JP5833297B2 - Group III nitride semiconductor substrate, epitaxial substrate, and semiconductor device - Google Patents

Group III nitride semiconductor substrate, epitaxial substrate, and semiconductor device Download PDF

Info

Publication number
JP5833297B2
JP5833297B2 JP2010109490A JP2010109490A JP5833297B2 JP 5833297 B2 JP5833297 B2 JP 5833297B2 JP 2010109490 A JP2010109490 A JP 2010109490A JP 2010109490 A JP2010109490 A JP 2010109490A JP 5833297 B2 JP5833297 B2 JP 5833297B2
Authority
JP
Japan
Prior art keywords
layer
substrate
epitaxial
pieces
plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010109490A
Other languages
Japanese (ja)
Other versions
JP2011077497A (en
JP2011077497A5 (en
Inventor
石橋 恵二
恵二 石橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2010109490A priority Critical patent/JP5833297B2/en
Publication of JP2011077497A publication Critical patent/JP2011077497A/en
Publication of JP2011077497A5 publication Critical patent/JP2011077497A5/ja
Application granted granted Critical
Publication of JP5833297B2 publication Critical patent/JP5833297B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Drying Of Semiconductors (AREA)
  • Semiconductor Lasers (AREA)

Description

本発明は、III族窒化物半導体基板、エピタキシャル基板及び半導体デバイスに関する。   The present invention relates to a group III nitride semiconductor substrate, an epitaxial substrate, and a semiconductor device.

近年、化合物半導体を始めとする半導体は、その種々の特性を活かして応用範囲が更に広がっている。例えば、化合物半導体は、エピタキシャル層を積層するための下地基板として有用であり、発光ダイオード(LED)、レーザダイオード(LD)等の半導体デバイスに用いられている。   In recent years, semiconductors, including compound semiconductors, have expanded their application range by taking advantage of their various characteristics. For example, a compound semiconductor is useful as a base substrate for stacking epitaxial layers, and is used in semiconductor devices such as a light emitting diode (LED) and a laser diode (LD).

下地基板として半導体基板を用いる場合、半導体基板の表面をひずみのない鏡面とする必要がある。そのため、半導体の単結晶インゴットに前加工(例えば、切断、ラッピング、エッチング)を施して半導体基板を得た後、半導体基板の表面に対して鏡面研磨が施されている。   When a semiconductor substrate is used as the base substrate, the surface of the semiconductor substrate needs to be a mirror surface without distortion. Therefore, a semiconductor single crystal ingot is subjected to pre-processing (for example, cutting, lapping, etching) to obtain a semiconductor substrate, and then the surface of the semiconductor substrate is subjected to mirror polishing.

半導体基板としては、例えば下記特許文献1〜3に記載されたものが知られている。特許文献1では、気相エピタクシー(VPE)によって結晶成長させた結晶性III−V族窒化物(例えば(Al、Ga、In)−N)を切断した後に前加工を施して得られる半導体基板が開示されている。特許文献1では、前加工として、半導体基板の表面を機械的研磨した後に、機械的研磨により生じた表面損傷を除去するために化学的研磨(CMP)を施すことが開示されている。   As the semiconductor substrate, for example, those described in Patent Documents 1 to 3 below are known. In Patent Document 1, a semiconductor substrate obtained by cutting a crystalline group III-V nitride (e.g., (Al, Ga, In) -N) grown by vapor phase epitaxy (VPE) and then performing pre-processing. Is disclosed. Patent Document 1 discloses that as a pre-processing, after the surface of a semiconductor substrate is mechanically polished, chemical polishing (CMP) is performed to remove surface damage caused by the mechanical polishing.

特許文献2には、AlGaInN(0<y≦1、x+y+z=1)ウェハの表面をCMPにより研磨してRMS基準の表面粗さを0.15nm未満とすることにより、表面の欠陥や汚染が低減された半導体基板が開示されている。特許文献2では、CMPを行うに際し、砥粒としてAl又はSiOを用いることや、研磨液に酸化剤を添加してpHを調整することが開示されている。 In Patent Document 2, the surface of an Al x Ga y In z N (0 <y ≦ 1, x + y + z = 1) wafer is polished by CMP so that the RMS standard surface roughness is less than 0.15 nm. A semiconductor substrate with reduced defects and contamination is disclosed. Patent Document 2 discloses that when performing CMP, Al 2 O 3 or SiO 2 is used as abrasive grains, and an oxidizing agent is added to a polishing liquid to adjust pH.

特許文献3には、エピタキシャル層と半導体基板との界面にパイルアップ(蓄積)されたSiがデバイスの特性を低下させているとの推測のもとに、エピタキシャル層と半導体基板との界面におけるSi濃度を8×1017cm−3以下とした半導体基板が開示されている。 Patent Document 3 discloses that Si piled up (accumulated) at the interface between the epitaxial layer and the semiconductor substrate deteriorates the characteristics of the device, and Si at the interface between the epitaxial layer and the semiconductor substrate. A semiconductor substrate having a concentration of 8 × 10 17 cm −3 or less is disclosed.

米国特許6596079号明細書US Pat. No. 6,596,079 米国特許6488767号明細書US Pat. No. 6,488,767 特許第3183335号公報Japanese Patent No. 3183335

しかしながら、上記特許文献1〜3に記載された半導体基板の上にエピタキシャル層(井戸層)を配置してなる積層体を用いた半導体デバイスでは、発光強度を向上させるには限界がある。そのため、半導体デバイスの発光強度を向上させることが可能な半導体基板の開発が強く切望されている。   However, in a semiconductor device using a stacked body in which an epitaxial layer (well layer) is arranged on the semiconductor substrate described in Patent Documents 1 to 3, there is a limit to improving the emission intensity. Therefore, development of a semiconductor substrate capable of improving the emission intensity of the semiconductor device is strongly desired.

本発明は上記課題を解決するためになされたものであり、半導体デバイスの発光強度を向上させることが可能なIII族窒化物半導体基板、エピタキシャル基板及び半導体デバイスを提供することを目的とする。   The present invention has been made to solve the above problems, and an object of the present invention is to provide a group III nitride semiconductor substrate, an epitaxial substrate, and a semiconductor device that can improve the emission intensity of the semiconductor device.

本発明者らは、鋭意研究の末に、半導体基板の表面にC(炭素)等の不純物が存在すると、半導体基板の表面上にエピタキシャル層を形成した際にCが界面にパイルアップし、エピタキシャル層/半導体基板界面に電気抵抗の高い層(以下、「高抵抗層」という)が形成されてしまうことを見出した。また、高抵抗層が形成されることにより、エピタキシャル層/半導体基板界面の電気抵抗が増加してしまい、発光強度が低下してしまうことを見出した。   As a result of diligent research, the present inventors have found that when impurities such as C (carbon) are present on the surface of the semiconductor substrate, C is piled up at the interface when an epitaxial layer is formed on the surface of the semiconductor substrate. It has been found that a layer having high electrical resistance (hereinafter referred to as “high resistance layer”) is formed at the layer / semiconductor substrate interface. It has also been found that the formation of a high resistance layer increases the electrical resistance at the epitaxial layer / semiconductor substrate interface, thereby reducing the light emission intensity.

更に、本発明者らは、半導体デバイスに用いられるIII族窒化物半導体基板において、基板表面が特定の面方位を有した上で、特定量の硫化物及び酸化物が基板表面に存在することにより、エピタキシャル層と半導体基板との界面においてCがパイルアップすることを抑制可能であることを見出した。このようにCのパイルアップを抑制することで、エピタキシャル層と半導体基板との界面における高抵抗層の形成が抑制される。これにより、エピタキシャル層と半導体基板との界面における電気抵抗を低減することができると共に、エピタキシャル層の結晶品質を向上させることができる。したがって、半導体デバイスの発光強度を向上させることができる。   Furthermore, the present inventors have found that in a group III nitride semiconductor substrate used for a semiconductor device, the substrate surface has a specific plane orientation and a specific amount of sulfide and oxide are present on the substrate surface. The inventors have found that it is possible to suppress the pileup of C at the interface between the epitaxial layer and the semiconductor substrate. Thus, by suppressing the pile-up of C, formation of the high resistance layer at the interface between the epitaxial layer and the semiconductor substrate is suppressed. Thereby, the electrical resistance at the interface between the epitaxial layer and the semiconductor substrate can be reduced, and the crystal quality of the epitaxial layer can be improved. Therefore, the emission intensity of the semiconductor device can be improved.

すなわち、本発明は、半導体デバイスに用いられるIII族窒化物半導体基板であって、III族窒化物半導体基板の表面に表面層を有し、表面層が、S換算で30×1010個/cm〜2000×1010個/cmの硫化物、及び、O換算で2at%〜20at%の酸化物を含み、c軸に対する表面の法線軸の傾斜角度は10°〜81°である。ここで、表面層は、S換算で30×1010個/cm〜2000×1010個/cmの硫化物がTXRF(全反射蛍光X線分析)によって計測され、O換算で2at%〜20at%の酸化物がAES(オージェ電子分光分析)によって計測され得る厚みを有する層である。 That is, the present invention is a group III nitride semiconductor substrate used for a semiconductor device, having a surface layer on the surface of the group III nitride semiconductor substrate, and the surface layer is 30 × 10 10 pieces / cm in terms of S. It contains 2 to 2000 × 10 10 pieces / cm 2 of sulfide and 2 at% to 20 at% of oxide in terms of O, and the inclination angle of the surface normal axis with respect to the c axis is 10 ° to 81 °. Here, in the surface layer, sulfides of 30 × 10 10 pieces / cm 2 to 2000 × 10 10 pieces / cm 2 in terms of S are measured by TXRF (total reflection fluorescent X-ray analysis), and 2 at% to in terms of O 20 at% oxide is a layer having a thickness that can be measured by AES (Auger Electron Spectroscopy).

また、表面層はS換算で40×1010個/cm〜1500×1010個/cmの硫化物を含むことが好ましい。この場合、エピタキシャル層と半導体基板との界面における高抵抗層の形成を更に抑制し、半導体デバイスの発光強度を更に向上させることができる。 The surface layer preferably contains 40 × 10 10 pieces / cm 2 to 1500 × 10 10 pieces / cm 2 sulfides S terms. In this case, the formation of the high resistance layer at the interface between the epitaxial layer and the semiconductor substrate can be further suppressed, and the light emission intensity of the semiconductor device can be further improved.

また、表面層はO換算で3at%〜16at%の酸化物を含むことが好ましい。この場合、エピタキシャル層と半導体基板との界面における高抵抗層の形成を更に抑制し、半導体デバイスの発光強度を更に向上させることができる。   Moreover, it is preferable that a surface layer contains the oxide of 3at%-16at% in O conversion. In this case, the formation of the high resistance layer at the interface between the epitaxial layer and the semiconductor substrate can be further suppressed, and the light emission intensity of the semiconductor device can be further improved.

更に、本発明者らは、特定量の塩化物、又は、特定量のシリコン化合物が基板表面に存在することにより、エピタキシャル層と半導体基板との界面における高抵抗層の形成を更に抑制し、半導体デバイスの発光強度を更に向上させることができることを見出した。   Furthermore, the present inventors further suppress the formation of the high resistance layer at the interface between the epitaxial layer and the semiconductor substrate by the presence of the specific amount of chloride or the specific amount of silicon compound on the substrate surface, and the semiconductor It has been found that the emission intensity of the device can be further improved.

すなわち、表面層はCl換算で120×1010個/cm〜15000×1010個/cmの塩化物を含むことが好ましい。また、表面層はSi換算で100×1010個/cm〜12000×1010個/cmのシリコン化合物を含むことが好ましい。 That is, the surface layer preferably contains 120 × 10 10 pieces / cm 2 to 15000 × 10 10 pieces / cm 2 of chloride in terms of Cl. The surface layer preferably contains 100 × 10 10 pieces / cm 2 ~12000 × 10 10 pieces / cm 2 of silicon compound calculated as Si.

更に、本発明者らは、基板表面における炭素化合物の含有量を特定量以下とすることにより、エピタキシャル層と半導体基板との界面における高抵抗層の形成を更に抑制し、半導体デバイスの発光強度を更に向上させることができることを見出した。   Furthermore, the present inventors further suppress the formation of the high resistance layer at the interface between the epitaxial layer and the semiconductor substrate by setting the content of the carbon compound on the substrate surface to a specific amount or less, and increase the emission intensity of the semiconductor device. It has been found that it can be further improved.

すなわち、表面層における炭素化合物の含有量はC換算で22at%以下であることが好ましい。   That is, the content of the carbon compound in the surface layer is preferably 22 at% or less in terms of C.

また、本発明者らは、基板表面における銅化合物が高抵抗層の形成に寄与することを見出した。更に、基板表面における銅化合物の含有量を特定量以下とすることにより、エピタキシャル層と半導体基板との界面における高抵抗層の形成を更に抑制し、半導体デバイスの発光強度を更に向上させることができることを見出した。   In addition, the present inventors have found that the copper compound on the substrate surface contributes to the formation of the high resistance layer. Furthermore, by making the content of the copper compound on the substrate surface below a specific amount, the formation of a high resistance layer at the interface between the epitaxial layer and the semiconductor substrate can be further suppressed, and the emission intensity of the semiconductor device can be further improved. I found.

すなわち、表面層における銅化合物の含有量はCu換算で150×1010個/cm以下であることが好ましい。 That is, the content of the copper compound in the surface layer is preferably 150 × 10 10 pieces / cm 2 or less in terms of Cu.

また、表面層の表面粗さはRMS基準で5nm以下であることが好ましい。この場合、エピタキシャル層の結晶品質を更に向上させることが可能であり、半導体デバイスの発光強度を更に向上させることができる。   Further, the surface roughness of the surface layer is preferably 5 nm or less on the basis of RMS. In this case, the crystal quality of the epitaxial layer can be further improved, and the light emission intensity of the semiconductor device can be further improved.

また、表面層の転位密度は1×10個/cm以下であることが好ましい。この場合、エピタキシャル層の結晶品質を更に向上させることができるため、半導体デバイスの発光強度を更に向上させることができる。 The dislocation density of the surface layer is preferably 1 × 10 6 pieces / cm 2 or less. In this case, since the crystal quality of the epitaxial layer can be further improved, the emission intensity of the semiconductor device can be further improved.

また、表面の面方位は、{20−21}面、{20−2−1}面、{10−11}面、{10−1−1}面、{11−22}面、{11−2−2}面、{22−43}面、{22−4−3}面、{11−21}面、{11−2−1}面のいずれかであることが好ましい。この場合、発光の半値幅を低減することができる。   The surface orientations of the surface are {20-21} plane, {20-2-1} plane, {10-11} plane, {10-1-1} plane, {11-22} plane, {11- It is preferably any of 2-2} plane, {22-43} plane, {22-4-3} plane, {11-21} plane, and {11-2-1} plane. In this case, the half width of light emission can be reduced.

本発明に係るエピタキシャル基板は、上記III族窒化物半導体基板と、III族窒化物半導体基板の表面層上に形成されたエピタキシャル層とを有し、エピタキシャル層がIII族窒化物半導体を含む。   An epitaxial substrate according to the present invention has the above group III nitride semiconductor substrate and an epitaxial layer formed on the surface layer of the group III nitride semiconductor substrate, and the epitaxial layer includes a group III nitride semiconductor.

本発明に係るエピタキシャル基板では、上記III族窒化物半導体基板を有しているため、エピタキシャル層と半導体基板との界面においてCがパイルアップすることを抑制可能である。したがって、エピタキシャル層と半導体基板との界面における高抵抗層の形成を抑制し、半導体デバイスの発光強度を向上させることができる。   Since the epitaxial substrate according to the present invention includes the group III nitride semiconductor substrate, it is possible to suppress the pile-up of C at the interface between the epitaxial layer and the semiconductor substrate. Therefore, the formation of a high resistance layer at the interface between the epitaxial layer and the semiconductor substrate can be suppressed, and the light emission intensity of the semiconductor device can be improved.

また、エピタキシャル基板は、エピタキシャル層が量子井戸構造を有する活性層を有し、活性層が波長430nm〜550nmの光を発生するように設けられていることが好ましい。   Moreover, it is preferable that the epitaxial substrate has an active layer in which the epitaxial layer has a quantum well structure, and the active layer is provided so as to generate light having a wavelength of 430 nm to 550 nm.

本発明に係る半導体デバイスは、上記エピタキシャル基板を備える。   A semiconductor device according to the present invention includes the epitaxial substrate.

本発明に係る半導体デバイスでは、上記エピタキシャル基板を備えているため、エピタキシャル層と半導体基板との界面においてCがパイルアップすることを抑制可能である。したがって、エピタキシャル層と半導体基板との界面における高抵抗層の形成を抑制し、半導体デバイスの発光強度を向上させることができる。   Since the semiconductor device according to the present invention includes the above-described epitaxial substrate, it is possible to suppress C from being piled up at the interface between the epitaxial layer and the semiconductor substrate. Therefore, the formation of a high resistance layer at the interface between the epitaxial layer and the semiconductor substrate can be suppressed, and the light emission intensity of the semiconductor device can be improved.

本発明によれば、半導体デバイスの発光強度を向上させることが可能なIII族窒化物半導体基板、エピタキシャル基板及び半導体デバイスが提供される。   According to the present invention, there are provided a group III nitride semiconductor substrate, an epitaxial substrate and a semiconductor device capable of improving the light emission intensity of the semiconductor device.

第1実施形態に係るIII族窒化物半導体基板を示す概略断面図である。It is a schematic sectional drawing which shows the group III nitride semiconductor substrate which concerns on 1st Embodiment. ドライエッチングに用いることが可能な装置を示す図である。It is a figure which shows the apparatus which can be used for dry etching. ポリシングに用いることが可能な装置を示す図である。It is a figure which shows the apparatus which can be used for polishing. 第1実施形態に係るエピタキシャル基板を示す概略断面図である。1 is a schematic cross-sectional view showing an epitaxial substrate according to a first embodiment. 第2実施形態に係るエピタキシャル基板を示す概略断面図である。It is a schematic sectional drawing which shows the epitaxial substrate which concerns on 2nd Embodiment. 第3実施形態に係るエピタキシャル基板を示す平面図である。It is a top view which shows the epitaxial substrate which concerns on 3rd Embodiment. 第3実施形態に係るエピタキシャル基板を作製する手順を示した図である。It is the figure which showed the procedure which produces the epitaxial substrate which concerns on 3rd Embodiment. 第3実施形態に係るエピタキシャル基板の変形例を示す平面図である。It is a top view which shows the modification of the epitaxial substrate which concerns on 3rd Embodiment. 第1実施形態に係る半導体デバイスを示す概略断面図である。1 is a schematic cross-sectional view showing a semiconductor device according to a first embodiment. 第2実施形態に係る半導体デバイスを示す概略断面図である。It is a schematic sectional drawing which shows the semiconductor device which concerns on 2nd Embodiment. 実施例で用いた半導体デバイスを示す概略断面図である。It is a schematic sectional drawing which shows the semiconductor device used in the Example.

以下、図面を参照しながら、本発明に係るIII族窒化物半導体基板、エピタキシャル基板及び半導体デバイスの好適な実施形態について詳細に説明する。   Hereinafter, preferred embodiments of a group III nitride semiconductor substrate, an epitaxial substrate, and a semiconductor device according to the present invention will be described in detail with reference to the drawings.

(III族窒化物半導体基板)
図1は、第1実施形態に係るIII族窒化物半導体基板10を示す概略断面図である。III族窒化物半導体基板10(以下、「窒化物基板10」という)は、図1に示すように、互いに対向する表面10a及び裏面10bを有しており、表面10aには、表面層12が形成されている。
(Group III nitride semiconductor substrate)
FIG. 1 is a schematic cross-sectional view showing a group III nitride semiconductor substrate 10 according to the first embodiment. As shown in FIG. 1, group III nitride semiconductor substrate 10 (hereinafter referred to as “nitride substrate 10”) has a front surface 10a and a back surface 10b facing each other. Is formed.

窒化物基板10の構成材料としては、ウルツ鉱型構造を有する結晶が好ましく、例えば、GaN、AlN、InN、AlGaN、InGaNが挙げられる。GaNからなる窒化物基板10は、HVPE法、フラックス法等によって作製できる。AlNからなる窒化物基板10は、HVPE法、昇華法等によって作製できる。InN、AlGaN、InGaNからなる窒化物基板10は、HVPE法等によって作製できる。   The constituent material of the nitride substrate 10 is preferably a crystal having a wurtzite structure, and examples thereof include GaN, AlN, InN, AlGaN, and InGaN. The nitride substrate 10 made of GaN can be manufactured by the HVPE method, the flux method, or the like. The nitride substrate 10 made of AlN can be produced by HVPE method, sublimation method or the like. The nitride substrate 10 made of InN, AlGaN, or InGaN can be produced by the HVPE method or the like.

窒化物基板10は、表面10a上に所望の半導体層(エピタキシャル層)をエピタキシャル成長させることが可能である。表面10aの品質は、エピタキシャル層の形成に適していることが好ましい。表面10aの品質は、基板内部のバルク部分における結晶品質とは異なり、表面組成や粗さ、加工変質層により影響を受けやすい。   The nitride substrate 10 can epitaxially grow a desired semiconductor layer (epitaxial layer) on the surface 10a. The quality of the surface 10a is preferably suitable for forming an epitaxial layer. Unlike the crystal quality in the bulk portion inside the substrate, the quality of the surface 10a is easily affected by the surface composition, roughness, and work-affected layer.

ここで、加工変質層とは、結晶の研削又は研磨によって結晶の表面側領域に形成される結晶格子が乱れた層をいう。加工変質層は、結晶を劈開面で破断した断面をSEM観察やTEM観察、CL(カソードルミネセンスセンス)観察することにより、その存在及びその厚さを確認できる。加工変質層の厚さは、20nm以下が好ましく、10nm以下がより好ましい。加工変質層の厚さが厚いと、エピタキシャル層のモフォロジー及び結晶性が低下する傾向がある。   Here, the work-affected layer refers to a layer in which the crystal lattice formed in the surface side region of the crystal is disturbed by crystal grinding or polishing. The work-affected layer can be confirmed in its presence and thickness by observing a cross section of the crystal fractured at the cleavage plane by SEM observation, TEM observation, or CL (cathode luminescence) observation. The thickness of the work-affected layer is preferably 20 nm or less, and more preferably 10 nm or less. If the thickness of the work-affected layer is large, the morphology and crystallinity of the epitaxial layer tend to decrease.

CL観察とは、III窒化物半導体結晶に励起光として電子線を入射させて、III窒化物半導体結晶から放出される可視光又は可視波長領域に近い波長の光を観察することをいう。III族窒化物半導体結晶のCL観察を行うと、表面状態が良好な結晶領域では光が観察され、結晶が乱れた加工変質層の領域では光が観察されず、黒い直線状の陰影として観察される。   CL observation refers to observing visible light emitted from the III nitride semiconductor crystal or light having a wavelength close to the visible wavelength region by making an electron beam incident on the III nitride semiconductor crystal as excitation light. When CL observation of a group III nitride semiconductor crystal is performed, light is observed in a crystal region having a good surface state, light is not observed in a region of a work-affected layer where the crystal is disordered, and is observed as a black linear shadow. The

窒化物基板10を半導体デバイスに用いる場合には、窒化物基板10とエピタキシャル層との界面に高抵抗層が形成されることを抑制することが好ましい。高抵抗層の存在に起因して上記界面の電気抵抗が高くなってしまうと、半導体デバイスの発光効率が低下してしまう。特に、半導体デバイスに大きな電流を注入した場合には、発光効率は著しく低下してしまう。   When the nitride substrate 10 is used for a semiconductor device, it is preferable to suppress the formation of a high resistance layer at the interface between the nitride substrate 10 and the epitaxial layer. If the electrical resistance at the interface is increased due to the presence of the high resistance layer, the light emission efficiency of the semiconductor device is lowered. In particular, when a large current is injected into a semiconductor device, the light emission efficiency is significantly reduced.

このような高抵抗層の形成を抑制する観点から、表面層12は硫化物及び酸化物を含む。   From the viewpoint of suppressing the formation of such a high resistance layer, the surface layer 12 includes sulfides and oxides.

表面層12は、S換算で30×1010個/cm〜2000×1010個/cmの硫化物、及び、O換算で2at%〜20at%の酸化物を含む。硫化物の含有量は、S換算で120×1010個/cm〜1500×1010個/cmが好ましく、100×1010個/cm〜500×1010個/cmがより好ましい。酸化物の含有量は、O換算で3at%〜16at%が好ましく、4at%〜12at%がより好ましい。硫化物の含有量が30×1010個/cm未満、又は、酸化物の含有量が2at%未満であると、半導体基板とエピタキシャル層との界面に高抵抗層が形成し、界面の高抵抗化により半導体デバイスの発光強度が低下する。硫化物の含有量が2000×1010個/cmを超える、又は、酸化物の含有量が20at%を超えると、エピタキシャル層の結晶品質が低下し、半導体デバイスの発光強度が低下する。 The surface layer 12 includes 30 × 10 10 pieces / cm 2 to 2000 × 10 10 pieces / cm 2 of sulfide in terms of S and 2 at% to 20 at% of oxide in terms of O. The content of sulfide is preferably 120 × 10 10 pieces / cm 2 to 1500 × 10 10 pieces / cm 2 in terms of S, and more preferably 100 × 10 10 pieces / cm 2 to 500 × 10 10 pieces / cm 2. . The content of the oxide is preferably 3 at% to 16 at% in terms of O, and more preferably 4 at% to 12 at%. When the sulfide content is less than 30 × 10 10 pieces / cm 2 or the oxide content is less than 2 at%, a high resistance layer is formed at the interface between the semiconductor substrate and the epitaxial layer, and the interface height is high. The light emission intensity of the semiconductor device decreases due to resistance. When the content of sulfide exceeds 2000 × 10 10 pieces / cm 2 or the content of oxide exceeds 20 at%, the crystal quality of the epitaxial layer decreases, and the emission intensity of the semiconductor device decreases.

表面層12は、Cl換算で120×1010個/cm〜15000×1010個/cmの塩化物を含むことが好ましい。塩化物の含有量は、Cl換算で350×1010個/cm〜10000×1010個/cmがより好ましく、1000×1010個/cm〜5000×1010個/cmが更に好ましい。塩化物の含有量が120×1010個/cm未満であると、半導体基板とエピタキシャル層との界面に高抵抗層が形成され易く、界面の高抵抗化により半導体デバイスの発光強度が低下する傾向がある。塩化物の含有量が15000×1010個/cmを超えると、エピタキシャル層の結晶品質が低下し易く、半導体デバイスの発光強度が低下する傾向がある。 It is preferable that the surface layer 12 contains 120 × 10 10 pieces / cm 2 to 15000 × 10 10 pieces / cm 2 of chloride in terms of Cl. The chloride content is more preferably 350 × 10 10 pieces / cm 2 to 10,000 × 10 10 pieces / cm 2 in terms of Cl, and further 1000 × 10 10 pieces / cm 2 to 5000 × 10 10 pieces / cm 2. preferable. When the chloride content is less than 120 × 10 10 pieces / cm 2 , a high resistance layer is likely to be formed at the interface between the semiconductor substrate and the epitaxial layer, and the emission intensity of the semiconductor device is reduced due to the increase in resistance at the interface. Tend. If the chloride content exceeds 15000 × 10 10 pieces / cm 2 , the crystal quality of the epitaxial layer tends to be lowered, and the emission intensity of the semiconductor device tends to be lowered.

表面層12は、Si換算で200×1010個/cm〜12000×1010個/cmのシリコン化合物を含むことが好ましい。シリコン化合物の含有量は、Si換算で500×1010個/cm〜8000×1010個/cmがより好ましく、1000×1010個/cm〜5000×1010個/cmが更に好ましい。シリコン化合物の含有量が200×1010個/cm未満であると、半導体基板とエピタキシャル層との界面に高抵抗層が形成され易く、界面の高抵抗化により半導体デバイスの発光強度が低下する傾向がある。シリコン化合物の含有量が12000×1010個/cmを超えると、エピタキシャル層の結晶品質が低下し易く、半導体デバイスの発光強度が低下する傾向がある。 It is preferable that the surface layer 12 contains 200 × 10 10 pieces / cm 2 to 12000 × 10 10 pieces / cm 2 of silicon compound in terms of Si. The content of the silicon compound, 500 × 10 10 pieces in terms of Si / cm 2 ~8000 × 10 10 pieces / cm 2, more preferably, 1000 × 10 10 pieces / cm 2 ~ 5000 × 10 10 pieces / cm 2 is further preferable. When the content of the silicon compound is less than 200 × 10 10 pieces / cm 2 , a high resistance layer is easily formed at the interface between the semiconductor substrate and the epitaxial layer, and the emission intensity of the semiconductor device is lowered due to the increase in resistance at the interface. Tend. When the content of the silicon compound exceeds 12000 × 10 10 pieces / cm 2 , the crystal quality of the epitaxial layer tends to be lowered, and the light emission intensity of the semiconductor device tends to be lowered.

表面層12は、炭素化合物を含んでいてもよい。表面層12における炭素化合物の含有量は、C換算で22at%以下が好ましく、18at%以下がより好ましく、15at%以下が更に好ましい。炭素化合物の含有量が22at%を超えると、エピタキシャル層の結晶品質が低下し易く、半導体デバイスの発光強度が低下する傾向があると共に、半導体基板とエピタキシャル層との界面に高抵抗層が形成され易く、界面の高抵抗化により半導体デバイスの発光強度が低下する傾向がある。   The surface layer 12 may contain a carbon compound. The content of the carbon compound in the surface layer 12 is preferably 22 at% or less, more preferably 18 at% or less, and further preferably 15 at% or less in terms of C. When the content of the carbon compound exceeds 22 at%, the crystal quality of the epitaxial layer is liable to deteriorate, the light emission intensity of the semiconductor device tends to decrease, and a high resistance layer is formed at the interface between the semiconductor substrate and the epitaxial layer. It tends to be easy, and the emission intensity of the semiconductor device tends to decrease due to the high resistance of the interface.

表面層12は、銅化合物を含んでいてもよい。表面層12における銅化合物の含有量は、Cu換算で150×1010個/cm以下が好ましく、100×1010個/cm以下がより好ましく、50×1010個/cm以下が更に好ましい。銅化合物の含有量が150×1010個/cmを超えると、エピタキシャル層の結晶品質が低下し易く、半導体デバイスの発光強度が低下する傾向があると共に、半導体基板とエピタキシャル層との界面に高抵抗層が形成され易く、界面の高抵抗化により半導体デバイスの発光強度が低下する傾向がある。 The surface layer 12 may contain a copper compound. The content of the copper compound in the surface layer 12 is preferably 150 × 10 10 pieces / cm 2 or less in terms of Cu, more preferably 100 × 10 10 pieces / cm 2 or less, and further 50 × 10 10 pieces / cm 2 or less. preferable. When the content of the copper compound exceeds 150 × 10 10 pieces / cm 2 , the crystal quality of the epitaxial layer is liable to deteriorate, and the light emission intensity of the semiconductor device tends to decrease, and at the interface between the semiconductor substrate and the epitaxial layer. A high resistance layer is easily formed, and the emission intensity of the semiconductor device tends to decrease due to the increase in resistance at the interface.

表面層12の組成は、S、Si、Cl及びCuについては、TXRF(全反射蛍光X線分析)で定量することができる。TXRFは、X線の進入深さから、表面から5nm程度までの組成を評価する。O及びCについては、AES(オージェ電子分光分析)で定量することができる。AESは、0.1%の分解能がある。AESは、オージェ電子の脱出深さから表面から5nm程度の組成を評価する。なお、表面層12は、含有成分をTXRFやAESによって計測され得る厚みを有する層であり、例えば5nm程度の厚さを有する。   The composition of the surface layer 12 can be quantified by TXRF (total reflection X-ray fluorescence analysis) for S, Si, Cl and Cu. TXRF evaluates the composition from the depth of X-ray penetration to about 5 nm from the surface. O and C can be quantified by AES (Auger electron spectroscopy). AES has a resolution of 0.1%. AES evaluates a composition of about 5 nm from the surface from the escape depth of Auger electrons. In addition, the surface layer 12 is a layer which has a thickness which can measure a content component by TXRF or AES, for example, has a thickness of about 5 nm.

表面層12と窒化物基板10内部のバルク部分との組成の違いは、SIMS(二次イオン質量分析)により深さ方向の分析を行うことで評価することができる。また、窒化物基板10内部、窒化物基板10とエピタキシャル層との界面、及び、エピタキシャル層内部の組成の違いについてもSIMSで評価することができる。   The difference in composition between the surface layer 12 and the bulk portion inside the nitride substrate 10 can be evaluated by performing analysis in the depth direction by SIMS (secondary ion mass spectrometry). Further, the difference in composition inside the nitride substrate 10, the interface between the nitride substrate 10 and the epitaxial layer, and the inside of the epitaxial layer can also be evaluated by SIMS.

窒化物基板10における表面層12の表面粗さは、エピタキシャル層の結晶品質を更に向上させ、素子発光の積分強度を更に向上させることができる観点から、RMS基準で5nm以下が好ましく、3nm以下がより好ましく、1nm以下が更に好ましい。また、優れた生産性とエピタキシャル層の結晶品質とを両立させる観点からは、表面粗さは1nm〜3nmが好ましい。ここで、RMS基準の表面粗さ(二乗平均粗さ)は、AFM(原子間力顕微鏡)を用いて、表面10aの10μm角の領域を基準面積として測定することができる。   The surface roughness of the surface layer 12 in the nitride substrate 10 is preferably 5 nm or less, preferably 3 nm or less on the RMS basis, from the viewpoint of further improving the crystal quality of the epitaxial layer and further improving the integrated intensity of device emission. More preferred is 1 nm or less. Further, from the viewpoint of achieving both excellent productivity and crystal quality of the epitaxial layer, the surface roughness is preferably 1 nm to 3 nm. Here, the RMS-based surface roughness (root mean square roughness) can be measured using an AFM (Atomic Force Microscope) as a 10 μm square region of the surface 10a.

表面層12の転位密度は、1×10個/cm以下が好ましく、1×10個/cm以下がより好ましく、1×10個/cm以下が更に好ましい。転位密度が1×10個/cmを超えると、エピタキシャル層の結晶品質が低下し易く、半導体デバイスの発光強度が低下する傾向がある。一方、結晶作製時の優れたコスト・生産性の観点から、転位密度は1×10個/cm以上が好ましい。転位密度は、CL観察を行い、表面層12の10μm角領域内の非発光となる点の数をカウントして算出することができる。 The dislocation density of the surface layer 12 is preferably 1 × 10 6 pieces / cm 2 or less, more preferably 1 × 10 5 pieces / cm 2 or less, and still more preferably 1 × 10 4 pieces / cm 2 or less. When the dislocation density exceeds 1 × 10 6 pieces / cm 2 , the crystal quality of the epitaxial layer tends to be lowered, and the emission intensity of the semiconductor device tends to be lowered. On the other hand, the dislocation density is preferably 1 × 10 2 pieces / cm 2 or more from the viewpoint of excellent cost and productivity at the time of crystal production. The dislocation density can be calculated by performing CL observation and counting the number of non-light emitting points in the 10 μm square region of the surface layer 12.

窒化物基板10の表面10aは半極性面であり、表面10aの面方位は、ウルツ鉱型構造の{20−21}面、{20−2−1}面、{10−11}面、{10−1−1}面、{11−22}面、{11−2−2}面、{22−43}面、{22−4−3}面、{11−21}面、{11−2−1}面のいずれかであることが好ましい。この場合、エピタキシャル層のインジウム(In)の取り込み効率を向上させることもできるため、良好な発光特性が得られる。表面10aの面方位は、例えばX線回折装置を用いて測定することができる。   The surface 10a of the nitride substrate 10 is a semipolar plane, and the plane orientation of the surface 10a is {20-21} plane, {20-2-1} plane, {10-11} plane, {10-11} plane, { 10-1-1} plane, {11-22} plane, {11-2-2} plane, {22-43} plane, {22-4-3} plane, {11-21} plane, {11- 2-1} plane is preferable. In this case, since the indium (In) incorporation efficiency of the epitaxial layer can be improved, good light emission characteristics can be obtained. The plane orientation of the surface 10a can be measured using, for example, an X-ray diffractometer.

c軸に対する表面10aの法線軸の傾斜角度(オフ角)は10°〜81°であり、17°〜80°が好ましく、63°〜79°がより好ましい。傾斜角度が10°以上であることにより、ウルツ鉱型構造の自発分極によるピエゾ電界が抑制されるため、発光デバイスのPL強度を向上させることができる。傾斜角度が81°以下であることにより、エピタキシャル層(井戸層)の転位密度を低減し、半導体デバイスの発光強度を向上させることができる。   The inclination angle (off angle) of the normal axis of the surface 10a with respect to the c-axis is 10 ° to 81 °, preferably 17 ° to 80 °, and more preferably 63 ° to 79 °. Since the piezo electric field due to the spontaneous polarization of the wurtzite structure is suppressed when the inclination angle is 10 ° or more, the PL intensity of the light emitting device can be improved. When the tilt angle is 81 ° or less, the dislocation density of the epitaxial layer (well layer) can be reduced, and the emission intensity of the semiconductor device can be improved.

次に、窒化物基板10の製造方法について説明する。   Next, a method for manufacturing the nitride substrate 10 will be described.

まず、HVPE法等によりIII族窒化物半導体結晶をc軸方向やm軸方向に成長させた後に、その結晶に外周加工を施して成形し、III族窒化物半導体のインゴットを得る。次に、得られたインゴットを所望の角度でワイヤーソーやブレードソーを用いて切断して、表面10aが所望のオフ角を有する窒化物基板10を得る。なお、下地基板として半極性基板を用い、半極性基板の上にIII族窒化物半導体の結晶を成長させて、表面が所望のオフ角を有するインゴットを用いてもよい。   First, after a group III nitride semiconductor crystal is grown in the c-axis direction or the m-axis direction by the HVPE method or the like, the crystal is subjected to outer periphery processing and shaped to obtain a group III nitride semiconductor ingot. Next, the obtained ingot is cut at a desired angle using a wire saw or a blade saw to obtain a nitride substrate 10 having a desired off-angle on the surface 10a. A semipolar substrate may be used as the base substrate, and a group III nitride semiconductor crystal may be grown on the semipolar substrate, and an ingot having a desired off angle on the surface may be used.

次に、基板表面を平坦化するため、グラインディング加工(研削)やラッピング加工等の機械加工を行う。研削には、硬質砥粒としてダイヤモンド、SiC、BN、Al、Cr、ZrO等を含む砥石を用いることができる。ラッピング加工には、硬質砥粒としてダイヤモンド、SiC、BN、Al、Cr、ZrO等を含む一般的な研磨剤を用いることができる。 Next, in order to planarize the substrate surface, machining such as grinding (grinding) or lapping is performed. For grinding, a grindstone containing diamond, SiC, BN, Al 2 O 3 , Cr 2 O 3 , ZrO 2 or the like as hard abrasive grains can be used. For lapping, a general abrasive containing diamond, SiC, BN, Al 2 O 3 , Cr 2 O 3 , ZrO 2 or the like as hard abrasive grains can be used.

砥粒は、機械的な作用や特性を考慮して適宜選定される。例えば、研磨レートを上げる観点から、高硬度で粒径の大きな砥粒が使用される。表面を平滑にする観点や、加工変質層の形成を抑制する観点から、低硬度で粒径の小さな砥粒が使用される。また、研磨時間を短縮し、かつ、平滑な表面を得る観点から、研磨処理の進行に伴い粒度の大きな砥粒から小さな砥粒へ変化させる多段階の研磨が好適である。   The abrasive grains are appropriately selected in consideration of mechanical action and characteristics. For example, from the viewpoint of increasing the polishing rate, abrasive grains having a high hardness and a large particle diameter are used. From the viewpoint of smoothing the surface and suppressing the formation of a work-affected layer, abrasive grains having a low hardness and a small particle diameter are used. Further, from the viewpoint of shortening the polishing time and obtaining a smooth surface, multi-stage polishing in which the abrasive grains having a large particle size are changed to small abrasive grains as the polishing process proceeds is suitable.

窒化物基板10に研削やラッピング加工を施した後、窒化物基板10の表面10aの表面粗さの低減や加工変質層の除去のため、表面10aに対してドライエッチングやCMP等の表面仕上げを行う。なお、ドライエッチングは、研削やラッピング加工の前に行ってもよい。   After the nitride substrate 10 is ground or lapped, the surface 10a is subjected to a surface finish such as dry etching or CMP in order to reduce the surface roughness of the surface 10a of the nitride substrate 10 or to remove the work-affected layer. Do. Note that dry etching may be performed before grinding or lapping.

ドライエッチングとしては、RIE(反応性イオンエッチング)、誘導結合プラズマRIE(ICP−RIE)、ECR(電子サイクロトロン共鳴)−RIE、CAIBE(化学アシストイオンビームエッチング)、RIBE(反応性イオンビームエッチング)等が挙げられ、中でも反応性イオンエッチングが好ましい。反応性イオンエッチングには、例えば、図2に示すドライエッチング装置16を用いることができる。   Dry etching includes RIE (reactive ion etching), inductively coupled plasma RIE (ICP-RIE), ECR (electron cyclotron resonance) -RIE, CAIBE (chemically assisted ion beam etching), RIBE (reactive ion beam etching), etc. Among them, reactive ion etching is preferable. For reactive ion etching, for example, a dry etching apparatus 16 shown in FIG. 2 can be used.

ドライエッチング装置16は、チャンバ16aを備えている。チャンバ16a内には、平行平板型の上部電極16b及び下部電極16cと、上部電極16bと対向するように下部電極16c上に配置された基板支持台16dとが設けられている。チャンバ16a内には、ガス源に接続されたガス供給口16eと、真空ポンプに接続されたガス排気口16fとが設けられている。チャンバ16aの外部には、下部電極16cに接続された高周波電源16gが配置されている。   The dry etching apparatus 16 includes a chamber 16a. In the chamber 16a, a parallel plate type upper electrode 16b and a lower electrode 16c, and a substrate support 16d disposed on the lower electrode 16c so as to face the upper electrode 16b are provided. A gas supply port 16e connected to a gas source and a gas exhaust port 16f connected to a vacuum pump are provided in the chamber 16a. A high frequency power source 16g connected to the lower electrode 16c is disposed outside the chamber 16a.

ドライエッチング装置16では、ガス供給口16eからガスをチャンバ16a内に供給し、高周波電源16gから高周波電力を下部電極16cに供給することにより、チャンバ16a内にプラズマを発生させることができる。基板支持台16d上に窒化物基板10を配置することで、窒化物基板10の表面10aをドライエッチングすることができる。   In the dry etching apparatus 16, plasma can be generated in the chamber 16a by supplying gas from the gas supply port 16e into the chamber 16a and supplying high frequency power from the high frequency power supply 16g to the lower electrode 16c. By disposing the nitride substrate 10 on the substrate support 16d, the surface 10a of the nitride substrate 10 can be dry-etched.

ガス供給口16eから供給されるエッチングガスとして硫黄系ガスを用いることにより、高いエッチングレートが得られると共に、表面層12の硫化物の含有量を調整することができる。硫黄系ガスとして、例えば、HS、SO、SF、SF等を用いることができる。同様に、エッチングガスとして塩素系ガスを用いることにより、高いエッチングレートが得られると共に、表面層12の塩化物の含有量を調整することができる。塩素系ガスとしては、例えば、Cl、HCl、CCl、BCl、SiCl、SiHClを用いることができる。表面層12のシリコン化合物、炭素化合物の含有量は、エッチングガスとして、例えばSiCl、SiHCl、CH、Cを用いることで調整することができる。なお、ガスの種類、ガス流量、チャンバ内の圧力、エッチングのパワーを調整することで、表面層12の含有成分の含有量を制御することもできる。 By using a sulfur-based gas as the etching gas supplied from the gas supply port 16e, a high etching rate can be obtained and the sulfide content of the surface layer 12 can be adjusted. As the sulfur-based gas, for example, H 2 S, SO 2 , SF 4 , SF 6 and the like can be used. Similarly, by using a chlorine-based gas as an etching gas, a high etching rate can be obtained and the chloride content of the surface layer 12 can be adjusted. As the chlorine-based gas, for example, Cl 2 , HCl, CCl 4 , BCl 3 , SiCl 4 , SiHCl 3 can be used. The contents of the silicon compound and the carbon compound in the surface layer 12 can be adjusted by using, for example, SiCl 4 , SiHCl 3 , CH 4 , or C 2 H 2 as an etching gas. It should be noted that the content of the components contained in the surface layer 12 can also be controlled by adjusting the type of gas, the gas flow rate, the pressure in the chamber, and the etching power.

反応性イオンエッチングでは、チャンバ内の圧力をP(Pa)、ガス流量をQ(sccm)、チャンバ容積をV(L)としたときに、下記式(1)を満たすことが好ましい。
0.05≦PV/Q≦3.0 …(1)
PV/Qが0.05よりも小さい場合には、表面粗さが増加する傾向がある。PV/Qが3.0よりも大きい場合には、表面改質の効果が小さくなる傾向がある。
In reactive ion etching, it is preferable to satisfy the following formula (1) when the pressure in the chamber is P (Pa), the gas flow rate is Q (sccm), and the chamber volume is V (L).
0.05 ≦ PV / Q ≦ 3.0 (1)
When PV / Q is smaller than 0.05, the surface roughness tends to increase. When PV / Q is larger than 3.0, the effect of surface modification tends to be small.

CMPには、例えば、図3に示すポリシング装置18を用いることができる。ポリシング装置18は、定盤18a、ポリシングパッド18b、結晶ホルダ18c、重り18d、及び、スラリー液供給口18eを備えている。   For example, a polishing apparatus 18 shown in FIG. 3 can be used for the CMP. The polishing apparatus 18 includes a surface plate 18a, a polishing pad 18b, a crystal holder 18c, a weight 18d, and a slurry liquid supply port 18e.

ポリシングパッド18bは、定盤18a上に載置されている。定盤18a及びポリシングパッド18bは、定盤18aの中心軸線X1を中心に回転可能である。結晶ホルダ18cは、窒化物基板10をその下面に支持するための部品である。窒化物基板10には、結晶ホルダ18cの上面に載置された重り18dによって荷重が加えられる。結晶ホルダ18cは、軸線X1と略平行であり、且つ、軸線X1から変位した位置に中心軸線X2を有しており、この中心軸線X2を中心に回転可能である。スラリー液供給口18eは、ポリシングパッド18b上にCMP溶液のスラリーSを供給する。   The polishing pad 18b is placed on the surface plate 18a. The surface plate 18a and the polishing pad 18b are rotatable about the central axis X1 of the surface plate 18a. The crystal holder 18c is a component for supporting the nitride substrate 10 on its lower surface. A load is applied to the nitride substrate 10 by a weight 18d placed on the upper surface of the crystal holder 18c. The crystal holder 18c is substantially parallel to the axis line X1 and has a center axis line X2 at a position displaced from the axis line X1, and is rotatable around the center axis line X2. The slurry liquid supply port 18e supplies the CMP solution slurry S onto the polishing pad 18b.

このポリシング装置18によれば、定盤18a及びポリシングパッド18bと、結晶ホルダ18cとを回転させ、スラリーSをポリシングパッド18b上に供給し、窒化物基板10の表面10aをポリシングパッド18bに接触させることによって、表面10aのCMPを行うことができる。   According to this polishing apparatus 18, the surface plate 18a, the polishing pad 18b, and the crystal holder 18c are rotated, the slurry S is supplied onto the polishing pad 18b, and the surface 10a of the nitride substrate 10 is brought into contact with the polishing pad 18b. Thus, the CMP of the surface 10a can be performed.

表面層12の含有成分の含有量は、CMP溶液の添加物、pH、酸化還元電位により調整することができる。CMP溶液には砥粒を添加することができる。砥粒の材質としては、ZrO、SiO、CeO、MnO、Fe、Fe、NiO、ZnO、CoO、Co、GeO、CuO、Ga、Inからなる群より選ばれる少なくとも一種の金属酸化物を用いることができる。Si、Cu、Cu−Zn合金、Cu−Sn合金、Si、SiAlON、等の化合物を用いることもできる。砥粒の材質は、洗浄性を高める観点から、イオン化傾向の高い材質が好ましく、Hよりもイオン化傾向が高い材質であると、洗浄による除去効率を特に向上させることができる。なお、砥粒を含まないCMP溶液を用いてもよい。砥粒として、Si、Si、SiAlON、等を用いることにより、表面層12のシリコン化合物の含有量を調整することができる。Cu、Cu−Zn合金、Cu−Sn合金、等を用いることにより、表面層12の銅化合物の含有量を調整することができる。 The content of the components contained in the surface layer 12 can be adjusted by the additive of the CMP solution, pH, and redox potential. Abrasive grains can be added to the CMP solution. As the material of the abrasive grains, ZrO 2 , SiO 2 , CeO 2 , MnO 2 , Fe 2 O 3 , Fe 3 O 4 , NiO, ZnO, CoO, Co 3 O 4 , GeO 2 , CuO, Ga 2 O 3 , At least one metal oxide selected from the group consisting of In 2 O 3 can be used. A compound such as Si, Cu, Cu—Zn alloy, Cu—Sn alloy, Si 3 N 4 , or SiAlON can also be used. The material of the abrasive grains is preferably a material having a high ionization tendency from the viewpoint of improving the cleaning property, and if the material has a higher ionization tendency than H, the removal efficiency by cleaning can be particularly improved. A CMP solution that does not contain abrasive grains may be used. By using Si, Si 3 N 4 , SiAlON, or the like as the abrasive grains, the content of the silicon compound in the surface layer 12 can be adjusted. By using Cu, Cu—Zn alloy, Cu—Sn alloy, or the like, the content of the copper compound in the surface layer 12 can be adjusted.

CMP後に表面10aに砥粒が残存することを十分に抑制する観点から、CMP溶液には界面活性剤を添加することができる。界面活性剤としては、例えば、カルボン酸型、スルホン酸型、硫酸エステル型、第4級アンモニウム塩型、アルキルアミン塩型、エステル型、エーテル型が挙げられる。   From the viewpoint of sufficiently suppressing abrasive grains from remaining on the surface 10a after CMP, a surfactant can be added to the CMP solution. Examples of the surfactant include a carboxylic acid type, a sulfonic acid type, a sulfate ester type, a quaternary ammonium salt type, an alkylamine salt type, an ester type, and an ether type.

CMP溶液の溶媒としては、非極性溶媒が好ましい。非極性溶媒としては、炭化水素、四塩化炭素、ジエチルエーテル等が挙げられる。非極性溶媒を用いることにより、金属酸化物である砥粒と基板との固体接触を促進させることができるため、効率よく基板表面の金属組成を制御することができる。   As a solvent for the CMP solution, a nonpolar solvent is preferred. Nonpolar solvents include hydrocarbons, carbon tetrachloride, diethyl ether and the like. By using a nonpolar solvent, solid contact between the abrasive grains, which are metal oxides, and the substrate can be promoted, so that the metal composition on the substrate surface can be efficiently controlled.

CMP溶液の半導体基板に対する化学的な作用(メカノケミカル効果)は、CMP溶液のpHや酸化還元電位により調整することができる。CMP溶液のpHは、1〜6又は8.5〜14が好ましく、1.5〜4又は10〜13がより好ましい。pH調整剤としては、塩酸、硝酸、硫酸、リン酸等の無機酸、蟻酸、酢酸、クエン酸、リンゴ酸、酒石酸、コハク酸、フタル酸、マレイン酸、フマル酸等の有機酸、KOH、NaOH、NHOH、有機アルカリ、アミン等のアルカリの他に硫酸塩、炭酸塩、燐酸塩等の塩を用いることができる。pH調整剤として有機酸を使用することにより、無機酸、無機塩と比較して、同じpHでも不純物の除去効果を向上させることができる。有機酸としてはジカルボン酸(2価カルボン酸)が好ましい。 The chemical action (mechanochemical effect) of the CMP solution on the semiconductor substrate can be adjusted by the pH and redox potential of the CMP solution. The pH of the CMP solution is preferably 1 to 6 or 8.5 to 14, and more preferably 1.5 to 4 or 10 to 13. Examples of pH adjusters include inorganic acids such as hydrochloric acid, nitric acid, sulfuric acid and phosphoric acid, organic acids such as formic acid, acetic acid, citric acid, malic acid, tartaric acid, succinic acid, phthalic acid, maleic acid and fumaric acid, KOH, NaOH In addition to alkalis such as NH 4 OH, organic alkalis and amines, salts such as sulfates, carbonates and phosphates can be used. By using an organic acid as a pH adjuster, the effect of removing impurities can be improved even at the same pH as compared with inorganic acids and inorganic salts. As the organic acid, dicarboxylic acid (divalent carboxylic acid) is preferable.

pH調整剤及び酸化剤として、硫酸等の硫黄原子を含む酸、硫酸ナトリウム等の硫酸塩、チオ硫酸ナトリウム等のチオ硫酸塩を用いることにより、表面層12の硫化物の含有量を調整することができる。塩酸等の塩素原子を含む酸、塩化カリウム等の塩、次亜塩素酸、次亜塩素酸ナトリウム、次亜塩素酸カルシウム等の次亜塩素酸塩、トリクロロイソシアヌル酸等の塩素化イソシアヌル酸、ジクロロイソシアヌル酸ナトリウム等の塩素化イソシアヌル酸塩、を用いることにより、表面層12の塩化物の含有量を調整することができる。炭酸、炭酸塩、クエン酸、シュウ酸、フマル酸、フタル酸、リンゴ酸等の有機酸、有機酸塩等を用いることにより、表面層12の炭素化合物の含有量を調整することができる。   Adjusting the content of sulfide in the surface layer 12 by using an acid containing a sulfur atom such as sulfuric acid, a sulfate such as sodium sulfate, or a thiosulfate such as sodium thiosulfate as a pH adjusting agent and an oxidizing agent. Can do. Acids containing chlorine atoms such as hydrochloric acid, salts such as potassium chloride, hypochlorite, sodium hypochlorite, hypochlorites such as calcium hypochlorite, chlorinated isocyanuric acids such as trichloroisocyanuric acid, dichloro By using a chlorinated isocyanurate such as sodium isocyanurate, the chloride content of the surface layer 12 can be adjusted. By using an organic acid such as carbonic acid, carbonate, citric acid, oxalic acid, fumaric acid, phthalic acid, malic acid, or an organic acid salt, the content of the carbon compound in the surface layer 12 can be adjusted.

CMP溶液の酸化還元電位は、酸化剤を用いて調整することができる。CMP溶液に酸化剤を添加して酸化還元電位を増加させることにより、砥粒の除去効果を高く維持しつつ研磨レートを向上させると共に、表面層12の酸化物の含有量を調整することができる。酸化剤としては、特に制限はないが、酸化還元電位を十分に高める観点から、次亜塩素酸、次亜塩素酸ナトリウム、次亜塩素酸カルシウム等の次亜塩素酸塩、トリクロロイソシアヌル酸等の塩素化イソシアヌル酸、ジクロロイソシアヌル酸ナトリウム等の塩素化イソシアヌル酸塩等の塩素系酸化剤、硫酸、チオ硫酸ナトリウム等のチオ硫酸塩等の硫黄系酸化剤、過マンガン酸カリウム等の過マンガン酸塩、ニクロム酸カリウム等のニクロム酸塩、臭素酸カリウム等の臭素酸塩、チオ硫酸ナトリウム等のチオ硫酸塩、過硫酸アンモニウム、過硫酸カリウム等の過硫酸塩、硝酸、過酸化水素水、オゾン等が好ましく用いられる。これらの中でも、硫黄系酸化剤や塩素系酸化剤を用いることにより、研磨レートを向上させることや、研磨後の表面層12の硫化物や塩化物の含有量を上記好適な含有量に調整することができる。   The oxidation-reduction potential of the CMP solution can be adjusted using an oxidizing agent. By increasing the oxidation-reduction potential by adding an oxidizing agent to the CMP solution, it is possible to improve the polishing rate while maintaining a high abrasive removal effect, and to adjust the oxide content of the surface layer 12. . The oxidizing agent is not particularly limited, but from the viewpoint of sufficiently increasing the oxidation-reduction potential, hypochlorite such as hypochlorous acid, sodium hypochlorite, calcium hypochlorite, trichloroisocyanuric acid, etc. Chlorinated oxidants such as chlorinated isocyanuric acid and chlorinated isocyanurates such as sodium dichloroisocyanurate, sulfur oxidants such as thiosulfates such as sulfuric acid and sodium thiosulfate, and permanganates such as potassium permanganate , Dichromates such as potassium dichromate, bromates such as potassium bromate, thiosulfates such as sodium thiosulfate, persulfates such as ammonium persulfate and potassium persulfate, nitric acid, hydrogen peroxide, ozone etc. Preferably used. Among these, by using a sulfur-based oxidizing agent or a chlorine-based oxidizing agent, the polishing rate is improved, and the content of sulfide or chloride in the surface layer 12 after polishing is adjusted to the above-mentioned preferable content. be able to.

ここで、CMP溶液のpHの値をxとし、酸化還元電位の値をy(mV)としたときに、x及びyの関係は、下記式(2)を満たすことが好ましい。
−50x+1400≦y≦−50x+1900 …(2)
yが式(2)の上限値を超えると、ポリシングパッドや研磨設備への腐食作用が強くなり、安定した状態で研磨することが困難となる傾向があると共に、基板表面の酸化が過度に進行する傾向がある。yが式(2)の下限値未満であると、基板表面の酸化作用が弱くなり易く、研磨レートが低下する傾向がある。
Here, when the value of the pH of the CMP solution is x and the value of the oxidation-reduction potential is y (mV), the relationship between x and y preferably satisfies the following formula (2).
−50x + 1400 ≦ y ≦ −50x + 1900 (2)
If y exceeds the upper limit of formula (2), the corrosive action on the polishing pad and polishing equipment becomes strong, and it tends to be difficult to polish in a stable state, and the oxidation of the substrate surface proceeds excessively. Tend to. If y is less than the lower limit of the formula (2), the oxidizing action on the substrate surface tends to be weakened, and the polishing rate tends to decrease.

CMP溶液の粘度を制御することにより、表面層12の含有成分の含有量を調整することができる。CMP溶液の粘度は、2mPa・s〜30mPa・sが好ましく、5mPa・s〜10mPa・sがより好ましい。CMP溶液の粘度が2mPa・sより低いと、表面層12の含有成分の含有量が上述した所望の値よりも高くなる傾向があり、30mPa・sを超えると、表面層12の含有成分の含有量が上述した所望の値よりも低くなる傾向がある。なお、CMP溶液の粘度は、エチレングリコール等の高粘度の有機化合物やベーマイト等の無機化合物を添加することで調整できる。   By controlling the viscosity of the CMP solution, the content of the components contained in the surface layer 12 can be adjusted. The viscosity of the CMP solution is preferably 2 mPa · s to 30 mPa · s, and more preferably 5 mPa · s to 10 mPa · s. When the viscosity of the CMP solution is lower than 2 mPa · s, the content of the content component of the surface layer 12 tends to be higher than the desired value described above, and when it exceeds 30 mPa · s, the content of the content component of the surface layer 12 is included. The amount tends to be lower than the desired value described above. The viscosity of the CMP solution can be adjusted by adding a highly viscous organic compound such as ethylene glycol or an inorganic compound such as boehmite.

CMP溶液の硫酸イオンの濃度や接触係数Cにより、表面層12の硫化物の含有量を調整することができる。接触係数Cとは、CMP溶液の粘度η(mPa・s)、研磨時の周速度V(m/s)、研磨時の圧力P(kPa)を用いて、「C=η×V/P」で定義される。接触係数Cは、1.0×10−6m〜2.0×10−6mが好ましい。接触係数Cが1.0×10−6m未満であると、CMPにおける半導体基板への負荷が強くなり易く、表面層12の硫化物の含有量が過剰量となる傾向があり、2.0×10−6mを超えると、研磨レートが低下する傾向があると共に、表面層12の硫化物の含有量が小さくなる傾向がある。 The sulfide content of the surface layer 12 can be adjusted by the concentration of sulfate ions in the CMP solution and the contact coefficient C. The contact coefficient C is “C = η × V / P” using the viscosity η (mPa · s) of the CMP solution, the peripheral speed V (m / s) during polishing, and the pressure P (kPa) during polishing. Defined by Contact Factor C is preferably 1.0 × 10 -6 m~2.0 × 10 -6 m. If the contact coefficient C is less than 1.0 × 10 −6 m, the load on the semiconductor substrate in CMP tends to be strong, and the sulfide content of the surface layer 12 tends to be excessive, and 2.0 When it exceeds x10 −6 m, the polishing rate tends to decrease and the sulfide content of the surface layer 12 tends to decrease.

研磨時の圧力は、3kPa〜80kPaが好ましく、10kPa〜60kPaがより好ましい。圧力が3kPa未満であると、研磨レートが実用上不十分となる傾向があり、80kPaを超えると、基板の表面品質が低下する傾向がある。   The pressure during polishing is preferably 3 kPa to 80 kPa, and more preferably 10 kPa to 60 kPa. When the pressure is less than 3 kPa, the polishing rate tends to be insufficient in practical use, and when it exceeds 80 kPa, the surface quality of the substrate tends to deteriorate.

窒化物基板10によれば、表面10aが上記特定の面方位を有した上で、S換算で30×1010個/cm〜2000×1010個/cmの硫化物、及び、O換算で2at%〜20at%の酸化物が表面層12に存在することにより、エピタキシャル層と窒化物基板10との界面においてCがパイルアップすることを抑制することができる。このようにCのパイルアップを抑制することで、エピタキシャル層と窒化物基板10との界面における高抵抗層の形成が抑制される。これにより、エピタキシャル層と窒化物基板10との界面における電気抵抗を低減することができると共に、エピタキシャル層の結晶品質を向上させることができる。したがって、半導体デバイスの発光強度を向上させることができる。 According to the nitride substrate 10, the surface 10 a has the specific plane orientation, and is 30 × 10 10 pieces / cm 2 to 2000 × 10 10 pieces / cm 2 of sulfide in terms of S, and O equivalent. Thus, the presence of 2 at% to 20 at% of oxide in the surface layer 12 can suppress the pileup of C at the interface between the epitaxial layer and the nitride substrate 10. Thus, by suppressing the pile-up of C, formation of the high resistance layer at the interface between the epitaxial layer and the nitride substrate 10 is suppressed. Thereby, the electrical resistance at the interface between the epitaxial layer and the nitride substrate 10 can be reduced, and the crystal quality of the epitaxial layer can be improved. Therefore, the emission intensity of the semiconductor device can be improved.

(エピタキシャル基板)
図4は、第1実施形態に係るエピタキシャル基板20を示す概略断面図である。エピタキシャル基板20は、図4に示すように、ベース基板としての上記窒化物基板10と、窒化物基板10の表面10a上に積層されたエピタキシャル層22とを有している。
(Epitaxial substrate)
FIG. 4 is a schematic cross-sectional view showing the epitaxial substrate 20 according to the first embodiment. As shown in FIG. 4, the epitaxial substrate 20 has the nitride substrate 10 as a base substrate and an epitaxial layer 22 laminated on the surface 10 a of the nitride substrate 10.

エピタキシャル層22は、例えばIII族窒化物半導体を含む。III族窒化物半導体としては、ウルツ鉱型構造を有する結晶が好ましく、例えば、GaN、AlN、InN、AlGaN、InGaNが挙げられる。エピタキシャル層22は、HVPE法、MOCVD法、VOC法、MBE法、昇華法等の気相成長法により形成することができる。窒化物基板10上にエピタキシャル層22を設けることにより、半導体デバイスの発光強度を向上させることができる。   The epitaxial layer 22 includes, for example, a group III nitride semiconductor. As the group III nitride semiconductor, a crystal having a wurtzite structure is preferable, and examples thereof include GaN, AlN, InN, AlGaN, and InGaN. The epitaxial layer 22 can be formed by vapor phase growth methods such as HVPE method, MOCVD method, VOC method, MBE method, and sublimation method. By providing the epitaxial layer 22 on the nitride substrate 10, the emission intensity of the semiconductor device can be improved.

図5は、第2実施形態に係るエピタキシャル基板30を示す概略断面図である。エピタキシャル基板30は、図5に示すように、窒化物基板10の表面10a上に、複数層により構成されたエピタキシャル層32が形成されている。窒化物基板10上にエピタキシャル層32を設けることにより、半導体デバイスの発光強度を向上させることができる。   FIG. 5 is a schematic cross-sectional view showing an epitaxial substrate 30 according to the second embodiment. As shown in FIG. 5, the epitaxial substrate 30 has an epitaxial layer 32 composed of a plurality of layers formed on the surface 10 a of the nitride substrate 10. By providing the epitaxial layer 32 on the nitride substrate 10, the emission intensity of the semiconductor device can be improved.

エピタキシャル層32は、第1の半導体領域32aと、第2の半導体領域32bと、第1の半導体領域32a及び第2の半導体領域32bの間に設けられた活性層32cとを備える。第1の半導体領域32aは、一又は複数のn型半導体層を有し、例えば、厚さ1μmのn型GaN層32d、及び、厚さ150nmのn型Al0.1Ga0.9N層32eを有する。第2の半導体領域32bは、一又は複数のp型半導体層を有し、例えば、厚さ20nmのp型Al0.2Ga0.8N層32f、及び、厚さ150nmのp型GaN層32gを有する。エピタキシャル層32では、n型GaN層32d、n型Al0.1Ga0.9N層32e、活性層32c、p型Al0.2Ga0.8N層32f、及び、p型GaN層32gが窒化物基板10上にこの順序で積層されている。 The epitaxial layer 32 includes a first semiconductor region 32a, a second semiconductor region 32b, and an active layer 32c provided between the first semiconductor region 32a and the second semiconductor region 32b. The first semiconductor region 32a includes one or a plurality of n-type semiconductor layers, and includes, for example, an n-type GaN layer 32d having a thickness of 1 μm and an n-type Al 0.1 Ga 0.9 N layer 32e having a thickness of 150 nm. The second semiconductor region 32b includes one or a plurality of p-type semiconductor layers, and includes, for example, a p-type Al 0.2 Ga 0.8 N layer 32f having a thickness of 20 nm and a p-type GaN layer 32g having a thickness of 150 nm. In the epitaxial layer 32, an n-type GaN layer 32d, an n-type Al 0.1 Ga 0.9 N layer 32e, an active layer 32c, a p-type Al 0.2 Ga 0.8 N layer 32f, and a p-type GaN layer 32g are formed on the nitride substrate 10. Laminated in order.

活性層32cは、例えば、波長430nm〜550nmの光を発生するように設けられている。活性層32cは、例えば、4層の障壁層と3層の井戸層とを有し、障壁層及び井戸層が交互に積層された多重量子井戸構造(MQW)を有する。障壁層は、例えば、厚さ10nmのGaN層である。井戸層は、例えば、厚さ3nmのGa0.85In0.15N層である。 The active layer 32c is provided so as to generate light having a wavelength of 430 nm to 550 nm, for example. The active layer 32c has, for example, a multiple quantum well structure (MQW) in which four barrier layers and three well layers are formed, and the barrier layers and the well layers are alternately stacked. The barrier layer is, for example, a GaN layer having a thickness of 10 nm. The well layer is, for example, a Ga 0.85 In 0.15 N layer having a thickness of 3 nm.

エピタキシャル層32は、例えば、MOCVD(有機金属化学気相堆積)法により、n型GaN層32d、n型Al0.1Ga0.9N層32e、活性層32c、p型Al0.2Ga0.8N層32f及びp型GaN層32gを窒化物基板10上に順次エピタキシャル成長させて形成することができる。 The epitaxial layer 32 is formed, for example, by MOCVD (metal organic chemical vapor deposition), using an n-type GaN layer 32d, an n-type Al 0.1 Ga 0.9 N layer 32e, an active layer 32c, a p-type Al 0.2 Ga 0.8 N layer 32f and p. The type GaN layer 32g can be formed by epitaxial growth on the nitride substrate 10 sequentially.

図6は、第3実施形態に係るエピタキシャル基板40を示す平面図である。エピタキシャル基板40は、図6に示すように、窒化物基板10の表面10a上に配置されたエピタキシャル層42を有する。   FIG. 6 is a plan view showing an epitaxial substrate 40 according to the third embodiment. As shown in FIG. 6, epitaxial substrate 40 has an epitaxial layer 42 arranged on surface 10 a of nitride substrate 10.

エピタキシャル層42は、所定の転位密度より小さい転位密度を有する複数の低転位密度領域44Aと、該所定の転位密度より大きい転位密度を有する複数の高転位密度領域44Bとを有する。この所定の転位密度は、例えば8×10cm−2である。 The epitaxial layer 42 has a plurality of low dislocation density regions 44A having a dislocation density smaller than a predetermined dislocation density, and a plurality of high dislocation density regions 44B having a dislocation density larger than the predetermined dislocation density. This predetermined dislocation density is, for example, 8 × 10 7 cm −2 .

低転位密度領域44A及び高転位密度領域44Bの各々は、窒化物基板10の表面10aの平面方向(図6中のY方向)に互いに略平行にストライプ状に伸びており、エピタキシャル層42の裏面から表面にかけて形成されている。エピタキシャル層42は、低転位密度領域44A及び高転位密度領域44Bが交互に並ぶストライプ構造を有している。エピタキシャル層42は、例えばGaNにより構成されており、上記ストライプ構造により結晶内の転位密度が低減されている。低転位密度領域44A及び高転位密度領域44Bは、走査型電子顕微鏡(例えば、日立製作所製S−4300)を用いてCL観察することにより確認することができる。   Each of the low dislocation density region 44A and the high dislocation density region 44B extends in a stripe shape substantially parallel to each other in the plane direction (Y direction in FIG. 6) of the surface 10a of the nitride substrate 10, and the back surface of the epitaxial layer 42 To the surface. The epitaxial layer 42 has a stripe structure in which low dislocation density regions 44A and high dislocation density regions 44B are alternately arranged. The epitaxial layer 42 is made of, for example, GaN, and the dislocation density in the crystal is reduced by the stripe structure. The low dislocation density region 44A and the high dislocation density region 44B can be confirmed by CL observation using a scanning electron microscope (for example, S-4300 manufactured by Hitachi, Ltd.).

次に、図7を用いてエピタキシャル基板40の製造方法について説明する。まず、図7(a)に示すように、下地基板となる窒化物基板10の表面10a上に、例えば図7(a)のY方向に伸びるようにストライプ状のマスク層46をパターニング形成する。マスク層46は、例えばSiO2により形成されている。 Next, the manufacturing method of the epitaxial substrate 40 is demonstrated using FIG. First, as shown in FIG. 7A, a striped mask layer 46 is formed by patterning on the surface 10a of the nitride substrate 10 serving as a base substrate so as to extend in the Y direction of FIG. 7A, for example. The mask layer 46 is made of, for example, SiO 2 .

次に、図7(b)に示すように、上記マスク層46が形成された表面10a上に、気相成長法によりエピタキシャル層42をファセット成長させる。気相成長法としては、HVPE法、MOCVD法、VOC法、MBE法、昇華法等を用いることができる。エピタキシャル層42をファセット成長によって厚膜成長させていくと、マスク層46がエピタキシャル層42によって覆われ、マスク層46上に位置する部分に高転位密度領域44Bが形成される。   Next, as shown in FIG. 7B, the epitaxial layer 42 is facet grown by vapor phase epitaxy on the surface 10a on which the mask layer 46 is formed. As the vapor phase growth method, an HVPE method, an MOCVD method, a VOC method, an MBE method, a sublimation method, or the like can be used. When the epitaxial layer 42 is grown thickly by facet growth, the mask layer 46 is covered with the epitaxial layer 42, and a high dislocation density region 44B is formed in a portion located on the mask layer 46.

高転位密度領域44Bは、上記ストライプ構造だけでなく、図8(a)に示すように、ストライプ状の高転位密度領域44Bが互いに直交したスクエア構造や、図8(b)に示すように、ドット状の高転位密度領域44Bが互いに所定間隔をおいて規則的に配列されたドット構造であってもよい。このようなスクエア構造やドット構造の高転位密度領域44Bは、ストライプ構造同様、マスク層46を用いたエピタキシャル層42のパターニング形成により得ることができる。   The high dislocation density region 44B is not only the stripe structure, but also a square structure in which the stripe-shaped high dislocation density regions 44B are orthogonal to each other as shown in FIG. 8A, or as shown in FIG. A dot structure in which the dot-like high dislocation density regions 44B are regularly arranged at a predetermined interval may be used. Such a high dislocation density region 44B having a square structure or a dot structure can be obtained by patterning the epitaxial layer 42 using the mask layer 46, similarly to the stripe structure.

(半導体デバイス)
図9は、第1実施形態に係る半導体デバイス100を示す概略断面図である。半導体デバイス100は、図9に示すように、エピタキシャル基板20と、エピタキシャル層22の表面23全体を覆って形成された電極90Aと、窒化物基板10の裏面10b全体を覆って形成された電極90Bとを有する。電極90A,90Bは、例えば金属蒸着により形成される。電極90A,90Bの形成位置は、必要に応じて適宜変更可能であり、電極90Bが窒化物基板10に電気的に接続されており、電極90Aがエピタキシャル層22に電気的に接続されていればよい。
(Semiconductor device)
FIG. 9 is a schematic cross-sectional view showing the semiconductor device 100 according to the first embodiment. As shown in FIG. 9, the semiconductor device 100 includes an epitaxial substrate 20, an electrode 90 </ b> A that covers the entire surface 23 of the epitaxial layer 22, and an electrode 90 </ b> B that covers the entire back surface 10 b of the nitride substrate 10. And have. The electrodes 90A and 90B are formed by metal vapor deposition, for example. The formation positions of the electrodes 90A and 90B can be appropriately changed as necessary. If the electrode 90B is electrically connected to the nitride substrate 10 and the electrode 90A is electrically connected to the epitaxial layer 22 Good.

図10は、第2実施形態に係る半導体デバイス200を示す概略断面図である。半導体デバイス200は、図10に示すように、エピタキシャル基板30と、エピタキシャル層32の表面33の全体を覆って形成された第1の電極(p側電極)92Aと、窒化物基板10の裏面10bの一部を覆って形成された第2の電極(n側電極)92Bとを有する。半導体デバイス200のサイズは、例えば400μm角や2mm角である。導電体91Aは、はんだ層93を介して電極92Aに電気的に接続されている。導電体91Bは、ワイヤ94を介して電極92Bに電気的に接続されている。   FIG. 10 is a schematic cross-sectional view showing a semiconductor device 200 according to the second embodiment. As shown in FIG. 10, the semiconductor device 200 includes an epitaxial substrate 30, a first electrode (p-side electrode) 92 </ b> A formed so as to cover the entire surface 33 of the epitaxial layer 32, and a back surface 10 b of the nitride substrate 10. And a second electrode (n-side electrode) 92B formed so as to cover a part of the electrode. The size of the semiconductor device 200 is, for example, 400 μm square or 2 mm square. The conductor 91A is electrically connected to the electrode 92A through the solder layer 93. The conductor 91B is electrically connected to the electrode 92B through the wire 94.

半導体デバイス200は、以下の手順により製造することができる。まず、上述した方法により窒化物基板10を得る。次に、窒化物基板10の表面10a上にエピタキシャル層32を積層する。更に、エピタキシャル層32の表面33上に電極92Aを形成すると共に窒化物基板10の裏面10b上に電極92Bを形成する。続いて、電極92Aをはんだ層93により導電体91Aに電気的に接続すると共に電極92Bをワイヤ94により導電体91Bに電気的に接続する。   The semiconductor device 200 can be manufactured by the following procedure. First, the nitride substrate 10 is obtained by the method described above. Next, the epitaxial layer 32 is laminated on the surface 10 a of the nitride substrate 10. Furthermore, an electrode 92 A is formed on the surface 33 of the epitaxial layer 32 and an electrode 92 B is formed on the back surface 10 b of the nitride substrate 10. Subsequently, the electrode 92A is electrically connected to the conductor 91A by the solder layer 93, and the electrode 92B is electrically connected to the conductor 91B by the wire 94.

なお、本発明は上記実施形態に限られるものではない。上記の説明に記載された{20−21}面、M面、A面等の面方位は、その記載自体により特定されるものだけでなく、結晶学的に等価な面及び方位を含む。例えば、{20−21}面とは、{20−21}面のみならず、(02−21)面、(0−221)面、(2−201)面、(−2021)面、(−2201)面を含む。   The present invention is not limited to the above embodiment. The plane orientations of {20-21} plane, M plane, A plane and the like described in the above description include not only those specified by the description itself but also crystallographically equivalent planes and orientations. For example, the {20-21} plane is not only the {20-21} plane, but also the (02-21) plane, the (0-221) plane, the (2-201) plane, the (−2021) plane, (− 2201) plane.

以下、本発明を実施例により詳述するが、本発明の範囲はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example explains in full detail this invention, the scope of the present invention is not limited to these Examples.

(1)GaN基板の作製
まず、n型GaN結晶(ドーパント:O)をHVPE法によりc軸方向に成長させた。次に、GaN結晶をc軸に垂直又は平行にスライスし、直径50mm×厚さ0.5mmのGaN基板をそれぞれ得た。また、GaN結晶をc軸からm軸方向に傾斜、又は、c軸からa軸方向に傾斜させてスライスし、直径50mm×厚さ0.5mmのGaN基板をそれぞれ得た。
(1) Production of GaN substrate First, an n-type GaN crystal (dopant: O) was grown in the c-axis direction by the HVPE method. Next, the GaN crystal was sliced perpendicularly or parallel to the c-axis to obtain GaN substrates each having a diameter of 50 mm and a thickness of 0.5 mm. In addition, the GaN crystal was sliced by inclining in the m-axis direction from the c-axis or in the a-axis direction from the c-axis to obtain GaN substrates each having a diameter of 50 mm and a thickness of 0.5 mm.

続いて、GaN基板の表面、及び、表面と反対側の裏面にドライエッチングを施し加工変質層を除去した。ドライエッチングには、図2と同様の構成を有するRIE装置を用いた。真空チャンバの容積(V)は20Lとした。基板支持台の材質はSiCとした。エッチングガスにはCl、CHを用い、ガス流量(Q)は30sccmとした。圧力(P)4.0Pa、パワー50W〜200Wでドライエッチングを行った(PV/Q=2.67)。 Subsequently, dry etching was performed on the surface of the GaN substrate and the back surface opposite to the surface to remove the work-affected layer. For dry etching, an RIE apparatus having the same configuration as that shown in FIG. 2 was used. The volume (V) of the vacuum chamber was 20L. The material of the substrate support was SiC. The etching gas was Cl 2 or CH 4 and the gas flow rate (Q) was 30 sccm. Dry etching was performed at a pressure (P) of 4.0 Pa and a power of 50 W to 200 W (PV / Q = 2.67).

(2)GaN基板表面のラッピング
GaN基板の裏面をセラミックス製の結晶ホルダにワックスで貼り付けた。ラップ装置に直径380mmの定盤を設置し、ダイヤモンドの砥粒が分散されたスラリーをスラリー供給口から定盤に供給しながら、定盤をその回転軸を中心にして回転させた。次に、結晶ホルダ上に重りを載せることによりGaN基板を定盤に押し付けながら、GaN基板を結晶ホルダの回転軸を中心にして回転させることにより、n型GaN結晶の表面のラッピングを行った。
(2) Lapping of GaN substrate surface The back surface of the GaN substrate was attached to a ceramic crystal holder with wax. A surface plate having a diameter of 380 mm was installed in the lapping apparatus, and the surface plate was rotated about its rotation axis while supplying slurry in which diamond abrasive grains were dispersed from the slurry supply port to the surface plate. Next, the surface of the n-type GaN crystal was lapped by rotating the GaN substrate around the rotation axis of the crystal holder while pressing the GaN substrate against the surface plate by placing a weight on the crystal holder.

ラッピングは以下の条件で行った。定盤としては銅定盤、錫定盤を用いた。砥粒としては砥粒径が9μm、3μm、2μmの3種類のダイヤモンドの砥粒を準備し、ラッピングの進行と共に、砥粒径が小さい砥粒を段階的に用いた。研磨圧力は100g/cm2〜500g/cm2とし、GaN基板及び定盤の回転数はいずれも30回/min〜60回/minとした。以上のラッピングによりGaN結晶基板の表面は鏡面となったことを確認した。 Lapping was performed under the following conditions. As the surface plate, a copper surface plate and a tin surface plate were used. As the abrasive grains, three kinds of diamond abrasive grains having an abrasive grain size of 9 μm, 3 μm, and 2 μm were prepared, and with the progress of lapping, abrasive grains having a small abrasive grain size were used step by step. Polishing pressure was 100g / cm 2 ~500g / cm 2 , the rotational speed of the GaN substrate and the surface plate were both 30 times / Min~60 times / min. It was confirmed that the surface of the GaN crystal substrate became a mirror surface by the above lapping.

(3)GaN基板表面のCMP
図3と同様の構成を有するポリシング装置を用いて、GaN基板の表面のCMPを行った。CMPは以下の条件で行った。ポリシングパッドとしては、ポリウレタンのスウェードパッド(ニッタ・ハース株式会社製、Supreme RN-R)を用いた。定盤としては、直径380mmの円形のステンレス鋼定盤を用いた。GaN基板とポリシングパッドとの接触係数Cは、1.0×10−6m〜2.0×10−6mとした。ポリシング圧力は10kPa〜80kPaとし、GaN基板及びポリシングパッドの回転数はいずれも30回/min〜120回/minとした。スラリー(CMP溶液)には、砥粒として粒径200nmのシリカ粒子を水に20質量%分散させた。スラリーにはpH調整剤としてクエン酸、HSOを添加し、酸化剤としてジクロロイソシアヌル酸ナトリウムを添加して、スラリーのpH及び酸化還元電位を下記式(3)の範囲に調整した(x:pH、y:酸化還元電位(mV))。
−50x+1400≦y≦−50x+1900 …(3)
(3) CMP of GaN substrate surface
CMP of the surface of the GaN substrate was performed using a polishing apparatus having the same configuration as in FIG. CMP was performed under the following conditions. As the polishing pad, a polyurethane suede pad (Supreme RN-R, manufactured by Nitta Haas Co., Ltd.) was used. As the surface plate, a circular stainless steel surface plate having a diameter of 380 mm was used. Contact coefficient between GaN substrate and the polishing pad C was set 1.0 × 10 -6 m~2.0 × 10 -6 m. The polishing pressure was 10 kPa to 80 kPa, and the rotation speeds of the GaN substrate and the polishing pad were both 30 times / min to 120 times / min. In the slurry (CMP solution), silica particles having a particle size of 200 nm were dispersed as 20% by mass in water as abrasive grains. Citric acid and H 2 SO 4 were added to the slurry as pH adjusting agents, and sodium dichloroisocyanurate was added as an oxidizing agent to adjust the pH and redox potential of the slurry to the range of the following formula (3) (x : PH, y: oxidation-reduction potential (mV)).
−50x + 1400 ≦ y ≦ −50x + 1900 (3)

ドライエッチング、CMPの条件を適宜変更することにより、表面組成が異なるGaN基板を作製した。GaN基板の表面の硫化物の含有量の評価はTXRFにより行い、酸化物の含有量の評価はAESにより行った。TXRFはX線の線源にW封入型X線管球を用い、X線出力は電圧40kV、電流40mAとし、入射角度0.05°で測定を行った。AESは、加速電圧10keVで測定を行った。GaN基板の表面の面方位及び表面組成を表1〜4に示す。   GaN substrates having different surface compositions were produced by appropriately changing the dry etching and CMP conditions. Evaluation of the sulfide content on the surface of the GaN substrate was performed by TXRF, and evaluation of the oxide content was performed by AES. For TXRF, a W-encapsulated X-ray tube was used as the X-ray source, the X-ray output was 40 kV, the current was 40 mA, and the incident angle was 0.05 °. AES was measured at an acceleration voltage of 10 keV. Tables 1 to 4 show the surface orientation and surface composition of the GaN substrate.

(4)GaN基板を含むレーザダイオードの作製
図11に示す構成を有するレーザダイオードを以下の手順により作製した。まず、GaN基板10をMOCVD炉内のサセプタ上に配置した後、表面10a上にエピタキシャル層52を形成し、エピタキシャル基板50を得た。
(4) Production of Laser Diode Including GaN Substrate A laser diode having the configuration shown in FIG. 11 was produced by the following procedure. First, after the GaN substrate 10 was placed on the susceptor in the MOCVD furnace, the epitaxial layer 52 was formed on the surface 10a, and the epitaxial substrate 50 was obtained.

エピタキシャル層52は、MOCVD法により以下の成長手順で作製した。まず、GaN基板10上に厚さ1000nmのn型GaN52aを成長した。次に、厚さ1200nmのn型InAlGaNクラッド層52bを成長した。引き続き、厚さ200nmのn型GaNガイド層52c及び厚さ65nmのアンドープInGaNガイド層52dを成長した後に、GaN厚さ15nm/InGaN厚さ3nmから構成される3周期MQW(活性層)52eを成長した。続いて、厚さ65nmのアンドープInGaNガイド層52f、厚さ20nmのp型AlGaNブロック層52g及び厚さ200nmのp型GaNガイド層52hを成長した。次に、厚さ400nmのp型InAlGaNクラッド層52iを成長した。最後に、厚さ50nmのp型GaNコンタクト層52jを成長した。なお、エピタキシャル層52の作製に際しては、原料としてトリメチルガリウム(TMGa)、トリメチルアルミニウム(TMAl)、トリメチルインジウム(TMIn)、アンモニア(NH)、シラン(SiH)、シクロペンタジエニルマグネシウム(CpMg)を用いた。 The epitaxial layer 52 was produced by the MOCVD method according to the following growth procedure. First, an n-type GaN 52 a having a thickness of 1000 nm was grown on the GaN substrate 10. Next, an n-type InAlGaN cladding layer 52b having a thickness of 1200 nm was grown. Subsequently, after growing an n-type GaN guide layer 52c having a thickness of 200 nm and an undoped InGaN guide layer 52d having a thickness of 65 nm, a three-period MQW (active layer) 52e composed of a GaN thickness of 15 nm / InGaN thickness of 3 nm is grown. did. Subsequently, an undoped InGaN guide layer 52f having a thickness of 65 nm, a p-type AlGaN blocking layer 52g having a thickness of 20 nm, and a p-type GaN guide layer 52h having a thickness of 200 nm were grown. Next, a p-type InAlGaN cladding layer 52i having a thickness of 400 nm was grown. Finally, a p-type GaN contact layer 52j having a thickness of 50 nm was grown. Note that when manufacturing the epitaxial layer 52, trimethyl gallium as a raw material (TMGa), trimethyl aluminum (TMAl), trimethylindium (TMIn), ammonia (NH 3), silane (SiH 4), cyclopentadienyl magnesium (Cp 2 Mg) was used.

SiOの絶縁膜95をコンタクト層52j上に成膜した後に、フォトリソグラフィを用いて幅10μmのストライプ窓をウェットエッチングにより形成した。c軸を基板表面に投影した方向に平行となるようにレーザストライプを設けた。 After forming the insulating film 95 of SiO 2 on the contact layer 52j, a stripe window having a width of 10 μm was formed by wet etching using photolithography. Laser stripes were provided so that the c-axis was parallel to the direction projected on the substrate surface.

ストライプ窓を形成した後に、Ni/Auからなるp側電極96Aと、Ti/Alからなるパッド電極とを蒸着した。次いで、GaN基板10の裏面10bをダイヤモンドスラリーを用いて研磨し、裏面10bが鏡面(ミラー)状態の基板生産物を作製した。このとき、接触式膜厚計を用いて基板生産物の厚みを測定した。なお、厚みの測定は、試料断面の顕微鏡観察により行っても良い。顕微鏡には、光学顕微鏡や、走査型電子顕微鏡を用いることができる。更に、GaN基板10の裏面(研磨面)10bには、Ti/Al/Ti/Auからなるn側電極96Bを蒸着により形成した。   After forming the stripe window, a p-side electrode 96A made of Ni / Au and a pad electrode made of Ti / Al were evaporated. Next, the back surface 10b of the GaN substrate 10 was polished with a diamond slurry to produce a substrate product with the back surface 10b in a mirror state. At this time, the thickness of the substrate product was measured using a contact-type film thickness meter. The thickness may be measured by microscopic observation of the sample cross section. As the microscope, an optical microscope or a scanning electron microscope can be used. Further, an n-side electrode 96B made of Ti / Al / Ti / Au was formed on the back surface (polished surface) 10b of the GaN substrate 10 by vapor deposition.

レーザストライプに対する共振器ミラーの作製には、波長355nmのYAGレーザを用いるレーザスクライバを用いた。レーザスクライバを用いてブレイクした場合には、ダイヤモンドスクライブを用いた場合と比較して、発振チップ歩留まりを向上させることが可能である。スクライブ溝は、以下の条件で形成した:レーザ光出力100mW;走査速度5mm/s。スクライブ溝は、長さ30μm、幅10μm、深さ40μmの溝であった。800μmピッチで基板の絶縁膜の開口箇所を通してエピタキシャル層の表面に直接レーザ光を照射することによって、スクライブ溝を形成した。共振器長は600μmとした。   A laser scriber using a YAG laser with a wavelength of 355 nm was used to manufacture the resonator mirror for the laser stripe. When a break is made using a laser scriber, it is possible to improve the oscillation chip yield compared to the case where diamond scribe is used. The scribe groove was formed under the following conditions: laser light output 100 mW; scanning speed 5 mm / s. The scribe groove was a groove having a length of 30 μm, a width of 10 μm, and a depth of 40 μm. A scribe groove was formed by directly irradiating the surface of the epitaxial layer with laser light at an opening of the insulating film of the substrate at a pitch of 800 μm. The resonator length was 600 μm.

ブレードを用いて、共振ミラーを割断により作製した。基板裏側に押圧によりブレイクすることによって、レーザバーを作製した。レーザバーの端面に真空蒸着法によって誘電体多層膜をコーティングした。誘電体多層膜は、SiOとTiOを交互に積層して構成した。膜厚はそれぞれ、50〜100nmの範囲で調整して、反射率の中心波長が500〜530nmの範囲になるように設計した。片側の反射面を10周期とし、反射率の設計値を約95%に設計した。もう片側の反射面を6周期とし、反射率の設計値を約80%とした。 Using a blade, a resonant mirror was prepared by cleaving. A laser bar was produced by breaking on the back side of the substrate by pressing. A dielectric multilayer film was coated on the end face of the laser bar by vacuum deposition. The dielectric multilayer film was configured by alternately laminating SiO 2 and TiO 2 . Each film thickness was adjusted in the range of 50 to 100 nm and designed so that the central wavelength of the reflectance was in the range of 500 to 530 nm. The reflection surface on one side was set to 10 cycles, and the design value of reflectivity was designed to be about 95%. The reflection surface on the other side was set to 6 cycles, and the design value of the reflectance was about 80%.

以上により得られたLDについて、通電による評価を室温にて行った。電源には、パルス幅500ns、デューティ比0.1%のパルス電源を用い、表面電極に針を落として通電した。電流密度は100A/cmとした。LEDモード光を観測する際には、光ファイバをレーザバー表面側に配置することで、表面から放出される発光スペクトルを測定した。LEDモード光の積分強度、及び、スペクトル測定の発光ピークから算出された半値幅を表1〜5に示す。なお、表1〜3は、GaN結晶をc軸からm軸方向に傾斜させてスライスしたGaN基板を用いたLDの評価結果である。表4,5は、GaN結晶をc軸からa軸方向に傾斜させてスライスしたGaN基板を用いたLDの評価結果である。レーザ光を観測する際には、光ファイバをレーザバー端面側に配置することで、端面から放出される発光スペクトルを測定した。LEDモード光の発光波長は、500nm〜550nmであった。レーザの発振波長は500nm〜530nmであった。 About LD obtained by the above, evaluation by electricity supply was performed at room temperature. As a power source, a pulse power source having a pulse width of 500 ns and a duty ratio of 0.1% was used, and electricity was applied by dropping a needle on the surface electrode. The current density was 100 A / cm 2 . When observing the LED mode light, the emission spectrum emitted from the surface was measured by arranging the optical fiber on the laser bar surface side. Tables 1 to 5 show the integrated intensity of the LED mode light and the half width calculated from the emission peak of the spectrum measurement. Tables 1 to 3 show the evaluation results of LD using a GaN substrate sliced by tilting a GaN crystal in the m-axis direction from the c-axis. Tables 4 and 5 show the evaluation results of the LD using the GaN substrate sliced by tilting the GaN crystal in the a-axis direction from the c-axis. When observing the laser beam, the emission spectrum emitted from the end face was measured by arranging the optical fiber on the end face side of the laser bar. The emission wavelength of the LED mode light was 500 nm to 550 nm. The oscillation wavelength of the laser was 500 nm to 530 nm.

Figure 0005833297
Figure 0005833297

Figure 0005833297
Figure 0005833297

Figure 0005833297
Figure 0005833297

Figure 0005833297
Figure 0005833297

Figure 0005833297
Figure 0005833297

表1〜5に示されるように、実施例1−1〜1−14及び実施例2−1〜2−10は、表面の法線軸がc軸に対して特定の傾斜角度を有した上で、硫化物の含有量がS換算で30×1010個/cm〜2000×1010個/cmの範囲であると共に、酸化物の含有量がO換算で2at%〜20at%の範囲であるため、良好な発光強度が得られた。また、表面の面方位が、{20−21}面、{20−2−1}面、{10−11}面、{10−1−1}面、{11−22}面、{11−2−2}面、{22−43}面、{22−4−3}面、{11−21}面、{11−2−1}面のいずれかである場合には、スペクトル測定の発光ピークから算出された半値幅が小さく、発光波長の広がりが小さいことが確認された。特に、{20−21}面、{20−2−1}面、{11−21}面、{11−2−1}面では、高い積分強度と小さい半値幅が得られた。 As shown in Tables 1 to 5, in Examples 1-1 to 1-14 and Examples 2-1 to 2-10, the surface normal axis had a specific inclination angle with respect to the c-axis. In addition, the sulfide content is in the range of 30 × 10 10 pieces / cm 2 to 2000 × 10 10 pieces / cm 2 in terms of S, and the oxide content is in the range of 2 at% to 20 at% in terms of O. Therefore, good emission intensity was obtained. Further, the surface orientation is {20-21} plane, {20-2-1} plane, {10-11} plane, {10-1-1} plane, {11-22} plane, {11- If it is any one of the 2-2} plane, {22-43} plane, {22-4-3} plane, {11-21} plane, and {11-2-1} plane, the spectrum measurement light emission It was confirmed that the full width at half maximum calculated from the peak was small and the spread of the emission wavelength was small. In particular, a high integrated intensity and a small half-value width were obtained on the {20-21} plane, {20-2-1} plane, {11-21} plane, and {11-2-1} plane.

一方、比較例1−1、1−3、1−4、1−6、2−1、2−3、2−4及び2−6では、酸化物の含有量が上記範囲から外れているため、発光強度が減少することが確認された。比較例1−2、1−5、2−2及び2−5では、表面が上記特定の面方位を有していないため、発光強度が減少することが確認された。比較例1−7〜1−10では、酸化物の含有量、もしくは硫化物の含有量が上記範囲から外れているため、発光強度が減少することが確認された。   On the other hand, in Comparative Examples 1-1, 1-3, 1-4, 1-6, 2-1, 2-3, 2-4, and 2-6, the oxide content is out of the above range. It was confirmed that the emission intensity decreased. In Comparative Examples 1-2, 1-5, 2-2, and 2-5, it was confirmed that the light emission intensity decreased because the surface did not have the specific plane orientation. In Comparative Examples 1-7 to 1-10, it was confirmed that the emission intensity decreased because the oxide content or sulfide content was out of the above range.

更に、実施例1−15及び実施例1−16として、実施例1−5と同等の面方位、酸化物、硫化物の含有量で、塩化物、シリコン化合物、炭素化合物及び銅化合物の含有量、並びに、表面粗さ、転位密度の異なる基板を作製し、同様にレーザ特性の評価を行った。実施例1−15は、Cl濃度が5000×1010個/cm、Si濃度が2000×1010個/cm、炭素濃度が12at%、銅濃度が50×1010個/cm 表面粗さが1.5nm、転位密度が1×10個/cmであった。実施例1−16は、Cl濃度が18000×1010個/cm、Si濃度が15000×1010個/cm、炭素濃度が25at%、銅濃度が200×1010個/cm 表面粗さが6nm、転位密度が1×10個/cmであった。実施例1−15は、積分強度が17.3、半値幅が47nmであった。実施例1−16は、積分強度が14.9、半値幅が50nmであった。実施例1−15では、酸化物、硫化物、塩化物、シリコン化合物、炭素化合物及び銅化合物の含有量、並びに、表面粗さ、転位密度が上記特定の範囲であるため、特に良好な特性が得られた。 Furthermore, as Example 1-15 and Example 1-16, the content of chloride, silicon compound, carbon compound and copper compound with the same plane orientation, oxide and sulfide content as in Example 1-5 In addition, substrates having different surface roughness and dislocation density were prepared, and laser characteristics were similarly evaluated. In Example 1-15, the Cl concentration is 5000 × 10 10 pieces / cm 2 , the Si concentration is 2000 × 10 10 pieces / cm 2 , the carbon concentration is 12 at%, the copper concentration is 50 × 10 10 pieces / cm 2 , the surface The roughness was 1.5 nm and the dislocation density was 1 × 10 6 pieces / cm 2 . In Example 1-16, the Cl concentration is 18000 × 10 10 pieces / cm 2 , the Si concentration is 15000 × 10 10 pieces / cm 2 , the carbon concentration is 25 at%, the copper concentration is 200 × 10 10 pieces / cm 2 , the surface The roughness was 6 nm and the dislocation density was 1 × 10 7 pieces / cm 2 . In Example 1-15, the integrated intensity was 17.3 and the half width was 47 nm. In Example 1-16, the integrated intensity was 14.9 and the half width was 50 nm. In Example 1-15, since the contents of oxides, sulfides, chlorides, silicon compounds, carbon compounds and copper compounds, and the surface roughness and dislocation density are in the specific ranges, particularly good characteristics are obtained. Obtained.

10…窒化物基板(III族窒化物半導体基板)、10a…表面、12…表面層、20,30,40,50…エピタキシャル基板、22,32,42,52…エピタキシャル層、32c,52e…活性層、100,200…半導体デバイス。   DESCRIPTION OF SYMBOLS 10 ... Nitride substrate (Group III nitride semiconductor substrate), 10a ... Surface, 12 ... Surface layer, 20, 30, 40, 50 ... Epitaxial substrate, 22, 32, 42, 52 ... Epitaxial layer, 32c, 52e ... Active Layer, 100, 200 ... Semiconductor device.

Claims (11)

半導体デバイスに用いられるn型GaN基板であって、
前記n型GaN基板の表面に表面層を有し、
前記表面層が、S換算で30×1010個/cm〜2000×1010個/cmの硫化物、及び、O換算で2at%〜20at%の酸化物を含み、
c軸に対する前記表面の法線軸の傾斜角度が63°〜79°である、n型GaN基板。
An n-type GaN substrate used for a semiconductor device,
A surface layer on the surface of the n-type GaN substrate;
The surface layer contains 30 × 10 10 pieces / cm 2 to 2000 × 10 10 pieces / cm 2 of sulfide in terms of S and 2 at% to 20 at% of oxide in terms of O;
An n-type GaN substrate, wherein an inclination angle of a normal axis of the surface with respect to the c-axis is 63 ° to 79 °.
前記表面層がS換算で120×1010個/cm〜1500×1010個/cmの前記硫化物を含む、請求項1に記載のn型GaN基板。 2. The n-type GaN substrate according to claim 1, wherein the surface layer includes 120 × 10 10 pieces / cm 2 to 1500 × 10 10 pieces / cm 2 of the sulfide in terms of S. 3. 前記表面層がO換算で3at%〜16at%の前記酸化物を含む、請求項1又は2に記載のn型GaN基板。   3. The n-type GaN substrate according to claim 1, wherein the surface layer contains 3 at% to 16 at% of the oxide in terms of O. 4. 前記表面層における炭素化合物の含有量がC換算で22at%以下である、請求項1〜のいずれか一項に記載のn型GaN基板。 The n-type GaN substrate according to any one of claims 1 to 3 , wherein a content of the carbon compound in the surface layer is 22 at% or less in terms of C. 前記表面層における銅化合物の含有量がCu換算で150×1010個/cm以下である、請求項1〜のいずれか一項に記載のn型GaN基板。 Content is 0.99 × 10 10 / cm 2 or less of Cu in terms of the copper compound in the surface layer, n-type GaN substrate according to any one of claims 1-4. 前記表面層の表面粗さがRMS基準で5nm以下である、請求項1〜のいずれか一項に記載のn型GaN基板。 Wherein the surface layer is 5nm or less in RMS reference surface roughness, n-type GaN substrate according to any one of claims 1-5. 前記表面層の転位密度が1×10個/cm以下である、請求項1〜のいずれか一項に記載のn型GaN基板。 The dislocation density of the surface layer is 1 × 10 6 / cm 2 or less, n-type GaN substrate according to any one of claims 1-6. 前記表面の面方位が、{20−21}面、{20−2−1}面、{22−43}面、{22−4−3}面、{11−21}面、{11−2−1}面のいずれかである、請求項1〜のいずれか一項に記載のn型GaN基板。 The surface orientation is {20-21} plane, {20-2-1} plane, {22-43} plane, {22-4-3} plane, {11-21} plane, {11-2 The n-type GaN substrate according to any one of claims 1 to 7 , wherein the n-type GaN substrate is any one of -1} planes. 請求項1〜のいずれか一項に記載のn型GaN基板と、前記n型GaN基板の前記表面層上に形成されたエピタキシャル層とを有し、前記エピタキシャル層がIII族窒化物半導体を含む、エピタキシャル基板。 And n-type GaN substrate according to any one of claims 1-8, wherein and a n-type GaN substrate epitaxial layer formed on the surface layer of the epitaxial layer is a Group III nitride semiconductor Including an epitaxial substrate. 前記エピタキシャル層が量子井戸構造を有する活性層を有し、
前記活性層が波長430nm〜550nmの光を発生するように設けられている、請求項に記載のエピタキシャル基板。
The epitaxial layer has an active layer having a quantum well structure;
The epitaxial substrate according to claim 9 , wherein the active layer is provided so as to generate light having a wavelength of 430 nm to 550 nm.
請求項又は10に記載のエピタキシャル基板を備える、半導体デバイス。 Comprising an epitaxial substrate according to claim 9 or 10, the semiconductor device.
JP2010109490A 2010-05-11 2010-05-11 Group III nitride semiconductor substrate, epitaxial substrate, and semiconductor device Active JP5833297B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010109490A JP5833297B2 (en) 2010-05-11 2010-05-11 Group III nitride semiconductor substrate, epitaxial substrate, and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010109490A JP5833297B2 (en) 2010-05-11 2010-05-11 Group III nitride semiconductor substrate, epitaxial substrate, and semiconductor device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009228605A Division JP4513927B1 (en) 2009-09-30 2009-09-30 Group III nitride semiconductor substrate, epitaxial substrate, and semiconductor device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2014178036A Division JP2015053482A (en) 2014-09-02 2014-09-02 Group iii nitride semiconductor substrate, epitaxial substrate, and semiconductor device

Publications (3)

Publication Number Publication Date
JP2011077497A JP2011077497A (en) 2011-04-14
JP2011077497A5 JP2011077497A5 (en) 2012-10-25
JP5833297B2 true JP5833297B2 (en) 2015-12-16

Family

ID=44021104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010109490A Active JP5833297B2 (en) 2010-05-11 2010-05-11 Group III nitride semiconductor substrate, epitaxial substrate, and semiconductor device

Country Status (1)

Country Link
JP (1) JP5833297B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108336127B (en) * 2011-07-20 2021-09-24 住友电气工业株式会社 Silicon carbide substrate, semiconductor device, and methods for manufacturing silicon carbide substrate and semiconductor device
JP2013084951A (en) * 2011-09-30 2013-05-09 Asahi Kasei Electronics Co Ltd Semiconductor device and method for manufacturing the same
JP5803786B2 (en) 2012-04-02 2015-11-04 住友電気工業株式会社 Silicon carbide substrate, semiconductor device and manufacturing method thereof
JP6778579B2 (en) * 2016-10-18 2020-11-04 古河機械金属株式会社 Method for manufacturing group III nitride semiconductor substrate and group III nitride semiconductor substrate

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3888374B2 (en) * 2004-03-17 2007-02-28 住友電気工業株式会社 Manufacturing method of GaN single crystal substrate
JP5194334B2 (en) * 2004-05-18 2013-05-08 住友電気工業株式会社 Method for manufacturing group III nitride semiconductor device
JP4337953B2 (en) * 2009-03-17 2009-09-30 住友電気工業株式会社 Nitride crystal substrate, nitride crystal substrate with epi layer, and semiconductor device

Also Published As

Publication number Publication date
JP2011077497A (en) 2011-04-14

Similar Documents

Publication Publication Date Title
JP4513927B1 (en) Group III nitride semiconductor substrate, epitaxial substrate, and semiconductor device
JP5365454B2 (en) Group III nitride semiconductor substrate, epitaxial substrate, and semiconductor device
JP4333820B1 (en) Compound semiconductor substrate
TWI499082B (en) Group III nitride crystal substrate, group III nitride crystal substrate with epitaxial layer, and semiconductor device and method for manufacturing the same
US9287453B2 (en) Composite substrates and functional device
JP5833297B2 (en) Group III nitride semiconductor substrate, epitaxial substrate, and semiconductor device
JP5636642B2 (en) Compound semiconductor substrate
JP5648726B2 (en) GaN substrate and manufacturing method thereof, epitaxial substrate, and semiconductor device
JP2015053482A (en) Group iii nitride semiconductor substrate, epitaxial substrate, and semiconductor device
WO2011058870A1 (en) Group-iii nitride crystal substrate, group-iii nitride crystal substrate with epitaxial layer, semiconductor device and method of manufacturing thereof
JP2010166017A (en) Compound semiconductor substrate and semiconductor device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120906

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130716

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140114

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140603

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150929

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151029

R150 Certificate of patent or registration of utility model

Ref document number: 5833297

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350