JP5823904B2 - Rotating permanent magnet magnetic refrigeration system - Google Patents
Rotating permanent magnet magnetic refrigeration system Download PDFInfo
- Publication number
- JP5823904B2 JP5823904B2 JP2012077420A JP2012077420A JP5823904B2 JP 5823904 B2 JP5823904 B2 JP 5823904B2 JP 2012077420 A JP2012077420 A JP 2012077420A JP 2012077420 A JP2012077420 A JP 2012077420A JP 5823904 B2 JP5823904 B2 JP 5823904B2
- Authority
- JP
- Japan
- Prior art keywords
- permanent magnet
- magnetic
- plate
- refrigeration apparatus
- rotary
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
Landscapes
- Linear Motors (AREA)
Description
本発明は、磁気熱量効果に基づく回転型永久磁石磁気冷凍装置に関するものである。 The present invention relates to a rotary permanent magnet magnetic refrigeration apparatus based on a magnetocaloric effect.
強磁性体は、断熱的に磁場を印加すると発熱し、断熱的に磁場を除去すると吸熱する。これは磁気熱量効果と呼ばれ、強磁性・常磁性間の相転移温度(キュリー温度)の近傍において顕著である。強磁性体の磁気熱量効果と熱交換媒体の往復流動とを組み合わせて低温部と高温部を生成し、低温部を用いて他の物体を冷却できるようにしたものが磁気冷凍装置である。なお、キュリー温度は強磁性体に固有なので、磁気冷凍装置の使用したい温度領域にキュリー温度を持つような強磁性体の選択が必要である。また、磁気冷凍装置に使用される強磁性体は、磁気作業物質と呼ばれる。 The ferromagnetic material generates heat when a magnetic field is applied adiabatically, and absorbs heat when the magnetic field is removed adiabatically. This is called the magnetocaloric effect and is prominent near the phase transition temperature (Curie temperature) between ferromagnetism and paramagnetism. A magnetic refrigeration apparatus is one in which a low temperature part and a high temperature part are generated by combining the magnetocaloric effect of a ferromagnetic material and the reciprocating flow of a heat exchange medium, and other objects can be cooled using the low temperature part. Since the Curie temperature is unique to the ferromagnetic material, it is necessary to select a ferromagnetic material having a Curie temperature in the temperature range where the magnetic refrigeration apparatus is to be used. In addition, the ferromagnetic material used in the magnetic refrigeration apparatus is called a magnetic working substance.
磁気熱量効果を大きくして磁気冷凍装置の能力を高くするには、強い磁場を印加してその磁場を除去するとよい。また、磁気冷凍装置の構造を簡素化するためには、永久磁石の移動によって磁場の印加と除去を行うとよい。そこで、従来は、ある種のハルバッハ配列の永久磁石磁気回路を組み、これの回転によって磁場の印加と除去を行ってきた(下記特許文献1,2参照)。 In order to increase the magnetocaloric effect and increase the capacity of the magnetic refrigeration apparatus, it is preferable to apply a strong magnetic field and remove the magnetic field. In order to simplify the structure of the magnetic refrigeration apparatus, it is preferable to apply and remove a magnetic field by moving a permanent magnet. Therefore, conventionally, a certain kind of Halbach array permanent magnet magnetic circuit is assembled, and a magnetic field is applied and removed by rotating the permanent magnet magnetic circuit (see Patent Documents 1 and 2 below).
また、本願の発明者らによって、既に、この種の磁気冷凍装置が提案されている(下記特許文献3参照)。 The inventors of the present application have already proposed this type of magnetic refrigeration apparatus (see Patent Document 3 below).
上記した特許文献3の磁気冷凍装置を参考に従来の磁気冷凍装置について説明する。 A conventional magnetic refrigeration apparatus will be described with reference to the magnetic refrigeration apparatus of Patent Document 3 described above.
図7は従来の磁気冷凍装置の全体模式図、図8はその円環状ハルバッハ配列の永久磁石磁気回路の対を有する本体部分の断面図、図9はその円環状ハルバッハ配列の永久磁石磁気回路の対を示す模式図、図10は図9の円環状ハルバッハ配列の永久磁石磁気回路の上面図である。 FIG. 7 is an overall schematic diagram of a conventional magnetic refrigeration apparatus, FIG. 8 is a cross-sectional view of a main body portion having a pair of permanent magnet magnetic circuits in the annular Halbach array, and FIG. 9 is a diagram of the permanent magnet magnetic circuit in the annular Halbach array. FIG. 10 is a top view of the permanent magnet magnetic circuit of the annular Halbach array of FIG. 9.
図7に示すように、円環状ハルバッハ配列の永久磁石磁気回路を対にした永久磁石組立体101を有する回転子Aが共通回転軸105の周りを回転すること、およびロータリー弁130の流路が切り換わることにより、消磁して温度が低下したダクト112A〜Dで冷却された熱交換媒体は、冷却器123で被冷却体を冷却した後、励磁して温度が上昇したダクト112A〜Dを冷却して排熱交換器132に戻り、仕事分の熱量を放出する。なお、図7において、Bは固定子、121A,Bは低温配管、122A,Bは高温配管、124は被冷却体、131は循環器をそれぞれ示す。 As shown in FIG. 7, a rotor A having a permanent magnet assembly 101 paired with a permanent magnet magnetic circuit in an annular Halbach array rotates around a common rotating shaft 105, and the flow path of the rotary valve 130 is By switching, the heat exchange medium cooled by the ducts 112A to 112D whose temperature has been demagnetized and cooled is cooled by the cooler 123, and then cooled to the ducts 112A to 112D whose temperature has been increased by excitation. Then, the heat returns to the exhaust heat exchanger 132 and releases the heat for work. In FIG. 7 , B is a stator, 121A and B are low-temperature pipes, 122A and B are high-temperature pipes, 124 is an object to be cooled, and 131 is a circulator.
より具体的には、図8に示すように、磁気冷凍装置の円環状ハルバッハ配列の永久磁石磁気回路の対を有する本体部分の回転子A側は、各永久磁石磁気回路を収める非磁性の容器101A′,101B′と、非磁性の容器101A′に収められる第1の円環状ハルバッハ配列永久磁石磁気回路102と、非磁性の容器101B′に収められるとともに第1の円環状ハルバッハ配列永久磁石磁気回路102と対向する第2の円環状ハルバッハ配列永久磁石磁気回路103とを対にした永久磁石組立体101、第1の円環状ハルバッハ配列永久磁石磁気回路102と第2の円環状ハルバッハ配列永久磁石磁気回路103との間に配置されるスペーサー104、及び第1の円環状ハルバッハ配列永久磁石磁気回路102と第2の円環状ハルバッハ配列永久磁石磁気回路103とスペーサー104とを嵌合する共通回転軸105からなる。 More specifically, as shown in FIG. 8, the rotor A side of the main body portion having a pair of permanent magnet magnetic circuits in an annular Halbach array of the magnetic refrigeration apparatus is a non-magnetic container for housing each permanent magnet magnetic circuit. 101A ′, 101B ′, a first annular Halbach array permanent magnet magnetic circuit 102 housed in a nonmagnetic container 101A ′, and a first annular Halbach array permanent magnet magnet housed in a nonmagnetic container 101B ′ A permanent magnet assembly 101, which is a pair of a second annular Halbach array permanent magnet magnetic circuit 103 opposed to the circuit 102, a first annular Halbach array permanent magnet magnetic circuit 102 and a second annular Halbach array permanent magnet. The spacer 104 disposed between the magnetic circuit 103 and the first annular Halbach array permanent magnet magnetic circuit 102 and the second annular Halbach arrangement Comprising a common rotary shaft 105 to be fitted and a permanent magnet magnetic circuit 103 and the spacer 104.
一方、磁気冷凍装置の円環状ハルバッハ配列の永久磁石磁気回路の対を有する本体部分の固定子B側は、第1の円環状ハルバッハ配列永久磁石磁気回路102と第2の円環状ハルバッハ配列永久磁石磁気回路103との対向面の間に極めて大きな磁場が生成され得る磁場空間111に配置される磁気作業物質を収めたダクト112、この磁気作業物質を収めたダクト112を支持するホルダー113、このホルダー113を支持する支持柱114、この支持柱114を支持する側板115、共通回転軸105と側板115との間に配置される軸受116、及び軸受116を保持する軸受押さえ117からなる。 On the other hand, on the stator B side of the main body portion having the pair of permanent magnet magnetic circuits in the annular Halbach array of the magnetic refrigeration apparatus, the first annular Halbach array permanent magnet magnetic circuit 102 and the second annular Halbach array permanent magnet are provided. A duct 112 containing a magnetic working material arranged in a magnetic field space 111 where a very large magnetic field can be generated between the surface facing the magnetic circuit 103, a holder 113 for supporting the duct 112 containing the magnetic working material, this holder 113, a support plate 114 that supports the support column 114, a side plate 115 that supports the support column 114, a bearing 116 that is disposed between the common rotary shaft 105 and the side plate 115, and a bearing retainer 117 that holds the bearing 116.
そして、上記したように永久磁石磁気回路において、永久磁石が脱落防止しないように非磁性体、例えば3mmの非磁性の板101A,101Bで固定されるようになっているために磁気回路の磁場分布の調整が難しいとともに、磁気回路でのギャップ内での磁場の強化の面でも問題があった。 As described above, in the permanent magnet magnetic circuit, the permanent magnet is fixed by the non-magnetic material, for example, 3 mm non-magnetic plates 101A and 101B so as not to prevent the permanent magnet from falling off. Adjustment of the magnetic field was difficult, and there was a problem in terms of strengthening the magnetic field in the gap in the magnetic circuit.
本発明は、これらの問題を解決するために、共通回転軸に嵌合された円環状ハルバッハ配列の永久磁石磁気回路の対を用い、この対の永久磁石を固定する部位を磁性金属体からなる蓋板で構成し、磁気回路付近の磁場を強化し、磁場分布を整えることができる回転型永久磁石磁気冷凍装置を提供することを目的とする。 In order to solve these problems, the present invention uses a pair of permanent magnet magnetic circuits of an annular Halbach arrangement fitted to a common rotating shaft, and a portion for fixing the permanent magnet of the pair is made of a magnetic metal body. An object of the present invention is to provide a rotary permanent magnet magnetic refrigeration apparatus that is composed of a cover plate and can reinforce the magnetic field in the vicinity of the magnetic circuit and adjust the magnetic field distribution.
本発明は、上記目的を達成するために、
〔1〕共通回転軸に嵌合された円環状ハルバッハ配列の永久磁石磁気回路の対を用い、この対の永久磁石を固定する部位に蓋板を配置し、この蓋板を磁性金属体で構成する回転型永久磁石磁気冷凍装置であって、前記蓋板の周辺部にテーパー面を形成し、このテーパー面を枠板で押さえるように構成したことを特徴とする。
In order to achieve the above object, the present invention provides
[1] An annular Halbach array of permanent magnet magnetic circuits fitted to a common rotating shaft is used, a cover plate is disposed at a portion for fixing the permanent magnet of the pair, and the cover plate is made of a magnetic metal body. The rotating permanent magnet magnetic refrigeration apparatus is characterized in that a tapered surface is formed in the peripheral portion of the lid plate and the tapered surface is pressed by a frame plate .
〔2〕共通回転軸に嵌合された円環状ハルバッハ配列の永久磁石磁気回路の対を用い、この対の永久磁石を固定する部位に蓋板を配置し、この蓋板を磁性金属体で構成する回転型永久磁石磁気冷凍装置であって、前記蓋板の周辺部に段部を形成し、この段部を枠板で押さえるように構成したことを特徴とする。
〔3〕上記〔1〕または〔2〕記載の回転型永久磁石磁気冷凍装置において、前記蓋板が鉄板からなることを特徴とする。
[ 2] A pair of permanent magnet magnetic circuits in an annular Halbach arrangement fitted to a common rotating shaft is used, and a cover plate is arranged at a portion where the permanent magnets of the pair are fixed, and the cover plate is made of a magnetic metal body. The rotary permanent magnet magnetic refrigeration apparatus is characterized in that a step portion is formed in the peripheral portion of the lid plate and the step portion is pressed by a frame plate .
[ 3] The rotary permanent magnet magnetic refrigeration apparatus according to [1] or [2] , wherein the lid plate is made of an iron plate .
本発明によれば、従来の共通回転軸に嵌合された円環状ハルバッハ配列の永久磁石磁気回路の対を用い、この対の永久磁石を固定する部位の非磁性体の板に代えて、蓋板を配置し、この蓋板を磁性金属体で構成し、磁気回路付近の磁場を強化し、磁場分布を整えることができる。 According to the present invention, a conventional pair of permanent magnet magnetic circuits in an annular Halbach arrangement fitted to a common rotating shaft is used, and a lid is used instead of a non-magnetic plate at a portion for fixing the pair of permanent magnets. A plate is arranged, and the lid plate is made of a magnetic metal body, so that the magnetic field near the magnetic circuit can be strengthened and the magnetic field distribution can be adjusted.
本発明の回転型永久磁石磁気冷凍装置は、共通回転軸に嵌合された円環状ハルバッハ配列の永久磁石磁気回路の対を用い、この対の永久磁石を固定する部位に蓋板を配置し、この蓋板を磁性金属体で構成する回転型永久磁石磁気冷凍装置であって、前記蓋板の周辺部にテーパー面を形成し、このテーパー面を枠板で押さえるように構成する。 The rotary permanent magnet magnetic refrigeration apparatus of the present invention uses a pair of permanent magnet magnetic circuits in an annular Halbach arrangement fitted to a common rotating shaft, and arranges a lid plate at a portion where the permanent magnet of this pair is fixed, In this rotary permanent magnet magnetic refrigeration apparatus, the lid plate is made of a magnetic metal body, and a tapered surface is formed around the lid plate, and the tapered surface is pressed by a frame plate .
以下、本発明の実施の形態について詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail.
図1は本発明の第1実施例を示す共通回転軸に嵌合された円環状ハルバッハ配列の永久磁石磁気回路の永久磁石の固定部の断面模式図、図2はその共通回転軸に嵌合された円環状ハルバッハ配列の永久磁石磁気回路の永久磁石組立体の上面模式図である。 FIG. 1 is a schematic cross-sectional view of a fixed part of a permanent magnet of an annular Halbach array permanent magnet magnetic circuit fitted to a common rotating shaft according to a first embodiment of the present invention, and FIG. 2 is fitted to the common rotating shaft. It is the upper surface schematic diagram of the permanent magnet assembly of the permanent magnet magnetic circuit of the made annular | circular shaped Halbach array.
これらの図において、1は永久磁石組立体、2は永久磁石組立体1を構成する永久磁石(例えば、NdFeB)、3は永久磁石2を収納する枠体〔例えば非磁性体又は金属体(SUSやアルミニウム)〕、4は永久磁石2の飛び出しを押さえるテーパ4Aが形成された押さえ枠板〔厚さ3mmの、例えば非磁性体又は金属体(SUSやアルミニウム)〕、5は永久磁石2の飛び出しを押さえる、テーパ5Aが形成された蓋板(厚さ2.8mmの磁性金属板:例えば鉄板)、6は蓋板5を固定するために枠体3に押さえ枠板4を固定するためのネジ部材である。 In these drawings, 1 is a permanent magnet assembly, 2 is a permanent magnet (for example, NdFeB) constituting the permanent magnet assembly 1, and 3 is a frame for housing the permanent magnet 2 [ for example, a non-magnetic body or a metal body (SUS). and aluminum)], 4 of the pressing frame plate [thickness 3mm tapered 4A is formed to suppress the pop-out of the permanent magnet 2, for example, non-magnetic or metal body (SUS or aluminum)], 5 jumped out of the permanent magnet 2 A cover plate (magnetic metal plate having a thickness of 2.8 mm: for example, an iron plate) formed with a taper 5A, 6 is a screw for fixing the press frame plate 4 to the frame body 3 in order to fix the cover plate 5 It is a member.
図3は本発明の第2実施例を示す共通回転軸に嵌合された円環状ハルバッハ配列の永久磁石磁気回路の永久磁石の固定部の断面模式図、図4はその共通回転軸に嵌合された円環状ハルバッハ配列の永久磁石磁気回路の永久磁石組立体の上面模式図である。 FIG. 3 is a schematic cross-sectional view of a fixed portion of a permanent magnet of an annular Halbach array permanent magnet magnetic circuit fitted to a common rotating shaft according to a second embodiment of the present invention, and FIG. 4 is fitted to the common rotating shaft. It is the upper surface schematic diagram of the permanent magnet assembly of the permanent magnet magnetic circuit of the made annular | circular shaped Halbach array.
これらの図において、11は永久磁石組立体、12は永久磁石組立体11を構成する永久磁石(例えば、NdFeB)、13は永久磁石12を収納する枠体〔例えば非磁性体又は金属体(SUSやアルミニウム)〕、14は永久磁石12の飛び出しを押さえる段部14Aが形成された押さえ枠板〔厚さ3mmの枠板:例えば非磁性体又は金属体(SUSやアルミニウム)〕、15は永久磁石12の飛び出しを押さえる、段部15Aが形成された蓋板(厚さ2.8mmの磁性金属板:鉄板)、16は蓋板15を固定するために枠体13に押さえ枠板14を固定するためのネジ部材である。 In these drawings, 11 is a permanent magnet assembly, 12 is a permanent magnet (for example, NdFeB) constituting the permanent magnet assembly 11, and 13 is a frame for housing the permanent magnet 12 [ for example, a non-magnetic body or a metal body (SUS). And aluminum)], 14 is a pressing frame plate (a 3 mm thick frame plate: for example, a non-magnetic material or a metal body (SUS or aluminum)), and 15 is a permanent magnet. 12 is a lid plate (magnetic metal plate: iron plate) having a stepped portion 15 </ b> A that holds the projection 15, and 16 holds the press frame plate 14 to the frame body 13 in order to fix the lid plate 15. It is the screw member for.
本発明によれば、上記したように永久磁石組立体を構成する永久磁石の蓋板の鉄への置換を行った。そこで、従来例(ギャップ長さ22mm)と、永久磁石の直前に厚さ3mmの例えば鉄製の蓋板が配置された発明(ギャップ長さ16mm=永久磁石間22mm−鉄板の厚さ3mm×2)について磁場の空間分布を計算した。計算上は、鉄板の厚さを2.8mmとし、鉄板と永久磁石の狭間を0.2mm確保した。鉄の種類はSS400とした。尚、これらは、永久磁石をN40SHとした場合での値であり、永久磁石をN48Mに変更した場合に磁場は1.1倍、力は1.2倍する必要がある。 According to the present invention, as described above, replacement of the cover plate of the permanent magnet constituting the permanent magnet assembly with iron was performed. Therefore, the conventional example (gap length 22 mm) and the invention in which a 3 mm thick, for example, iron lid plate is arranged immediately before the permanent magnet (gap length 16 mm = 22 mm between permanent magnets—iron plate thickness 3 mm × 2) The spatial distribution of the magnetic field was calculated. In calculation, the thickness of the iron plate was set to 2.8 mm, and the gap between the iron plate and the permanent magnet was secured to 0.2 mm. The type of iron was SS400. These values are obtained when the permanent magnet is N40SH. When the permanent magnet is changed to N48M, the magnetic field must be 1.1 times and the force 1.2 times.
図5は従来例の磁気回路の磁場解析結果を示す図、図6は本発明の磁気回路の磁場解析結果を示す図である。 FIG. 5 is a diagram showing a magnetic field analysis result of a conventional magnetic circuit, and FIG. 6 is a diagram showing a magnetic field analysis result of the magnetic circuit of the present invention.
(1)磁気回路の計算(エルフ)の結果、従来例(ギャップ長さ=22mm)でのギャップ中央における最大磁場は9810Gであり、本発明(ギャップ長さ=16mm)でのギャップ中央における最大磁場は9040Gであった。このように、ギャップ中央における最大磁場について、従来例に比べて本発明の方が小さくなることが分かった。ただし、従来例に比べると本発明は磁場の空間分布が凹凸の少ない台形であり、回転によって滑らかな励消磁が実現できる。また、図6に示す磁場が0.8Tを超える領域に相当する図の扇形形状中央の部分Aが広くなり、より綺麗な扇型形状になっている。なお、本発明におけるギャップ長さ16mmは磁石間長さ22mm−蓋板の厚さ3mm×2である。また、これらは、永久磁石をN40SHとした場合の値であり、N48Mに変更した場合は1.1倍となる。 (1) As a result of calculation of the magnetic circuit (elf), the maximum magnetic field at the center of the gap in the conventional example (gap length = 22 mm) is 9810 G, and the maximum magnetic field at the center of the gap in the present invention (gap length = 16 mm). Was 9040G. Thus, it was found that the present invention is smaller than the conventional example with respect to the maximum magnetic field at the center of the gap. However, compared with the conventional example, the present invention is a trapezoid in which the spatial distribution of the magnetic field is less uneven, and smooth excitation and demagnetization can be realized by rotation. Further, the magnetic field becomes wider fan-shaped central parts component A in a view corresponding to the region of more than 0.8T as shown in FIG. 6, it has a cleaner fan-shape. In the present invention, the gap length of 16 mm is 22 mm between the magnets and the thickness of the cover plate is 3 mm × 2. Moreover, these are values when the permanent magnet is N40SH, and when it is changed to N48M, it becomes 1.1 times.
(2)磁気回路に働く力について、従来例に比べて本発明は大きくなることが分かる。すなわち、従来例の場合、磁気回路に働く力は272kgfであるのに対し、本発明の場合は295kgfであった。ただし、本発明の場合に磁気回路に働く力は、磁石451kgf−鉄製の蓋板156kgfで算出した。また、これらは永久磁石をN40SHとした場合の値であり、N48Mに変更した場合には1.2倍となる。 (2) As for the force acting on the magnetic circuit, it can be seen that the present invention is larger than the conventional example. That is, in the case of the conventional example, the force acting on the magnetic circuit is 272 kgf, whereas in the case of the present invention, it is 295 kgf. However, in the case of the present invention, the force acting on the magnetic circuit was calculated from magnet 451 kgf-iron cover plate 156 kgf. Moreover, these are values when the permanent magnet is N40SH, and when it is changed to N48M, it becomes 1.2 times.
(3)磁石の後方25mmと側方75mmにおける漏れ磁場について、従来例に比べて本発明は大きくなることが分かった。すなわち、従来例の場合、後方最大磁場は1570G、側方最大磁場は70Gであるのに対し、本発明の場合、後方最大磁場は1620G、側方最大磁場は80Gであった。なお、これらは永久磁石をN40SHとした場合の値であり、N48Mに変更した場合には1.1倍となる。 (3) It was found that the present invention is larger than the conventional example with respect to the leakage magnetic field at the rear 25 mm and the side 75 mm of the magnet. That is, in the case of the conventional example, the rear maximum magnetic field is 1570 G and the lateral maximum magnetic field is 70 G, whereas in the present invention, the rear maximum magnetic field is 1620 G and the lateral maximum magnetic field is 80 G. Note that these are values when the permanent magnet is N40SH, and when it is changed to N48M, it becomes 1.1 times.
(4)他にも、ギャップ中央に挿入したGdダクトのZ方向最大磁気吸引応力について、従来例に比べて本発明は小さくなることが分かった。また、上記したように従来例に比べて本発明は応力の空間分布が凹凸の少ない台形であり、回転による応力変動が抑えられたものになる。すなわち、従来例の場合、Z方向最大磁気吸引応力は446kPaであるのに対し、本発明の場合は380kPaであった。なお、これらは永久磁石をN40SHとした場合の値であり、N48Mに変更した場合には1.2倍となる。 (4) In addition, it was found that the present invention is smaller than the conventional example with respect to the Z direction maximum magnetic attraction stress of the Gd duct inserted in the center of the gap. Further, as described above, the present invention is a trapezoid with less stress unevenness than the conventional example, and the stress fluctuation due to rotation is suppressed. That is, in the case of the conventional example, the maximum magnetic attraction stress in the Z direction is 446 kPa, whereas in the case of the present invention, it is 380 kPa. Note that these are values when the permanent magnet is N40SH, and when it is changed to N48M, it becomes 1.2 times.
このように、従来例と比較して、本発明の回転型永久磁石磁気冷凍装置は、磁気回路付近の磁場を強化し、磁場分布を整えることができる。 Thus, as compared with the conventional example, the rotary permanent magnet magnetic refrigeration apparatus of the present invention can reinforce the magnetic field near the magnetic circuit and adjust the magnetic field distribution.
なお、本発明は上記実施例に限定されるものではなく、本発明の趣旨に基づき種々の変形が可能であり、これらを本発明の範囲から排除するものではない。 In addition, this invention is not limited to the said Example, Based on the meaning of this invention, a various deformation | transformation is possible and these are not excluded from the scope of the present invention.
本発明の回転型永久磁石磁気冷凍装置は、磁気回路付近の磁場を強化し、磁場分布を整えることができる回転型永久磁石磁気冷凍装置として利用可能である。 The rotating permanent magnet magnetic refrigeration apparatus of the present invention can be used as a rotating permanent magnet magnetic refrigeration apparatus that can reinforce the magnetic field in the vicinity of the magnetic circuit and adjust the magnetic field distribution.
1,11 永久磁石組立体
2,12 永久磁石
3,13 永久磁石を収納する枠体
4,14 押さえ枠板
4A,5A テーパ
5,15 蓋板
6,16 ネジ部材
14A,15A 段部
DESCRIPTION OF SYMBOLS 1,11 Permanent magnet assembly 2,12 Permanent magnet 3,13 Frame body which accommodates permanent magnet 4,14 Holding frame board 4A , 5A taper 5,15 Cover plate 6,16 Screw member 14A , 15A step part
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012077420A JP5823904B2 (en) | 2012-03-29 | 2012-03-29 | Rotating permanent magnet magnetic refrigeration system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012077420A JP5823904B2 (en) | 2012-03-29 | 2012-03-29 | Rotating permanent magnet magnetic refrigeration system |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013204984A JP2013204984A (en) | 2013-10-07 |
JP5823904B2 true JP5823904B2 (en) | 2015-11-25 |
Family
ID=49524253
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012077420A Expired - Fee Related JP5823904B2 (en) | 2012-03-29 | 2012-03-29 | Rotating permanent magnet magnetic refrigeration system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5823904B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6962735B2 (en) * | 2017-08-08 | 2021-11-05 | 株式会社Nttファシリティーズ | Heat transfer device |
JP6962736B2 (en) * | 2017-08-08 | 2021-11-05 | 株式会社Nttファシリティーズ | Heat transfer device |
CN109707894B (en) * | 2019-01-15 | 2023-09-15 | 西华大学 | Halbach magnetic moment array transmission self-sealing main valve |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997028544A1 (en) * | 1996-01-30 | 1997-08-07 | Aichi Steel Works, Ltd. | Distributed-magnetic-pole opposed-type magnetic attachment |
KR101225305B1 (en) * | 2004-02-03 | 2013-01-22 | 애스트로노틱스 코포레이션 오브 아메리카 | Permanent magnet assembly |
JP4921891B2 (en) * | 2006-08-24 | 2012-04-25 | 中部電力株式会社 | Magnetic refrigeration equipment |
JP5602482B2 (en) * | 2010-04-22 | 2014-10-08 | 公益財団法人鉄道総合技術研究所 | Magnetic refrigeration equipment |
-
2012
- 2012-03-29 JP JP2012077420A patent/JP5823904B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2013204984A (en) | 2013-10-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5602482B2 (en) | Magnetic refrigeration equipment | |
JP4826929B2 (en) | Magnetic field generator | |
JP5823904B2 (en) | Rotating permanent magnet magnetic refrigeration system | |
US20150206638A1 (en) | Magnetic field generator for a magnetocaloric thermal device, and magnetocaloric thermal device equipped with such a generator | |
US20060244326A1 (en) | Motor | |
KR20070017500A (en) | Permanent magnet assembly | |
US11402136B2 (en) | Drum-type magnetic refrigeration apparatus with multiple bed rings | |
EP3819559A1 (en) | Magnetic field application device | |
JP2016003836A (en) | Magnetic structure, heat exchanger, and refrigeration cycle system | |
JP2018026983A (en) | Movable-coil type voice coil motor | |
JP5816491B2 (en) | Magnetic refrigeration equipment | |
JP2005279168A5 (en) | ||
US11125477B2 (en) | Drum-type magnetic refrigeration apparatus with improved magnetic-field source | |
JP2004350339A (en) | Linear motor armature and linear motor employing it | |
CN201925345U (en) | Horizontal-coil inner-rotor hybrid magnetic bearing and combined type hybrid magnetic bearing | |
WO2019150819A1 (en) | Magnetic heat pump device | |
CN109525053A (en) | Rotor magnetic pole component and its processing method for magneto | |
TWM548923U (en) | Fan, rotor and permanent magnetic element | |
JP2020038026A (en) | Magnetic refrigeration device | |
JP5987348B2 (en) | motor | |
JP2012060756A (en) | Linear motor | |
JP2020054120A (en) | Moving-coil type voice coil motor | |
JP2000245130A (en) | Moving-coil linear motor | |
JP2007020323A (en) | Cooling device for motor stators | |
JP7207084B2 (en) | Moving coil type voice coil motor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140611 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20150227 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150324 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150421 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20151006 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20151008 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5823904 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |