JP5833410B2 - Workpiece processing method - Google Patents

Workpiece processing method Download PDF

Info

Publication number
JP5833410B2
JP5833410B2 JP2011236655A JP2011236655A JP5833410B2 JP 5833410 B2 JP5833410 B2 JP 5833410B2 JP 2011236655 A JP2011236655 A JP 2011236655A JP 2011236655 A JP2011236655 A JP 2011236655A JP 5833410 B2 JP5833410 B2 JP 5833410B2
Authority
JP
Japan
Prior art keywords
welding
start position
workpiece
welding start
phase detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011236655A
Other languages
Japanese (ja)
Other versions
JP2013094783A (en
Inventor
鈴木 基文
基文 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Jukogyo KK filed Critical Fuji Jukogyo KK
Priority to JP2011236655A priority Critical patent/JP5833410B2/en
Publication of JP2013094783A publication Critical patent/JP2013094783A/en
Application granted granted Critical
Publication of JP5833410B2 publication Critical patent/JP5833410B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Welding Or Cutting Using Electron Beams (AREA)
  • Automatic Assembly (AREA)
  • Hydraulic Clutches, Magnetic Clutches, Fluid Clutches, And Fluid Joints (AREA)
  • General Details Of Gearings (AREA)

Description

本発明は、被加工物の加工方法に関し、特に、第1部材の組付孔に第2部材の組付部を嵌挿して互いに接合する接合部を連続する環状に溶接する被加工物の加工方法に関する。   The present invention relates to a method of processing a workpiece, and in particular, processing of a workpiece in which a joint portion where a second member assembly portion is inserted into an assembly hole of a first member and joined together is continuously welded. Regarding the method.

一般に、自動車の自動変速機や無段変速機に組み込まれるクラッチは、例えばクラッチハブ、及びクラッチハブを嵌合収容するクラッチドラムを備える。クラッチハブとクラッチドラムとの間には、複数のクラッチプレートが組み込まれており、クラッチドラムには油圧ピストンが摺動自在に収容されている(例えば、特許文献1を参照)。   Generally, a clutch incorporated in an automatic transmission or continuously variable transmission of an automobile includes, for example, a clutch hub and a clutch drum that fits and houses the clutch hub. A plurality of clutch plates are incorporated between the clutch hub and the clutch drum, and a hydraulic piston is slidably accommodated in the clutch drum (see, for example, Patent Document 1).

このようなクラッチドラム100は、例えば、図6で示すように、組付孔113が中央部分に形成された円板状の底壁部111及び底壁部111の外周縁に形成された円筒状の周壁部112を有するドラム本体部110と、軸部121及び軸部121の基端側に大径の外周面122aを有する円筒状の組付部122が形成された円柱状のシャフト120とを備える。   Such a clutch drum 100 is, for example, as shown in FIG. 6, a disc-shaped bottom wall portion 111 in which an assembly hole 113 is formed in the center portion, and a cylindrical shape formed on the outer peripheral edge of the bottom wall portion 111. A drum main body 110 having a peripheral wall portion 112 and a columnar shaft 120 in which a cylindrical assembly portion 122 having a large-diameter outer peripheral surface 122a is formed on the base end side of the shaft portion 121 and the shaft portion 121. Prepare.

このようなクラッチドラム100は、ドラム本体部110の底壁部111に形成された組付孔113に、シャフト120の組付部122を圧入して組付孔113の内周面113aと組付部122の外周面122aとを接合して組み立てられる。この互いに嵌合する組付孔113の内周面113aと組付部122の外周面122aとの間を、その接合部に沿って電子ビーム溶接等によって環状に溶接する。   The clutch drum 100 is assembled with the inner peripheral surface 113a of the assembly hole 113 by press-fitting the assembly portion 122 of the shaft 120 into the assembly hole 113 formed in the bottom wall portion 111 of the drum main body 110. The outer peripheral surface 122a of the part 122 is joined and assembled. The inner peripheral surface 113a of the assembly hole 113 and the outer peripheral surface 122a of the assembly portion 122 that are fitted to each other are welded in an annular manner along the joint portion by electron beam welding or the like.

特開2009−208732号公報JP 2009-208732 A

しかし、ドラム本体部110の底壁部111に設けられた組付孔113が底壁部111に対して芯ズレ等が生じている場合や、組付孔113の内周面113aや組付部122の外周面122aの加工精度が低い場合に、シャフト120の組付部122をドラム本体部110の組付孔113に圧入して組み付けると、シャフト120の軸心とドラム本体部110の軸心とがずれて、シャフト120がドラム本体部110に対して偏位して組み付けられる。   However, when the assembly hole 113 provided in the bottom wall portion 111 of the drum main body 110 is misaligned or the like with respect to the bottom wall portion 111, the inner peripheral surface 113a of the assembly hole 113 or the assembly portion When the processing accuracy of the outer peripheral surface 122a of 122 is low, when the assembly portion 122 of the shaft 120 is press-fitted into the assembly hole 113 of the drum body portion 110 and assembled, the shaft center of the shaft 120 and the shaft center of the drum body portion 110 are obtained. The shaft 120 is displaced with respect to the drum main body 110 and assembled.

一方、ドラム本体部110及びシャフト120の接合部に電子ビーム溶接を行うと、ビームの照射された部位の熱的影響によってドラム本体部110に対してシャフト120が偏位または傾倒して、ドラム本体部110の軸心とシャフト120の軸心とがずれることが知られている。   On the other hand, when electron beam welding is performed on the joint between the drum main body 110 and the shaft 120, the shaft 120 is displaced or inclined with respect to the drum main body 110 due to the thermal effect of the portion irradiated with the beam. It is known that the axis of the portion 110 and the axis of the shaft 120 are misaligned.

ここで、本発明者の鋭意研究の結果によって、このようなドラム本体110とシャフト120とを嵌合してその接合部を溶接始点と溶接終点とをオーバーラップさせて環状に溶接した際に、溶接始点位置とドラム本体110に対するシャフト120の傾倒発生方向に一定の傾向が存在することが確認された。また、他の互いに嵌合する部材間を環状に溶接した際にもその溶接始点位置と部材の相互間に一定の偏位発生傾向があることが確認された。   Here, according to the result of earnest research of the present inventors, when such a drum body 110 and the shaft 120 are fitted and the joint is overlapped with the welding start point and the welding end point and welded in an annular shape, It was confirmed that there is a certain tendency in the welding start point position and the direction in which the shaft 120 tilts with respect to the drum body 110. Further, it was confirmed that even when other members to be fitted to each other were welded in an annular shape, there was a tendency to generate a certain deviation between the welding start point position and the member.

本発明は溶接始点位置と部材の偏位発生傾向位置に一定の相関関係があることに着目してなされたもので、その目的は、溶接によって被加工物の加工精度を向上させることができる被加工物の加工方法を提供することにある。   The present invention has been made by paying attention to the fact that there is a certain correlation between the welding start point position and the position where the deviation of the member tends to occur. The object of the present invention is to improve the machining accuracy of the workpiece by welding. The object is to provide a method of processing a workpiece.

上記課題を解決するための請求項1に記載の発明による被加工物の加工方法は、第1部材の組付孔に第2部材の組付部を嵌挿して互いに接合する前記組付孔の内周面と組付部の外周面との間をその接合部に沿って連続する環状に溶接する被加工物の加工方法において、前記第1部材の組付孔に第2部材の組付部を嵌挿した被加工物を、前記第2部材を基準軸として回転させた際に生じる回転周方向上の前記第1部材の前記基準軸に対する最大振れ位置を検出する振れ測定工程と、該振れ測定工程で検出された前記第1部材の最大振れ位置と、予め前記第1部材に対応する部材の組付孔に前記第2部材に対応する部材の組付部を嵌挿して互いに接合する組付孔の内周面と組付部の外周面との間をその接合部に沿って連続する環状に溶接した際に生じる溶接始点位置に対する前記第1部材に対応する部材と第2部材に対応する部材の偏位発生傾向位置を設定した偏位傾向位置データとを対比して、前記第1部材と前記第2部材の接合部に溶接開始位置を設定する溶接開始位置設定工程と、該溶接開始位置設定工程で設定された前記溶接開始位置を溶接始点として前記第1部材の組付孔と前記第2部材の組付部との接合部に沿って連続する環状に溶接する溶接工程と、を備えることを特徴とする。   According to a first aspect of the present invention for solving the above-described problem, the workpiece processing method according to the first aspect of the present invention includes a method for fitting the assembly holes of the first member into the assembly holes of the first member and inserting the assembly portions of the second member together. In the processing method of a work piece which welds between the inner peripheral surface and the outer peripheral surface of the assembly part in an annular shape continuous along the joint part, the assembly part of the second member in the assembly hole of the first member And a runout measuring step for detecting a maximum runout position of the first member relative to the reference axis in the rotational circumferential direction generated when the workpiece inserted is rotated with the second member as a reference axis. A set in which the maximum deflection position of the first member detected in the measurement step and the assembly portion of the member corresponding to the second member are inserted into the assembly hole of the member corresponding to the first member in advance and joined together. When welding between the inner peripheral surface of the perforated hole and the outer peripheral surface of the assembly part in a continuous ring along the joint The first member and the second member are compared by comparing the deviation tendency position data in which the deviation occurrence tendency position of the member corresponding to the first member and the second member with respect to the welding start point position is set. A welding start position setting step of setting a welding start position at a joint portion of the member, and the assembly start hole of the first member and the second member of the second member with the welding start position set in the welding start position setting step as a welding start point And a welding step of welding in an annular shape that is continuous along the joint portion with the assembly portion.

この発明によると、振れ測定工程において第1部材に発生する振れの回転周方向上の最大振れ位置を測定し、溶接開始位置設定工程において、この最大振れ位置と、第1部材に対応する部材と第2部材に対応する部材との偏位発生傾向位置を予め設定した偏位傾向位置データとが対比されて、第1部材と第2部材の接合部に溶接開始位置を設定し、この設定された溶接開始位置を溶接始点として第1部材と第2部材との接合部に沿って連続して環状に溶接することで、溶接によって第1部材の最大振れが補正されて製品の品質が向上する。   According to this invention, the maximum shake position in the rotational circumferential direction of the shake generated in the first member in the shake measurement process is measured, and in the welding start position setting process, the maximum shake position and a member corresponding to the first member The deviation tendency position data, in which the deviation occurrence tendency position with the member corresponding to the second member is set in advance, is compared, and the welding start position is set at the joint between the first member and the second member. The welding start position is used as the welding start point and welding is continuously performed along the joint portion between the first member and the second member, so that the maximum runout of the first member is corrected by welding and the product quality is improved. .

請求項2に記載の発明は、請求項1に記載の被加工物の加工方法であって、前記振れ測定工程は、前記第2部材を基準軸として前記被加工物を回転させた際に生じる回転周方向上の前記第1部材の振れ位置を検出する位相検出装置で前記第1部材の最大振れ位置を検出し、前記溶接開始位置設定工程は、前記最大振れ位置と前記偏位傾向位置データとを対比して前記第1部材と前記第2部材との接合部に前記溶接開始位置を前記位相検出装置で設定し、前記第1部材と前記第2部材との接合部を溶接する溶接装置の溶接部に対応する前記位相検出装置上の基準位置に、前記位相検出装置で前記第2部材を基準軸として前記被加工物を回転させて前記溶接開始位置を位置決めし、前記溶接工程は、前記溶接開始位置が前記基準位置に位置決めされた状態で、前記被加工物を該被加工物の前記第1部材と前記第2部材との前記接合部を溶接する溶接装置に搬送して前記溶接開始位置を前記溶接装置の溶接部に位置決めする、ことを特徴とする。   Invention of Claim 2 is a processing method of the workpiece of Claim 1, Comprising: The said shake measurement process arises when the said workpiece is rotated by making the said 2nd member into a reference axis. The phase detector that detects the shake position of the first member in the rotational circumferential direction detects the maximum shake position of the first member, and the welding start position setting step includes the maximum shake position and the deviation tendency position data. In which the welding start position is set by the phase detection device at the joint portion between the first member and the second member, and the joint portion between the first member and the second member is welded. The workpiece is rotated with the second member as a reference axis by the phase detection device at the reference position on the phase detection device corresponding to the welded portion, and the welding start position is determined. The welding start position is positioned at the reference position. In this state, the workpiece is conveyed to a welding device for welding the joint between the first member and the second member of the workpiece, and the welding start position is positioned at the welding portion of the welding device. It is characterized by.

この発明によると、位相検出装置で振れ測定工程及び溶接開始位置設定工程が実行されると共に、被加工物を回転させて溶接装置の溶接部に対応する位相検出装置上の基準位置に溶接開始位置を位置決めし、この位置決めされた状態のままで被加工物を溶接装置に搬出して溶接開始位置を溶接装置の溶接部に位置決めする。従って、被加工物を位相検出装置から溶接装置にその状態のまま移動することで、被加工物における溶接開始位置を溶接装置の溶接部に容易に位置決めすることができる。   According to the present invention, the runout measurement process and the welding start position setting process are executed by the phase detection device, and the work start is rotated so that the welding start position is at the reference position on the phase detection device corresponding to the welded portion of the welding device. In this state, the workpiece is carried out to the welding apparatus, and the welding start position is positioned at the welding portion of the welding apparatus. Therefore, by moving the workpiece from the phase detection device to the welding device in that state, the welding start position on the workpiece can be easily positioned at the welded portion of the welding device.

請求項3に記載の発明は、請求項1に記載の被加工物の加工方法であって、前記振れ測定工程は、前記第2部材を基準軸として前記被加工物を回転させた際に生じる回転周方向上の前記第1部材の振れ位置を検出する位相検出装置で前記第1部材の最大振れ位置を検出し、前記溶接開始位置設定工程は、前記最大振れ位置と前記偏位傾向位置データとを対比して前記第1部材と前記第2部材との接合部に前記溶接開始位置を前記位相検出装置で設定し、前記溶接工程は、前記被加工物を該被加工物の前記第1部材と前記第2部材との前記接合部を溶接する溶接装置に搬送して配置し、前記位相検出装置で設定された前記溶接開始位置に基づいて前記溶接装置において該溶接装置の溶接部に前記溶接開始位置を位置決めする、ことを特徴とする。   Invention of Claim 3 is a processing method of the workpiece of Claim 1, Comprising: The said shake measurement process arises when the said workpiece is rotated by making the said 2nd member into a reference axis. The phase detector that detects the shake position of the first member in the rotational circumferential direction detects the maximum shake position of the first member, and the welding start position setting step includes the maximum shake position and the deviation tendency position data. And the welding start position is set by the phase detection device at the joint between the first member and the second member. In the welding step, the workpiece is the first of the workpiece. The joint between the member and the second member is transported and arranged in a welding device for welding, and the welding device includes a welding portion of the welding device based on the welding start position set by the phase detection device. Positioning the welding start position

この発明によると、位相検出装置で検出された第1部材の最大振れ位置と予め設定された偏位傾向位置データとが対比されて、位相検出装置で溶接開始位置が設定される。一方、被加工物を溶接装置に搬送して被加工物を溶接装置に配置し、位相検出装置で設定された溶接開始位置に基づいて、被加工物における溶接開始位置に溶接装置の溶接部を位置決めする。従って、溶接装置で被加工物の溶接開始位置に溶接装置の溶接部を容易に位置決めすることができる。   According to the present invention, the maximum deflection position of the first member detected by the phase detection device is compared with the preset deviation tendency position data, and the welding start position is set by the phase detection device. On the other hand, the work piece is transported to the welding apparatus, the work piece is placed in the welding apparatus, and the welding portion of the welding apparatus is placed at the welding start position in the work piece based on the welding start position set by the phase detection device. Position. Therefore, the welding part of a welding apparatus can be easily positioned in the welding start position of a workpiece with a welding apparatus.

請求項4に記載の発明による被加工物の加工方法は、請求項1〜3のいずれか1項に記載の被加工物の加工方法であって、前記振れ測定工程は、予め設定された許容振れ量判定データに基づいて、前記第1部材の最大振れが許容振れ量の範囲内にあるか否かを判定することを特徴とする。   A workpiece processing method according to a fourth aspect of the present invention is the workpiece processing method according to any one of the first to third aspects, wherein the run-out measuring step has a preset tolerance. Based on the shake amount determination data, it is determined whether or not the maximum shake of the first member is within an allowable shake amount range.

この発明によると、組み付け誤差に基づく第1部材の最大振れが許容振れ量の範囲外の被加工物と許容振れ量の範囲内の被加工物とを、予め選別することができる。従って、許容振れ量の範囲外の被加工物をその時点で除去することができ、許容振れ量の範囲外の被加工物に対して溶接を行うことによる溶接加工ロスを防止することができる。   According to the present invention, it is possible to select in advance a workpiece whose maximum deflection of the first member based on the assembly error is outside the allowable deflection amount range and a workpiece within the allowable deflection amount range. Therefore, the workpiece outside the allowable runout amount range can be removed at that time, and welding loss due to welding on the workpiece outside the allowable runout range can be prevented.

この発明によると、第1部材の最大振れ位置と、第1部材に対応する部材と第2部材に対応する部材とを溶接した際の偏位発生傾向位置を設定した偏位傾向位置データとが対比されて、第1部材と第2部材の接合部に溶接開始位置が設定されることから、溶接開始位置を溶接始点として第1部材と第2部材との接合部に沿って連続して環状に溶接することで最大振れが補正されて製品の品質が向上する。   According to the present invention, the maximum deflection position of the first member and the deviation tendency position data in which the deviation occurrence tendency position when the member corresponding to the first member and the member corresponding to the second member are welded are set. In contrast, since the welding start position is set at the joint between the first member and the second member, the welding start position is set as the welding start point, and the ring is continuously formed along the joint between the first member and the second member. The maximum run-out is corrected and the product quality is improved.

第1実施の形態に係る加工方法に用いられる位相検出装置の概略を説明する要部断面図である。It is principal part sectional drawing explaining the outline of the phase detection apparatus used for the processing method which concerns on 1st Embodiment. 図1のA部拡大図である。It is the A section enlarged view of FIG. 本実施の形態に係る工程図である。It is process drawing which concerns on this Embodiment. 同じく、本実施の形態に係る加工方法の作用を説明する図である。Similarly, it is a figure explaining the effect | action of the processing method which concerns on this Embodiment. 第2実施の形態に係る加工方法の概略を説明する図である。It is a figure explaining the outline of the processing method which concerns on 2nd Embodiment. 被加工物であるクラッチドラムの概略を説明する図である。It is a figure explaining the outline of the clutch drum which is a workpiece.

次に、本発明の被加工物の加工方法の実施の形態について、溶接方法が電子ビーム溶接である場合であって、溶接される被加工物が変速機のクラッチドラムである場合を例として説明する。   Next, an embodiment of a workpiece processing method of the present invention will be described by taking as an example a case where the welding method is electron beam welding and the workpiece to be welded is a clutch drum of a transmission. To do.

(第1実施の形態)
本発明の第1実施の形態について、図1乃至4に基づいて説明する。なお、図1乃至図4において、図6と同様の構成には同一の符号を付して、その詳細な説明を省略する。
(First embodiment)
A first embodiment of the present invention will be described with reference to FIGS. 1 to 4, the same reference numerals are given to the same components as those in FIG. 6, and detailed description thereof will be omitted.

図1は、本実施の形態に係る加工方法に用いられる位相検出装置の概略を説明する図であり、図2は、図1のA部拡大図である。   FIG. 1 is a diagram for explaining the outline of a phase detection device used in the processing method according to the present embodiment, and FIG. 2 is an enlarged view of a portion A in FIG.

この位相検出装置10は、第1部材となるドラム本体部110の組付孔113に第2部材となるシャフト120の組付部122が圧入されて組み付けられたクラッチドラム100を、シャフト120を基準軸として回転させた際に発生する回転周方向上のドラム本体部110の最大振れ位置を検出するものである。最大振れ位置が検出されたクラッチドラム100は、搬送手段となるローダハンド130によって、位相検出装置10に隣接して配置された図示しない溶接装置に搬送されてドラム本体110の組付孔113とシャフト120の組付部122との接合部を溶接する。   This phase detection device 10 uses the clutch drum 100 as a reference when the assembly portion 122 of the shaft 120 serving as the second member is press-fitted into the assembly hole 113 of the drum body 110 serving as the first member. It detects the maximum shake position of the drum main body 110 in the rotational circumferential direction that is generated when the shaft is rotated. The clutch drum 100 from which the maximum deflection position has been detected is transported to a welding device (not shown) disposed adjacent to the phase detection device 10 by a loader hand 130 serving as transport means, and the assembly hole 113 and shaft of the drum main body 110 are transported. The joint part with 120 assembly parts 122 is welded.

図1及び図2に示すように、位相検出装置10は、下部支持部11aに立設して上下方向に伸長する基部11b、基部11bの上部から下部支持部11aと対向して突出する上部支持部11cを有する側面視略コ字状に形成された本体部11を備える。下部支持部11aには、中心線Lを回転中心として回転可能に形成されるとともにクラッチドラム100のシャフト120の基端側を支持するマウント12が配設される。   As shown in FIGS. 1 and 2, the phase detection device 10 includes a base 11 b that is erected on the lower support 11 a and extends in the vertical direction, and an upper support that protrudes from the upper portion of the base 11 b so as to face the lower support 11 a. The main body part 11 formed in the side view substantially U shape which has the part 11c is provided. The lower support portion 11 a is provided with a mount 12 that is formed to be rotatable about the center line L and that supports the proximal end side of the shaft 120 of the clutch drum 100.

マウント12は、下部支持部11aに配設される円筒状のベース部12a、及びベース部12aにベアリング等を介して回転自在に支持されてシャフト120の組付部122に形成される中空内周面122bに嵌合してシャフト120の基端をセンタリングすると共に支持する座部12bを有する。   The mount 12 includes a cylindrical base portion 12a disposed in the lower support portion 11a, and a hollow inner periphery formed on an assembly portion 122 of the shaft 120 that is rotatably supported by the base portion 12a via a bearing or the like. The seat portion 12b is fitted to the surface 122b to center and support the proximal end of the shaft 120.

上部支持部11cには、マウント12と対向してセンタ機構13が配設されている。このセンタ機構13は、ロータリボールスプライン13dを介して回転可能に上部支持部11cに軸支されるとともに、エアシリンダ13bによって上下方向の上限位置と下限位置との間で往復移動するスプラインシャフト13aを備える。スプラインシャフト13aには、シャフト120の軸部121に形成されたセンタ孔121aに嵌合するセンタ13eが設けられている。   A center mechanism 13 is disposed on the upper support portion 11 c so as to face the mount 12. The center mechanism 13 is rotatably supported by an upper support portion 11c via a rotary ball spline 13d, and a reciprocating spline shaft 13a between an upper limit position and a lower limit position in the vertical direction by an air cylinder 13b. Prepare. The spline shaft 13 a is provided with a center 13 e that fits into a center hole 121 a formed in the shaft portion 121 of the shaft 120.

このスプラインシャフト13aには、タイミングプーリ13cが設けられている。このタイミングプーリ13cと、基部11bに配設されたステップモータ14の回転軸14aに設けられたタイミングプーリ14bとの間にタイミングベルト14dが巻回され、ステップモータ14の回転力が、タイミングプーリ14b、タイミングベルト14d及びタイミングプーリ13cを介してスプラインシャフト13aに伝達され、スプラインシャフト14aが中心線Lを回転中心として回転する。   A timing pulley 13c is provided on the spline shaft 13a. The timing belt 14d is wound between the timing pulley 13c and the timing pulley 14b provided on the rotating shaft 14a of the step motor 14 disposed on the base 11b, and the rotational force of the step motor 14 is changed to the timing pulley 14b. Then, it is transmitted to the spline shaft 13a via the timing belt 14d and the timing pulley 13c, and the spline shaft 14a rotates around the center line L as a rotation center.

一方、マウント12に隣接して、振れ検出手段となる測定ゲージ15が配設される。測定ゲージ15は、ゲージ本体部15a、ゲージ本体部15aに支持される接触端子15bを有し、エアシリンダ15cによって接触端子15bが被測定部に接触する測定位置と被測定物から離反する退避位置とに移動する。ドラム本体部110の振れ測定を行う場合は、接触端子15bがドラム本体部110の底壁部111と周壁部112とのコーナ部の内周面に沿って接触する測定位置に切り替えられ、クラッチドラム110を位相検出装置10に配置する際及び位相検出装置1から取り外す場合は、ドラム本体部110の内周面から離反する退避位置に切り替えられる。   On the other hand, a measurement gauge 15 serving as a shake detection unit is disposed adjacent to the mount 12. The measurement gauge 15 includes a gauge main body 15a and a contact terminal 15b supported by the gauge main body 15a. The measurement position where the contact terminal 15b contacts the measurement target by the air cylinder 15c and the retreat position where the measurement terminal 15 separates from the measurement target. And move on. When measuring the vibration of the drum main body 110, the contact terminal 15b is switched to a measurement position where the contact terminal 15b contacts along the inner peripheral surface of the corner portion of the bottom wall 111 and the peripheral wall 112 of the drum main body 110, and the clutch drum When the 110 is disposed on the phase detection device 10 and when it is removed from the phase detection device 1, the position is switched to the retracted position away from the inner peripheral surface of the drum main body 110.

この位相検出装置10は、測定ゲージ15によるクラッチドラム100の振れ測定の結果に基づいて、ドラム本体部110の最大振れ量が許容振れ量範囲内であるか否かを判定する許容振れ量範囲判定データが格納された図示しない制御部を備える。この制御部には、更に、ドラム本体部110とシャフト120との接合部の周方向上における溶接始点からその接合部に沿って環状に溶接する際に生じるドラム本体部110とシャフト120との偏位発生傾向位置を予め設定した偏位発生傾向位置データが格納されている。   This phase detection device 10 determines whether or not the maximum shake amount of the drum main body 110 is within the allowable shake amount range based on the result of the shake measurement of the clutch drum 100 by the measurement gauge 15. A control unit (not shown) storing data is provided. The control unit further includes a deviation between the drum main body 110 and the shaft 120 that is generated when welding the ring main body 110 and the shaft 120 from the welding start point in the circumferential direction along the joint. The deviation occurrence tendency position data in which the position occurrence tendency position is set in advance is stored.

この偏位発生傾向位置データは、予め溶接対象となるドラム本体110に対応する部材の取付孔に、シャフト120に対応する部材の取付部を圧入し、これら嵌合する取付孔と取付部との接合部を環状に溶接した際に発生する溶接始点位置に対する変位発生傾向位置が、予め実験或いはシミュレーション等に基づいて設定される。例えば、本実施の形態では図4(a)に示すように、ドラム本体部110とシャフト120との接合部を周方向に溶接する際に、溶接始点Sに対して軸心Oを中心に溶接方向Tに角度θずれた方向にドラム本体部110が偏位するものと仮定し、その偏位発生方向を偏位発生傾向位置Aと設定する。   This deviation occurrence tendency position data is obtained by pre-inserting the attachment portion of the member corresponding to the shaft 120 into the attachment hole of the member corresponding to the drum main body 110 to be welded, and the fitting hole and attachment portion to be fitted. A displacement generation tendency position with respect to a welding start point position generated when the joint portion is welded in an annular shape is set in advance based on experiments or simulations. For example, in the present embodiment, as shown in FIG. 4A, when the joint portion between the drum main body 110 and the shaft 120 is welded in the circumferential direction, welding is performed around the axis O with respect to the welding start point S. It is assumed that the drum body 110 is displaced in a direction shifted by an angle θ in the direction T, and the deviation occurrence direction is set as a deviation occurrence tendency position A.

次に、本実施の形態に係る加工方法について説明する。図3に示す工程図を参照して説明する。   Next, a processing method according to the present embodiment will be described. This will be described with reference to the process diagram shown in FIG.

図3で示すように、加工方法は、圧入工程S2、振れ測定工程S3、振れ量判定工程S4、溶接開始位置設定工程S5及び溶接工程S6を主要構成として備える。   As shown in FIG. 3, the processing method includes a press-fit process S2, a runout measurement process S3, a runout amount determination process S4, a welding start position setting process S5, and a welding process S6 as main components.

まず、機械加工されたドラム本体110及びシャフト120の組み付けにあたり、予め洗浄して切削油や切粉等の付着物を除去する(洗浄工程S1)。   First, in assembling the machined drum body 110 and shaft 120, the deposits such as cutting oil and chips are removed by washing in advance (cleaning step S1).

洗浄工程S1で洗浄されたドラム本体部110及びシャフト120は、エアブロ等で乾燥された後に圧入装置に搬送されて、圧入装置によってドラム本体部110の組付孔113にシャフト120の組付部122が嵌合乃至圧入されて組み付けられる(圧入工程S2)。   The drum main body 110 and the shaft 120 cleaned in the cleaning step S1 are dried by an air blower or the like, and then transferred to the press-fitting device. Are fitted or press-fitted and assembled (press-fitting step S2).

ドラム本体部110とシャフト120とが一体に組み付けられたクラッチドラム100は、位相検出装置10に搬入されて振れ測定工程S3に移行する。振れ測定工程S3では、位相検出装置10の測定ゲージ15を退避位置に保持するとともに、エアシリンダ13bによりセンタ機構13のセンタ13eを上限位置まで上昇させた退避状態でシャフト120の組付部122に形成された中空内周面122bを、マウント12の座部12bに嵌合させるとともに、エアシリンダ13bによってセンタ13eを下降させてセンタ13eをシャフト120に形成されたセンタ孔121aに嵌合させてマウント12及びセンタ13eによってクランプ保持し、クラッチドラム100の軸心が中心線Lと同軸となるように位置決めする。   The clutch drum 100 in which the drum main body 110 and the shaft 120 are integrally assembled is carried into the phase detection device 10 and proceeds to the shake measurement step S3. In the shake measurement step S3, the measurement gauge 15 of the phase detection device 10 is held at the retracted position, and the center 13e of the center mechanism 13 is raised to the upper limit position by the air cylinder 13b, and is attached to the assembly portion 122 of the shaft 120. The formed hollow inner peripheral surface 122b is fitted into the seat 12b of the mount 12, and the center 13e is lowered by the air cylinder 13b to fit the center 13e into the center hole 121a formed in the shaft 120. 12 and the center 13e are clamped and positioned so that the axis of the clutch drum 100 is coaxial with the center line L.

その後、退避位置に保持されている測定ゲージ15をエアシリンダ15cによって測定位置に移動し、接触端子15bを測定位置となるドラム本体部110の内周面に接触させる。   Thereafter, the measurement gauge 15 held at the retracted position is moved to the measurement position by the air cylinder 15c, and the contact terminal 15b is brought into contact with the inner peripheral surface of the drum main body 110 serving as the measurement position.

この状態で、ステップモータ14によりセンタ13dを回転駆動してクラッチドラム100を回転させる。このとき、中心軸Lに保持されたシャフト12に対してドラム本体部110が偏位しているクラッチドラム100にあっては、ドラム本体部110が中心軸Lに対して振れを発生させながら回転することから、ドラム本体部110における内周面に接触した測定ゲージ15の接触端子15bがドラム本体部110の振れ回転に追従してゲージ本体部15aに対して揺動し、この揺動幅によってドラム本体部110の最大振れが測定され、更にステップモータ14の回転位置によってクラッチドラム100の回転周方向上の最大振れ位置が測定される。   In this state, the step motor 14 rotates the center 13d to rotate the clutch drum 100. At this time, in the clutch drum 100 in which the drum main body 110 is displaced with respect to the shaft 12 held on the central axis L, the drum main body 110 rotates while generating a vibration with respect to the central axis L. Therefore, the contact terminal 15b of the measurement gauge 15 that contacts the inner peripheral surface of the drum main body 110 swings with respect to the gauge main body 15a following the swing rotation of the drum main body 110, and this swing width The maximum shake of the drum main body 110 is measured, and the maximum shake position of the clutch drum 100 in the rotational circumferential direction is measured based on the rotational position of the step motor 14.

この振れ測定工程S3で測定されたドラム本体100の振れ量と許容振れ量判定データを比較し、最大振れ量が許容範囲内か否か判断する(振れ量判断工程S4)。振れ量が許容範囲内と判断された場合(振れ量判断工程S4でYの場合)は、溶接開始位置設定工程S5に移行する。   The shake amount of the drum body 100 measured in the shake measurement step S3 is compared with the allowable shake amount determination data, and it is determined whether or not the maximum shake amount is within an allowable range (amount of shake determination step S4). When it is determined that the shake amount is within the allowable range (Y in the shake amount determination step S4), the process proceeds to the welding start position setting step S5.

溶接開始位置設定工程S5では、振れ測定工程S3で検出されたドラム本体部110の最大振れ位置と、ドラム本体部110の組付孔112とシャフト120の組付部122との接合部の周方向上における溶接始点からドラム本体部110とシャフト120とを溶接する際に生じるドラム本体部110とシャフト120との偏位傾向位置を予め設定した偏位発生傾向位置データとを対比し、ドラム本体部110とシャフト120との接合部における溶接開始位置Sを設定する。   In the welding start position setting step S5, the maximum deflection position of the drum body 110 detected in the deflection measurement process S3, and the circumferential direction of the joint between the assembly hole 112 of the drum body 110 and the assembly 122 of the shaft 120 The drum body part is compared with the deviation occurrence tendency position data in which the deviation tendency position between the drum body part 110 and the shaft 120 generated when the drum body part 110 and the shaft 120 are welded from the welding start point above. The welding start position S at the joint between 110 and the shaft 120 is set.

本実施の形態では、例えば図4(b)で示すように、回転中心となる中心軸L、即ちシャフト120の中心点Oから最も離れた計測点の方向Iがドラム本体部110における回転周方向R上の最大振れ位置となる。この最大振れ位置Iと偏位発生傾向データを比較し、溶接に伴い最大振れが発生する偏位発生傾向位置Aが中心点Oを介して最大振れ位置Iと対向位置となるように溶接開始位置Sと設定する。即ち、偏位発生傾向位置Aが中心点Oを介して反溶接方向に角度θの位置である最大振れ位置Iに対し反溶接方向に180°+角度θの位置を溶接開始位置Sと設定する。   In the present embodiment, for example, as shown in FIG. 4B, the central axis L serving as the center of rotation, that is, the direction I of the measurement point furthest away from the center point O of the shaft 120 is the rotational circumferential direction in the drum main body 110. This is the maximum shake position on R. The maximum deflection position I is compared with the deviation occurrence tendency data, and the welding start position is such that the deviation occurrence tendency position A at which the maximum deflection occurs with welding is opposed to the maximum deflection position I via the center point O. Set to S. That is, the position of 180 ° + angle θ in the anti-welding direction is set as the welding start position S with respect to the maximum deflection position I where the deviation occurrence tendency position A is the position of the angle θ in the anti-welding direction via the center point O. .

溶接開始位置Sが設定された後、電子ビーム溶接工程S6に移行する。電子ビーム溶接工程S6では、まず、クラッチドラム100における溶接開始位置Sが、位相検出装置10に隣接して配置された溶接装置の溶接部となるビーム照射部が配置されるように制御部がステップモータ15を回転制御して、溶接装置のビーム照射部に対応する位相検出装置10上の基準位置に、溶接開始位置Sを位置決めする。   After the welding start position S is set, the process proceeds to the electron beam welding process S6. In the electron beam welding step S <b> 6, first, the control unit performs a step so that a beam irradiation part serving as a welding part of a welding apparatus arranged adjacent to the phase detection device 10 is located at the welding start position S in the clutch drum 100. The motor 15 is rotationally controlled to position the welding start position S at the reference position on the phase detection device 10 corresponding to the beam irradiation unit of the welding device.

更に、溶接開始位置Sが位相検出装置10の基準位置に位置決めされたクラッチドラム100を、そのままの状態で、ローダハンド130で把持して溶接装置に搬出し、クラッチドラム100における溶接開始位置Sを溶接装置のビーム照射部に位置決めし、クラッチドラム100を溶接装置に配置する   Further, the clutch drum 100 in which the welding start position S is positioned at the reference position of the phase detection device 10 is held as it is, and is held by the loader hand 130 and carried out to the welding device, and the welding start position S in the clutch drum 100 is determined. Positioning in the beam irradiation part of the welding apparatus, the clutch drum 100 is arranged in the welding apparatus.

溶接装置に配置されたクラッチドラム100は、溶接装置によって電子ビーム溶接が施される。すなわち、クラッチドラム100における溶接開始位置Sからドラム本体部110の組付孔113の内周面113aと組付部122の外周面122aとの間を、その接合部に沿って連続する環状に溶接し、溶接開始位置Sを超えて溶接終了位置までオーバーラップして溶接する。これにより、ドラム本体部110の最大振れ位置が、矢線Bで示す方向に向かってシャフト120が偏位して補正される。   The clutch drum 100 disposed in the welding apparatus is subjected to electron beam welding by the welding apparatus. That is, welding between the inner peripheral surface 113a of the assembly hole 113 of the drum main body 110 and the outer peripheral surface 122a of the assembly portion 122 from the welding start position S in the clutch drum 100 is performed in a continuous ring along the joint portion. Then, welding is performed by overlapping the welding start position S to the welding end position. As a result, the maximum deflection position of the drum main body 110 is corrected by the shaft 120 being displaced in the direction indicated by the arrow B.

このように、組み付けられたクラッチドラム100におけるドラム本体部110とシャフト120の偏位が発生したクラッチドラム100に振れ測定を行って、ドラム本体部110の最大振れ位置Iを検出し、この最大振れ位置Iと偏位傾向位置データとを対比して溶接開始位置Sを設定し、この溶接開始位置Sから電子ビーム溶接を施して溶接始点と溶接終点とをオーバーラップして連続して環状に溶接する。これにより、ドラム本体部110の最大振れ位置が補正されてクラッチドラム100の振れが改善されて製品の品質が向上する。   In this way, the vibration measurement is performed on the clutch drum 100 in which the displacement of the drum main body 110 and the shaft 120 in the assembled clutch drum 100 is detected, and the maximum vibration position I of the drum main body 110 is detected. The welding start position S is set by comparing the position I and the deviation tendency position data, and electron beam welding is performed from the welding start position S, and the welding start point and the welding end point are overlapped to continuously weld in an annular shape. To do. As a result, the maximum shake position of the drum main body 110 is corrected, the shake of the clutch drum 100 is improved, and the quality of the product is improved.

電子ビーム溶接工程S6の後、超音波探傷工程S7に移行する。すなわち、溶接が終了したクラッチドラム100を溶接装置から取り外して、図示しない超音波探傷器に設置してクラッチドラム100の超音波探傷を行い、クラッチドラム100の微小な傷等を検出する。   After the electron beam welding step S6, the process proceeds to an ultrasonic flaw detection step S7. That is, the clutch drum 100 that has been welded is removed from the welding apparatus, and is installed in an ultrasonic flaw detector (not shown) to perform ultrasonic flaw detection of the clutch drum 100 to detect minute flaws in the clutch drum 100 and the like.

一方、振れ量判定工程S4で振れ測定の結果最大振れ位置が制御装置に予め設定された許容範囲内でないと判断された場合(振れ量判定工程S4でN)は、クラッチドラム100を位相検出装置10から取り外す(取り外しS8)。取り外されたクラッチドラム100は、不良品として回収される。   On the other hand, if it is determined in the shake amount determination step S4 that the maximum shake position is not within the allowable range preset in the control device (N in the shake amount determination step S4), the clutch drum 100 is moved to the phase detection device. 10 is removed (removal S8). The removed clutch drum 100 is collected as a defective product.

なお、本実施の形態では、溶接開始位置Sを溶接装置のビーム照射部に対応する位相検出装置10の基準位置において位置決めし、位相検出装置10で位置決めした状態のままで溶接装置に搬送して溶接開始位置Sにビーム照射部を位置決めする場合を説明したが、位相検出装置10において溶接開始位置Sにビーム照射部を位置決めせずに、溶接装置において溶接開始位置Sにビーム照射部を位置決めしてもよい。   In the present embodiment, the welding start position S is positioned at the reference position of the phase detection device 10 corresponding to the beam irradiation part of the welding device, and is conveyed to the welding device while being positioned by the phase detection device 10. Although the case where the beam irradiation part is positioned at the welding start position S has been described, the beam irradiation part is positioned at the welding start position S in the welding apparatus without positioning the beam irradiation part at the welding start position S in the phase detection device 10. May be.

すなわち、位相検出装置10で溶接開始位置Sを設定した後にクラッチドラム100を溶接装置に搬出して溶接装置に配置し、溶接装置において、位相検出装置10で設定された溶接開始位置Sのデータに基づいて、クラッチドラム100の溶接開始位置Sにビーム照射部を位置決めする。例えば、溶接装置の回転機構等によって、溶接装置に配置されたクラッチドラム100における溶接開始位置Sをビーム照射部まで回転させて位置決めしてもよいし、ビーム照射部をクラッチドラム100における溶接開始位置Sまで移動させて位置決めしてもよい。   That is, after the welding start position S is set by the phase detection device 10, the clutch drum 100 is carried out to the welding device and arranged in the welding device. In the welding device, the data of the welding start position S set by the phase detection device 10 is used. Based on this, the beam irradiation unit is positioned at the welding start position S of the clutch drum 100. For example, the welding start position S in the clutch drum 100 arranged in the welding apparatus may be rotated and positioned to the beam irradiation section by a rotation mechanism of the welding apparatus, or the beam irradiation section may be positioned in the clutch drum 100. You may move to S and position.

これによれば、溶接装置において、位相検出装置10で設定された溶接開始位置Sのデータに基づいて溶接開始位置Sにビーム照射部が位置決めされることから、クラッチドラム100における溶接開始位置Sを設定した後、すなわち、位相検出装置10から溶接装置に搬出する際に、加工作業を一時中断したり、別の作業工程を実行したりしても、溶接開始位置Sにビーム照射部を確実に位置決めすることができる。その結果、作業工程の構築が容易になり、作業効率の向上を図ることができる。   According to this, in the welding apparatus, since the beam irradiation part is positioned at the welding start position S based on the data of the welding start position S set by the phase detection device 10, the welding start position S in the clutch drum 100 is determined. After setting, that is, when carrying out from the phase detection device 10 to the welding device, the beam irradiation unit is surely provided at the welding start position S even if the processing operation is temporarily interrupted or another work process is executed. Can be positioned. As a result, the construction of the work process becomes easy and the work efficiency can be improved.

(第2実施の形態)
次に、本発明の第2実施の形態について、図5に基づいて説明する。なお、図5において、図1乃至図4及び図6と同様の構成には同一の符号を付して、その詳細な説明を省略する。
(Second Embodiment)
Next, a second embodiment of the present invention will be described with reference to FIG. In FIG. 5, the same components as those in FIGS. 1 to 4 and 6 are denoted by the same reference numerals, and detailed description thereof is omitted.

図5は、本実施の形態に係る溶接方法に用いられる位相検出装置の概略を説明する図である。図示のように、本実施の形態では、溶接装置20に、位相検出装置10が組み込まれている。   FIG. 5 is a diagram for explaining the outline of the phase detection device used in the welding method according to the present embodiment. As illustrated, in the present embodiment, the phase detection device 10 is incorporated in the welding device 20.

溶接装置20は、位相検出装置10の中心線Lに隣接して配置されるビーム照射部21を備える。位相検出装置10に配置されたクラッチドラム100は、センタ機構13の回転駆動によって、中心線Lを回転中心としてマウント12上で回転し、ビーム照射部21が、回転するクラッチドラム100を溶接する。   The welding device 20 includes a beam irradiation unit 21 disposed adjacent to the center line L of the phase detection device 10. The clutch drum 100 disposed in the phase detection device 10 is rotated on the mount 12 around the center line L by the rotation driving of the center mechanism 13, and the beam irradiation unit 21 welds the rotating clutch drum 100.

次に、本実施の形態に係る加工方法について説明する。第1実施の形態と同様の洗浄工程S1、圧入工程S2を経て、振れ測定工程S3、振れ量判定工程S4、溶接開始位置設定工程S5に移行する。これらの工程は第1実施の形態と同様であることから、その説明を省略する。   Next, a processing method according to the present embodiment will be described. After the same cleaning process S1 and press-fitting process S2 as in the first embodiment, the process proceeds to a shake measurement process S3, a shake amount determination process S4, and a welding start position setting process S5. Since these steps are the same as those in the first embodiment, the description thereof is omitted.

溶接開始位置設定工程S5で溶接開始位置Sが設定された後、電子ビーム溶接工程S6に移行する。   After the welding start position S is set in the welding start position setting step S5, the process proceeds to the electron beam welding step S6.

電子ビーム溶接工程S6では、クラッチドラム100をにおける溶接開始位置Sに溶接装置20のビーム照射部21が配置されるように、制御部がステップモータ15を回転制御して、溶接装置20のビーム照射部21に溶接開始位置Sを位置決めする。   In the electron beam welding step S6, the control unit controls the rotation of the step motor 15 so that the beam irradiation unit 21 of the welding apparatus 20 is disposed at the welding start position S in the clutch drum 100, and the beam irradiation of the welding apparatus 20 is performed. The welding start position S is positioned on the part 21.

溶接開始位置Sにビーム照射部21が位置決めされたクラッチドラム100は、位相検出装置10に配置された状態で電子ビーム溶接が施される。ビーム照射部21から溶接開始位置Sに照射すると共にステップモータ14によってクラッチドラム100を溶接方向に回転し、溶接開始位置Sからドラム本体部110の組付孔113の内周面113aと組付部122の外周面122aとの間を、その接合部に沿って連続する環状に溶接し、溶接開始位置Sを超えて溶接終了位置Eまで溶接する。   The clutch drum 100 in which the beam irradiation unit 21 is positioned at the welding start position S is subjected to electron beam welding in a state where the clutch drum 100 is disposed in the phase detection device 10. Irradiating the welding start position S from the beam irradiation unit 21 and rotating the clutch drum 100 in the welding direction by the step motor 14, the inner peripheral surface 113 a of the assembly hole 113 of the drum main body 110 and the assembly unit from the welding start position S. Between the outer peripheral surface 122a of 122, it welds to the cyclic | annular form continuous along the junction part, and it welds to the welding end position E beyond the welding start position S.

このように、本実施の形態では、溶接装置20に位相検出装置10が組み込まれていることから、振れ測定工程S3が実行されたクラッチドラム100を位相検出装置10から溶接装置20に移動させる必要がなく、位相検出装置10上でクラッチドラム100における溶接開始位置Sにビーム照射部21を位置決めすることができ、この状態のまま電子ビーム溶接を行うことができる。すなわち、単一の装置で、振れ測定工程S3、溶接開始位置設定工程S5及び電子ビーム溶接工程S6を連続して実行することから、各工程間のサイクルタイムを短縮化することができるとともに、装置の配置スペースを縮小して作業スペースを確保することができる。   Thus, in the present embodiment, since the phase detection device 10 is incorporated in the welding device 20, it is necessary to move the clutch drum 100 on which the shake measurement step S <b> 3 has been performed from the phase detection device 10 to the welding device 20. The beam irradiation unit 21 can be positioned at the welding start position S of the clutch drum 100 on the phase detection device 10, and electron beam welding can be performed in this state. That is, since the runout measurement step S3, the welding start position setting step S5 and the electron beam welding step S6 are continuously performed with a single device, the cycle time between the steps can be shortened, and the device The working space can be secured by reducing the arrangement space.

なお、本発明は上記各実施の形態に限定されることはなく、発明の趣旨を逸脱しない範囲で種々変更可能である。上記第1実施の形態では、位相検出装置10で振れ測定及び溶接開始位置の設定を行い、上記第2実施の形態では位相検出装置10で振れ測定を行うとともに溶接装置20のビーム照射部21が溶接開始位置Sに位置決めされる場合を説明したが、例えば、レーザ測定装置等の計測器具によって、クラッチドラム100のドラム本体部110の振れ測定を行ってもよい。   The present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the invention. In the first embodiment, the phase detection device 10 performs shake measurement and setting of the welding start position. In the second embodiment, the phase detection device 10 performs shake measurement and the beam irradiation unit 21 of the welding device 20 Although the case where it is positioned at the welding start position S has been described, for example, the vibration measurement of the drum main body 110 of the clutch drum 100 may be performed by a measuring instrument such as a laser measuring device.

また、ドラム本体部110の最大振れ位置にマーキングを付し、このマーキング位置と偏位傾向位置データとを対比して、対比結果に基づいて溶接開始位置を設定する。溶接開始位置には、別個のマーキングを付しておく。溶接開始位置にマーキングを付したクラッチドラム100を、溶接開始位置をビーム照射部に位置決めして溶接装置に設置する。これにより、位相検出装置10を用いることなく、クラッチドラム100の溶接を行うことができる。   Further, a marking is attached to the maximum shake position of the drum main body 110, and the welding start position is set based on the comparison result by comparing the marking position with the deviation tendency position data. A separate marking is attached to the welding start position. The clutch drum 100 with the marking at the welding start position is installed in the welding apparatus with the welding start position positioned at the beam irradiation unit. As a result, the clutch drum 100 can be welded without using the phase detection device 10.

上記実施の形態では、溶接方法が電子ビーム溶接である場合を説明したが、例えば、レーザ溶接やTIG溶接等、溶接始点と溶接終点とを重ねる溶接方法であれば適用することができる。   In the above-described embodiment, the case where the welding method is electron beam welding has been described. However, any welding method that overlaps the welding start point and the welding end point, such as laser welding or TIG welding, can be applied.

上記各実施の形態では、被加工物が変速機のクラッチドラム100である場合を例として説明したが、例えば、トルクコンバータのケーシングに軸状のシャフトを組み付ける等、第1部材と軸状の第2部材とを圧入または嵌合して組み付けて、溶接始点と溶接終点とをオーバーラップする溶接が施される被加工物であれば適用することができる。この場合、制御部には、第1部材に相当する部材と第2部材に相当する部材の接合部の周方向上における溶接始点から第1部材に相当する部材と第2部材に相当する部材とを溶接する際に生じる溶接始点に対して第1部材に相当する部材と第2部材に相当する部材との偏位発生傾向位置を予め設定した偏位発生傾向位置データが格納されている。   In each of the above-described embodiments, the case where the workpiece is the clutch drum 100 of the transmission has been described as an example. However, for example, a shaft-shaped shaft is assembled to the casing of the torque converter. The workpiece can be applied as long as the workpiece is subjected to welding in which the two members are press-fitted or fitted and assembled to overlap the welding start point and the welding end point. In this case, the control unit includes a member corresponding to the first member and a member corresponding to the second member from the welding start point on the circumferential direction of the joint portion of the member corresponding to the first member and the member corresponding to the second member. The deviation occurrence tendency position data in which the deviation occurrence tendency positions of the member corresponding to the first member and the member corresponding to the second member are preset with respect to the welding start point generated when welding is stored.

10 位相検出装置
11 本体部
12 マウント
13 センタ機構
14 ステップモータ
15 測定ゲージ
20 溶接装置
21 ビーム照射部
100 クラッチドラム(被加工物)
110 ドラム本体部(第1部材)
113 組付孔
113a 内周面
120 シャフト(第2部材)
122a 外周面
S3 振れ測定工程
S5 溶接開始位置設定工程
S6 電子ビーム溶接工程(溶接工程)
DESCRIPTION OF SYMBOLS 10 Phase detection apparatus 11 Main-body part 12 Mount 13 Center mechanism 14 Step motor 15 Measurement gauge 20 Welding apparatus 21 Beam irradiation part 100 Clutch drum (workpiece)
110 Drum body (first member)
113 Assembly hole 113a Inner peripheral surface 120 Shaft (second member)
122a Outer peripheral surface S3 Runout measurement step S5 Welding start position setting step S6 Electron beam welding step (welding step)

Claims (4)

第1部材の組付孔に第2部材の組付部を嵌挿して互いに接合する前記組付孔の内周面と組付部の外周面との間をその接合部に沿って連続する環状に溶接する被加工物の加工方法において、
前記第1部材の組付孔に第2部材の組付部を嵌挿した被加工物を、前記第2部材を基準軸として回転させた際に生じる回転周方向上の前記第1部材の前記基準軸に対する最大振れ位置を検出する振れ測定工程と、
該振れ測定工程で検出された前記第1部材の最大振れ位置と、予め前記第1部材に対応する部材の組付孔に前記第2部材に対応する部材の組付部を嵌挿して互いに接合する組付孔の内周面と組付部の外周面との間をその接合部に沿って連続する環状に溶接した際に生じる溶接始点位置に対する前記第1部材に対応する部材と第2部材に対応する部材の偏位発生傾向位置を設定した偏位傾向位置データとを対比して、前記第1部材と前記第2部材の接合部に溶接開始位置を設定する溶接開始位置設定工程と、
該溶接開始位置設定工程で設定された前記溶接開始位置を溶接始点として前記第1部材の組付孔と前記第2部材の組付部との接合部に沿って連続する環状に溶接する溶接工程と、
を備えることを特徴とする被加工物の加工方法。
An annular ring that is continuous along the joint between the inner peripheral surface of the assembly hole and the outer peripheral surface of the assembly portion, which are joined to each other by fitting the assembly portion of the second member into the assembly hole of the first member. In the processing method of the workpiece to be welded to
The workpiece of the first member on the circumferential direction that is produced when the workpiece in which the assembly portion of the second member is inserted into the assembly hole of the first member is rotated about the second member as a reference axis. A runout measurement process for detecting the maximum runout position with respect to the reference axis;
The maximum deflection position of the first member detected in the deflection measurement step and the assembly portion of the member corresponding to the second member are inserted into the assembly hole of the member corresponding to the first member in advance and joined together. A member corresponding to the first member and a second member with respect to a welding start position generated when welding between the inner peripheral surface of the assembly hole to be performed and the outer peripheral surface of the assembly portion in an annular shape continuous along the joint portion A welding start position setting step of setting a welding start position at a joint portion of the first member and the second member, by comparing with a deviation tendency position data in which a deviation occurrence tendency position of the member corresponding to
Welding step of welding in a continuous ring along the joint portion between the assembly hole of the first member and the assembly portion of the second member with the welding start position set in the welding start position setting step as a welding start point When,
The processing method of the to-be-processed object characterized by providing.
前記振れ測定工程は、
前記第2部材を基準軸として前記被加工物を回転させた際に生じる回転周方向上の前記第1部材の振れ位置を検出する位相検出装置で前記第1部材の最大振れ位置を検出し、
前記溶接開始位置設定工程は、
前記最大振れ位置と前記偏位傾向位置データとを対比して前記第1部材と前記第2部材との接合部に前記溶接開始位置を前記位相検出装置で設定し、前記第1部材と前記第2部材との接合部を溶接する溶接装置の溶接部に対応する前記位相検出装置上の基準位置に、前記位相検出装置で前記第2部材を基準軸として前記被加工物を回転させて前記溶接開始位置を位置決めし、
前記溶接工程は、
前記溶接開始位置が前記基準位置に位置決めされた状態で、前記被加工物を該被加工物の前記第1部材と前記第2部材との前記接合部を溶接する溶接装置に搬送して前記溶接開始位置を前記溶接装置の溶接部に位置決めする、
ことを特徴とする請求項1に記載の被加工物の加工方法。
The run-out measuring step includes
Detecting a maximum deflection position of the first member with a phase detection device that detects a deflection position of the first member in a rotational circumferential direction generated when the workpiece is rotated with the second member as a reference axis;
The welding start position setting step includes
The phase detection device sets the welding start position at the joint between the first member and the second member by comparing the maximum deflection position and the deviation tendency position data, and the first member and the first member The workpiece is rotated by using the phase detection device with the second member as a reference axis at a reference position on the phase detection device corresponding to a welded portion of a welding device for welding a joint with two members. Position the start position,
The welding process includes
In a state where the welding start position is positioned at the reference position, the workpiece is conveyed to a welding apparatus for welding the joint portion between the first member and the second member of the workpiece, and the welding is performed. Positioning the starting position at the weld of the welding device;
The processing method of the workpiece of Claim 1 characterized by the above-mentioned.
前記振れ測定工程は、
前記第2部材を基準軸として前記被加工物を回転させた際に生じる回転周方向上の前記第1部材の振れ位置を検出する位相検出装置で前記第1部材の最大振れ位置を検出し、
前記溶接開始位置設定工程は、
前記最大振れ位置と前記偏位傾向位置データとを対比して前記第1部材と前記第2部材との接合部に前記溶接開始位置を前記位相検出装置で設定し、
前記溶接工程は、
前記被加工物を該被加工物の前記第1部材と前記第2部材との前記接合部を溶接する溶接装置に搬送して配置し、前記位相検出装置で設定された前記溶接開始位置に基づいて前記溶接装置において該溶接装置の溶接部に前記溶接開始位置を位置決めする、
ことを特徴とする請求項1に記載の被加工物の加工方法。
The run-out measuring step includes
Detecting a maximum deflection position of the first member with a phase detection device that detects a deflection position of the first member in a rotational circumferential direction generated when the workpiece is rotated with the second member as a reference axis;
The welding start position setting step includes
The phase detection device sets the welding start position at the joint between the first member and the second member by comparing the maximum deflection position and the deviation tendency position data,
The welding process includes
Based on the welding start position set by the phase detector, the workpiece is transferred to a welding device for welding the joint between the first member and the second member of the workpiece. And positioning the welding start position at a welded portion of the welding device in the welding device,
The processing method of the workpiece of Claim 1 characterized by the above-mentioned.
前記振れ測定工程は、
予め設定された許容振れ量判定データに基づいて、前記第1部材の最大振れが許容振れ量の範囲内にあるか否かを判定することを特徴とする請求項1〜3のいずれか1項に記載の被加工物の加工方法。
The run-out measuring step includes
4. The method according to claim 1, wherein it is determined whether or not a maximum shake of the first member is within a range of an allowable shake amount based on preset allowable shake amount determination data. The processing method of the to-be-processed object of description.
JP2011236655A 2011-10-28 2011-10-28 Workpiece processing method Active JP5833410B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011236655A JP5833410B2 (en) 2011-10-28 2011-10-28 Workpiece processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011236655A JP5833410B2 (en) 2011-10-28 2011-10-28 Workpiece processing method

Publications (2)

Publication Number Publication Date
JP2013094783A JP2013094783A (en) 2013-05-20
JP5833410B2 true JP5833410B2 (en) 2015-12-16

Family

ID=48617312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011236655A Active JP5833410B2 (en) 2011-10-28 2011-10-28 Workpiece processing method

Country Status (1)

Country Link
JP (1) JP5833410B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104827176B (en) * 2015-05-15 2016-09-21 哈尔滨工业大学 Electron beam welding tantalum and the energy follow-up adjustment method of invar alloy girth joint
JP6639811B2 (en) * 2015-06-11 2020-02-05 Ntn株式会社 Outer joint member of constant velocity universal joint
KR102171696B1 (en) * 2019-03-08 2020-10-29 김선홍 Torque converter manufacturing method and torque converter thereof
KR102424323B1 (en) * 2021-07-13 2022-07-25 주식회사 배터리파워솔루션 Device for measuring diameter of cylindrical object

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3528746B2 (en) * 2000-03-07 2004-05-24 株式会社デンソー Welding method and manufacturing method of combination member and manufacturing method of valve structure

Also Published As

Publication number Publication date
JP2013094783A (en) 2013-05-20

Similar Documents

Publication Publication Date Title
JP5679923B2 (en) Automatic welding system and automatic welding method
JP5833410B2 (en) Workpiece processing method
KR101801553B1 (en) A jig device for laser welding
KR20010087185A (en) Friction stir welding method
JP5074315B2 (en) Welding apparatus and welding method
WO2018012500A1 (en) Rotary forge device testing device, testing tool, testing method, bearing unit manufacturing device, and bearing unit manufacturing method
EP3006153B1 (en) System and method of making a welded assembly
CN105556093A (en) Method for welding shaft and impeller in turbine shaft, turbine shaft, and welding device
JP5846164B2 (en) Boring tool and boring method using the same
JP2016022532A (en) Defect repair device, defect repair method and joint pipe material
JP6174272B1 (en) Work positioning device
KR101590798B1 (en) Over-ray welding apparatus
JP5848528B2 (en) Rotating tool for friction stir welding, friction stir welding apparatus, and friction stir welding method
KR101625203B1 (en) Welding method and jig device of eletron beam welder for various circular path welding
JP2007090412A (en) Precision processing machine
JP6845502B2 (en) Laser machining machine and centering method
JP2015139787A (en) Pipe welding apparatus, pipe welding system, and pipe welding method
JP2017040367A (en) Joining method of impeller blade of torque converter, manufacturing method of torque converter, and torque converter manufactured by using the same
JP5822736B2 (en) Centering device and rotor manufacturing method
JP6758103B2 (en) Ultrasonography method
JP6147597B2 (en) Tube cutting device
JP2011161478A (en) Welding method
JP2007061918A (en) Method of correcting imbalance of torque in workpiece
JP6049449B2 (en) Copy welding equipment
JP4532838B2 (en) Clutch drum straightening method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151029

R150 Certificate of patent or registration of utility model

Ref document number: 5833410

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250