JP2008292206A - Crack propagation prediction method - Google Patents

Crack propagation prediction method Download PDF

Info

Publication number
JP2008292206A
JP2008292206A JP2007135880A JP2007135880A JP2008292206A JP 2008292206 A JP2008292206 A JP 2008292206A JP 2007135880 A JP2007135880 A JP 2007135880A JP 2007135880 A JP2007135880 A JP 2007135880A JP 2008292206 A JP2008292206 A JP 2008292206A
Authority
JP
Japan
Prior art keywords
crack
stress
prediction method
welded structure
obtaining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007135880A
Other languages
Japanese (ja)
Inventor
Masashi Mori
雅志 毛利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2007135880A priority Critical patent/JP2008292206A/en
Publication of JP2008292206A publication Critical patent/JP2008292206A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Butt Welding And Welding Of Specific Article (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To propose a crack propagation prediction method for enhancing predictive accuracy, while taking into consideration welding residual stresses. <P>SOLUTION: This propagation prediction method for a fatigue crack arising in a welded structure made by weld-jointing a plurality of members, comprises a first process S4 to S6 for finding stress intensity factors in a crack-end opening mode and in an in-plane shearing mode by means of an analysis model made by providing a crack in a welded structure, a second process S7 for finding residual stresses arising in the vicinity of a weld-jointed part by means of an analysis model wherein no crack exists in a welded structure, and a third process S8 for finding development of a crack, based on the result of the first process S4 to S6 and that of the second process S7. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、構造物に発生した亀裂の進展を予測することが可能な亀裂伝播予想方法に関する。   The present invention relates to a crack propagation prediction method capable of predicting the progress of a crack generated in a structure.

船舶、クレーン、橋梁等の大型溶接構造物は、その供用期間が短いものでは10年程度、長いものでは50年から100年に及ぶものもある。
これらの大型溶接構造物では、共用期間中に繰返し荷重を受けて、溶接部等を起点とする疲労亀裂が発生・伝播することがある。大型構造物の構造健全性を確保するために、定期的な検査により亀裂を発見することが重要である。亀裂の発見が遅れると構造物の崩壊や貨油流出等の災害を引き起こす場合もある。
Some large welded structures such as ships, cranes, bridges, etc., have a short service period of about 10 years, and long ones range from 50 to 100 years.
In these large-sized welded structures, fatigue cracks originating from the welded part may occur and propagate due to repeated loads during the common period. In order to ensure the structural integrity of large structures, it is important to detect cracks by regular inspection. If the discovery of cracks is delayed, it may cause disasters such as collapse of structures and oil spills.

溶接部を基点とした疲労亀裂の進展を予想できれば、構造健全性を高めることができる。このような要請に対応して、溶接構造物のFEM(finite element method:有限要素法)解析により、亀裂の伝播経路および伝播寿命を予測する計算手法が開発されている(非特許文献1参照)。   If the progress of fatigue cracks based on the weld can be predicted, the structural integrity can be improved. In response to such a demand, a calculation method for predicting the propagation path and propagation life of a crack by FEM (finite element method) analysis of a welded structure has been developed (see Non-Patent Document 1). .

この方法では、亀裂の進展する領域のみ亀裂進展に応じて自動的に要素分割を行い、繰返し計算により亀裂の伝播挙動を予測することができる。
また、溶接構造物への適用を考慮して、計測もしくは残留応力解析により求めた溶接残留応力分布を、亀裂進展領域に付与することで溶接残留応力に伴う亀裂の加速遅延を予測できる。
毛利ら、「疲労亀裂伝播経路予測のシステム化と疲労試験による検証」、日本造船学会論文集、第194号、平成15年9月25日、p.185−192 毛利ら、「溶接構造体の疲労亀裂伝播シミュレーション解析」、日本機械学会、2006年度年次大会 講演論文集1巻、2006年、p.681−682
In this method, element division is automatically performed only in the region where the crack propagates according to the crack growth, and the propagation behavior of the crack can be predicted by iterative calculation.
In addition, considering the application to a welded structure, it is possible to predict the acceleration delay of cracks due to the residual welding stress by applying the residual welding stress distribution obtained by measurement or residual stress analysis to the crack propagation region.
Mouri et al., “Systematization of Fatigue Crack Propagation Path Prediction and Verification by Fatigue Test”, The Shipbuilding Society of Japan, No. 194, September 25, 2003, p. 185-192 Mouri et al., “Fatigue Crack Propagation Simulation Analysis of Welded Structures”, The Japan Society of Mechanical Engineers, Annual Meeting 2006, Vol. 1, 2006, p. 681-682

しかしながら、上述した技術では、亀裂の進展領域において、溶接残留応力を簡易的に付与するに過ぎないので、溶接残留応力に伴う亀裂の加速遅延を正確に予測することができない。すなわち、亀裂進展の予測精度が低下するという問題がある。   However, in the above-described technique, since the welding residual stress is simply applied in the crack propagation region, the acceleration delay of the crack accompanying the welding residual stress cannot be accurately predicted. That is, there is a problem that the prediction accuracy of crack growth is lowered.

本発明は、上述した事情に鑑みてなされたもので、溶接残留応力を考慮しつつ、予測精度の向上を図ることが可能な亀裂伝播予想方法を提案することを目的とする。   The present invention has been made in view of the above-described circumstances, and an object of the present invention is to propose a crack propagation prediction method capable of improving prediction accuracy while considering welding residual stress.

本発明に係る亀裂伝播予想方法では、上記課題を解決するために以下の手段を採用した。
本発明は、複数の部材が溶接接合された溶接構造体に発生した疲労亀裂の伝播予測方法であって、前記溶接構造体に亀裂を設けた解析モデルにおいて、前記亀裂先端の開口モード及び面内せん断モードの応力拡大係数を求める第一工程と、前記溶接構造体に前記亀裂が存在しない解析モデルにおいて、溶接接合部近傍に発生する残留応力を求める第二工程と、前記第一工程と前記第二工程の結果に基づいて前記亀裂の進展を求める第三工程と、を有することを特徴とする。
The crack propagation prediction method according to the present invention employs the following means in order to solve the above problems.
The present invention relates to a method for predicting the propagation of fatigue cracks generated in a welded structure in which a plurality of members are welded, and in an analysis model in which a crack is formed in the welded structure, the opening mode and in-plane of the crack tip A first step for determining a stress intensity factor in a shear mode; a second step for determining a residual stress generated in the vicinity of a welded joint in the analysis model in which the crack does not exist in the welded structure; the first step and the first step And a third step for determining the progress of the crack based on the result of two steps.

また、前記第二工程は、固有応力法により前記残留応力を求める工程を有することを特徴とする。
また、前記第二工程は、前記残留応力を求める工程に先立って、前記溶接接合部に付加される溶接温度から熱歪を求める工程を有することを特徴とする。
Further, the second step includes a step of obtaining the residual stress by an intrinsic stress method.
Further, the second step has a step of obtaining a thermal strain from a welding temperature applied to the weld joint prior to the step of obtaining the residual stress.

また、前記第一工程は、重ね合わせ法により前記応力拡大係数を求める工程を有することを特徴とする。
また、前記第三工程は、前記亀裂の進展速度を求める工程を有することを特徴とする。
また、前記第一工程から前記第三工程を複数回繰り返すことを特徴とする。
Moreover, said 1st process has the process of calculating | requiring the said stress intensity | strength coefficient by the superposition method, It is characterized by the above-mentioned.
In addition, the third step includes a step of obtaining a progress rate of the crack.
Further, the third process is repeated a plurality of times from the first process.

本発明によれば以下の効果を得ることができる。
複数の部材が溶接接合された溶接構造体に発生した疲労亀裂の伝播を予測する方法において、亀裂の進展を求める際に、溶接接合部近傍に発生する残留応力を求めるので、残留応力の影響を考慮した亀裂進展を高精度に求めることができる。
したがって、疲労亀裂に対して、適切な時期に適切な措置を講ずることが可能となり、甚大な被害の発生を未然にかつ確実に回避することができる。
According to the present invention, the following effects can be obtained.
In the method of predicting the propagation of fatigue cracks in welded structures where multiple members are welded, the residual stress generated in the vicinity of the welded joint is calculated when determining the crack propagation. It is possible to obtain the crack growth in consideration with high accuracy.
Therefore, it becomes possible to take an appropriate measure at an appropriate time with respect to the fatigue crack, and it is possible to reliably and reliably avoid the occurrence of enormous damage.

以下、本発明に係る亀裂伝播予想方法の実施形態について図面を参照して説明する。
図1は、本発明の実施形態に係る亀裂伝播予想方法を示すフロー図である。
図2は、溶接構造物の解析モデルAを示す斜視図である。
図3は、亀裂進展領域B1〜B3を示す図である。
Hereinafter, an embodiment of a crack propagation prediction method according to the present invention will be described with reference to the drawings.
FIG. 1 is a flowchart showing a crack propagation prediction method according to an embodiment of the present invention.
FIG. 2 is a perspective view showing an analysis model A of a welded structure.
FIG. 3 is a diagram showing crack propagation regions B1 to B3.

例えば、船舶、クレーン、橋梁等の大型の溶接構造物の一部に、亀裂が発生した場合には、この亀裂の伝播(進展経路等)を予想して、溶接構造物の損傷拡大(船舶の場合には、例えば、船舶内への海水の浸入等)が生じないように、亀裂の伝播を予想して最適な対策を講ずる必要がある。
そこで、溶接構造物における亀裂の進展を有限要素法(FEM:Finite Element Method)を用いて解析して、亀裂の伝播を予想する。なお、有限要素解析コードとしては、例えば、MSC/Nastran(登録商標)等を用いることができる。
For example, if a crack occurs in a part of a large welded structure such as a ship, crane, bridge, etc., the propagation of this crack (propagation path, etc.) is expected, and the damage of the welded structure is expanded (the ship's In this case, for example, it is necessary to take an optimal measure in anticipation of crack propagation so that seawater does not enter the ship.
Therefore, the propagation of cracks in a welded structure is analyzed using a finite element method (FEM) to predict the propagation of cracks. For example, MSC / Nastran (registered trademark) can be used as the finite element analysis code.

図1に示すように、本実施形態に係る亀裂伝播予想方法では、まず、ステップS1において、解析対象である溶接構造物の三次元解析モデルAを作成する。
解析モデルA(溶接構造物)は、図2に示すように、複数の鉄鋼部材(a1〜a4等)を接合して形成されたものである。例えば、ウェブa1に対してフェースa2が略直角するように組み合わされて、T字形(T継手)に溶接されている。更に、シェルa3がウェブa1に略直角するように組み合わされて、T字形に溶接されている。つまり、ウェブa1,フェースa2シェルa3が、断面H字形となるように溶接されている。
また、フェースa2には、ウェブa1とは反対側の面でウェブa1に対応する位置に、リブa4が略直角するように溶接されている。
なお、ウェブa1,フェースa2,シェルa3及びリブa4の各溶接は、例えば、すみ肉溶接となっている。
As shown in FIG. 1, in the crack propagation prediction method according to the present embodiment, first, in step S1, a three-dimensional analysis model A of a welded structure to be analyzed is created.
As shown in FIG. 2, the analysis model A (welded structure) is formed by joining a plurality of steel members (a1 to a4, etc.). For example, the face a2 is combined so as to be substantially perpendicular to the web a1, and is welded to a T-shape (T joint). Further, the shell a3 is combined so as to be substantially perpendicular to the web a1, and is welded in a T-shape. That is, the web a1 and the face a2 shell a3 are welded so as to have an H-shaped cross section.
Further, the rib a4 is welded to the face a2 at a position corresponding to the web a1 on the surface opposite to the web a1 so as to be substantially perpendicular.
Each welding of the web a1, the face a2, the shell a3, and the rib a4 is, for example, fillet welding.

そして、解析モデルAのうち、ウェブa1及びフェースa2には、仮想亀裂C(C1〜C3が設けられる(図3参照)。亀裂C1〜C3は、フェースa2とリブa4の溶接接合部Sの先端部に設けられる。溶接接合部Sの先端部は、特に応力が集中して疲労による亀裂が発生しやすい部位である。
亀裂C1は、ウェブa1に発生した亀裂であって、溶接接合部Sからシェルa3に向かって伸びるように形成されている。また、亀裂C2,C3は、フェースa2に発生した亀裂であって、溶接接合部Sからフェースa2の両側外縁に向かって伸びるように形成されている。なお、亀裂C2,C3は、リブa4を挟んで対称に形成されている。
つまり、亀裂C1〜C3は、溶接接合部SからT字形になるように形成されている。
In the analysis model A, the web a1 and the face a2 are provided with virtual cracks C (C1 to C3 (see FIG. 3). The cracks C1 to C3 are the tips of the welded joint S between the face a2 and the rib a4. The tip of the welded joint S is a part where stress is particularly concentrated and cracks due to fatigue are likely to occur.
The crack C1 is a crack generated in the web a1, and is formed to extend from the weld joint S toward the shell a3. The cracks C2 and C3 are cracks generated in the face a2, and are formed so as to extend from the weld joint S toward the outer edges on both sides of the face a2. The cracks C2 and C3 are formed symmetrically across the rib a4.
That is, the cracks C1 to C3 are formed so as to be T-shaped from the weld joint S.

次に、ステップS2において、解析モデルAのうち、亀裂C1〜C3のそれぞれが伝播すると想定される領域を亀裂進展領域B1〜B3として設定する。
亀裂進展領域B1〜B3を設定するのは、この領域B1〜B3の要素分割(メッシュ処理)を、他の領域の要素分割とは異ならせるためである。すなわち、亀裂進展領域B1〜B3のメッシュ処理を、他の領域のメッシュ処理よりも微細化することで、亀裂C1〜C3の伝播を高精度かつ効率的に解析する。
具体的には、図3に示すように、ウェブa1及びフェースa2のうち、亀裂C1〜C3を含む領域を、亀裂進展領域B1〜B3に設定する。
Next, in step S2, an area in which cracks C1 to C3 are assumed to propagate in analysis model A is set as crack propagation areas B1 to B3.
The reason why the crack propagation regions B1 to B3 are set is to make the element division (mesh processing) of the regions B1 to B3 different from the element division of other regions. In other words, the propagation of the cracks C1 to C3 is analyzed with high accuracy and efficiency by making the mesh processing of the crack propagation regions B1 to B3 finer than the mesh processing of other regions.
Specifically, as shown in FIG. 3, areas including the cracks C1 to C3 in the web a1 and the face a2 are set as crack propagation areas B1 to B3.

そして、ステップS3において、解析モデルAのメッシュ(要素分割)処理を行う(図2,図5参照)。上述したように、亀裂進展領域B1〜B3は、他の領域に比べて、メッシュ処理が微細化される。
なおメッシュ処理は、き裂進展量に応じて要素自動分割プログラムによって自動的に行われる。
In step S3, the analysis model A is subjected to mesh (element division) processing (see FIGS. 2 and 5). As described above, in the crack propagation regions B1 to B3, the mesh processing is made finer than other regions.
The mesh processing is automatically performed by an automatic element division program according to the crack growth amount.

次に、ステップS4〜S6において、解析モデルAを用いて、亀裂Cの先端における応力拡大係数KI,KIIを求める。ここで、KI、KIIは、それぞれ開口モード,面内せん断モードに対応している。
ところで、亀裂C先端の応力拡大係数K(KI,KII)を正確に求めるには、亀裂C先端のメッシュ処理をできるだけ小さく設定する必要がある。しかし、徒に演算時間が長くなってしまう等の問題がある。
そこで、重ね合わせ法を用いて亀裂C先端の応力拡大係数K(KI,KII)を求める。すなわち、ステップS4の基本応力場解析により求められる解析解及びステップS5の実荷重条件解析により求められる有限要素解に基づいて、ステップS6において重ね合わせ法により亀裂C先端の応力拡大係数Kを算出する。重ね合わせ法を用いることにより、効率的、かつ、高精度に応力拡大係数Kを算出することができる。
Next, in steps S4 to S6, using the analysis model A, the stress intensity factors KI and KII at the tip of the crack C are obtained. Here, KI and KII correspond to the opening mode and the in-plane shear mode, respectively.
Incidentally, in order to accurately obtain the stress intensity factor K (KI, KII) at the tip of the crack C, it is necessary to set the mesh processing at the tip of the crack C as small as possible. However, there are problems such as a long calculation time.
Therefore, the stress intensity factor K (KI, KII) at the tip of the crack C is obtained by using the superposition method. That is, based on the analytical solution obtained by the basic stress field analysis of step S4 and the finite element solution obtained by the actual load condition analysis of step S5, the stress intensity factor K at the tip of the crack C is calculated by the superposition method in step S6. . By using the superposition method, the stress intensity factor K can be calculated efficiently and with high accuracy.

図4は、解析モデルAに加えられる実荷重条件を説明するための図である。
解析モデルAに加えられる実荷重条件としては、溶接構造物が船舶の場合は、波浪外力となる。波浪外力は、図4に示すように、船舶が長期間(例えば20〜30年間)に受ける波浪の頻度分布として表される。
船舶は、約7秒に1回のサイクルで波浪を受ける。図4に示すように、波浪による外力(応力)は、波浪が高い程大きくなるが、その頻度は逆に少なくなる。
そこで、図4に示す波浪の頻度分布から、解析モデルAに加えられる実荷重の大きさ・頻度(周波数)を求めて、その条件を実荷重条件として用いる。
FIG. 4 is a diagram for explaining actual load conditions applied to the analysis model A.
When the welded structure is a ship, the actual load condition applied to the analysis model A is a wave external force. As shown in FIG. 4, the wave external force is expressed as a frequency distribution of waves that the ship receives for a long period of time (for example, 20 to 30 years).
The ship receives waves in a cycle of about once every 7 seconds. As shown in FIG. 4, the external force (stress) caused by the waves increases as the waves increase, but the frequency decreases.
Therefore, the magnitude / frequency (frequency) of the actual load applied to the analysis model A is obtained from the wave frequency distribution shown in FIG. 4, and the condition is used as the actual load condition.

次に、ステップS4〜S6と並列して、ステップS7において溶接構造物(解析モデルA)に発生した残留熱応力(部材a1〜a4を溶接接合することにより生じる熱応力)を固有応力法によって求める。
なお、ステップS7は、ステップS4〜S6と同時に、或いはステップS4〜S6の各ステップの合間に行っても良い。
Next, in parallel with steps S4 to S6, the residual thermal stress generated in the welded structure (analysis model A) in step S7 (thermal stress generated by welding the members a1 to a4) is obtained by the intrinsic stress method. .
Note that step S7 may be performed simultaneously with steps S4 to S6 or between steps S4 to S6.

溶接に起因する残留応力は熱収縮によって生じる固有応力σIとすると、固有応力σIによって構造に生じる応力とつりあうため式(1)を満たす。σIの分布は、式(2)によって表すことが出来る。
そこで、FEMモデルに、式(3)で示すような温度T(℃)の形でσIを外力条件とした解析を実施することで、溶接残留応力分布σ(N)を求めることが出来る。
なお、式(2)におけるB(mm)は入熱に応じた大きさであり、式(4)および式(5)によって求めることが出来る。また、l(mm)は溶接脚長であり、熱膨張係数ρ(1/℃)、ヤング率(縦弾性係数)E(N/mm)、降伏応力σy(N/mm)は既知である。
Assuming that the residual stress resulting from welding is the inherent stress σ I caused by thermal contraction, the residual stress is balanced with the stress generated in the structure by the inherent stress σ I , thus satisfying equation (1) The distribution of σ I can be expressed by equation (2).
Therefore, the welding residual stress distribution σ (N) can be obtained by performing an analysis on the FEM model in the form of the temperature T (° C.) as shown by the equation (3) and using σ I as an external force condition.
In addition, B (mm) in Formula (2) is a magnitude | size according to heat input, and can be calculated | required by Formula (4) and Formula (5). Further, l (mm) is a weld leg length, and the thermal expansion coefficient ρ (1 / ° C.), Young's modulus (longitudinal elastic modulus) E (N / mm 2 ), and yield stress σy (N / mm 2 ) are known. .

Figure 2008292206
Figure 2008292206

Figure 2008292206
Figure 2008292206

Figure 2008292206
Figure 2008292206

Figure 2008292206
Figure 2008292206

Figure 2008292206
Figure 2008292206

このような固有応力σIの算出を、溶接ラインに沿って行う。
具体的には、溶接ラインと脚長を指定することで、自動的に溶接接合部に該当する全ての分割要素(メッシュ)に対して個々に、或いは一括に、加熱温度T(℃)を指定する。溶接により加熱される部位に該当する全ての要素(メッシュ)に対して固有応力σIに相当する温度T(℃)をプログラムにて計算し、これを境界条件として指定する。
Such intrinsic stress σ I is calculated along the welding line.
Specifically, by specifying the welding line and leg length, the heating temperature T (° C) is automatically specified individually or collectively for all the divided elements (mesh) corresponding to the welded joint. . A temperature T (° C.) corresponding to the intrinsic stress σ I is calculated by a program for all elements (mesh) corresponding to a portion heated by welding, and this is designated as a boundary condition.

図5は、解析モデルAに温度Tの分布を与えた解析結果(応力分布)を示す図である。なお、図5において、解析モデルAの各分割要素の濃淡は、長手方向応力の高低を表す。   FIG. 5 is a diagram illustrating an analysis result (stress distribution) in which the distribution of the temperature T is given to the analysis model A. In FIG. 5, the shading of each divided element of the analysis model A represents the level of longitudinal stress.

図6は、亀裂C(C1〜C3)近傍における残留熱応力の分布を示す図である。
こうして、図6に示すように、溶接構造物(解析モデルA)の溶接接合部の近傍に発生した残留熱応力(応力分布)が固有応力法により求められる。
なお、溶接接合部の近傍に発生した残留熱応力を求める際には、解析モデルとしては亀裂(亀裂C1〜C3)が存在しない解析モデルA´を用いる。亀裂C1〜C3の影響を受けることなく、残留熱応力を求めるためである。
FIG. 6 is a diagram showing a distribution of residual thermal stress in the vicinity of the crack C (C1 to C3).
Thus, as shown in FIG. 6, the residual thermal stress (stress distribution) generated in the vicinity of the weld joint of the welded structure (analysis model A) is obtained by the intrinsic stress method.
When obtaining the residual thermal stress generated in the vicinity of the weld joint, an analysis model A ′ having no cracks (cracks C1 to C3) is used as the analysis model. This is because the residual thermal stress is obtained without being affected by the cracks C1 to C3.

そして、ステップS8において、亀裂Cの進展を算出する。
まず、ステップS4〜S6において求めた応力拡大係数Kと実荷重条件の解析に基づいて疲労亀裂C1〜C3の進展速度を算出する。疲労亀裂C1〜C3の進展速度の算出手法は、非特許文献2に開示された手法と同一の手法を用いる。
すなわち、応力比(最小応力/最大応力)Rの関数として式(6)により有効応力拡大係数ΔKeffを算定し、式(7)にて疲労亀裂Cの進展速度を算出する。
In step S8, the progress of the crack C is calculated.
First, the growth rate of the fatigue cracks C1 to C3 is calculated based on the analysis of the stress intensity factor K obtained in steps S4 to S6 and the actual load conditions. The calculation method of the growth rate of fatigue cracks C1 to C3 uses the same method as that disclosed in Non-Patent Document 2.
That is, the effective stress intensity factor ΔK eff is calculated by the equation (6) as a function of the stress ratio (minimum stress / maximum stress) R, and the growth rate of the fatigue crack C is calculated by the equation (7).

Figure 2008292206
Figure 2008292206

Figure 2008292206
Figure 2008292206

そして、ステップS7において求めた残留熱応力の分だけ、疲労亀裂Cの進展速度が上乗せされる。こうして、亀裂Cの進展速度が算出される。
そして、求めた進展速度と、実荷重条件の繰り返し数(例えば、1万回)から、亀裂Cの進展長さ(伝播)が算出(予想)される。
更に、ステップS3からS7の解析を複数回繰り返す。例えば、実荷重条件の繰り返し数を1万回毎として、複数回演算する。これにより、亀裂C1〜C3の伝播が求められる。
Then, the growth rate of the fatigue crack C is increased by the amount of the residual thermal stress obtained in step S7. Thus, the growth rate of the crack C is calculated.
Then, the propagation length (propagation) of the crack C is calculated (predicted) from the obtained propagation speed and the number of repetitions of the actual load condition (for example, 10,000 times).
Further, the analysis of steps S3 to S7 is repeated a plurality of times. For example, the calculation is performed a plurality of times, with the actual load condition being repeated every 10,000 times. Thereby, propagation of the cracks C1-C3 is calculated | required.

図7は、亀裂C1〜C3の進展予想結果を示す図である。
図7に示すように、ウェブa1に発生した長さ約4mmの亀裂C1は、外力の繰り返し数の増加に伴って進展することが確認できる(L1参照)。
本実施形態に係る亀裂伝播予測方法、すなわち、溶接接合に起因する残留応力を考慮した場合には、例えば約25万回の繰り返し外力を受けた場合には、約35mm程度の長さに進展することが予想される。
一方、溶接接合に起因する残留応力を全く考慮せずに亀裂C1の進展を解析した場合(M1参照)には、約25万回の繰り返し外力を受けると、亀裂C1が約15mm程度の長さに進展すると予想される。
FIG. 7 is a diagram illustrating a predicted growth result of cracks C1 to C3.
As shown in FIG. 7, it can be confirmed that the crack C1 having a length of about 4 mm generated in the web a1 develops with an increase in the number of repetitions of the external force (see L1).
When considering the crack propagation prediction method according to the present embodiment, that is, when residual stress caused by welding is taken into account, for example, when subjected to repeated external force of about 250,000 times, the crack propagates to a length of about 35 mm. It is expected that.
On the other hand, when the progress of the crack C1 is analyzed without considering any residual stress caused by welding (see M1), the crack C1 has a length of about 15 mm when subjected to external force repeatedly about 250,000 times. Is expected to progress.

また、フェースa2に発生した長さ約13mの亀裂C2,C3も、疲労により進展する(L2,L3参照)。このように、溶接接合に起因する残留応力を考慮した場合には、例えば25万回の繰り返し外力を受けた場合には、約40mm程度の長さに進展することが予想される。
一方、溶接接合に起因する残留応力を全く考慮せずに亀裂C2,C3の進展を解析した場合(M2,M3参照)には、25万回の繰り返し外力を受けると、亀裂C1が約23mm程度の長さに進展すると予想される。
Further, cracks C2 and C3 having a length of about 13 m generated in the face a2 also develop due to fatigue (see L2 and L3). As described above, when the residual stress resulting from the welded joint is taken into account, for example, when the external force is repeatedly applied 250,000 times, it is expected to advance to a length of about 40 mm.
On the other hand, when analyzing the progress of cracks C2 and C3 without considering any residual stress due to welded joints (see M2 and M3), cracks C1 is about 23 mm when subjected to external force 250,000 times. Is expected to progress to

このように、本実施形態に係る亀裂伝播予測方法によれば、溶接接合に起因する残留応力を考慮することで、亀裂C1〜C3の進展(伝播)を高精度に予想できる(図7のL1〜L3参照)。
特に、溶接接合に起因する残留応力を全く考慮せずに亀裂C1〜C3の進展を解析した場合には、実際の亀裂の進展長さよりも短くなってしまう場合が少なくない(図7のM1〜M3参照)。このため、亀裂の補修時期が遅れて甚大な被害を引き起こしてしまう虞もあった。
これに対して、本実施形態に係る亀裂伝播予測方法では、亀裂C1〜C3の進展(伝播)を高精度に予想できる。したがって、疲労亀裂に対して、適切な時期に適切な措置を講ずることが可能となり、甚大な被害の発生を未然にかつ確実に回避することができる。
As described above, according to the crack propagation prediction method according to the present embodiment, the progress (propagation) of the cracks C1 to C3 can be predicted with high accuracy by considering the residual stress resulting from the welded joint (L1 in FIG. 7). See L3).
In particular, when the progress of the cracks C1 to C3 is analyzed without considering any residual stress caused by the welded joint, it is often the case that the length of the crack is shorter than the actual crack growth length (M1 in FIG. 7). See M3). For this reason, there was a possibility that the repair time of the crack was delayed and caused serious damage.
In contrast, in the crack propagation prediction method according to the present embodiment, the progress (propagation) of the cracks C1 to C3 can be predicted with high accuracy. Therefore, it becomes possible to take an appropriate measure at an appropriate time with respect to the fatigue crack, and it is possible to reliably and reliably avoid the occurrence of enormous damage.

なお、上述した実施の形態において示した動作手順、あるいは各構成部材の諸形状や組み合わせ等は一例であって、本発明の主旨から逸脱しない範囲において設計要求等に基づき種々変更可能である。   Note that the operation procedure shown in the above-described embodiment, various shapes and combinations of the constituent members, and the like are examples, and various modifications can be made based on design requirements and the like without departing from the gist of the present invention.

例えば、上述した実施形態では、船舶における溶接構造物について説明したが、クレーン、橋梁等であってもよい。また、必ずしも大型の溶接構造物に限定するものではない。
また、溶接構造物の材質としては、鉄鋼の場合の他、アルミニウムの場合であってもよい。
For example, in the above-described embodiment, a welded structure in a ship has been described, but a crane, a bridge, or the like may be used. Moreover, it is not necessarily limited to a large-sized welded structure.
Further, the material of the welded structure may be aluminum as well as steel.

また、ステップS3からS7の解析の繰り返し数については、任意に設定することができる。つまり、実荷重条件の繰り返し数を少なく設定(例えば5万回毎)した場合には、解析の繰り返し数は少なくなる。すなわち、亀裂進展予想の精度、計算時間等に応じて、任意に設定することができる。   Further, the number of repetitions of the analysis in steps S3 to S7 can be arbitrarily set. That is, when the number of repetitions of the actual load condition is set to be small (for example, every 50,000 times), the number of repetitions of analysis is small. That is, it can be arbitrarily set according to the accuracy of crack growth prediction, the calculation time, and the like.

本発明の実施形態に係る亀裂伝播予想方法を示すフロー図である。It is a flowchart which shows the crack propagation prediction method which concerns on embodiment of this invention. 溶接構造物の解析モデルAを示す斜視図である。It is a perspective view which shows the analysis model A of a welded structure. 亀裂進展領域B1〜B3を示す図である。It is a figure which shows the crack growth area | region B1-B3. 解析モデルAに加えられる実荷重条件を説明するための図である。It is a figure for demonstrating the actual load conditions added to the analysis model A. FIG. 加熱温度の指定後の解析モデルAを示す図である。It is a figure which shows the analysis model A after designation | designated of heating temperature. 亀裂近傍における残留熱応力の分布を示す図である。It is a figure which shows distribution of the residual thermal stress in the crack vicinity. 亀裂C1〜C3の進展予想結果を示す図である。It is a figure which shows the progress prediction result of the crack C1-C3.

符号の説明Explanation of symbols

A,A´…三次元解析モデル(溶接構造体)
a1…ウェブ(部材)
a2…フェース(部材)
a3…シェル(部材)
a4…リブ(部材)
B1〜B3…亀裂進展領域
C1〜C3…疲労亀裂(亀裂)
S…溶接接合部
A, A '... 3D analysis model (welded structure)
a1 ... Web (member)
a2: Face (member)
a3 Shell (member)
a4 ... rib (member)
B1 to B3 ... crack propagation region C1 to C3 ... fatigue crack (crack)
S: Welded joint

Claims (6)

複数の部材が溶接接合された溶接構造体に発生した疲労亀裂の伝播予測方法であって、
前記溶接構造体に亀裂を設けた解析モデルにおいて、前記亀裂先端の開口モード及び面内せん断モードの応力拡大係数を求める第一工程と、
前記溶接構造体に前記亀裂が存在しない解析モデルにおいて、溶接接合部近傍に発生する残留応力を求める第二工程と、
前記第一工程と前記第二工程の結果に基づいて前記亀裂の進展を求める第三工程と、
を有することを特徴とする亀裂伝播予測方法。
A method for predicting the propagation of fatigue cracks in a welded structure in which a plurality of members are welded,
In the analytical model in which a crack is provided in the welded structure, a first step of obtaining a stress intensity factor of the opening mode and in-plane shear mode of the crack tip,
In the analysis model in which the crack does not exist in the welded structure, a second step for obtaining a residual stress generated in the vicinity of the weld joint,
A third step for determining the progress of the crack based on the results of the first step and the second step;
The crack propagation prediction method characterized by having.
前記第二工程は、
固有応力法により前記残留応力を求める工程を有することを特徴とする請求項1に記載の亀裂伝播予測方法。
The second step includes
The crack propagation prediction method according to claim 1, further comprising a step of obtaining the residual stress by an intrinsic stress method.
前記第二工程は、
前記残留応力を求める工程に先立って、前記溶接接合部に付加される溶接温度から熱歪を求める工程を有することを特徴とする請求項2に記載の亀裂伝播予測方法。
The second step includes
The crack propagation prediction method according to claim 2, further comprising a step of obtaining a thermal strain from a welding temperature applied to the weld joint prior to the step of obtaining the residual stress.
前記第一工程は、
重ね合わせ法により前記応力拡大係数を求める工程を有することを特徴とする請求項1から請求項3のうちいずれか一項に記載の亀裂伝播予測方法。
The first step includes
The crack propagation prediction method according to any one of claims 1 to 3, further comprising a step of obtaining the stress intensity factor by a superposition method.
前記第三工程は、
前記亀裂の進展速度を求める工程を有することを特徴とする請求項1から請求項4のうちいずれか一項に記載の亀裂伝播予測方法。
The third step includes
The crack propagation prediction method according to any one of claims 1 to 4, further comprising a step of obtaining a progress rate of the crack.
前記第一工程から前記第三工程を複数回繰り返すことを特徴とする請求項1から請求項5のうちいずれか一項に記載の亀裂伝播予測方法。   The crack propagation prediction method according to any one of claims 1 to 5, wherein the first step to the third step are repeated a plurality of times.
JP2007135880A 2007-05-22 2007-05-22 Crack propagation prediction method Pending JP2008292206A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007135880A JP2008292206A (en) 2007-05-22 2007-05-22 Crack propagation prediction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007135880A JP2008292206A (en) 2007-05-22 2007-05-22 Crack propagation prediction method

Publications (1)

Publication Number Publication Date
JP2008292206A true JP2008292206A (en) 2008-12-04

Family

ID=40167094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007135880A Pending JP2008292206A (en) 2007-05-22 2007-05-22 Crack propagation prediction method

Country Status (1)

Country Link
JP (1) JP2008292206A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009121882A (en) * 2007-11-13 2009-06-04 Ihi Corp Soundness verifying method of welded structure
JP2010160028A (en) * 2009-01-07 2010-07-22 Toshiba Corp Method for evaluating breaking strength of different material joint part
CN102645365A (en) * 2012-05-18 2012-08-22 西安石油大学 Method for determining range of effective stress intensity factor
KR101550031B1 (en) 2014-08-14 2015-09-08 삼성중공업 주식회사 Hycrogen Assisted crack prediction system and method
CN105258966A (en) * 2015-11-03 2016-01-20 东南大学 Hoisting device real-time safe operation index determining method based on crack expansion information
CN105699218A (en) * 2016-01-26 2016-06-22 清华大学 Method for performing online measurement on fatigue crack propagation of organic glass
CN105987846A (en) * 2015-02-02 2016-10-05 天津城建设计院有限公司 Method for determining fatigue resistance of all-welded truss bridge
CN109632489A (en) * 2019-01-16 2019-04-16 西南交通大学 A kind of Metal Material Fatigue crack propagation model construction method based on monotonic tension parameter
CN112214920A (en) * 2020-10-22 2021-01-12 岭澳核电有限公司 LBB evaluation processing method after pipeline damage

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61286734A (en) * 1985-06-14 1986-12-17 Mitsubishi Heavy Ind Ltd Method for measuring stress of fatigue crack
JP2000234986A (en) * 1999-02-16 2000-08-29 Babcock Hitachi Kk System and method for evaluating crack development
JP2005230836A (en) * 2004-02-18 2005-09-02 Fci Asia Technology Pte Ltd Method for reducing residual stress at welded portion
JP2006017602A (en) * 2004-07-02 2006-01-19 Topy Ind Ltd Prediction method for fatigue strength of structure
JP2008157882A (en) * 2006-12-26 2008-07-10 Jfe Steel Kk Method for predicting fatigue life of spot welding structure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61286734A (en) * 1985-06-14 1986-12-17 Mitsubishi Heavy Ind Ltd Method for measuring stress of fatigue crack
JP2000234986A (en) * 1999-02-16 2000-08-29 Babcock Hitachi Kk System and method for evaluating crack development
JP2005230836A (en) * 2004-02-18 2005-09-02 Fci Asia Technology Pte Ltd Method for reducing residual stress at welded portion
JP2006017602A (en) * 2004-07-02 2006-01-19 Topy Ind Ltd Prediction method for fatigue strength of structure
JP2008157882A (en) * 2006-12-26 2008-07-10 Jfe Steel Kk Method for predicting fatigue life of spot welding structure

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009121882A (en) * 2007-11-13 2009-06-04 Ihi Corp Soundness verifying method of welded structure
JP2010160028A (en) * 2009-01-07 2010-07-22 Toshiba Corp Method for evaluating breaking strength of different material joint part
CN102645365A (en) * 2012-05-18 2012-08-22 西安石油大学 Method for determining range of effective stress intensity factor
CN102645365B (en) * 2012-05-18 2013-12-11 西安石油大学 Method for determining range of effective stress intensity factor
KR101550031B1 (en) 2014-08-14 2015-09-08 삼성중공업 주식회사 Hycrogen Assisted crack prediction system and method
CN105987846A (en) * 2015-02-02 2016-10-05 天津城建设计院有限公司 Method for determining fatigue resistance of all-welded truss bridge
CN105258966A (en) * 2015-11-03 2016-01-20 东南大学 Hoisting device real-time safe operation index determining method based on crack expansion information
CN105699218A (en) * 2016-01-26 2016-06-22 清华大学 Method for performing online measurement on fatigue crack propagation of organic glass
CN109632489A (en) * 2019-01-16 2019-04-16 西南交通大学 A kind of Metal Material Fatigue crack propagation model construction method based on monotonic tension parameter
CN109632489B (en) * 2019-01-16 2021-04-09 西南交通大学 Metal material fatigue crack propagation model construction method based on monotonic stretching parameters
CN112214920A (en) * 2020-10-22 2021-01-12 岭澳核电有限公司 LBB evaluation processing method after pipeline damage
CN112214920B (en) * 2020-10-22 2023-08-22 岭澳核电有限公司 LBB (local binary-coded bus) evaluation processing method after pipeline damage

Similar Documents

Publication Publication Date Title
JP2008292206A (en) Crack propagation prediction method
Aygül et al. Modelling and fatigue life assessment of orthotropic bridge deck details using FEM
Hobbacher Recommendations for fatigue design of welded joints and components
Kainuma et al. Welding residual stress in roots between deck plate and U-rib in orthotropic steel decks
Aygül Fatigue analysis of welded structures using the finite element method
Meneghetti et al. Fatigue strength assessment of partial and full‐penetration steel and aluminium butt‐welded joints according to the peak stress method
Sim et al. Effects of fabrication procedures on fatigue resistance of welded joints in steel orthotropic decks
Liu et al. Simplified method for quasi-static collision assessment of a damaged tanker side panel
Gadallah et al. Residual stress measurement at the weld root of rib-to-deck welded joints in orthotropic steel bridge decks using the contour method
Okawa et al. Simulation-based fatigue crack management of ship structural details applied to longitudinal and transverse connections
JP6350270B2 (en) Fracture prediction method for adhesive joints
Kainuma et al. Fatigue behavior investigation and stress analysis for rib-to-deck welded joints in orthotropic steel decks
WO2020054347A1 (en) Residual stress distribution measuring method, calculating method, and program
Meneghetti et al. Fatigue assessment of weld toe and weld root failures in steel welded joints according to the peak stress method
JP5099637B2 (en) Crack growth analysis method
Hashemzadeh et al. Welding-induced residual stresses and distortions of butt-welded corroded and intact plates
JP4979546B2 (en) Weld structure verification method
JP2006000879A (en) Deformation estimating method, program, and recording medium
Mikihito et al. Fatigue characteristics of patch plate joints by fillet welding assisted with bonding
Zong et al. Fatigue assessment on butt welded splices in plates of different thicknesses
JP6984510B2 (en) Joint structure of square steel pipe columns and H-shaped steel beams
Hanji et al. Low-and high-cycle fatigue behavior of load-carrying cruciform joints with incomplete penetration and strength under-match
Yang et al. Fatigue crack growth analysis of a square hollow section T-joint
Carlucci et al. Crack initiation and growth in bimetallic girth welds
Jie et al. Fatigue life assessment of inclined welded joints in steel bridges subjected to combined normal and shear stresses

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20100224

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110909

A131 Notification of reasons for refusal

Effective date: 20111011

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120228