. 5 is partial penetration welding, and therefore the root gap g is 0 mm. Four types of penetration depth t ′ were prepared. 2 is 32 mm. 3 is 31 mm. 4 is 28 mm. 5 is 25 mm. From formula (1) and formula (2), the minimum penetration depth required to satisfy these conditions is 30.2 mm. 2 and no. 3 satisfies the formulas (1) and (2). 4 and no. 5 does not satisfy this.

以上の解析の結果、式(1)、式(2)を満たさないNo.4、及びNo.5において、溶接金属に相当応力と相当歪が集中する場合があり、他の条件ではこれが発生しなかった。   As a result of the above analysis, No. 1 which does not satisfy Expression (1) and Expression (2). 4 and no. In FIG. 5, the equivalent stress and the equivalent strain might concentrate on the weld metal, and this did not occur under other conditions.

10 通しダイヤフラム溶接継手構造体
11 鋼管
12 サイコロ
13 梁
14 ダイヤフラム
20 溶接部
21 溶接金属
DESCRIPTION OF SYMBOLS 10 Through-diaphragm welded joint structure 11 Steel pipe 12 Dice 13 Beam 14 Diaphragm 20 Welding part 21 Weld metal

Claims (6)

通しダイヤフラムに鋼管を溶接してなる通しダイヤフラム溶接継手構造体であって、
部分溶け込み溶接部のレ形開先の開先角度をα(°)、前記レ形開先が設けられた前記鋼管の板厚をt(mm)、溶接金属のうち前記鋼管の表面から最深部までの距離をt’(mm)、余盛り高さをe(mm)、溶接金属の引張強さをWMσ(N/mm)、及び前記鋼管の引張強さをBMσ(N/mm)としたとき、
かつ、
である、通しダイヤフラム溶接継手鋼管柱。
ただし、前記βは、0以上であって下記式を満たすβ’又は前記αの値のうち小さい方の値とする。
A through-diaphragm welded joint structure formed by welding a steel pipe to a through-diaphragm,
The groove angle of the reshape groove of the partial penetration weld is α (°), the plate thickness of the steel pipe provided with the reshape groove is t (mm), and the deepest part of the weld metal from the surface of the steel pipe To t ′ (mm), extra height e (mm), weld metal tensile strength WM σ u (N / mm 2 ), and steel pipe tensile strength BM σ u (N / Mm 2 )
And,
A through-diaphragm welded steel pipe column.
However, β is 0 or more and β ′ that satisfies the following expression or the smaller one of the α values.
溶接熱影響部の引張強さをHAZσ(N/mm)としたとき、
を満たす請求項1に記載の通しダイヤフラム溶接継手鋼管柱。
When the tensile strength of the weld heat affected zone is HAZ σ u (N / mm 2 ),
The through-diaphragm welded jointed steel pipe column according to claim 1, wherein:
前記鋼管が冷間成形角形鋼管であり、該冷間成形角形鋼管の角部の引張強さをcBMσ(N/mm)、冷間成形加工前の母材の引張強さをfBMσ(N/mm)としたとき、
及び、
が成立する請求項1又は2に記載の通しダイヤフラム溶接継手構造体。
The steel pipe is a cold-formed square steel pipe, the tensile strength of the corner of the cold-formed square steel pipe is cBM σ u (N / mm 2 ), and the tensile strength of the base material before cold forming is fBM σ When u (N / mm 2 ),
as well as,
The through-diaphragm welded joint structure according to claim 1 or 2, wherein:
通しダイヤフラムに鋼管を部分溶け込み溶接で溶接してなる通しダイヤフラム溶接継手構造体を製造する方法であって、
部分溶け込み溶接部のレ形開先の開先角度をα(°)、前記レ形開先が設けられた前記鋼管の板厚をt(mm)、溶接金属のうち前記鋼管の表面から最深部までの距離をt’(mm)、余盛り高さをe(mm)、溶接金属の引張強さをWMσ(N/mm)、及び前記鋼管の引張強さをBMσ(N/mm)としたとき、
かつ、
を満たすように溶接前の開先深さを決めて溶接をおこなう、通しダイヤフラム溶接継手鋼管柱の製造方法。
ただし、前記βは、0以上であって下記式を満たすβ’又は前記αの値のうち小さい方の値とする。
A method of manufacturing a through-diaphragm welded joint structure in which a steel pipe is partially melt welded to a through-diaphragm and welded,
The groove angle of the reshape groove of the partial penetration weld is α (°), the plate thickness of the steel pipe provided with the reshape groove is t (mm), and the deepest part of the weld metal from the surface of the steel pipe To t ′ (mm), extra height e (mm), weld metal tensile strength WM σ u (N / mm 2 ), and steel pipe tensile strength BM σ u (N / Mm 2 )
And,
A method for manufacturing a through-diaphragm welded steel pipe column, in which the groove depth before welding is determined so as to satisfy the requirements.
However, β is 0 or more and β ′ that satisfies the following expression or the smaller one of the α values.
溶接熱影響部の引張強さをHAZσ(N/mm)としたとき、
をさらに満たすように溶接を行う、請求項4に記載の通しダイヤフラム溶接継手鋼管柱の製造方法。
When the tensile strength of the weld heat affected zone is HAZ σ u (N / mm 2 ),
The manufacturing method of the through-diaphragm welded joint steel pipe column of Claim 4 which welds so that it may satisfy | fill further.
前記鋼管が冷間成形角形鋼管であり、該冷間成形角形鋼管の角部の引張強さをcBMσ(N/mm)、冷間成形加工前の母材の引張強さをfBMσ(N/mm)としたとき、
及び、
がさらに成立するように溶接を行う、請求項4又は5に記載の通しダイヤフラム溶接継手構造体の製造方法。
The steel pipe is a cold-formed square steel pipe, the tensile strength of the corner of the cold-formed square steel pipe is cBM σ u (N / mm 2 ), and the tensile strength of the base material before cold forming is fBM σ When u (N / mm 2 ),
as well as,
The manufacturing method of the through-diaphragm welded joint structure according to claim 4 or 5, wherein welding is performed so that
JP2015240573A 2015-12-09 2015-12-09 Through-diaphragm welded jointed steel pipe column and manufacturing method of through-diaphragm welded jointed steel pipe column Active JP6561813B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015240573A JP6561813B2 (en) 2015-12-09 2015-12-09 Through-diaphragm welded jointed steel pipe column and manufacturing method of through-diaphragm welded jointed steel pipe column

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015240573A JP6561813B2 (en) 2015-12-09 2015-12-09 Through-diaphragm welded jointed steel pipe column and manufacturing method of through-diaphragm welded jointed steel pipe column

Publications (2)

Publication Number Publication Date
JP2017104882A JP2017104882A (en) 2017-06-15
JP6561813B2 true JP6561813B2 (en) 2019-08-21

Family

ID=59058398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015240573A Active JP6561813B2 (en) 2015-12-09 2015-12-09 Through-diaphragm welded jointed steel pipe column and manufacturing method of through-diaphragm welded jointed steel pipe column

Country Status (1)

Country Link
JP (1) JP6561813B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109797858A (en) * 2019-02-01 2019-05-24 天津大学 It is a kind of can prefabrication assembled CHS Joints production method
CN110617397A (en) * 2019-09-04 2019-12-27 徐州九鼎钢结构有限公司 Steel structure

Also Published As

Publication number Publication date
JP2017104882A (en) 2017-06-15

Similar Documents

Publication Publication Date Title
KR101649837B1 (en) Method for forming fillet arc welding joint and fillet arc welding joint
US10160060B2 (en) Crack and fracture resistant weld joint and welding process
JP6561813B2 (en) Through-diaphragm welded jointed steel pipe column and manufacturing method of through-diaphragm welded jointed steel pipe column
JP6699303B2 (en) Manufacturing method of multi-layer butt welded joint, multi-layer butt welded joint
US20100001044A1 (en) Full penetration weld joint
JP6453109B2 (en) Through-diaphragm welded joint structure and method for manufacturing through-diaphragm welded joint structure
JP2005097914A (en) Square steel box column
JP6544337B2 (en) Cold formed square steel pipe and beam-to-column connection
JP6319027B2 (en) Welded joint, method for producing welded joint
JP2012198164A (en) Strength evaluation method for laser lap weld joint
JP5935395B2 (en) Welding assembly groove part for square welding of four-sided box section
JP7138460B2 (en) Steel beam reinforcement method and steel beam
JP7168855B2 (en) Welding Assembled H-Shaped Section Beam
JP6380672B2 (en) Welded joint and its manufacturing method
JP6179757B2 (en) Column-to-column connection structure for different diameter column connections in buildings
JP2023098707A (en) Through-diaphragm welded joint structure and method for manufacturing the same
JP4975062B2 (en) Steel pipe stiffening brace material and manufacturing method thereof
US20190136886A1 (en) Welding method and corner joint component
JP5864491B2 (en) Diaphragm stiffness prediction method and plate thickness design method for steel pipe column joints with different diameters of upper and lower columns
Forster A new weld sizing criteria for fillet welds and partial penetration butt welds with the use of traction shear stress method
JP2023152675A (en) Column-beam joint structure, and manufacturing method of column-beam joint structure
JP2020133218A (en) Beam end joint portion
JP6664915B2 (en) Beam-column joint structure
JP2019044327A (en) Joint structure
JP2024126802A (en) Column-beam joint structure, and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190625

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190708

R151 Written notification of patent or utility model registration

Ref document number: 6561813

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151