JP5821442B2 - Battery and battery manufacturing method - Google Patents

Battery and battery manufacturing method Download PDF

Info

Publication number
JP5821442B2
JP5821442B2 JP2011196496A JP2011196496A JP5821442B2 JP 5821442 B2 JP5821442 B2 JP 5821442B2 JP 2011196496 A JP2011196496 A JP 2011196496A JP 2011196496 A JP2011196496 A JP 2011196496A JP 5821442 B2 JP5821442 B2 JP 5821442B2
Authority
JP
Japan
Prior art keywords
battery
gas
space
sealing member
battery case
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011196496A
Other languages
Japanese (ja)
Other versions
JP2013058408A (en
Inventor
貴司 原山
貴司 原山
純太 高須
純太 高須
草間 和幸
和幸 草間
貴宣 福士
貴宣 福士
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2011196496A priority Critical patent/JP5821442B2/en
Publication of JP2013058408A publication Critical patent/JP2013058408A/en
Application granted granted Critical
Publication of JP5821442B2 publication Critical patent/JP5821442B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Filling, Topping-Up Batteries (AREA)
  • Secondary Cells (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Description

本発明は、自身の内外を連通する貫通孔を有する電池ケースと、この電池ケース内に収容された電極体と、電池ケースの貫通孔を外部から気密に封止してなる封止部材とを備える電池及び電池の製造方法に関する。   The present invention includes a battery case having a through-hole communicating with the inside and outside of the battery case, an electrode body housed in the battery case, and a sealing member formed by sealing the through-hole of the battery case from the outside. The present invention relates to a battery and a battery manufacturing method.

従来より、電解液を注入するための注液孔などの貫通孔を有する電池ケースと、この電池ケースに収容された電極体と、電池ケースの貫通孔を外部から気密に封止した封止部材とを備える電池が知られている。封止部材としては、例えば、金属からなる金属蓋部材に、ゴム状弾性体からなるゴム栓部材が接合されたものがある。このうちゴム栓部材は、電池ケースの貫通孔に外部から圧入されており、貫通孔を気密に封止(密栓)する。一方、金属蓋部材は、このゴム栓部材を電池ケースの外部から覆いつつ、ゴム栓部材を電池ケースの内部に向けて押圧した状態で、電池ケースに接合されている。このようにすることで、ゴム栓部材による貫通孔の気密封止をより確実なものとすることができる。
なお、このようなゴム栓部材及び金属蓋部材を有する封止部材で貫通孔を封止した形態の電池として、例えば特許文献1に開示された電池が挙げられる。
Conventionally, a battery case having a through hole such as a liquid injection hole for injecting an electrolyte, an electrode body accommodated in the battery case, and a sealing member that hermetically seals the through hole of the battery case from the outside Are known. As the sealing member, for example, there is a member in which a rubber plug member made of a rubber-like elastic body is joined to a metal lid member made of metal. Among these, the rubber plug member is press-fitted into the through hole of the battery case from the outside, and the through hole is hermetically sealed (tightly plugged). On the other hand, the metal lid member is bonded to the battery case in a state where the rubber plug member is pressed toward the inside of the battery case while covering the rubber plug member from the outside of the battery case. By doing in this way, the airtight sealing of the through-hole by a rubber plug member can be made more reliable.
In addition, as a battery of the form which sealed the through-hole with the sealing member which has such a rubber plug member and a metal cover member, the battery disclosed by patent document 1 is mentioned, for example.

特開2009−87659号公報JP 2009-87659 A

従来の電池では、前述のように、貫通孔の気密封止はゴム栓部材で行えば足りると考えられていたため、金属蓋部材と電池ケースとの間の気密性まで厳密に要求されることはなかった。しかしながら、ゴム状弾性体からなるゴム栓部材は、経時的に劣化するため、ゴム栓部材と貫通孔との間の気密性も経時的に低下する。特に、ハイブリッド自動車や電気自動車などの車載用の電池は、例えば10年以上の長期間にわたり使用されるため、この経時劣化による気密性の低下が懸念される。   In the conventional battery, as described above, it was considered that the hermetic sealing of the through hole should be performed by the rubber plug member. Therefore, strictly speaking, the airtightness between the metal lid member and the battery case is strictly required. There wasn't. However, since the rubber plug member made of a rubber-like elastic material deteriorates with time, the airtightness between the rubber plug member and the through hole also decreases with time. In particular, in-vehicle batteries such as hybrid vehicles and electric vehicles are used for a long period of time, for example, 10 years or more, and there is a concern that the airtightness may decrease due to the deterioration with time.

ゴム栓部材が劣化してゴム栓部材と貫通孔との間の気密性が低下すると、電池ケース内に収容されていた電解液が、ゴム栓部材と貫通孔との間に入り込み、更に、金属蓋部材と電池ケースとの間の気密性も低い場合には、その電解液が金属蓋部材と電池ケースとの間を通じて電池外部まで漏れ出てしまうことがある。すると、電池ケース内の電解液が不足して、電池特性が低下するおそれがある。また逆に、金属蓋部材と電池ケースとの間、及び、ゴム栓部材と貫通孔との間を通じて、大気中の水分が電池ケース内に入り込み、電池特性が低下するおそれもある。   When the rubber plug member deteriorates and the airtightness between the rubber plug member and the through hole is reduced, the electrolyte contained in the battery case enters between the rubber plug member and the through hole, and further, the metal When the airtightness between the lid member and the battery case is low, the electrolyte may leak to the outside of the battery through between the metal lid member and the battery case. As a result, the electrolyte in the battery case is insufficient, and the battery characteristics may deteriorate. Conversely, moisture in the atmosphere may enter the battery case between the metal lid member and the battery case, and between the rubber plug member and the through hole, and the battery characteristics may deteriorate.

この問題を解決するため、ゴム栓部材が劣化してゴム栓部材と貫通孔との間の気密性が低下しても、電池ケースの内部と外部が連通しないように、金属蓋部材と電池ケースとの間を確実に気密かつ環状に接合しておくことが考えられる。
しかしながら、このようにした電池は、製造直後にはゴム栓部材がまだ劣化しておらず、ゴム栓部材と貫通孔との間が気密に封止されている。つまり、この電池は、ゴム栓部材と貫通孔との密着、及び、金属蓋部材と電池ケースとの接合により、二重に封止されている。このため、金属蓋部材と電池ケースとの接合の不具合で封止不良が生じていたとしても、この封止不良が生じた電池を検査により判別するのが困難であった。
In order to solve this problem, even if the rubber plug member deteriorates and the airtightness between the rubber plug member and the through hole is reduced, the metal lid member and the battery case are prevented from communicating with each other. It is conceivable to ensure airtight and annular bonding between the two.
However, in such a battery, the rubber plug member has not yet deteriorated immediately after manufacture, and the gap between the rubber plug member and the through hole is hermetically sealed. That is, this battery is double-sealed by the close contact between the rubber plug member and the through hole and the joining of the metal lid member and the battery case. For this reason, even if a sealing failure occurs due to a failure in joining the metal lid member and the battery case, it is difficult to determine the battery in which the sealing failure has occurred by inspection.

本発明は、かかる現状に鑑みてなされたものであって、電池ケースの貫通孔を気密に封止した内側封止部材と、この内側封止部材を外部から覆いつつ、電池ケースに気密かつ環状に固着した外側封止部材とを備える電池において、外側封止部材と電池ケースとの間の気密性を容易かつ確実に検査できる電池及び電池の製造方法を提供することを目的とする。   The present invention has been made in view of such a situation, and is provided with an inner sealing member that hermetically seals a through hole of a battery case, and an airtight and annular shape around the battery case while covering the inner sealing member from the outside. An object of the present invention is to provide a battery and a battery manufacturing method that can easily and reliably inspect the airtightness between the outer sealing member and the battery case.

上記課題を解決するための本発明の一態様は、自身の内外を連通する貫通孔を有する電池ケースと、前記電池ケース内に収容された電極体と、ゴム状弾性体からなり、前記貫通孔を前記電池ケースの外部から気密に封止してなるゴム栓部を有する内側封止部材と、前記内側封止部材を前記外部から覆いつつ、前記電池ケースのうち前記貫通孔を囲む環状の孔周囲部に気密かつ環状に固着してなる外側封止部材と、を備え、前記電池ケースと前記内側封止部材と前記外側封止部材との間に形成された気密に封止された空間を、封止空間としたとき、前記封止空間内に存在する気体である空間内気体は、前記封止空間から電池外部に漏出したときに、大気中の気体成分と区別して検知可能な検知可能気体を含む電池である。   One aspect of the present invention for solving the above-described problem is a battery case having a through-hole communicating with the inside and outside of the battery case, an electrode body accommodated in the battery case, and a rubber-like elastic body. An inner sealing member having a rubber plug portion hermetically sealed from the outside of the battery case, and an annular hole surrounding the through hole in the battery case while covering the inner sealing member from the outside An outer sealing member that is hermetically and annularly fixed to the surrounding portion, and an airtightly sealed space formed between the battery case, the inner sealing member, and the outer sealing member. When the sealed space is used, the gas in the space, which is the gas present in the sealed space, can be detected separately from the gas components in the atmosphere when leaked from the sealed space to the outside of the battery. It is a battery containing gas.

この電池では、内側封止部材が電池ケースの貫通孔を気密に封止すると共に、外側封止部材がこの内側封止部材を外部から覆って電池ケースの孔周囲部に気密かつ環状に固着している。従って、貫通孔は、これら内側封止部材及び外側封止部材により二重にシールされている。しかし、この電池では、電池ケースと内側封止部材と外側封止部材との間に形成された封止空間内の空間内気体が、封止空間から電池外部に漏出したときに、大気中の気体成分と区別して検知可能な検知可能気体を含む。
このため、内側封止部材で貫通孔が気密に封止されているにも拘わらず、外側封止部材と電池ケース(その孔周囲部)との間の気密性を容易かつ確実に検査できる。即ち、検知可能気体が封止空間から電池外部に漏れ出るか否かを検査することにより、外側封止部材と電池ケース(その孔周囲部)との間の気密性を容易かつ確実に検査できる。
In this battery, the inner sealing member hermetically seals the through hole of the battery case, and the outer sealing member covers the inner sealing member from the outside and is fixed in an airtight and annular manner around the hole of the battery case. ing. Therefore, the through hole is double-sealed by the inner sealing member and the outer sealing member. However, in this battery, when the gas in the sealed space formed between the battery case, the inner sealing member, and the outer sealing member leaks out of the battery from the sealed space, Detectable gas that can be detected separately from gas components.
For this reason, although the through hole is hermetically sealed by the inner sealing member, the airtightness between the outer sealing member and the battery case (periphery portion of the hole) can be easily and reliably inspected. That is, by inspecting whether or not detectable gas leaks from the sealed space to the outside of the battery, the airtightness between the outer sealing member and the battery case (periphery of the hole) can be easily and reliably inspected. .

なお、「検知可能気体」としては、例えば、メタノール、エタノール、トルエン、キシレン、ベンゼン、アセトン、6−エトキシ−2,2,4−トリメチル−1,2−ジヒドロキノリン、ナフタレン、パラジクロロベンゼン、ステアリン酸、N−イソプロピル−N’−フェニル−p−フェニレンジアミン、N−1,3−ジメチルブチル−N’−フェニル−p−フェニレンジアミンなどの有機化合物のガス、或いは、ヘリウムガス、アルゴンガス、水素ガス、炭酸ガス、臭素ガスなど、無機物のガスが挙げられる。
また、「空間内気体」は、その全てが検知可能気体のみからなるものとしても、或いは、その一部にのみ検知可能気体を含むものとしてもよい。空間内気体の一部にのみ検知可能気体を含む場合、検知可能気体以外の気体成分としては、例えば、大気や窒素ガスなどを用いることができる。
Examples of the “detectable gas” include methanol, ethanol, toluene, xylene, benzene, acetone, 6-ethoxy-2,2,4-trimethyl-1,2-dihydroquinoline, naphthalene, paradichlorobenzene, and stearic acid. N-isopropyl-N′-phenyl-p-phenylenediamine, N-1,3-dimethylbutyl-N′-phenyl-p-phenylenediamine, or other organic compound gas, or helium gas, argon gas, hydrogen gas Inorganic gas such as carbon dioxide gas and bromine gas.
The “space gas” may be composed entirely of detectable gas or may include detectable gas only in a part thereof. When a detectable gas is included in only a part of the gas in the space, for example, air or nitrogen gas can be used as a gas component other than the detectable gas.

更に、上記の電池であって、前記検知可能気体は、ヘリウムガス及びアルゴンガスの少なくともいずれかである電池とすると良い。   Furthermore, in the above battery, the detectable gas may be a battery that is at least one of helium gas and argon gas.

この電池では、検知可能気体がヘリウムガス及びアルゴンガスの少なくともいずれかである。このため、ヘリウムガス検知器やアルゴンガス検知器を用いることで、封止空間から電池外部に漏れ出る検知可能気体(ヘリウムガスまたはアルゴンガス)を容易かつ確実に検知できる。しかも、ヘリウムガス及びアルゴンガスは、不活性ガスであるので、電池の製造時及び使用時の安全性を特に高くできる。
なお、検知可能気体にアルゴンガスを用いる場合には、空間内気体をアルゴンガスとする他、空間内気体に含まれるアルゴンガスの濃度を、大気中に存在するアルゴンガスの濃度(0.9%)と区別可能な高い濃度(例えば5%以上)としたアルゴン含有気体としてもよい。
In this battery, the detectable gas is at least one of helium gas and argon gas. For this reason, by using a helium gas detector or an argon gas detector, a detectable gas (helium gas or argon gas) leaking out of the battery from the sealed space can be detected easily and reliably. Moreover, since helium gas and argon gas are inert gases, the safety at the time of manufacturing and using the battery can be particularly enhanced.
When argon gas is used as the detectable gas, the gas in the space is argon gas, and the concentration of argon gas contained in the gas in space is the concentration of argon gas present in the atmosphere (0.9%). And an argon-containing gas having a high concentration (for example, 5% or more) that can be distinguished from the above.

或いは、前記の電池であって、前記検知可能気体は、水素ガスである電池とすると良い。   Alternatively, in the battery described above, the detectable gas may be a battery that is hydrogen gas.

この電池では、検知可能気体が水素ガスである。このため、水素ガス検知器を用いることで、封止空間から電池外部に漏れ出る検知可能気体(水素ガス)を容易かつ確実に検知できる。しかも、水素ガスは、例えばヘリウムガスやアルゴンガスなどに比して安価であるので、電池を安価にすることができる。
なお、検知可能気体に水素ガスを用いるにあたり、より安全性を高めるため、空間内気体として、水素ガス(例えば5%)と窒素ガス(例えば95%)とからなる水素−窒素混合気体や、水素ガス(例えば5%)と炭酸ガス(例えば95%)とからなる水素−炭酸ガス混合気体など、水素ガスを含みながらも防爆性を有するトレーサガスを用いるとよい。
In this battery, the detectable gas is hydrogen gas. For this reason, by using a hydrogen gas detector, detectable gas (hydrogen gas) leaking out of the battery from the sealed space can be detected easily and reliably. Moreover, since hydrogen gas is less expensive than, for example, helium gas or argon gas, the battery can be made inexpensive.
In addition, in using hydrogen gas for detectable gas, in order to improve safety | security, hydrogen-nitrogen mixed gas which consists of hydrogen gas (for example, 5%) and nitrogen gas (for example, 95%), hydrogen as gas in space, A tracer gas having an explosion-proof property while containing hydrogen gas, such as a hydrogen-carbon dioxide mixed gas composed of gas (for example, 5%) and carbon dioxide gas (for example, 95%) may be used.

更に、上記の電池であって、前記電池ケース内にも、水素ガスが存在する電池とすると良い。   Furthermore, it is preferable that the battery is a battery in which hydrogen gas is also present in the battery case.

この電池では、電池ケース内にも水素ガスが存在する。このため、封止空間から電池外部に漏れ出る検知可能気体(水素ガス)を検知する際に、電池ケース内から電池外部に漏れ出る水素ガスをも検知できる。従って、外側封止部材と電池ケースとの間の気密性を検査すると共に、ケース本体部材とケース蓋部材との接合部分など電池ケースの接合部分や、電池ケースと正極端子または負極端子との固設部分などの気密性をも同時に検査できる。   In this battery, hydrogen gas is also present in the battery case. For this reason, when detecting detectable gas (hydrogen gas) leaking from the sealed space to the outside of the battery, hydrogen gas leaking from the inside of the battery case to the outside of the battery can also be detected. Accordingly, the airtightness between the outer sealing member and the battery case is inspected, and the battery case joint portion such as the joint portion between the case body member and the case lid member, or the battery case and the positive electrode terminal or the negative electrode terminal is fixed. The airtightness of the installed part etc. can be inspected at the same time.

或いは、前記の電池であって、前記検知可能気体は、有機化合物ガスである電池とすると良い。   Alternatively, in the battery, the detectable gas may be a battery that is an organic compound gas.

この電池では、検知可能気体が有機化合物ガスである。このため、この有機化合物ガスを大気中の気体成分と区別して検知できるガス検知器を用いることで、封止空間から電池外部に漏れ出る検知可能気体(有機化合物ガス)を容易かつ確実に検知できる。   In this battery, the detectable gas is an organic compound gas. For this reason, it is possible to easily and reliably detect detectable gas (organic compound gas) that leaks from the sealed space to the outside of the battery by using a gas detector that can detect the organic compound gas separately from gas components in the atmosphere. .

或いは、前記の電池であって、前記検知可能気体は、炭酸ガスである電池とすると良い。   Alternatively, the battery may be a battery in which the detectable gas is carbon dioxide gas.

この電池では、検知可能気体が炭酸ガスである。このため、この炭酸ガスを大気中の気体成分と区別して検知できるガス検知器を用いることで、封止空間から電池外部に漏れ出る検知可能気体(炭酸ガス)を容易かつ確実に検知できる。
なお、検知可能気体に炭酸ガスを用いる場合には、空間内気体を炭酸ガスとする他、空間内気体に含まれる炭酸ガスの濃度を、大気中に存在する炭酸ガスの濃度(0.04%)と区別可能な高い濃度(例えば5%以上)とした炭酸ガス含有気体としてもよい。
In this battery, the detectable gas is carbon dioxide. For this reason, by using a gas detector that can detect the carbon dioxide gas separately from the gaseous components in the atmosphere, the detectable gas (carbon dioxide gas) leaking out of the battery from the sealed space can be detected easily and reliably.
When carbon dioxide is used as the detectable gas, the carbon dioxide gas is used as the gas in the space, and the concentration of carbon dioxide contained in the gas in the space is the concentration of carbon dioxide (0.04%) present in the atmosphere. ) And a carbon dioxide-containing gas having a high concentration (for example, 5% or more) that can be distinguished.

また、他の解決手段は、自身の内外を連通する貫通孔を有する電池ケースと、前記電池ケース内に収容された電極体と、ゴム状弾性体からなり、前記貫通孔を前記電池ケースの外部から気密に封止してなるゴム栓部を有する内側封止部材と、前記内側封止部材を前記外部から覆いつつ、前記電池ケースのうち前記貫通孔を囲む環状の孔周囲部に気密かつ環状に固着してなる外側封止部材と、を備え、前記電池ケースと前記内側封止部材と前記外側封止部材との間に形成された気密に封止された空間を、封止空間としたとき、前記封止空間内に存在する気体である空間内気体は、前記封止空間から電池外部に漏出したときに、大気中の気体成分と区別して検知可能な検知可能気体を含む電池の製造方法であって、前記電池ケースの前記貫通孔を、前記外部から前記内側封止部材の前記ゴム栓部で塞いで、前記貫通孔を気密に封止する第1封止工程と、前記第1封止工程の後、前記内側封止部材を前記外部から覆いつつ、前記外側封止部材を前記電池ケースの前記孔周囲部に気密かつ環状に固着し、前記封止空間を形成すると共に、前記封止空間内に前記空間内気体を封入する第2封止工程と、を備え、前記第2封止工程は、前記検知可能気体を含む前記空間内気体の雰囲気下で行うことにより、前記封止空間内に前記空間内気体を封入する電池の製造方法である。 Another solution is a battery case having a through-hole communicating with the inside and the outside of the battery case, an electrode body accommodated in the battery case, and a rubber-like elastic body, and the through-hole is formed outside the battery case. An inner sealing member having a rubber plug portion hermetically sealed from the outside, and an airtight and annular shape around the annular hole surrounding the through hole in the battery case while covering the inner sealing member from the outside An outer sealing member fixed to the battery case, and a hermetically sealed space formed between the battery case, the inner sealing member, and the outer sealing member is defined as a sealing space. When the gas in the space, which is a gas existing in the sealed space, leaks out of the battery from the sealed space, the battery includes a detectable gas that can be detected separately from the gas components in the atmosphere. A method for providing a through hole in the battery case. A first sealing step of sealing the through-hole airtightly by sealing with the rubber plug portion of the inner sealing member from the outside; and after the first sealing step, the inner sealing member is connected to the outer portion The outer sealing member is hermetically and annularly fixed to the hole periphery of the battery case to form the sealed space and the gas in the space is sealed in the sealed space. e Bei and sealing step, wherein the second sealing step, by carrying out in an atmosphere of the space in the gas containing the detectable gas, the battery sealing the space gas into the sealing space It is a manufacturing method.

この電池の製造方法では、第1封止工程において、内側封止部材で貫通孔を気密に封止する。このため、その後、第2封止工程までの間に、電池ケース内に収容された電解液が貫通孔を通じて電池ケースの外部(孔周囲部等)に漏れ出るのを防止できる。従って、第2封止工程の際に、貫通孔から漏れ出た電解液が外側封止部材と電池ケースの孔周囲部との間に入り込んで、封止不良が生じるのを防止でき、外側封止部材と孔周囲部とを確実に固着できる。   In this battery manufacturing method, the through hole is hermetically sealed with the inner sealing member in the first sealing step. For this reason, it can prevent that the electrolyte solution accommodated in the battery case leaks to the exterior (hole periphery part etc.) of a battery case through a through-hole after that until a 2nd sealing process. Therefore, during the second sealing step, it is possible to prevent the electrolyte leaking from the through-hole from entering between the outer sealing member and the hole peripheral portion of the battery case, resulting in a sealing failure. The stop member and the hole periphery can be securely fixed.

更に、この電池の製造方法では、第2封止工程において、外側封止部材を電池ケースに固着して封止空間を形成すると共に、この封止空間内に、大気中の気体成分と区別して検知可能な検知可能気体を含む空間内気体を封入する。このため、この第2封止工程後の電池では、内側封止部材で貫通孔が気密に封止されているにも拘わらず、外側封止部材と電池ケース(その孔周囲部)との間の気密性を容易かつ確実に検査できる。即ち、検知可能気体が封止空間から電池外部に漏れ出るか否かを検査することにより、外側封止部材と電池ケース(その孔周囲部)との間の気密性を容易かつ確実に検査できる。   Further, in this battery manufacturing method, in the second sealing step, the outer sealing member is fixed to the battery case to form a sealed space, and the sealed space is distinguished from gas components in the atmosphere. A space gas containing a detectable gas is enclosed. For this reason, in the battery after the second sealing step, although the through hole is hermetically sealed with the inner sealing member, the gap between the outer sealing member and the battery case (the peripheral portion of the hole) is The airtightness of the can be inspected easily and reliably. That is, by inspecting whether or not detectable gas leaks from the sealed space to the outside of the battery, the airtightness between the outer sealing member and the battery case (periphery of the hole) can be easily and reliably inspected. .

更に、この電池の製造方法では、検知可能気体を含む空間内気体の雰囲気下で第2封止工程を行うので、封止空間への空間内気体の封入を容易かつ確実に行うことができる。 Further, in this battery manufacturing method, since the second sealing step is performed in an atmosphere of a gas in the space containing a detectable gas, the gas in the space can be easily and reliably sealed in the sealed space.

更に、上記のいずれかに記載の電池の製造方法であって、前記検知可能気体は、ヘリウムガス及びアルゴンガスの少なくともいずれかである電池の製造方法とすると良い。   Furthermore, in the battery manufacturing method according to any one of the above, the detectable gas may be at least one of helium gas and argon gas.

この電池の製造方法では、検知可能気体がヘリウムガス及びアルゴンガスの少なくともいずれかである。このため、ヘリウムガス検知器やアルゴンガス検知器を用いることで、封止空間から電池外部に漏れ出る検知可能気体(ヘリウムガスまたはアルゴンガス)を容易かつ確実に検知できる。しかも、ヘリウムガス及びアルゴンガスは、不活性ガスであるので、製造時及び使用時の安全性の特に高い電池を製造できる。   In this battery manufacturing method, the detectable gas is at least one of helium gas and argon gas. For this reason, by using a helium gas detector or an argon gas detector, a detectable gas (helium gas or argon gas) leaking out of the battery from the sealed space can be detected easily and reliably. Moreover, since helium gas and argon gas are inert gases, it is possible to manufacture a battery with particularly high safety during manufacture and use.

或いは、上記のいずれかに記載の電池の製造方法であって、前記検知可能気体は、水素ガスである電池の製造方法とすると良い。   Alternatively, the battery manufacturing method according to any one of the above, wherein the detectable gas is hydrogen gas.

この電池の製造方法では、検知可能気体が水素ガスである。このため、水素ガス検知器を用いることで、封止空間から電池外部に漏れ出る検知可能気体(水素ガス)を容易かつ確実に検知できる。しかも、水素ガスは、例えばヘリウムガスやアルゴンガスなどに比して安価であるので、安価な電池を製造できる。   In this battery manufacturing method, the detectable gas is hydrogen gas. For this reason, by using a hydrogen gas detector, detectable gas (hydrogen gas) leaking out of the battery from the sealed space can be detected easily and reliably. Moreover, since hydrogen gas is less expensive than, for example, helium gas or argon gas, an inexpensive battery can be manufactured.

更に、上記の電池の製造方法であって、前記電池は、前記電池ケース内にも水素ガスが存在する電池の製造方法とすると良い。   Furthermore, in the battery manufacturing method described above, the battery may be a battery manufacturing method in which hydrogen gas is also present in the battery case.

この電池の製造方法では、封止空間から電池外部に漏れ出る検知可能気体(水素ガス)を検知する際に、電池ケース内から電池外部に漏れ出る水素ガスをも検知できる。従って、外側封止部材と電池ケースとの間の気密性を検査すると共に、ケース本体部材とケース蓋部材との接合部分など電池ケースの接合部分や、電池ケースと正極端子または負極端子との固設部分などの気密性をも同時に検査できる。   In this battery manufacturing method, when detecting detectable gas (hydrogen gas) leaking from the sealed space to the outside of the battery, hydrogen gas leaking from the inside of the battery case to the outside of the battery can also be detected. Accordingly, the airtightness between the outer sealing member and the battery case is inspected, and the battery case joint portion such as the joint portion between the case body member and the case lid member, or the battery case and the positive electrode terminal or the negative electrode terminal is fixed. The airtightness of the installed part etc. can be inspected simultaneously.

また、他の解決手段は、自身の内外を連通する貫通孔を有する電池ケースと、前記電池ケース内に収容された電極体と、ゴム状弾性体からなり、前記貫通孔を前記電池ケースの外部から気密に封止してなるゴム栓部を有する内側封止部材と、前記内側封止部材を前記外部から覆いつつ、前記電池ケースのうち前記貫通孔を囲む環状の孔周囲部に気密かつ環状に固着してなる外側封止部材と、を備え、前記電池ケースと前記内側封止部材と前記外側封止部材との間に形成された気密に封止された空間を、封止空間としたとき、前記封止空間内に存在する気体である空間内気体は、前記封止空間から電池外部に漏出したときに、大気中の気体成分と区別して検知可能な検知可能気体を含む電池の製造方法であって、前記電池ケースの前記貫通孔を、前記外部から前記内側封止部材の前記ゴム栓部で塞いで、前記貫通孔を気密に封止する第1封止工程と、前記第1封止工程の後、前記内側封止部材を前記外部から覆いつつ、前記外側封止部材を前記電池ケースの前記孔周囲部に気密かつ環状に固着し、前記封止空間を形成すると共に、前記封止空間内に前記空間内気体を封入する第2封止工程と、を備え、前記電池ケースのうち、前記封止空間を臨む部位を、第1臨空間部とし、前記内側封止部材のうち、前記封止空間を臨む部位を、第2臨空間部とし、前記外側封止部材のうち、前記封止空間を臨む部位を、第3臨空間部としたとき、少なくとも前記第2封止工程よりも前に、前記第1臨空間部、前記第2臨空間部及び前記第3臨空間部の少なくともいずれかの上に、ガス化により前記検知可能気体となる物質を配置する物質配置工程を備える電池の製造方法である。Another solution is a battery case having a through-hole communicating with the inside and the outside of the battery case, an electrode body accommodated in the battery case, and a rubber-like elastic body, and the through-hole is formed outside the battery case. An inner sealing member having a rubber plug portion hermetically sealed from the outside, and an airtight and annular shape around the annular hole surrounding the through hole in the battery case while covering the inner sealing member from the outside An outer sealing member fixed to the battery case, and a hermetically sealed space formed between the battery case, the inner sealing member, and the outer sealing member is defined as a sealing space. When the gas in the space, which is a gas existing in the sealed space, leaks out of the battery from the sealed space, the battery includes a detectable gas that can be detected separately from the gas components in the atmosphere. A method for providing a through hole in the battery case. A first sealing step of sealing the through-hole airtightly by sealing with the rubber plug portion of the inner sealing member from the outside; and after the first sealing step, the inner sealing member is connected to the outer portion The outer sealing member is hermetically and annularly fixed to the hole periphery of the battery case to form the sealed space and the gas in the space is sealed in the sealed space. A portion of the battery case that faces the sealing space is defined as a first space portion, and a portion of the inner sealing member that faces the sealing space is a second surface. When the portion that faces the sealing space of the outer sealing member is the third space portion, the first space portion, at least before the second sealing step, On at least one of the second living space portion and the third living space portion, the gasification causes the A method for producing a battery including a material disposing step of disposing a substance to be a knowledge possible gas.

この電池の製造方法では、第1封止工程において、内側封止部材で貫通孔を気密に封止する。このため、その後、第2封止工程までの間に、電池ケース内に収容された電解液が貫通孔を通じて電池ケースの外部(孔周囲部等)に漏れ出るのを防止できる。従って、第2封止工程の際に、貫通孔から漏れ出た電解液が外側封止部材と電池ケースの孔周囲部との間に入り込んで、封止不良が生じるのを防止でき、外側封止部材と孔周囲部とを確実に固着できる。
更に、この電池の製造方法では、第2封止工程において、外側封止部材を電池ケースに固着して封止空間を形成すると共に、この封止空間内に、大気中の気体成分と区別して検知可能な検知可能気体を含む空間内気体を封入する。このため、この第2封止工程後の電池では、内側封止部材で貫通孔が気密に封止されているにも拘わらず、外側封止部材と電池ケース(その孔周囲部)との間の気密性を容易かつ確実に検査できる。即ち、検知可能気体が封止空間から電池外部に漏れ出るか否かを検査することにより、外側封止部材と電池ケース(その孔周囲部)との間の気密性を容易かつ確実に検査できる。
更に、この電池の製造方法は、少なくとも第2封止工程よりも前に行う物質配置工程において、封止空間を臨む部位である第1臨空間部、第2臨空間部及び第3臨空間部の少なくともいずれかの上に、ガス化により検知可能気体となる物質を配置する。このようにすることで、ガス化により検知可能気体となる物質を封止空間内に配置できるので、これがガス化して検知可能気体となると、空間内気体に検知可能気体が含まれる。従って、この電池の製造方法では、検知可能気体を含む空間内気体を、封止空間に容易かつ確実に封入できる。
In this battery manufacturing method, the through hole is hermetically sealed with the inner sealing member in the first sealing step. For this reason, it can prevent that the electrolyte solution accommodated in the battery case leaks to the exterior (hole periphery part etc.) of a battery case through a through-hole after that until a 2nd sealing process. Therefore, during the second sealing step, it is possible to prevent the electrolyte leaking from the through-hole from entering between the outer sealing member and the hole peripheral portion of the battery case, resulting in a sealing failure. The stop member and the hole periphery can be securely fixed.
Further, in this battery manufacturing method, in the second sealing step, the outer sealing member is fixed to the battery case to form a sealed space, and the sealed space is distinguished from gas components in the atmosphere. A space gas containing a detectable gas is enclosed. For this reason, in the battery after the second sealing step, although the through hole is hermetically sealed with the inner sealing member, the gap between the outer sealing member and the battery case (the peripheral portion of the hole) is The airtightness of the can be inspected easily and reliably. That is, by inspecting whether or not detectable gas leaks from the sealed space to the outside of the battery, the airtightness between the outer sealing member and the battery case (periphery of the hole) can be easily and reliably inspected. .
Further, the battery manufacturing method includes a first living space portion, a second living space portion, and a third living space portion that are portions facing the sealing space in at least a substance arranging step performed before the second sealing step. A substance that becomes a detectable gas by gasification is disposed on at least one of the above. By doing in this way, since the substance which becomes detectable gas by gasification can be arrange | positioned in sealing space, if this gasifies and becomes detectable gas, detectable gas will be contained in gas in space. Therefore, in this battery manufacturing method, the gas in the space containing the detectable gas can be easily and reliably sealed in the sealed space.

なお、「ガス化により検知可能気体となる物質」としては、例えば、メタノール、エタノール、トルエン、キシレン、ベンゼン、アセトン、6−エトキシ−2,2,4−トリメチル−1,2−ジヒドロキノリンなどの常温下で蒸発する液体の有機化合物や、ナフタレン、パラジクロロベンゼン、ステアリン酸、N−イソプロピル−N’−フェニル−p−フェニレンジアミン、N−1,3−ジメチルブチル−N’−フェニル−p−フェニレンジアミンなどの常温下で昇華する固体の有機化合物、或いは、ドライアイスなどの常温下で蒸発する液体または常温下で昇華する固体の無機物が挙げられる。   The “substance that becomes a detectable gas by gasification” includes, for example, methanol, ethanol, toluene, xylene, benzene, acetone, 6-ethoxy-2,2,4-trimethyl-1,2-dihydroquinoline, and the like. Liquid organic compounds that evaporate at room temperature, naphthalene, paradichlorobenzene, stearic acid, N-isopropyl-N′-phenyl-p-phenylenediamine, N-1,3-dimethylbutyl-N′-phenyl-p-phenylene Examples thereof include solid organic compounds that sublimate at room temperature such as diamine, liquids that evaporate at room temperature such as dry ice, and solid inorganic substances that sublime at room temperature.

更に、上記のいずれかに記載の電池の製造方法であって、前記第2封止工程の後、前記検知可能気体が前記封止空間から電池外部に漏れ出るか否かを検査することにより、前記外側封止部材と前記電池ケースの前記孔周囲部との間の気密性を検査する気密検査工程を更に備える電池の製造方法とすると良い。   Furthermore, in the battery manufacturing method according to any one of the above, after the second sealing step, by inspecting whether the detectable gas leaks out of the sealing space to the outside of the battery, A battery manufacturing method may further include an airtight inspection step of inspecting airtightness between the outer sealing member and the hole peripheral portion of the battery case.

この電池の製造方法では、気密検査工程において、外側封止部材と電池ケースの孔周囲部との間の気密性を検査する。そして、これらの間に封止不良が生じている電池を確実に排除できる。よって、外側封止部材と電池ケースとの間の気密性を容易かつ確実に検査した電池を製造できる。   In this battery manufacturing method, the airtightness between the outer sealing member and the hole peripheral part of the battery case is inspected in the airtightness inspection step. And the battery in which the sealing defect has arisen among these can be excluded reliably. Therefore, a battery in which the airtightness between the outer sealing member and the battery case is easily and reliably inspected can be manufactured.

更に、上記のいずれかに記載の電池の製造方法であって、前記第1封止工程は、減圧下で行い、前記第2封止工程は、大気圧下で行う電池の製造方法とすると良い。   Furthermore, in any one of the battery manufacturing methods described above, the first sealing step may be performed under reduced pressure, and the second sealing step may be a battery manufacturing method performed under atmospheric pressure. .

第1封止工程を減圧下で行うことで、この第1封止後の電池ケース内を減圧状態(負圧)にすることができる。このため、第2封止工程後に行うコンディショニング工程(初期充電)の際やその後の使用において、電池ケース内に気体が発生しても、電池ケースの内圧が早期に高くなるのを防止できる。一方、溶接等を行う第2封止工程は、大気圧下で行うので、減圧下で行う場合に比して、第2封止工程を容易に行うことができる。   By performing the first sealing step under reduced pressure, the inside of the battery case after the first sealing can be brought into a reduced pressure state (negative pressure). For this reason, it is possible to prevent the internal pressure of the battery case from increasing rapidly even if gas is generated in the battery case during the conditioning process (initial charge) performed after the second sealing process or during subsequent use. On the other hand, since the 2nd sealing process which performs welding etc. is performed under atmospheric pressure, compared with the case where it carries out under reduced pressure, the 2nd sealing process can be performed easily.

実施形態1に係るリチウムイオン二次電池を示す縦断面図である。1 is a longitudinal sectional view showing a lithium ion secondary battery according to Embodiment 1. FIG. 実施形態1に係り、電極体を示す斜視図である。1 is a perspective view showing an electrode body according to Embodiment 1. FIG. 実施形態1に係り、正極板及び負極板をセパレータを介して互いに重ねた状態を示す部分平面図である。FIG. 3 is a partial plan view illustrating a state in which the positive electrode plate and the negative electrode plate are overlapped with each other via a separator according to the first embodiment. 実施形態1に係り、ケース蓋部材、正極端子及び負極端子等を示す分解斜視図である。FIG. 3 is an exploded perspective view illustrating a case lid member, a positive electrode terminal, a negative electrode terminal, and the like according to the first embodiment. 実施形態1に係り、注液孔及び封止部材の近傍を示す部分拡大縦断面図である。FIG. 4 is a partially enlarged longitudinal sectional view showing the vicinity of a liquid injection hole and a sealing member according to the first embodiment. 実施形態1に係り、図5の上方から見た、封止部材の近傍を示す部分拡大平面図である。FIG. 6 is a partially enlarged plan view showing the vicinity of the sealing member according to the first embodiment when viewed from above in FIG. 5. 実施形態1に係り、封止部材を示す縦断面図である。It is a longitudinal cross-sectional view which concerns on Embodiment 1 and shows a sealing member. 実施形態1に係るリチウムイオン二次電池の製造方法に関し、第1封止工程において、封止部材のうち内側封止部材の挿入部を注液孔に圧入して、内側封止部材で注液孔を気密に封止する様子を示す説明図である。Regarding the method for manufacturing a lithium ion secondary battery according to Embodiment 1, in the first sealing step, the insertion portion of the inner sealing member of the sealing member is press-fitted into the liquid injection hole, and the liquid is injected by the inner sealing member. It is explanatory drawing which shows a mode that a hole is sealed airtightly. 実施形態4に係るハイブリッド自動車を示す説明図である。FIG. 10 is an explanatory diagram showing a hybrid vehicle according to a fourth embodiment. 実施形態5に係るハンマードリルを示す説明図である。It is explanatory drawing which shows the hammer drill which concerns on Embodiment 5. FIG.

(実施形態1)
以下、本発明の実施の形態を、図面を参照しつつ説明する。図1に、本実施形態1に係るリチウムイオン二次電池(電池)100(以下、単に電池100とも言う)を示す。また、図2及び図3に、この電池100を構成する捲回型の電極体120及びこれを展開した状態を示す。また、図4に、ケース蓋部材113、正極端子150及び負極端子160等の詳細を示す。また、図5及び図6に、注液孔(貫通孔)170及び封止部材180の近傍の形態を示す。なお、図1,図4及び図5における上方を電池100の上側、下方を電池100の下側として説明する。
(Embodiment 1)
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows a lithium ion secondary battery (battery) 100 (hereinafter also simply referred to as battery 100) according to the first embodiment. 2 and 3 show a wound electrode body 120 constituting the battery 100 and a state in which the electrode body 120 is developed. FIG. 4 shows details of the case lid member 113, the positive terminal 150, the negative terminal 160, and the like. 5 and FIG. 6 show forms near the liquid injection hole (through hole) 170 and the sealing member 180. FIG. 1, 4, and 5, the upper side is the upper side of battery 100, and the lower side is the lower side of battery 100.

この電池100は、ハイブリッド自動車や電気自動車等の車両や、ハンマードリル等の電池使用機器に搭載される角型電池である。この電池100は、直方体形状の電池ケース110、この電池ケース110内に収容された捲回型の電極体120、電池ケース110に支持された正極端子150及び負極端子160等から構成されている(図1参照)。また、電池ケース110内には、非水系の電解液117が保持されている。   The battery 100 is a square battery that is mounted on a vehicle such as a hybrid vehicle or an electric vehicle, or a battery-powered device such as a hammer drill. The battery 100 includes a rectangular parallelepiped battery case 110, a wound electrode body 120 accommodated in the battery case 110, a positive electrode terminal 150 and a negative electrode terminal 160 supported by the battery case 110 ( (See FIG. 1). In addition, a non-aqueous electrolyte solution 117 is held in the battery case 110.

このうち電池ケース110は、金属(本実施形態1ではアルミニウム)により形成されている。この電池ケース110は、上側のみが開口した箱状のケース本体部材111と、このケース本体部材111の開口111hを閉塞する形態で溶接されたケース蓋部材113とから構成されている(図1及び図4参照)。ケース蓋部材113は、電池ケース110の内部を向く内表面113cと、電池ケース110の外部を向く外表面113dとを有する矩形板状をなす。   Of these, the battery case 110 is made of metal (aluminum in the first embodiment). The battery case 110 includes a box-shaped case main body member 111 that is open only on the upper side, and a case lid member 113 that is welded so as to close the opening 111h of the case main body member 111 (see FIG. 1 and FIG. 1). (See FIG. 4). The case lid member 113 has a rectangular plate shape having an inner surface 113 c facing the inside of the battery case 110 and an outer surface 113 d facing the outside of the battery case 110.

ケース蓋部材113には、その長手方向の中央付近に、電池ケース110の内圧が所定圧力に達した際に破断する非復帰型の安全弁115が設けられている。また、この安全弁115の近傍には、ケース蓋部材113を貫通し、電池ケース110の内外を連通する後述する注液孔(貫通孔)170が設けられている。この注液孔170は、電池ケース110内が大気圧よりも減圧された状態(負圧状態)で、後述する封止部材180で気密に封止されている。また、ケース蓋部材113には、それぞれ電池ケース110の内部から外部に延出する形態の通電端子部材151からなる正極端子150及び負極端子160と、ボルト153,153とが、樹脂からなる絶縁部材155,155を介して固設されている(図1及び図4参照)。   The case lid member 113 is provided with a non-returnable safety valve 115 that breaks when the internal pressure of the battery case 110 reaches a predetermined pressure near the center in the longitudinal direction. Further, near the safety valve 115, a liquid injection hole (through hole) 170, which will be described later, is provided through the case lid member 113 and communicating between the inside and outside of the battery case 110. The liquid injection hole 170 is hermetically sealed with a sealing member 180 described later in a state where the inside of the battery case 110 is depressurized from the atmospheric pressure (negative pressure state). Further, the case lid member 113 includes a positive electrode terminal 150 and a negative electrode terminal 160 that are each configured to extend from the inside of the battery case 110 to the outside, and bolts 153 and 153 that are insulating members made of resin. 155 and 155 (see FIGS. 1 and 4).

次に、電極体120について説明する。この電極体120は、絶縁フィルムを上側のみが開口した袋状に形成した絶縁フィルム包囲体119内に収容され、横倒しにした状態で電池ケース110内に収容されている(図1参照)。この電極体120は、帯状の正極板121と帯状の負極板131とを、帯状のセパレータ141を介して互いに重ねて(図3参照)、軸線AX周りに捲回し、扁平状に圧縮したものである(図2参照)。   Next, the electrode body 120 will be described. The electrode body 120 is housed in an insulating film enclosure 119 formed in a bag shape having an insulating film opened only on the upper side, and is housed in the battery case 110 in a laid state (see FIG. 1). This electrode body 120 is obtained by rolling a belt-like positive electrode plate 121 and a belt-like negative electrode plate 131 to each other via a belt-like separator 141 (see FIG. 3), winding around an axis line AX, and compressing to a flat shape. Yes (see FIG. 2).

正極板121は、芯材として、帯状のアルミニウム箔からなる正極集電箔122を有する。この正極集電箔122の両主面のうち、幅方向の一部でかつ長手方向に延びる領域上には、それぞれ正極活物質層123,123が長手方向(図3中、左右方向)に帯状に設けられている。これらの正極活物質層123,123は、正極活物質、導電剤及び結着剤から形成されている。   The positive electrode plate 121 has a positive electrode current collector foil 122 made of a strip-shaped aluminum foil as a core material. On both main surfaces of the positive electrode current collector foil 122, the positive electrode active material layers 123 and 123 are strip-shaped in the longitudinal direction (left and right direction in FIG. 3) on a part extending in the longitudinal direction and extending in the longitudinal direction. Is provided. These positive electrode active material layers 123 and 123 are formed of a positive electrode active material, a conductive agent, and a binder.

正極板121のうち、自身の厚み方向に正極集電箔122及び正極活物質層123,123が存在する帯状の部位が、正極部121wである。この正極部121wは、電極体120を構成した状態において、その全域がセパレータ141を介して負極板131の後述する負極部131wと対向している(図3参照)。また、正極板121に正極部121wを設けたことに伴い、正極集電箔122のうち、幅方向の片方の端部(図3中、上方)は、長手方向に帯状に延び、自身の厚み方向に正極活物質層123が存在しない正極集電部121mとなっている。この正極集電部121mの幅方向の一部は、セパレータ141から軸線AX方向の一方側SAに渦巻き状をなして突出しており(図2参照)、前述の正極端子150と接続している(図1参照)。   In the positive electrode plate 121, a belt-like portion where the positive electrode current collector foil 122 and the positive electrode active material layers 123 and 123 exist in the thickness direction of the positive electrode plate 121 is the positive electrode portion 121 w. In the state where the electrode body 120 is configured, the entire area of the positive electrode portion 121w is opposed to a later-described negative electrode portion 131w of the negative electrode plate 131 via the separator 141 (see FIG. 3). In addition, with the provision of the positive electrode part 121w on the positive electrode plate 121, one end part in the width direction (upward in FIG. 3) of the positive electrode current collector foil 122 extends in a band shape in the longitudinal direction, and has its own thickness. The positive electrode current collector portion 121m has no positive electrode active material layer 123 in the direction. A part of the positive electrode current collector 121m in the width direction protrudes from the separator 141 in a spiral shape to one side SA in the axis AX direction (see FIG. 2), and is connected to the positive electrode terminal 150 described above ( (See FIG. 1).

また、負極板131は、芯材として、帯状の銅箔からなる負極集電箔132を有する。この負極集電箔132の両主面のうち、幅方向の一部でかつ長手方向に延びる領域上には、それぞれ負極活物質層133,133が長手方向(図3中、左右方向)に帯状に設けられている。これらの負極活物質層133,133は、負極活物質、結着剤及び増粘剤から形成されている。   Moreover, the negative electrode plate 131 has the negative electrode current collection foil 132 which consists of strip | belt-shaped copper foil as a core material. On both main surfaces of the negative electrode current collector foil 132, negative electrode active material layers 133 and 133 are band-like in the longitudinal direction (left and right direction in FIG. 3) on a portion extending in the longitudinal direction and extending in the longitudinal direction. Is provided. These negative electrode active material layers 133 and 133 are formed of a negative electrode active material, a binder, and a thickener.

負極板131のうち、自身の厚み方向に負極集電箔132及び負極活物質層133,133が存在する帯状の部位が、負極部131wである。この負極部131wは、電極体120を構成した状態において、その全域がセパレータ141と対向している。また、負極板131に負極部131wを設けたことに伴い、負極集電箔132のうち、幅方向の片方の端部(図3中、下方)は、長手方向に帯状に延び、自身の厚み方向に負極活物質層133が存在しない負極集電部131mとなっている。この負極集電部131mの幅方向の一部は、セパレータ141から軸線AX方向の他方側SBに渦巻き状をなして突出しており(図2参照)、前述の負極端子160と接続している(図1参照)。
また、セパレータ141は、樹脂からなる多孔質膜であり、帯状をなす。
In the negative electrode plate 131, a strip-shaped portion where the negative electrode current collector foil 132 and the negative electrode active material layers 133 and 133 are present in the thickness direction of the negative electrode plate 131 is the negative electrode portion 131w. The entire area of the negative electrode portion 131 w faces the separator 141 in a state where the electrode body 120 is configured. In addition, as a result of providing the negative electrode portion 131w on the negative electrode plate 131, one end portion (downward in FIG. 3) in the width direction of the negative electrode current collector foil 132 extends in a band shape in the longitudinal direction and has its own thickness. The negative electrode current collector portion 131m has no negative electrode active material layer 133 in the direction. A part of the negative electrode current collector 131m in the width direction protrudes from the separator 141 to the other side SB in the axis AX direction in a spiral shape (see FIG. 2), and is connected to the negative electrode terminal 160 described above ( (See FIG. 1).
The separator 141 is a porous film made of resin and has a strip shape.

次に、注液孔170、凹部175及び封止部材180について説明する(図5〜図7参照)。
凹部175は、ケース蓋部材113の内表面113c側(図5、下方)に凹む平面視円形状の凹部である。この凹部175は、円筒状をなす凹部側面175f1と、内表面113cに平行に延びる平面をなす凹部底面175f2とにより構成されている。
Next, the liquid injection hole 170, the recessed part 175, and the sealing member 180 are demonstrated (refer FIGS. 5-7).
The concave portion 175 is a concave portion having a circular shape in plan view that is recessed toward the inner surface 113c of the case lid member 113 (downward in FIG. 5). The recess 175 includes a cylindrical recess side surface 175f1 and a recess bottom surface 175f2 forming a plane extending in parallel with the inner surface 113c.

注液孔170は、電解液117を電池ケース110内に注入するために形成され、ケース蓋部材113の内表面113cと外表面113d(その凹部底面175f2)との間を貫通する形態で、凹部底面175f2の中央に設けられた孔である。この注液孔170は、軸線BX方向に延びる円孔であり、円筒状をなす孔側面170fで構成されており、電池ケース110の内外を連通している。   The liquid injection hole 170 is formed to inject the electrolytic solution 117 into the battery case 110, and penetrates between the inner surface 113c and the outer surface 113d (its concave bottom surface 175f2) of the case lid member 113. This is a hole provided in the center of the bottom surface 175f2. The liquid injection hole 170 is a circular hole extending in the direction of the axis BX, and is configured by a cylindrical hole side surface 170 f that communicates the inside and outside of the battery case 110.

一方、封止部材180は、外側封止部材181と、これに接合された内側封止部材183とから構成されている。
このうち外側封止部材181は、電池ケース110の材質と同じ材質、具体的には、アルミニウムからなる。この外側封止部材181は、封止部材180の軸線CX方向の内側CC(ケース蓋部材113側、図5及び図7中、下方)に位置する主面である内表面181cと、これに平行で軸線CX方向の外側CD(ケース蓋部材113とは反対側、図5及び図7中、上方)に位置する主面である外表面181dとを有し、凹部175の内径と同じ外径を有する円板状をなす。
On the other hand, the sealing member 180 includes an outer sealing member 181 and an inner sealing member 183 joined thereto.
Of these, the outer sealing member 181 is made of the same material as the battery case 110, specifically, aluminum. The outer sealing member 181 is parallel to the inner surface 181c which is a main surface located on the inner side CC (on the case lid member 113 side, the lower side in FIGS. 5 and 7) of the sealing member 180 in the axis CX direction. And an outer surface 181d which is a main surface located on the outer side CD in the direction of the axis CX (on the opposite side to the case lid member 113, upper in FIGS. 5 and 7), and has the same outer diameter as the inner diameter of the recess 175. It has a disk shape.

この外側封止部材181は、内側封止部材183を電池ケース110の外部から覆いつつ、注液孔170と同軸になる形態で、凹部175内に嵌合して、電池ケース110(そのケース蓋部材113)に固着されている。具体的には、外側封止部材181の外周縁に沿う円環状の周縁部181mが、ケース蓋部材113のうち注液孔170を囲む円環状の孔周囲部113mに、全周にわたり溶接されて、平面視円環状の溶接部181yを形成している。これにより、外側封止部材181の周縁部181mと電池ケース110の孔周囲部113mとが気密に接合されている。   This outer sealing member 181 covers the inner sealing member 183 from the outside of the battery case 110 and fits into the recess 175 in a form that is coaxial with the liquid injection hole 170, so that the battery case 110 (its case lid) is fitted. It is fixed to the member 113). Specifically, an annular peripheral portion 181m along the outer peripheral edge of the outer sealing member 181 is welded over the entire periphery to an annular hole peripheral portion 113m surrounding the liquid injection hole 170 in the case lid member 113. An annular welded portion 181y is formed in plan view. Thereby, the peripheral edge part 181m of the outer side sealing member 181 and the hole surrounding part 113m of the battery case 110 are airtightly joined.

また、内側封止部材183は、その全体がゴム状弾性体、本実施形態1では エチレンプロピレンジエンゴム(EPDM)からなり、内側封止部材183の全体が前述のゴム栓部に相当する。この内側封止部材183は、挿入部184と環状圧接部185とから構成され、これらが一体に繋がった形態を有する。
このうち挿入部184は、径小な頂面184cと径大な底面184dとこれらの間を結ぶ側面184fとを有する円錐台状をなす。このうち頂面184cは、注液孔170の内径よりも径小となっている。一方、底面184dは、頂面184cよりも径大で、かつ、注液孔170の内径よりも径大となっている。
The entire inner sealing member 183 is made of a rubber-like elastic body, which is ethylene propylene diene rubber (EPDM) in the first embodiment, and the entire inner sealing member 183 corresponds to the aforementioned rubber plug portion. The inner sealing member 183 includes an insertion portion 184 and an annular pressure contact portion 185, and has a form in which these are integrally connected.
Of these, the insertion portion 184 has a truncated cone shape having a small-diameter top surface 184c, a large-diameter bottom surface 184d, and a side surface 184f connecting them. Among these, the top surface 184 c is smaller in diameter than the inner diameter of the liquid injection hole 170. On the other hand, the bottom surface 184 d is larger in diameter than the top surface 184 c and larger in diameter than the inner diameter of the liquid injection hole 170.

この挿入部184は、その底面184dが外側封止部材181の内表面181cの中央に接合されて、環状圧接部185と共に外側封止部材181と一体化されている。この挿入部184は、外側封止部材181の内表面181cから軸線BX,CX方向の内側BC,CC(図5及び図7中、下方)に延びて、注液孔170内に挿入されている。具体的には、挿入部184は、注液孔170に圧入されており、自身の弾性によって、その側面184fが、注液孔170の孔側面170fと凹部175の凹部底面175f2とのなす角部170faに気密に圧接して、注液孔170を気密に封止(密栓)している。   The insertion portion 184 has a bottom surface 184 d joined to the center of the inner surface 181 c of the outer sealing member 181, and is integrated with the outer sealing member 181 together with the annular pressure contact portion 185. The insertion portion 184 extends from the inner surface 181c of the outer sealing member 181 to the inner sides BC and CC (downward in FIGS. 5 and 7) in the directions of the axes BX and CX, and is inserted into the liquid injection hole 170. . Specifically, the insertion portion 184 is press-fitted into the liquid injection hole 170, and due to its own elasticity, the side surface 184f is a corner portion formed by the hole side surface 170f of the liquid injection hole 170 and the concave bottom surface 175f2 of the concave portion 175. The liquid injection hole 170 is hermetically sealed (tightly plugged) in pressure contact with 170fa.

また、環状圧接部185は、その断面が概略矩形状で、外径が凹部175の内径(凹部底面175f2の外径)よりも小さくされた平面視円環状をなす。この環状圧接部185は、挿入部184の周囲を囲む形態で挿入部184に繋がって挿入部184と一体化されている。この環状圧接部185は、頂面185cと底面185dと外側面185fとを有する。このうち頂面185cは、軸線BX,CX方向の内側BC,CC(図5及び図7中、下方)を向く面である。また、底面185dは、軸線BX,CX方向の外側BD,CD(図5及び図7中、上方)を向く面である。また、外側面185fは、軸線BX,CXの径方向外側を向く面である。   Further, the annular pressure contact portion 185 has a substantially rectangular shape in cross section, and has an annular shape in plan view in which the outer diameter is smaller than the inner diameter of the recess 175 (the outer diameter of the recess bottom surface 175f2). The annular pressure contact portion 185 is connected to the insertion portion 184 and integrated with the insertion portion 184 so as to surround the insertion portion 184. The annular pressure contact portion 185 has a top surface 185c, a bottom surface 185d, and an outer surface 185f. Of these, the top surface 185c is a surface facing the inner side BC, CC (downward in FIGS. 5 and 7) in the directions of the axes BX, CX. The bottom surface 185d is a surface facing the outside BD, CD (upward in FIGS. 5 and 7) in the directions of the axes BX and CX. Further, the outer surface 185f is a surface facing the radially outer side of the axes BX and CX.

この環状圧接部185は、その底面185dが外側封止部材181の内表面181cに接合されて、挿入部184と共に外側封止部材181と一体化されている。また、この環状圧接部185は、外側封止部材181からの押圧により、全周にわたり厚み方向(図5中、上下方向)に圧縮されている。これにより、環状圧接部185の頂面185cは、凹部175の凹部底面175f2に密着して、環状圧接部185よりも径方向内側に位置する注液孔170を気密に封止している。前述のように、注液孔170は、挿入部184によっても気密に封止されているので、挿入部184と環状圧接部185とでそれぞれシールされている。   The bottom surface 185 d of the annular pressure contact portion 185 is joined to the inner surface 181 c of the outer sealing member 181, and is integrated with the outer sealing member 181 together with the insertion portion 184. Further, the annular pressure contact portion 185 is compressed in the thickness direction (vertical direction in FIG. 5) over the entire circumference by pressing from the outer sealing member 181. As a result, the top surface 185c of the annular pressure contact portion 185 is in close contact with the recess bottom surface 175f2 of the recess 175, and the liquid injection hole 170 positioned radially inward of the annular pressure contact portion 185 is hermetically sealed. As described above, since the liquid injection hole 170 is hermetically sealed also by the insertion portion 184, the insertion portion 184 and the annular pressure contact portion 185 are respectively sealed.

また、環状圧接部185の径方向外側、かつ、電池ケース110の外部には、気密に封止された封止空間KCが形成されている。この封止空間KCは、電池ケース110(具体的にはそのケース蓋部材113の一部である凹部側面175f1及び凹部底面175f2)と、外側封止部材181の内表面181cと、内側封止部材183(その環状圧接部185)の外側面185fとの間に形成された円環状の空間である。   Further, a hermetically sealed space KC is formed outside the annular pressure contact portion 185 in the radial direction and outside the battery case 110. The sealing space KC includes a battery case 110 (specifically, a concave side surface 175f1 and a concave bottom surface 175f2 that are part of the case lid member 113), an inner surface 181c of the outer sealing member 181 and an inner sealing member. It is an annular space formed between the outer surface 185f of 183 (the annular pressure contact portion 185).

なお、凹部側面175f1及び凹部底面175f2のうち、封止空間KCを臨む部位が、前述の第1臨空間部175jに相当する。また、環状圧接部185の外側面185f全体が、封止空間KCを臨む部位であり、前述の第2臨空間部185jに相当する。また、外側封止部材181の内表面181cのうち、封止空間KCを臨む部位が、前述の第3臨空間部181jに相当する。   Of the concave side surface 175f1 and the concave bottom surface 175f2, a portion facing the sealing space KC corresponds to the first preliminary space portion 175j. Further, the entire outer surface 185f of the annular pressure contact portion 185 is a portion facing the sealing space KC, and corresponds to the above-described second near space portion 185j. Moreover, the site | part which faces the sealing space KC among the inner surfaces 181c of the outer side sealing member 181 is equivalent to the above-mentioned 3rd near space part 181j.

この封止空間KC内に存在する(封止空間KC内に封入された)気体である空間内気体GS1は、この空間内気体GS1が封止空間KCから電池外部に漏出したときに、大気中の気体成分と区別して検知可能な検知可能気体を含んでいる。本実施形態1では、検知可能気体としてヘリウムガスを含み、空間内気体GS1が100%ヘリウムガスからなる。なお、このヘリウムガスの濃度は適宜変更でき、例えば、空間内気体GS1を、ヘリウムガスと大気とからなるヘリウム−大気混合気体や、ヘリウムガスと窒素とからなるヘリウム−窒素混合気体としてもよい。   The space gas GS1, which is a gas existing in the sealed space KC (enclosed in the sealed space KC), is in the atmosphere when the space gas GS1 leaks out of the battery from the sealed space KC. It contains a detectable gas that can be detected separately from the gas component. In the first embodiment, helium gas is included as the detectable gas, and the in-space gas GS1 is made of 100% helium gas. The concentration of the helium gas can be changed as appropriate. For example, the in-space gas GS1 may be a helium-atmosphere mixed gas composed of helium gas and the atmosphere, or a helium-nitrogen mixed gas composed of helium gas and nitrogen.

また、空間内気体GS1に含める検知可能気体として、ヘリウムガスに代えて、或いはヘリウムガスと共に、アルゴンガスを用いてもよい。検知可能気体にアルゴンガスを用いる場合には、大気中に存在するアルゴンガス(0.9%)と区別可能な高い濃度(例えば、空間内気体GS1中に5%以上含める)としたアルゴン−大気混合気体やアルゴン窒素混合気体を用いてもよい。   Further, argon gas may be used as the detectable gas included in the space gas GS1 instead of helium gas or together with helium gas. When argon gas is used as the detectable gas, argon-atmosphere having a high concentration (for example, 5% or more is included in the gas GS1 in the space) that can be distinguished from argon gas (0.9%) present in the atmosphere You may use mixed gas and argon nitrogen mixed gas.

以上で説明したように、本実施形態1に係る電池100は、自身の内外を連通する注液孔(貫通孔)170を有する電池ケース110と、これに収容された電極体120とを備える。また、この電池100は、ゴム状弾性体からなり、注液孔170を電池ケース110の外部から気密に封止してなるゴム栓部を有する内側封止部材183と、これを外部から覆いつつ、電池ケース110のうち注液孔170を囲む環状の孔周囲部113mに気密かつ環状に固着してなる外側封止部材181とを備える。そして、この電池100は、電池ケース110(そのケース蓋部材113)と内側封止部材183と外側封止部材181との間に形成された気密に封止された空間を、封止空間KCとしたとき、この封止空間KC内に存在する気体である空間内気体GS1は、封止空間KCから電池外部に漏出したときに、大気中の気体成分と区別して検知可能な検知可能気体を含む。   As described above, the battery 100 according to the first embodiment includes the battery case 110 having the liquid injection hole (through hole) 170 that communicates the inside and the outside of the battery 100 and the electrode body 120 accommodated therein. The battery 100 is made of a rubber-like elastic body, and has an inner sealing member 183 having a rubber plug portion formed by sealing the liquid injection hole 170 from the outside of the battery case 110, while covering the outer sealing member 183 from the outside. The battery case 110 includes an outer sealing member 181 that is airtightly and annularly fixed to an annular hole peripheral portion 113m surrounding the liquid injection hole 170. In the battery 100, an airtightly sealed space formed between the battery case 110 (its case lid member 113), the inner sealing member 183, and the outer sealing member 181 is defined as a sealing space KC. When this occurs, the in-space gas GS1, which is a gas existing in the sealed space KC, includes a detectable gas that can be detected separately from the gas components in the atmosphere when leaked from the sealed space KC to the outside of the battery. .

この電池100では、内側封止部材183が注液孔170を気密に封止すると共に、外側封止部材181がこの内側封止部材183を外部から覆って電池ケース110の孔周囲部113mに気密かつ環状に固着している。従って、注液孔170は、前述のように、内側封止部材183及び外側封止部材181により二重にシールされている。しかし、この電池100では、電池ケース110(そのケース蓋部材113)と内側封止部材183と外側封止部材181との間に形成された封止空間KC内の空間内気体GS1が、封止空間KCから電池外部に漏出したときに、大気中の気体成分と区別して検知可能な検知可能気体を含む。このため、内側封止部材183で注液孔170が気密に封止されているにも拘わらず、外側封止部材181と電池ケース110(その孔周囲部113m)との間の気密性を容易かつ確実に検査できる。即ち、検知可能気体が封止空間KCから電池外部に漏れ出るか否かを検査することにより、外側封止部材181と電池ケース110(その孔周囲部113m)との間の気密性を容易かつ確実に検査できる。   In the battery 100, the inner sealing member 183 hermetically seals the liquid injection hole 170, and the outer sealing member 181 covers the inner sealing member 183 from the outside and hermetically seals the hole peripheral portion 113 m of the battery case 110. And it adheres to the ring. Therefore, the liquid injection hole 170 is double-sealed by the inner sealing member 183 and the outer sealing member 181 as described above. However, in this battery 100, the gas GS1 in the space in the sealed space KC formed between the battery case 110 (the case lid member 113), the inner sealing member 183, and the outer sealing member 181 is sealed. Detectable gas that can be detected separately from gas components in the atmosphere when leaked from the space KC to the outside of the battery is included. For this reason, although the liquid injection hole 170 is hermetically sealed by the inner sealing member 183, the airtightness between the outer sealing member 181 and the battery case 110 (the hole peripheral portion 113m) is easily achieved. And can be inspected reliably. That is, by checking whether or not detectable gas leaks from the sealed space KC to the outside of the battery, the airtightness between the outer sealing member 181 and the battery case 110 (its peripheral part 113m) can be easily and Can be inspected reliably.

特に、本実施形態1では、検知可能気体がヘリウムガスである。このため、ヘリウムガス検知器を用いることで、封止空間KCから電池外部に漏れ出る検知可能気体(ヘリウムガス)を容易かつ確実に検知できる。しかも、ヘリウムガスは不活性ガスであるので、電池100の製造時及び使用時の安全性を特に高くできる。   In particular, in the first embodiment, the detectable gas is helium gas. For this reason, by using a helium gas detector, the detectable gas (helium gas) leaking out of the battery from the sealed space KC can be detected easily and reliably. In addition, since helium gas is an inert gas, the safety when the battery 100 is manufactured and used can be particularly increased.

次いで、上記電池100の製造方法について説明する。まず、別途形成した帯状の正極板121及び帯状の負極板131を、帯状のセパレータ141を介して互いに重ね(図3参照)、巻き芯を用いて軸線AX周りに捲回する。その後、これを扁平状に圧縮して電極体120を形成する(図2参照)。
また別途、外側封止部材181と内側封止部材183とからなる封止部材180(図7参照)を形成しておく。具体的には、金属板からなる外側封止部材181を射出成形用の金型にセットし、射出成形により挿入部184及び環状圧接部185からなる内側封止部材183を外側封止部材181と一体に成形する。
Next, a method for manufacturing the battery 100 will be described. First, a separately formed belt-like positive electrode plate 121 and a belt-like negative electrode plate 131 are overlapped with each other via a belt-like separator 141 (see FIG. 3) and wound around an axis AX using a winding core. Thereafter, this is compressed into a flat shape to form the electrode body 120 (see FIG. 2).
Separately, a sealing member 180 (see FIG. 7) composed of an outer sealing member 181 and an inner sealing member 183 is formed. Specifically, the outer sealing member 181 made of a metal plate is set in a mold for injection molding, and the inner sealing member 183 made up of the insertion portion 184 and the annular pressure contact portion 185 is formed with the outer sealing member 181 by injection molding. Molded in one piece.

また、安全弁115及び注液孔170等を形成したケース蓋部材113と、通電端子部材151及びボルト153とを用意し、これらを射出成形用の金型にセットする。そして、射出成形により絶縁部材155を一体的に成形して、ケース蓋部材113に正極端子150及び負極端子160を固設する(図4参照)。   In addition, a case lid member 113 having a safety valve 115, a liquid injection hole 170, etc., an energizing terminal member 151 and a bolt 153 are prepared, and these are set in an injection mold. Then, the insulating member 155 is integrally formed by injection molding, and the positive electrode terminal 150 and the negative electrode terminal 160 are fixed to the case lid member 113 (see FIG. 4).

次に、正極端子150と電極体120の正極集電部121mとを接続(溶接)する。また、負極端子160と電極体120の負極集電部131mとを接続(溶接)する。その後、ケース本体部材111及び絶縁フィルム包囲体119を用意し、ケース本体部材111内に絶縁フィルム包囲体119を介して電極体120を収容すると共に、ケース本体部材111の開口111hをケース蓋部材113で塞ぐ。そして、レーザ溶接によりケース本体部材111とケース蓋部材113とを溶接して、電池ケース110を形成する(図1参照)。   Next, the positive electrode terminal 150 and the positive electrode current collector 121m of the electrode body 120 are connected (welded). Further, the negative electrode terminal 160 and the negative electrode current collector 131m of the electrode body 120 are connected (welded). Thereafter, a case main body member 111 and an insulating film enclosure 119 are prepared, the electrode body 120 is accommodated in the case main body member 111 via the insulating film enclosure 119, and an opening 111 h of the case main body member 111 is formed in the case lid member 113. Close with. Then, the battery case 110 is formed by welding the case body member 111 and the case lid member 113 by laser welding (see FIG. 1).

次に、この電池ケース110等の気密性を検査する(電池ケース等の気密検査工程)。具体的には、この電池100をチャンバ内に入れて、チャンバ内をヘリウムガスで充満させると共に、ケース蓋部材113の注液孔170に吸引用ノズルを気密に装着して、電池ケース110の内部を減圧する。例えば、電池ケース110の接合部分(ケース本体部材111とケース蓋部材113との溶接部分)や、電池ケース110と正極端子150または負極端子160との固設部分(ケース蓋部材113と絶縁部材155との間や絶縁部材155と通電端子部材151との間)に封止不良がある場合には、電池ケース110外のヘリウムガスが電池ケース110内に侵入する。従って、電池ケース110内に侵入したヘリウムガスを検知することで、ケース本体部材111とケース蓋部材113との間の気密性を検査できる。   Next, the airtightness of the battery case 110 or the like is inspected (airtight inspection process for the battery case or the like). Specifically, the battery 100 is placed in a chamber, the chamber is filled with helium gas, and a suction nozzle is attached to the liquid injection hole 170 of the case lid member 113 in an airtight manner. The pressure is reduced. For example, a joined portion of the battery case 110 (welded portion between the case main body member 111 and the case lid member 113) or a fixed portion between the battery case 110 and the positive electrode terminal 150 or the negative electrode terminal 160 (the case lid member 113 and the insulating member 155). When there is a sealing failure between the insulating member 155 and the energizing terminal member 151), helium gas outside the battery case 110 enters the battery case 110. Therefore, by detecting the helium gas that has entered the battery case 110, the airtightness between the case main body member 111 and the case lid member 113 can be inspected.

次に、この電池100を真空チャンバ内に入れて真空チャンバ内を減圧する。そして、注液用ノズルを注液孔170内に挿入して、注液用ノズルから電池ケース110内に電解液117を注液する。その後、不織布により注液孔170の周囲(孔周囲部113mを含む)を清掃する。電解液117の注入の際、電解液117が注液孔170の周囲に付着するおそれがあるが、この清掃により注液孔170の周囲を清浄状態とすることができる。   Next, the battery 100 is placed in a vacuum chamber and the vacuum chamber is depressurized. Then, a liquid injection nozzle is inserted into the liquid injection hole 170, and the electrolytic solution 117 is injected into the battery case 110 from the liquid injection nozzle. Thereafter, the periphery of the liquid injection hole 170 (including the hole peripheral portion 113m) is cleaned with a nonwoven fabric. When the electrolytic solution 117 is injected, the electrolytic solution 117 may adhere to the periphery of the liquid injection hole 170. This cleaning can clean the periphery of the liquid injection hole 170.

次に、この減圧下において第1封止工程を行う。即ち、電池ケース110(そのケース蓋部材113)の注液孔170を、電池ケース110の外部から内側封止部材183で塞いで、注液孔170を気密に封止する。具体的には、封止部材180のうち内側封止部材183の挿入部184を、注液孔170に電池ケース110の外部から(注液孔170の軸線BX方向の外側BDから)圧入する。そして、挿入部184の側面184fを注液孔170の角部170faに圧接させて、挿入部184で注液孔170を気密に封止(密栓)する。その際、挿入部184は位置決めガイドとしての役割も果たすので、注液孔170に対する封止部材180の位置決めを精度良く行うことができる。   Next, the first sealing step is performed under this reduced pressure. That is, the liquid injection hole 170 of the battery case 110 (the case lid member 113) is closed from the outside of the battery case 110 with the inner sealing member 183, and the liquid injection hole 170 is hermetically sealed. Specifically, the insertion portion 184 of the inner sealing member 183 of the sealing member 180 is press-fitted into the liquid injection hole 170 from the outside of the battery case 110 (from the outer side BD of the liquid injection hole 170 in the axis BX direction). Then, the side surface 184f of the insertion portion 184 is brought into pressure contact with the corner portion 170fa of the liquid injection hole 170, and the liquid injection hole 170 is hermetically sealed (sealed) with the insertion portion 184. At that time, since the insertion portion 184 also serves as a positioning guide, the sealing member 180 can be accurately positioned with respect to the liquid injection hole 170.

第1封止後は、真空チャンバ内をヘリウムガスで充満させると共に、真空チャンバ内を大気圧と等しくする。電池ケース110は、第1封止工程で内側封止部材183により気密に封止されているので、電池100を大気圧と等しい圧力下に戻しても、電池ケース110内はその減圧状態を保っている。
ところで、注液孔170が封止されていない場合には、電池ケース110内に収容された電解液117が、電池外部に漏れ出たり、電池ケース110の孔周囲部113mに付着するおそれがある。しかし、本実施形態1では、前述の第1封止工程において内側封止部材183(その挿入部184)で注液孔170を気密に封止している。従って、電解液117が電池外部に漏れ出るのを確実に防止できる。また、次述する第2封止工程も、電池ケース110内を減圧状態に保ったまま、大気圧と等しい圧力下で行うことができる。
After the first sealing, the inside of the vacuum chamber is filled with helium gas and the inside of the vacuum chamber is made equal to the atmospheric pressure. Since the battery case 110 is hermetically sealed by the inner sealing member 183 in the first sealing step, the reduced pressure state is maintained in the battery case 110 even if the battery 100 is returned to a pressure equal to the atmospheric pressure. ing.
By the way, when the liquid injection hole 170 is not sealed, the electrolyte solution 117 accommodated in the battery case 110 may leak out of the battery or adhere to the hole peripheral portion 113m of the battery case 110. . However, in the first embodiment, the liquid injection hole 170 is hermetically sealed by the inner sealing member 183 (its insertion portion 184) in the first sealing step described above. Therefore, it is possible to reliably prevent the electrolyte solution 117 from leaking outside the battery. The second sealing step described below can also be performed under a pressure equal to the atmospheric pressure while keeping the inside of the battery case 110 in a reduced pressure state.

次に、この大気圧と等しいヘリウムガスの雰囲気下において第2封止工程を行う。即ち、内側封止部材183を電池ケース110の外部から覆いつつ、外側封止部材181を電池ケース110(そのケース蓋部材113)の孔周囲部113mに気密かつ環状に固着し、前述の封止空間KCを形成すると共に、封止空間KC内に空間内気体GS1を封入する。
具体的には、封止部材180のうち、内側封止部材183を電池ケース110の外部から覆う外側封止部材181を、軸線BX,CX方向の内側BC,DCに押圧して、内側封止部材183の環状圧接部185を凹部175の凹部底面175f2に圧接させる。これと共に、外側封止部材181を凹部175内に収容して、外側封止部材181の外表面181dを、ケース蓋部材113の外表面113dと面一にする。この状態で、レーザ溶接を行い、外側封止部材181の周縁部181mと電池ケース110の孔周囲部113mとを全周にわたって溶接して平面視円環状の溶接部181yを形成する。
Next, a second sealing step is performed in an atmosphere of helium gas that is equal to the atmospheric pressure. That is, while the inner sealing member 183 is covered from the outside of the battery case 110, the outer sealing member 181 is airtightly and annularly fixed to the hole peripheral portion 113m of the battery case 110 (case cover member 113), and the above-described sealing is performed. The space KC is formed, and the space gas GS1 is sealed in the sealed space KC.
Specifically, of the sealing member 180, the outer sealing member 181 that covers the inner sealing member 183 from the outside of the battery case 110 is pressed against the inner BCs and DCs in the directions of the axes BX and CX, thereby sealing the inner side. The annular pressure contact portion 185 of the member 183 is pressed against the recess bottom surface 175 f 2 of the recess 175. At the same time, the outer sealing member 181 is accommodated in the recess 175 so that the outer surface 181 d of the outer sealing member 181 is flush with the outer surface 113 d of the case lid member 113. In this state, laser welding is performed, and the peripheral portion 181m of the outer sealing member 181 and the hole peripheral portion 113m of the battery case 110 are welded over the entire circumference to form an annular welded portion 181y.

これにより、環状圧接部185(その頂面185c)が凹部底面175f2に密着するので、環状圧接部185よりも径方向内側に位置する注液孔170は気密に封止される。前述のように、注液孔170は、挿入部184によっても気密に封止されているので、挿入部184と環状圧接部185とでそれぞれシールされる。また、溶接により、外側封止部材181の周縁部181mと電池ケース110の孔周囲部113mとの間も、気密に封止され、封止空間KCが形成される。   As a result, the annular pressure contact portion 185 (its top surface 185c) is in close contact with the recess bottom surface 175f2, so that the liquid injection hole 170 positioned radially inward from the annular pressure contact portion 185 is hermetically sealed. As described above, since the liquid injection hole 170 is hermetically sealed also by the insertion portion 184, it is sealed by the insertion portion 184 and the annular pressure contact portion 185, respectively. Further, the space between the peripheral edge portion 181m of the outer sealing member 181 and the hole peripheral portion 113m of the battery case 110 is also hermetically sealed by welding to form a sealed space KC.

また、この第2封止工程は、ヘリウムガスの雰囲気下で行っているので、凹部175内もヘリウムガスで満たされ、封止空間KCにヘリウムガスが封入される。これにより、封止空間KC内の空間内気体GS1は、100%ヘリウムガスとなる。
なお、空間内気体GS1を、例えば、ヘリウムガスと大気とからなるヘリウム−大気混合気体とする場合には、チャンバ内をこのヘリウム−大気混合気体の雰囲気として、第2封止工程を行えばよい。また、空間内気体GS1を、ヘリウムガスと窒素とからなるヘリウム−窒素混合気体とする場合には、チャンバ内をこのヘリウム−窒素混合気体の雰囲気として、第2封止工程を行えばよい。また、空間内気体GS1にアルゴンガスを含める場合には、アルゴンガスを含む気体の雰囲気下で第2封止工程を行えばよい。
In addition, since the second sealing step is performed in an atmosphere of helium gas, the recess 175 is also filled with helium gas, and the helium gas is sealed in the sealing space KC. Thereby, the space gas GS1 in the sealed space KC becomes 100% helium gas.
When the in-space gas GS1 is, for example, a helium-atmosphere mixed gas composed of helium gas and the atmosphere, the second sealing step may be performed with the inside of the chamber as the atmosphere of the helium-atmosphere mixed gas. . Further, when the in-space gas GS1 is a helium-nitrogen mixed gas composed of helium gas and nitrogen, the second sealing step may be performed with the inside of the chamber as an atmosphere of this helium-nitrogen mixed gas. Moreover, when argon gas is included in the gas GS1 in the space, the second sealing step may be performed in an atmosphere of a gas containing argon gas.

次に、コンディショニング工程において、この電池100の初期充電を行う。その際、電池ケース110内には、水素などの気体が発生する。   Next, in the conditioning process, the battery 100 is initially charged. At that time, a gas such as hydrogen is generated in the battery case 110.

次に、この電池100について気密検査工程を行う。即ち、検知可能気体が封止空間KCから電池外部に漏れ出るか否かを検査することにより、封止部材180のうち外側封止部材181の周縁部181mと電池ケース110(そのケース蓋部材113)の孔周囲部113mとの間の気密性を検査する。
この気密検査工程は、電池100を真空チャンバ内に置いて、真空チャンバ内を減圧する。そして、封止部材180の近傍に、ヘリウムガス検知器(キャノンアネルバ製:MD−222LD)を設置して、所定時間、ヘリウムガス(検知可能気体)を検知することにより行う。
Next, an airtight inspection process is performed on the battery 100. That is, by inspecting whether or not detectable gas leaks from the sealing space KC to the outside of the battery, the peripheral portion 181m of the outer sealing member 181 and the battery case 110 (the case lid member 113) of the sealing member 180. ) Is checked for airtightness with the hole surrounding portion 113m.
In this airtightness inspection process, the battery 100 is placed in a vacuum chamber, and the inside of the vacuum chamber is decompressed. Then, a helium gas detector (manufactured by Canon Anelva: MD-222LD) is installed in the vicinity of the sealing member 180, and helium gas (detectable gas) is detected for a predetermined time.

前述のように、封止空間KC内には、ヘリウムガスが封入されている。このため、外側封止部材181の周縁部181mと電池ケース110の孔周囲部113mとの間に封止不良が生じている場合には、このヘリウムガスが、封止不良のある外側封止部材181の周縁部181mと電池ケース110の孔周囲部113mとの間を通じて、電池ケース110の外部に漏れ出る。従って、ヘリウムガス検知器によりヘリウムガスを検知できれば、外側封止部材181の周縁部181mと電池ケース110の孔周囲部113mとの間に封止不良が生じていることが判る。そこで、この封止不良のある電池を排除し、封止不良のない良品の電池100のみを選別する。かくして、電池100が完成する。
なお、検知可能気体がアルゴンガスである場合には、アルゴンガス検知器を用いて、アルゴンガスを検知すればよい。
As described above, helium gas is sealed in the sealed space KC. For this reason, when a sealing failure occurs between the peripheral edge portion 181m of the outer sealing member 181 and the hole peripheral portion 113m of the battery case 110, this helium gas is used as an outer sealing member having a sealing failure. It leaks to the outside of the battery case 110 through between the peripheral portion 181 m of the 181 and the hole peripheral portion 113 m of the battery case 110. Therefore, if helium gas can be detected by the helium gas detector, it can be seen that a sealing failure has occurred between the peripheral edge portion 181m of the outer sealing member 181 and the hole peripheral portion 113m of the battery case 110. Therefore, the batteries with poor sealing are excluded, and only good batteries 100 without defective sealing are selected. Thus, the battery 100 is completed.
In addition, what is necessary is just to detect argon gas using an argon gas detector, when detectable gas is argon gas.

以上で説明したように、本実施形態1に係る電池100の製造方法は、電池ケース110の注液孔170(貫通孔)を、電池ケース110の外部から内側封止部材(ゴム栓部)183で塞いで、注液孔170を気密に封止する第1封止工程を備える。また、この電池100の製造方法は、第1封止工程の後、内側封止部材183を外部から覆いつつ、外側封止部材181を電池ケース110(そのケース蓋部材113)の孔周囲部113mに気密かつ環状に固着し、封止空間KCを形成すると共に、この封止空間KC内に空間内気体GS1を封入する第2封止工程を備える。   As described above, in the method of manufacturing the battery 100 according to the first embodiment, the liquid injection hole 170 (through hole) of the battery case 110 is connected to the inner sealing member (rubber plug portion) 183 from the outside of the battery case 110. And a first sealing step of sealing the liquid injection hole 170 in an airtight manner. Further, in the manufacturing method of the battery 100, after the first sealing step, the outer sealing member 181 is covered from the outside while the outer sealing member 181 is covered with the hole peripheral portion 113m of the battery case 110 (the case lid member 113). And a second sealing step in which the sealed space KC is formed and the in-space gas GS1 is sealed in the sealed space KC.

このように第1封止工程では、内側封止部材183で注液孔170を気密に封止するので、その後、第2封止工程までの間に、電池ケース110内に収容された電解液117が注液孔170を通じて電池ケース110の外部(孔周囲部113m等)に漏れ出るのを防止できる。従って、第2封止工程の際に、注液孔170から漏れ出た電解液117が外側封止部材181と電池ケース110の孔周囲部113mとの間に入り込んで、封止不良が生じるのを防止でき、外側封止部材181と孔周囲部113mとを確実に固着できる。   As described above, in the first sealing step, the liquid injection hole 170 is hermetically sealed by the inner sealing member 183. Therefore, the electrolytic solution accommodated in the battery case 110 after that until the second sealing step. It is possible to prevent the 117 from leaking to the outside of the battery case 110 (such as the hole surrounding portion 113m) through the liquid injection hole 170. Therefore, in the second sealing step, the electrolyte solution 117 leaking from the injection hole 170 enters between the outer sealing member 181 and the hole peripheral portion 113m of the battery case 110, resulting in poor sealing. The outer sealing member 181 and the hole surrounding portion 113m can be securely fixed.

更に、第2封止工程では、外側封止部材181を電池ケース110に固着して封止空間KCを形成すると共に、封止空間KC内に、大気中の気体成分と区別して検知可能な検知可能気体を含む空間内気体GS1を封入する。このため、この第2封止工程後の電池100では、内側封止部材183で注液孔170が気密に封止されているにも拘わらず、外側封止部材181と電池ケース110の孔周囲部113mとの間の気密性を容易かつ確実に検査できる。即ち、検知可能気体が封止空間KCから電池外部に漏れ出るか否かを検査することにより、外側封止部材181と電池ケース110の孔周囲部113mとの間の気密性を容易かつ確実に検査できる。   Further, in the second sealing step, the outer sealing member 181 is fixed to the battery case 110 to form a sealed space KC, and detection that can be detected in the sealed space KC separately from gas components in the atmosphere. A space gas GS1 containing a possible gas is enclosed. For this reason, in the battery 100 after the second sealing step, although the liquid injection hole 170 is hermetically sealed by the inner sealing member 183, the outer periphery of the hole between the outer sealing member 181 and the battery case 110. The airtightness with the portion 113m can be easily and reliably inspected. That is, by checking whether or not detectable gas leaks from the sealed space KC to the outside of the battery, the airtightness between the outer sealing member 181 and the hole peripheral portion 113m of the battery case 110 can be easily and reliably obtained. Can be inspected.

また、本実施形態1では、第2封止工程を、検知可能気体を含む空間内気体GS1の雰囲気下で行うことにより、封止空間KC内に空間内気体GS1を封入する。このようにすることで、封止空間KC内への空間内気体GS1の封入を容易かつ確実に行うことができる。   In Embodiment 1, the second sealing step is performed in the atmosphere of the in-space gas GS1 containing the detectable gas, thereby enclosing the in-space gas GS1 in the sealed space KC. By doing in this way, enclosure of gas GS1 in space in sealed space KC can be performed easily and reliably.

また、本実施形態1では、検知可能気体がヘリウムガスである。このため、ヘリウムガス検知器を用いることで、封止空間KCから電池外部に漏れ出る検知可能気体(ヘリウムガス)を容易かつ確実に検知できる。しかも、ヘリウムガスは不活性ガスであるので、製造時及び使用時の安全性の特に高い電池100を製造できる。   In the first embodiment, the detectable gas is helium gas. For this reason, by using a helium gas detector, the detectable gas (helium gas) leaking out of the battery from the sealed space KC can be detected easily and reliably. In addition, since the helium gas is an inert gas, the battery 100 with particularly high safety during manufacture and use can be manufactured.

また、本実施形態1では、第2封止工程の後、検知可能気体が封止空間KCから電池外部に漏れ出るか否かを検査することにより、外側封止部材181と電池ケース110の孔周囲部113mとの間の気密性を検査する気密検査工程を更に備える。このため、外側封止部材181と電池ケース110の孔周囲部113mとの間に封止不良が生じている電池を確実に排除できる。従って、外側封止部材181と電池ケース110との間の気密性を容易かつ確実に検査した電池100を製造できる。   Further, in the first embodiment, after the second sealing step, it is inspected whether detectable gas leaks from the sealing space KC to the outside of the battery, whereby the holes of the outer sealing member 181 and the battery case 110 are detected. An airtight inspection process for inspecting airtightness with the surrounding portion 113m is further provided. For this reason, the battery in which the sealing defect has arisen between the outer side sealing member 181 and the hole surrounding part 113m of the battery case 110 can be excluded reliably. Therefore, the battery 100 in which the airtightness between the outer sealing member 181 and the battery case 110 is easily and reliably inspected can be manufactured.

また、本実施形態1では、第1封止工程は、減圧下で行い、第2封止工程は、大気圧下(大気圧に等しい圧力下)で行う。第1封止工程を減圧下で行うことで、この第1封止後の電池ケース110内を減圧状態(負圧)にすることができる。このため、第2封止工程後に行うコンディショニング工程(初期充電工程)の際やその後の使用において、電池ケース110内に気体が発生しても、電池ケース110の内圧が早期に高くなるのを防止できる。一方、溶接等を行う第2封止工程は、大気圧下で行うので、減圧下で行う場合に比して、第2封止工程を容易に行うことができる。   In the first embodiment, the first sealing step is performed under reduced pressure, and the second sealing step is performed under atmospheric pressure (a pressure equal to atmospheric pressure). By performing the first sealing step under reduced pressure, the inside of the battery case 110 after the first sealing can be in a reduced pressure state (negative pressure). For this reason, the internal pressure of the battery case 110 is prevented from becoming high at an early stage even if gas is generated in the battery case 110 during the conditioning process (initial charging process) performed after the second sealing process or in subsequent use. it can. On the other hand, since the 2nd sealing process which performs welding etc. is performed under atmospheric pressure, compared with the case where it carries out under reduced pressure, the 2nd sealing process can be performed easily.

(実施形態2)
次いで、第2の実施の形態について説明する。本実施形態2に係るリチウムイオン二次電池(電池)200では、封止空間KC内の空間内気体GS2(図5参照)が、実施形態1に係る電池100の空間内気体GS1と異なる。また、これに伴って、電池200の製造方法も、実施形態1に係る電池100の製造方法と異なる。それ以外は、実施形態1と同様であるので、実施形態1と同様な部分の説明は、省略または簡略化する。
(Embodiment 2)
Next, a second embodiment will be described. In the lithium ion secondary battery (battery) 200 according to the second embodiment, the space gas GS2 (see FIG. 5) in the sealed space KC is different from the space gas GS1 of the battery 100 according to the first embodiment. Accordingly, the manufacturing method of the battery 200 is also different from the manufacturing method of the battery 100 according to the first embodiment. Other than that, the second embodiment is the same as the first embodiment, and the description of the same parts as the first embodiment is omitted or simplified.

本実施形態2に係る空間内気体GS2は、大気中の気体成分と区別して検知可能な検知可能気体として5%の水素ガスを含み、残りの95%は、窒素ガスからなる。
なお、この空間内気体GS2の封止空間KCへの封入は、例えば次のようにして行う。実施形態1では、電池100を入れた真空チャンバ内をヘリウムガスで満たして、この雰囲気下で第2封止工程行ったのに対し、本実施形態2では、電池200を入れた真空チャンバ内を、5%水素ガスと95%の窒素ガスとからなる水素−窒素混合気体で満たして、この雰囲気下で第2封止工程を行う。これにより、封止空間KC内の空間内気体GS2は、5%水素ガスと95%の窒素ガスとからなる水素−窒素混合気体となる。
The in-space gas GS2 according to the second embodiment includes 5% hydrogen gas as a detectable gas that can be detected separately from gas components in the atmosphere, and the remaining 95% is made of nitrogen gas.
The sealing of the in-space gas GS2 into the sealing space KC is performed as follows, for example. In the first embodiment, the inside of the vacuum chamber containing the battery 100 is filled with helium gas and the second sealing process is performed in this atmosphere. In the second embodiment, the inside of the vacuum chamber containing the battery 200 is filled. It is filled with a hydrogen-nitrogen mixed gas composed of 5% hydrogen gas and 95% nitrogen gas, and the second sealing step is performed in this atmosphere. Thereby, the space gas GS2 in the sealed space KC is a hydrogen-nitrogen mixed gas composed of 5% hydrogen gas and 95% nitrogen gas.

また、気密検査工程では、ヘリウムガス検知器を用いる代わりに、水素ガス検知器(キャノンアネルバ製:H2000)を用いて、水素ガスのリークを検知する。電池200は、コンディショニング工程で初期充電を行った際に、実施形態1に係る電池100と同様に、電池ケース110内で水素などの気体が発生するので、電池ケース110にも、水素ガスが存在している。このため、本実施形態2の気密検査工程では、封止空間KCから電池外部に漏れ出る水素ガスを検知する際に、電池ケース110内から電池外部に漏れ出る水素ガスをも検知できる。即ち、電池ケース110の接合部分(ケース本体部材111とケース蓋部材113との溶接部分)や、電池ケース110と正極端子150または負極端子160との固設部分(ケース蓋部材113と絶縁部材155との間や絶縁部材155と通電端子部材151との間)から漏れ出る水素ガスをも検知できる。そこで、実施形態1において電解液117の注液前に行った電池ケース等の気密検査工程を省略してもよい。なお、その他の工程は、実施形態1と同様にして電池200を製造すればよい。   In the airtight inspection process, hydrogen gas leak is detected using a hydrogen gas detector (Canon Anelva: H2000) instead of using a helium gas detector. When the battery 200 is initially charged in the conditioning process, a gas such as hydrogen is generated in the battery case 110 in the same manner as the battery 100 according to the first embodiment. doing. For this reason, in the airtightness inspection process of the second embodiment, when detecting hydrogen gas leaking from the sealed space KC to the outside of the battery, it is also possible to detect hydrogen gas leaking from the inside of the battery case 110 to the outside of the battery. That is, the joint portion of the battery case 110 (the welded portion between the case main body member 111 and the case lid member 113) or the fixed portion between the battery case 110 and the positive electrode terminal 150 or the negative electrode terminal 160 (the case lid member 113 and the insulating member 155). And hydrogen gas leaking out from between the insulating member 155 and the energizing terminal member 151 can also be detected. Therefore, the airtight inspection process for the battery case or the like performed before the injection of the electrolytic solution 117 in the first embodiment may be omitted. In addition, what is necessary is just to manufacture the battery 200 like other Embodiments like Embodiment 1. FIG.

本実施形態2に係る電池200も、内側封止部材183で注液孔170が気密に封止されているにも拘わらず、外側封止部材181と電池ケース110の孔周囲部113mとの間の気密性を容易かつ確実に検査できる。即ち、検知可能気体が封止空間KCから電池外部に漏れ出るか否かを検査することにより、外側封止部材181と電池ケース110の孔周囲部113mとの間の気密性を容易かつ確実に検査できる。特に、本実施形態2では、検知可能気体が水素ガスであるので、水素ガス検知器を用いることで、封止空間KCから電池外部に漏れ出る検知可能気体(水素ガス)を容易かつ確実に検知できる。しかも、水素ガスは、例えばヘリウムガスやアルゴンガスなどに比して安価であるので、電池200を安価にすることができる。   Even in the battery 200 according to the second embodiment, the liquid injection hole 170 is hermetically sealed by the inner sealing member 183, but between the outer sealing member 181 and the hole peripheral portion 113 m of the battery case 110. The airtightness of the can be inspected easily and reliably. That is, by checking whether or not detectable gas leaks from the sealed space KC to the outside of the battery, the airtightness between the outer sealing member 181 and the hole peripheral portion 113m of the battery case 110 can be easily and reliably obtained. Can be inspected. In particular, in the second embodiment, since the detectable gas is hydrogen gas, the detectable gas (hydrogen gas) leaking from the sealed space KC to the outside of the battery can be detected easily and reliably by using a hydrogen gas detector. it can. Moreover, since hydrogen gas is less expensive than, for example, helium gas or argon gas, the battery 200 can be made inexpensive.

また、この電池200は、電池ケース110にも、水素ガスが存在している。このため、封止空間KCから電池外部に漏れ出る検知可能気体(本実施形態2では水素ガス)を検知する際に、電池ケース110内から電池外部に漏れ出る水素ガスをも検知できる。従って、外側封止部材181と電池ケース110の孔周囲部113mとの間の気密性を検査すると共に、電池ケース110の接合部分や電池ケース110と正極端子150または負極端子160との固設部分の気密性も同時に検査できる。その他、実施形態1の電池100及びその製造方法と同様な部分は、実施形態1と同様な作用効果を奏する。   In the battery 200, hydrogen gas is also present in the battery case 110. For this reason, when detecting detectable gas (hydrogen gas in the second embodiment) leaking out of the battery from the sealed space KC, hydrogen gas leaking out of the battery case 110 to the outside of the battery can also be detected. Accordingly, the airtightness between the outer sealing member 181 and the hole peripheral portion 113m of the battery case 110 is inspected, and the joint portion of the battery case 110 and the fixed portion of the battery case 110 and the positive electrode terminal 150 or the negative electrode terminal 160 are fixed. The airtightness can be checked at the same time. In addition, the same parts as those of the battery 100 and the manufacturing method thereof according to the first embodiment have the same functions and effects as those of the first embodiment.

(実施形態3)
次いで、第3の実施の形態について説明する。本実施形態3に係るリチウムイオン二次電池(電池)300では、封止空間KC内の空間内気体GS3が、実施形態1,2に係る電池100,200の空間内気体GS1,GS2と異なる。また、これに伴って、電池300の製造方法も、実施形態1,2に係る電池100,200の製造方法と異なる。それ以外は、実施形態1または2と同様であるので、実施形態1または2と同様な部分の説明は、省略または簡略化する。
(Embodiment 3)
Next, a third embodiment will be described. In the lithium ion secondary battery (battery) 300 according to the third embodiment, the space gas GS3 in the sealed space KC is different from the space gases GS1 and GS2 in the batteries 100 and 200 according to the first and second embodiments. Accordingly, the manufacturing method of the battery 300 is also different from the manufacturing methods of the batteries 100 and 200 according to the first and second embodiments. Other than that, the second embodiment is the same as the first or second embodiment, and the description of the same portions as the first or second embodiment is omitted or simplified.

本実施形態3に係る空間内気体GS3は、大気中の気体成分と区別して検知可能な検知可能気体として、有機化合物ガス(具体的には5%程度のトルエンガス)を含み、残りは大気からなる。
なお、この有機化合物ガスの種類や濃度は、適宜変更できる。有機化合物ガスとしては、前述のように、例えば、メタノール、エタノール、キシレン、ベンゼン、アセトン、6−エトキシ−2,2,4−トリメチル−1,2−ジヒドロキノリン、ナフタレン、パラジクロロベンゼン、ステアリン酸、N−イソプロピル−N’−フェニル−p−フェニレンジアミン、N−1,3−ジメチルブチル−N’−フェニル−p−フェニレンジアミンなどの有機化合物のガスが挙げられる。
The space gas GS3 according to the third embodiment includes an organic compound gas (specifically, about 5% toluene gas) as a detectable gas that can be detected separately from gas components in the atmosphere, and the rest is from the atmosphere. Become.
In addition, the kind and density | concentration of this organic compound gas can be changed suitably. Examples of the organic compound gas include, as described above, methanol, ethanol, xylene, benzene, acetone, 6-ethoxy-2,2,4-trimethyl-1,2-dihydroquinoline, naphthalene, paradichlorobenzene, stearic acid, Examples include organic compound gases such as N-isopropyl-N′-phenyl-p-phenylenediamine and N-1,3-dimethylbutyl-N′-phenyl-p-phenylenediamine.

この空間内気体GS3の封止空間KCへの封入は、例えば次のようにして行う。即ち、第1封止工程に先立ち、封止部材180の外側封止部材181のうち、封止空間KCを臨む部位である第3臨空間部181jに、液体のトルエン390を塗布しておく(図8参照)。このトルエン390は、第1封止工程後も残るように(第1封止工程を終えるまでに全て蒸発することがないように)、十分な量とする。なお、このトルエン390を塗布する工程が、前述の物質配置工程に相当する。   For example, the in-space gas GS3 is sealed in the sealed space KC as follows. That is, prior to the first sealing step, liquid toluene 390 is applied to the third space portion 181j, which is the portion facing the sealing space KC, of the outer sealing member 181 of the sealing member 180 ( (See FIG. 8). This toluene 390 is made a sufficient amount so that it remains after the first sealing step (so that it does not evaporate completely by the end of the first sealing step). The process of applying toluene 390 corresponds to the substance arranging process described above.

なお、液体のトルエン390は、電池ケース110(そのケース蓋部材113)のうち、封止空間KCを臨む部位である第1臨空間部175jや、内側封止部材183のうち、封止空間KCを臨む部位である第2臨空間部185jに塗布してもよい。
また、ナフタレンなど固体の有機化合物を用いる場合には、例えば、粒状等とした固体の有機化合物を、電池ケース110(そのケース蓋部材113)のうち、封止空間KCを臨む第1臨空間部175jの上に載置すればよい。
Note that the liquid toluene 390 is contained in the first space portion 175j that is a portion of the battery case 110 (the case lid member 113) that faces the sealing space KC and the sealing space KC in the inner sealing member 183. You may apply | coat to the 2nd near space part 185j which is a site | part which faces.
Further, when a solid organic compound such as naphthalene is used, for example, the first solid space portion facing the sealing space KC in the battery case 110 (the case lid member 113) is formed by using a solid organic compound in a granular form or the like. It may be placed on 175j.

この物質配置工程の後は、実施形態1と同様に第1封止工程を行う。また、第1封止工程後は、第2封止工程を、ヘリウムガス(実施形態1)や水素−窒素混合気体(実施形態2)の雰囲気下ではなく、大気雰囲気下で行う。これにより、封止空間KCには、大気が封入されると共に、物質配置工程で塗布したトルエン390が気化したトルエンガスが封入される。従って、封止空間KC内の空間内気体GS3は、トルエンガスと大気で構成される。特に、第2封止工程では溶接を行っているので、溶接時に発生する熱により、物質配置工程で塗布したトルエン390が容易に気化してトルエンガスとなる。従って、空間内気体GS3に確実にトルエンガスを含めることができる。   After this substance arranging step, the first sealing step is performed as in the first embodiment. In addition, after the first sealing step, the second sealing step is performed in an air atmosphere, not in an atmosphere of helium gas (Embodiment 1) or a hydrogen-nitrogen mixed gas (Embodiment 2). As a result, the sealed space KC is filled with the atmosphere and the toluene gas vaporized from the toluene 390 applied in the substance arranging step. Therefore, the space gas GS3 in the sealed space KC is composed of toluene gas and the atmosphere. In particular, since welding is performed in the second sealing step, the toluene 390 applied in the substance disposing step is easily vaporized and becomes toluene gas by heat generated during welding. Therefore, toluene gas can be reliably included in the gas GS3 in the space.

なお、本実施形態3では、前述のように、物質配置工程を第1封止工程の前に行っているが、物質配置工程は、第1封止工程の後、第2封止工程の前に行うこともできる。即ち、第1封止工程後、真空チャンバ内を大気圧に戻した後に、外側封止部材181の周縁部181mと、ケース蓋部材113の孔周囲部113mとの隙間から、例えば注射器等を用いて、ケース蓋部材113の第1臨空間部175j上に、トルエンを塗布してもよい。   In the third embodiment, as described above, the substance arranging process is performed before the first sealing process. However, the substance arranging process is performed after the first sealing process and before the second sealing process. Can also be done. That is, after the first sealing step, the inside of the vacuum chamber is returned to atmospheric pressure, and then, for example, a syringe is used from the gap between the peripheral edge portion 181m of the outer sealing member 181 and the hole peripheral portion 113m of the case lid member 113. Then, toluene may be applied onto the first critical space portion 175j of the case lid member 113.

気密検査工程は、ヘリウムガス検知器(実施形態1)や水素ガス検知器(実施形態2)を用いる代わりに、トルエンガスを大気中の気体成分と区別して検知可能な炭化水素ガス検知器(例えば、HORIBA製:APHA−370)を用いて、トルエンガスのリークを検知することにより行う。なお、その他の工程は、実施形態1または2と同様にして電池300を製造すればよい。   In the airtightness inspection process, instead of using a helium gas detector (Embodiment 1) or a hydrogen gas detector (Embodiment 2), a hydrocarbon gas detector (for example, which can detect toluene gas separately from gaseous components in the atmosphere) (for example, , Manufactured by HORIBA: APHA-370), and detecting leakage of toluene gas. In addition, what is necessary is just to manufacture the battery 300 similarly to Embodiment 1 or 2 about another process.

本実施形態3に係る電池300も、内側封止部材183で注液孔170が気密に封止されているにも拘わらず、外側封止部材181と電池ケース110の孔周囲部113mとの間の気密性を容易かつ確実に検査できる。即ち、検知可能気体が封止空間KCから電池外部に漏れ出るか否かを検査することにより、外側封止部材181と電池ケース110の孔周囲部113mとの間の気密性を容易かつ確実に検査できる。特に、本実施形態3では、検知可能気体が有機化合物ガス(本実施形態3ではトルエンガス)であるので、これを大気中の気体成分と区別して検知可能なガス検知器を用いることで、封止空間KCから電池外部に漏れ出る検知可能気体を容易かつ確実に検知できる。   Even in the battery 300 according to the third embodiment, the liquid injection hole 170 is hermetically sealed by the inner sealing member 183, but between the outer sealing member 181 and the hole peripheral portion 113m of the battery case 110. The airtightness of the can be inspected easily and reliably. That is, by checking whether or not detectable gas leaks from the sealed space KC to the outside of the battery, the airtightness between the outer sealing member 181 and the hole peripheral portion 113m of the battery case 110 can be easily and reliably obtained. Can be inspected. In particular, in the third embodiment, the detectable gas is an organic compound gas (toluene gas in the third embodiment). Therefore, by using a gas detector that can be detected by distinguishing it from a gas component in the atmosphere, sealing is performed. The detectable gas that leaks out of the battery from the stop space KC can be detected easily and reliably.

また、本実施形態3では、電池ケース110(そのケース蓋部材113)のうち、封止空間KCを臨む部位を第1臨空間部175jとし、内側封止部材183のうち、封止空間KCを臨む部位を第2臨空間部185jとし、外側封止部材181のうち、封止空間KCを臨む部位を第3臨空間部181jとしたとき、少なくとも第2封止工程よりも前に、第1臨空間部175j、第2臨空間部185j及び第3臨空間部181jの少なくともいずれかの上に、ガス化により検知可能気体となる物質を配置する物質配置工程を備える。   In the third embodiment, a portion of the battery case 110 (the case lid member 113) that faces the sealing space KC is defined as a first temporary space portion 175j, and the inner sealing member 183 includes the sealing space KC. When the portion that faces the second space portion 185j and the portion of the outer sealing member 181 that faces the sealing space KC is the third space portion 181j, at least before the second sealing step, A substance disposing step of disposing a substance that becomes a detectable gas by gasification is provided on at least one of the living space part 175j, the second living space part 185j, and the third living space part 181j.

このようにすることで、ガス化により検知可能気体(本実施形態3ではトルエンガス)となる物質(本実施形態3では液体のトルエン390)を封止空間KC内に配置できるので、これがガス化して検知可能気体(トルエンガス)となると、空間内気体GS3に検知可能気体(トルエンガス)が含まれる。従って、検知可能気体(トルエンガス)を含む空間内気体GS3を、封止空間KCに容易かつ確実に封入できる。その他、実施形態1または2に係る電池100,200及びそれらの製造方法と同様な部分は、実施形態1または2と同様な作用効果を奏する。   In this way, a substance (liquid toluene 390 in the third embodiment) that becomes a detectable gas (toluene gas in the third embodiment) by gasification can be disposed in the sealed space KC, and this is gasified. When it becomes a detectable gas (toluene gas), the detectable gas (toluene gas) is included in the in-space gas GS3. Therefore, the in-space gas GS3 containing the detectable gas (toluene gas) can be easily and reliably sealed in the sealed space KC. In addition, the same parts as those of the batteries 100 and 200 according to the first or second embodiment and the manufacturing method thereof have the same operational effects as those of the first or second embodiment.

(実施形態4)
次いで、第4の実施の形態について説明する。本実施形態4に係るリチウムイオン二次電池(電池)400では、封止空間KC内の空間内気体GS4が、実施形態1〜3に係る電池100,200,300の空間内気体GS1,GS2,GS3と異なる。また、これに伴って、電池400の製造方法も、実施形態1〜3に係る電池100,200,300の製造方法と異なる。それ以外は、実施形態1〜3のいずれかと同様であるので、実施形態1〜3のいずれかと同様な部分の説明は、省略または簡略化する。
(Embodiment 4)
Next, a fourth embodiment will be described. In the lithium ion secondary battery (battery) 400 according to the fourth embodiment, the space gas GS4 in the sealed space KC is the space gas GS1, GS2, in the batteries 100, 200, 300 according to the first to third embodiments. Different from GS3. Accordingly, the manufacturing method of the battery 400 is also different from the manufacturing method of the batteries 100, 200, and 300 according to the first to third embodiments. Other than that, since it is the same as any one of the first to third embodiments, the description of the same part as any one of the first to third embodiments will be omitted or simplified.

本実施形態4に係る空間内気体GS4は、大気中の気体成分と区別して検知可能な検知可能気体として、10%程度の炭酸ガスを含み、残りは大気からなる。なお、この炭酸ガスの濃度は、大気中に存在する炭酸ガス(0.04%)と区別可能な高い濃度(例えば、空間内気体GS4中に5%以上)の範囲で適宜変更できる。   The in-space gas GS4 according to the fourth embodiment includes about 10% carbon dioxide gas as a detectable gas that can be detected separately from gas components in the atmosphere, and the rest consists of the atmosphere. The concentration of carbon dioxide can be changed as appropriate within a range of a high concentration (for example, 5% or more in the space gas GS4) that can be distinguished from carbon dioxide (0.04%) present in the atmosphere.

この空間内気体GS4の封止空間KCへの封入は、例えば次のようにして行う。即ち、第1封止工程に先立ち、電池ケース110(そのケース蓋部材113)のうち、封止空間KCを臨む第1臨空間部175jの上に、粒状のドライアイス490を載置しておく(図8参照)。なお、このドライアイス490を載置する工程が、前述の物質配置工程に相当する。   For example, the in-space gas GS4 is sealed in the sealed space KC as follows. That is, prior to the first sealing step, the granular dry ice 490 is placed on the first critical space portion 175j facing the sealing space KC in the battery case 110 (case cover member 113). (See FIG. 8). The process of placing the dry ice 490 corresponds to the substance arranging process described above.

この物質配置工程の後は、上記実施形態3と同様に、第1封止工程及び第2封止工程を行う。これにより、封止空間KCには、大気が封入されると共に、物質配置工程で載置したドライアイス490が気化した炭酸ガス(検知可能気体)が封入される。
また、気密検査工程は、この検知可能気体である炭酸ガスを、大気中の気体成分と区別して検知可能なガス検知器(例えば、HORIBA製:VA−3000S)を用いて、炭酸ガスのリークを検知することにより行う。なお、その他の工程は、実施形態1〜3のいずれかと同様にして電池400を製造すればよい。
After the substance arranging step, the first sealing step and the second sealing step are performed as in the third embodiment. As a result, the sealed space KC is filled with the atmosphere and at the same time, the carbon dioxide gas (detectable gas) vaporized by the dry ice 490 placed in the substance arranging step.
Further, in the airtight inspection process, carbon dioxide gas, which is a detectable gas, is distinguished from gas components in the atmosphere by using a gas detector (for example, manufactured by HORIBA: VA-3000S) to detect leakage of carbon dioxide gas. This is done by detecting. In addition, what is necessary is just to manufacture the battery 400 like other processes 1-3 either in Embodiment 1-3.

本実施形態4に係る電池400も、内側封止部材183で注液孔170が気密に封止されているにも拘わらず、外側封止部材181と電池ケース110の孔周囲部113mとの間の気密性を容易かつ確実に検査できる。即ち、検知可能気体が封止空間KCから電池外部に漏れ出るか否かを検査することにより、外側封止部材181と電池ケース110の孔周囲部113mとの間の気密性を容易かつ確実に検査できる。特に、本実施形態4では、検知可能気体が炭酸ガスであるので、この炭酸ガスを大気中の気体成分と区別して検知可能なガス検知器を用いることで、封止空間KCから電池外部に漏れ出る検知可能気体(炭酸ガス)を容易かつ確実に検知できる。その他、実施形態1〜3に係る電池100,200,300及びそれらの製造方法と同様な部分は、実施形態1〜3と同様な作用効果を奏する。   Even in the battery 400 according to the fourth embodiment, the liquid injection hole 170 is hermetically sealed by the inner sealing member 183, but between the outer sealing member 181 and the hole peripheral portion 113m of the battery case 110. The airtightness of the can be inspected easily and reliably. That is, by checking whether or not detectable gas leaks from the sealed space KC to the outside of the battery, the airtightness between the outer sealing member 181 and the hole peripheral portion 113m of the battery case 110 can be easily and reliably obtained. Can be inspected. In particular, in the fourth embodiment, since the detectable gas is carbon dioxide gas, the gas detector leaks from the sealed space KC to the outside of the battery by using a gas detector capable of detecting the carbon dioxide gas by distinguishing it from gaseous components in the atmosphere. The detectable gas (carbon dioxide) that comes out can be detected easily and reliably. In addition, the battery 100, 200, 300 according to the first to third embodiments and the same parts as those manufacturing methods have the same effects as the first to third embodiments.

(実施形態5)
次いで、第5の実施の形態について説明する。本実施形態5に係るハイブリッド自動車(車両)700(以下、単に自動車700とも言う)は、実施形態1に係る電池100を搭載し、この電池100に蓄えた電気エネルギを、駆動源の駆動エネルギの全部または一部として使用するものである(図9参照)。
(Embodiment 5)
Next, a fifth embodiment will be described. A hybrid vehicle (vehicle) 700 (hereinafter also simply referred to as a vehicle 700) according to the fifth embodiment is equipped with the battery 100 according to the first embodiment, and the electric energy stored in the battery 100 is used as the drive energy of the drive source. It is used as all or part (see FIG. 9).

この自動車700は、電池100を複数組み合わせた組電池710を搭載し、エンジン740、フロントモータ720及びリアモータ730を併用して駆動するハイブリッド自動車である。具体的には、この自動車700は、その車体790に、エンジン740と、フロントモータ720及びリアモータ730と、組電池710(電池100)と、ケーブル750と、インバータ760とを搭載する。そして、この自動車700は、組電池710(電池100)に蓄えられた電気エネルギを用いて、フロントモータ720及びリアモータ730を駆動できるように構成されている。
前述したように、電池100は、長期間にわたり封止部材180の外側封止部材181で注液孔170を気密に封止できるので、この自動車700の耐久性を高くできる。なお、実施形態1に係る電池100に代えて、実施形態2〜4のいずれかの電池200,300,400を搭載してもよい。
The automobile 700 is a hybrid automobile equipped with an assembled battery 710 in which a plurality of batteries 100 are combined and driven by using an engine 740, a front motor 720, and a rear motor 730 in combination. Specifically, the automobile 700 includes an engine 740, a front motor 720 and a rear motor 730, an assembled battery 710 (battery 100), a cable 750, and an inverter 760 on the vehicle body 790. The automobile 700 is configured to be able to drive the front motor 720 and the rear motor 730 using electrical energy stored in the assembled battery 710 (battery 100).
As described above, since the battery 100 can hermetically seal the liquid injection hole 170 with the outer sealing member 181 of the sealing member 180 for a long period of time, the durability of the automobile 700 can be increased. Instead of the battery 100 according to the first embodiment, any of the batteries 200, 300, and 400 according to the second to fourth embodiments may be mounted.

(実施形態6)
次いで、第6の実施の形態について説明する。本実施形態6のハンマードリル800は、実施形態1に係る電池100を搭載した電池使用機器である(図10参照)。このハンマードリル800は、本体820の底部821に、電池100を含むバッテリパック810が収容されており、このバッテリパック810を、ドリルを駆動するためのエネルギー源として利用している。
前述したように、電池100は、長期間にわたり封止部材180の外側封止部材181で注液孔170を気密に封止できるので、このハンマードリル800の耐久性を高くできる。なお、実施形態1に係る電池100に代えて、実施形態2〜4のいずれかの電池200,300,400を搭載してもよい。
(Embodiment 6)
Next, a sixth embodiment will be described. A hammer drill 800 according to the sixth embodiment is a battery-using device on which the battery 100 according to the first embodiment is mounted (see FIG. 10). In the hammer drill 800, a battery pack 810 including the battery 100 is accommodated in a bottom portion 821 of a main body 820, and the battery pack 810 is used as an energy source for driving the drill.
As described above, since the battery 100 can hermetically seal the liquid injection hole 170 with the outer sealing member 181 of the sealing member 180 for a long period of time, the durability of the hammer drill 800 can be enhanced. Instead of the battery 100 according to the first embodiment, any of the batteries 200, 300, and 400 according to the second to fourth embodiments may be mounted.

以上において、本発明を実施形態に即して説明したが、本発明は上述の実施形態1〜6に限定されるものではなく、その要旨を逸脱しない範囲で、適宜変更して適用できることは言うまでもない。   In the above, the present invention has been described with reference to the embodiments. However, the present invention is not limited to the above-described first to sixth embodiments, and it is needless to say that the present invention can be appropriately modified and applied without departing from the gist thereof. Yes.

例えば、実施形態1〜4では、電池ケースの内外を連通する「貫通孔」として、電解液117を注入するための注液孔170を例示したが、貫通孔は注液孔に限られない。貫通孔としては、例えば、電池ケース内の気体を抜くための通気孔などが挙げられる。また、実施形態1〜4では、「貫通孔」を、電池ケース110のうちケース蓋部材113に設けたが、貫通孔の形成位置はこれに限られない。貫通孔は、例えば、ケース本体部材111の側面や底面に設けてもよい。また、実施形態1〜4では、「貫通孔」の形態を円孔としたが、貫通孔の形態も適宜変更できる。   For example, in the first to fourth embodiments, the injection hole 170 for injecting the electrolytic solution 117 is exemplified as the “through hole” that communicates the inside and outside of the battery case. However, the through hole is not limited to the injection hole. Examples of the through hole include a vent hole for venting gas from the battery case. In the first to fourth embodiments, the “through hole” is provided in the case lid member 113 of the battery case 110, but the formation position of the through hole is not limited thereto. For example, the through hole may be provided on a side surface or a bottom surface of the case main body member 111. In Embodiments 1 to 4, although the “through hole” is a circular hole, the shape of the through hole can be changed as appropriate.

また、実施形態1〜4では、「電極体」として、各々帯状をなす正極板121及び負極板131をセパレータ141を介して互いに重ねて捲回してなる捲回型の電極体120を例示したが、電極体の形態はこれに限られない。例えば、電極体を、各々所定形状(例えば矩形状など)をなす正極板及び負極板をセパレータを介して交互に複数積層してなる積層型としてもよい。   In the first to fourth embodiments, as the “electrode body”, the wound electrode body 120 is illustrated in which the positive electrode plate 121 and the negative electrode plate 131 each having a band shape are wound on each other via the separator 141. The form of the electrode body is not limited to this. For example, the electrode body may be a stacked type in which a plurality of positive and negative electrode plates each having a predetermined shape (for example, a rectangular shape) are alternately stacked via a separator.

また、実施形態1〜4では、「内側封止部材」として、その全体がゴム栓部とされた内側封止部材183を例示したが、内側封止部材の形態はこれに限られない。例えば、内側封止部材を、円錐台状等のゴム栓部に、これを外部から覆う板状等の被覆部材が接合された形態とすることもできる。このように内側封止部材がゴム栓部以外の部位を有する場合、ゴム栓部以外の部位は、金属など、ゴム状弾性体をなす材質以外の材質で形成することができる。   Moreover, in Embodiment 1-4, although the inner side sealing member 183 by which the whole was made into the rubber stopper part was illustrated as an "inner side sealing member", the form of an inner side sealing member is not restricted to this. For example, the inner sealing member may be in a form in which a cover member such as a plate that covers this from the outside is joined to a rubber plug portion such as a truncated cone. In this way, when the inner sealing member has a portion other than the rubber plug portion, the portion other than the rubber plug portion can be formed of a material other than the material forming the rubber-like elastic body, such as metal.

また、実施形態1〜4では、「ゴム栓部」として、円錐台状の挿入部184と円環状の環状圧接部185とが一体に繋がったゴム栓部(内側封止部材)183を例示したが、ゴム栓部の形態はこれに限定されない。例えば、ゴム栓部を、実施形態1〜4で示したような円錐台状の挿入部のみからなる形態とすることができる。このように挿入部のみからなるゴム栓部でも、自身の弾性によって、貫通孔を電池ケースの外部から気密に封止できる。   In the first to fourth embodiments, as the “rubber plug portion”, the rubber plug portion (inner sealing member) 183 in which the truncated cone-shaped insertion portion 184 and the annular annular pressure contact portion 185 are integrally connected is illustrated. However, the form of the rubber plug portion is not limited to this. For example, the rubber plug portion can be configured by only the truncated cone-shaped insertion portion as shown in the first to fourth embodiments. As described above, even with the rubber plug portion including only the insertion portion, the through hole can be hermetically sealed from the outside of the battery case by its own elasticity.

また、実施形態1〜4では、「ゴム栓部」として、エチレンプロピレンジエンゴム(EPDM)からなるゴム栓部(内側封止部材)183を例示したが、ゴム栓部をなすゴム状弾性体の材質はこれに限られない。ゴム状弾性体の材質として、例えば、アクリルゴム(ACM)、ニトリルゴム(NBR)、イソプレンゴム(IR)、ウレタンゴム(U)、クロロスルホン化ポリエチレン(CSM)、エピクロルヒドリンゴム(CO,ECO)、クロロプレンゴム(CR)、シリコーンゴム(Q)、スチレン・ブタジエンゴム(SBR)、ブタジエンゴム(BR)、フッ素ゴム(FKM)、ブチルゴム(IIR)などが挙げられる。   Further, in Embodiments 1 to 4, the rubber plug portion (inner sealing member) 183 made of ethylene propylene diene rubber (EPDM) is exemplified as the “rubber plug portion”, but the rubber-like elastic body forming the rubber plug portion is exemplified. The material is not limited to this. Examples of the rubber-like elastic material include acrylic rubber (ACM), nitrile rubber (NBR), isoprene rubber (IR), urethane rubber (U), chlorosulfonated polyethylene (CSM), epichlorohydrin rubber (CO, ECO), Examples include chloroprene rubber (CR), silicone rubber (Q), styrene-butadiene rubber (SBR), butadiene rubber (BR), fluorine rubber (FKM), and butyl rubber (IIR).

また、実施形態1〜4では、「外側封止部材」として、金属(具体的にアルミニウム)からなる円板状の外側封止部材181を例示したが、外側封止部材の材質や形状は、適宜変更できる。
また、実施形態1〜4では、電池ケース110に設けた凹部175に、外側封止部材181を嵌合させた状態で、外側封止部材181を電池ケース110に固着しているが、この形態に限られない。例えば、外側封止部材の径を外側封止部材181よりも更に大きくして、外側封止部材の周縁部を、凹部175の周囲に電池ケース110の外部から当接させ、この状態で外側封止部材を電池ケース110に固着してもよい。
In the first to fourth embodiments, as the “outer sealing member”, the disk-shaped outer sealing member 181 made of metal (specifically aluminum) is exemplified, but the material and shape of the outer sealing member are It can be changed as appropriate.
In the first to fourth embodiments, the outer sealing member 181 is fixed to the battery case 110 in a state where the outer sealing member 181 is fitted in the recess 175 provided in the battery case 110. Not limited to. For example, the diameter of the outer sealing member is made larger than that of the outer sealing member 181, and the peripheral edge of the outer sealing member is brought into contact with the periphery of the recess 175 from the outside of the battery case 110. The stop member may be fixed to the battery case 110.

また、実施形態1〜4では、溶接により、外側封止部材181を電池ケース110の孔周囲部113mに固着したが、固着方法はこれに限られない。例えば、ロウ材やハンダ、接着剤等を用いて、或いは、加締めや巻き締め等により、外側封止部材を電池ケースの孔周囲部に固着してもよい。
また、「検知可能気体」として、実施形態1ではヘリウムガス及びアルゴンガスを例示し、実施形態2では水素ガスを例示し、実施形態3では有機化合物ガスを例示し、実施形態4では炭酸ガスを例示したが、前述のように、検知可能気体はこれらに限られない。
In the first to fourth embodiments, the outer sealing member 181 is fixed to the hole peripheral portion 113m of the battery case 110 by welding, but the fixing method is not limited thereto. For example, the outer sealing member may be fixed to the hole peripheral portion of the battery case by using brazing material, solder, adhesive, or the like, or by caulking or winding.
As the “detectable gas”, helium gas and argon gas are exemplified in the first embodiment, hydrogen gas is exemplified in the second embodiment, organic compound gas is exemplified in the third embodiment, and carbon dioxide gas is used in the fourth embodiment. Although illustrated, as described above, the detectable gas is not limited to these.

また、実施形態4では、本発明に係る電池100,200,300を搭載する車両として、ハイブリッド自動車700を例示したが、これに限られない。本発明に係る電池を搭載する車両としては、例えば、電気自動車、プラグインハイブリッド自動車、ハイブリッド鉄道車両、フォークリフト、電気車いす、電動アシスト自転車、電動スクータなどが挙げられる。   Moreover, although the hybrid vehicle 700 was illustrated in Embodiment 4 as a vehicle carrying the battery 100, 200, 300 which concerns on this invention, it is not restricted to this. Examples of the vehicle on which the battery according to the present invention is mounted include an electric vehicle, a plug-in hybrid vehicle, a hybrid railway vehicle, a forklift, an electric wheelchair, an electrically assisted bicycle, and an electric scooter.

また、実施形態5では、本発明に係る電池100,200,300を搭載する電池使用機器して、ハンマードリル800を例示したが、これに限られない。本発明に係る電池を搭載する電池使用機器としては、例えば、パーソナルコンピュータ、携帯電話、電池駆動の電動工具、無停電電源装置など、電池で駆動される各種の家電製品、オフィス機器、産業機器などが挙げられる。   In the fifth embodiment, the hammer drill 800 is illustrated as an example of a battery-using device on which the batteries 100, 200, and 300 according to the present invention are mounted. Examples of battery-powered devices equipped with the battery according to the present invention include personal computers, mobile phones, battery-powered electric tools, uninterruptible power supply devices, various home appliances driven by batteries, office equipment, industrial equipment, etc. Is mentioned.

100,200,300,400 リチウムイオン二次電池(電池)
110 電池ケース
111 ケース本体部材
113 ケース蓋部材
113c 内表面
113d 外表面
113m 孔周囲部
117 電解液
120 電極体
150 正極端子
160 負極端子
170 注液孔(貫通孔)
175 凹部
175j 第1臨空間部
180 封止部材
181 外側封止部材
181j 第3臨空間部
181m 周縁部
181y 溶接部
183 内側封止部材(ゴム栓部)
184 挿入部
185 環状圧接部
185j 第2臨空間部
390 トルエン(物質)
490 ドライアイス(物質)
700 ハイブリッド自動車(車両)
710 組電池
800 ハンマードリル(電池使用機器)
810 バッテリパック
GS1,GS2,GS3,GS4 空間内気体
KC 封止空間
100, 200, 300, 400 Lithium ion secondary battery (battery)
110 Battery Case 111 Case Body Member 113 Case Cover Member 113c Inner Surface 113d Outer Surface 113m Hole Perimeter 117 Electrolyte 120 Electrode Body 150 Positive Terminal 160 Negative Terminal 170 Injecting Hole (Through Hole)
175 Concave portion 175j First standing space portion 180 Sealing member 181 Outside sealing member 181j Third standing space portion 181m Peripheral portion 181y Welding portion 183 Inside sealing member (rubber plug portion)
184 Insertion portion 185 Annular pressure contact portion 185j Second critical space portion 390 Toluene (substance)
490 dry ice (substance)
700 Hybrid vehicle (vehicle)
710 battery pack 800 hammer drill (equipment using batteries)
810 Battery pack GS1, GS2, GS3, GS4 Gas in space KC Sealing space

Claims (13)

自身の内外を連通する貫通孔を有する電池ケースと、
前記電池ケース内に収容された電極体と、
ゴム状弾性体からなり、前記貫通孔を前記電池ケースの外部から気密に封止してなるゴム栓部を有する内側封止部材と、
前記内側封止部材を前記外部から覆いつつ、前記電池ケースのうち前記貫通孔を囲む環状の孔周囲部に気密かつ環状に固着してなる外側封止部材と、を備え、
前記電池ケースと前記内側封止部材と前記外側封止部材との間に形成された気密に封止された空間を、封止空間としたとき、
前記封止空間内に存在する気体である空間内気体は、
前記封止空間から電池外部に漏出したときに、大気中の気体成分と区別して検知可能な検知可能気体を含む
電池。
A battery case having a through-hole communicating with the inside and outside of itself;
An electrode body housed in the battery case;
An inner sealing member comprising a rubber-like elastic body, and having a rubber plug portion formed by sealing the through hole from the outside of the battery case,
An outer sealing member that is airtight and annularly fixed to an annular hole surrounding portion surrounding the through hole in the battery case while covering the inner sealing member from the outside,
When a hermetically sealed space formed between the battery case, the inner sealing member and the outer sealing member is a sealed space,
The gas in the space, which is a gas existing in the sealed space,
A battery comprising a detectable gas that can be detected separately from gas components in the atmosphere when leaked from the sealed space to the outside of the battery.
請求項1に記載の電池であって、
前記検知可能気体は、ヘリウムガス及びアルゴンガスの少なくともいずれかである
電池。
The battery according to claim 1,
The battery in which the detectable gas is at least one of helium gas and argon gas.
請求項1に記載の電池であって、
前記検知可能気体は、水素ガスである
電池。
The battery according to claim 1,
The battery in which the detectable gas is hydrogen gas.
請求項3に記載の電池であって、
前記電池ケース内にも、水素ガスが存在する
電池。
The battery according to claim 3,
A battery in which hydrogen gas is also present in the battery case.
請求項1に記載の電池であって、
前記検知可能気体は、有機化合物ガスである
電池。
The battery according to claim 1,
The battery in which the detectable gas is an organic compound gas.
請求項1に記載の電池であって、
前記検知可能気体は、炭酸ガスである
電池。
The battery according to claim 1,
The battery in which the detectable gas is carbon dioxide.
自身の内外を連通する貫通孔を有する電池ケースと、
前記電池ケース内に収容された電極体と、
ゴム状弾性体からなり、前記貫通孔を前記電池ケースの外部から気密に封止してなるゴム栓部を有する内側封止部材と、
前記内側封止部材を前記外部から覆いつつ、前記電池ケースのうち前記貫通孔を囲む環状の孔周囲部に気密かつ環状に固着してなる外側封止部材と、を備え、
前記電池ケースと前記内側封止部材と前記外側封止部材との間に形成された気密に封止された空間を、封止空間としたとき、
前記封止空間内に存在する気体である空間内気体は、
前記封止空間から電池外部に漏出したときに、大気中の気体成分と区別して検知可能な検知可能気体を含む
電池の製造方法であって、
前記電池ケースの前記貫通孔を、前記外部から前記内側封止部材の前記ゴム栓部で塞いで、前記貫通孔を気密に封止する第1封止工程と、
前記第1封止工程の後、前記内側封止部材を前記外部から覆いつつ、前記外側封止部材を前記電池ケースの前記孔周囲部に気密かつ環状に固着し、前記封止空間を形成すると共に、前記封止空間内に前記空間内気体を封入する第2封止工程と、を備え、
前記第2封止工程は、前記検知可能気体を含む前記空間内気体の雰囲気下で行うことにより、前記封止空間内に前記空間内気体を封入する
電池の製造方法。
A battery case having a through-hole communicating with the inside and outside of itself;
An electrode body housed in the battery case;
An inner sealing member comprising a rubber-like elastic body, and having a rubber plug portion formed by sealing the through hole from the outside of the battery case,
An outer sealing member that is airtight and annularly fixed to an annular hole surrounding portion surrounding the through hole in the battery case while covering the inner sealing member from the outside,
When a hermetically sealed space formed between the battery case, the inner sealing member and the outer sealing member is a sealed space,
The gas in the space, which is a gas existing in the sealed space,
When leaking from the sealed space to the outside of the battery, a method for producing a battery containing a detectable gas that can be detected separately from gas components in the atmosphere,
A first sealing step of sealing the through hole airtightly by closing the through hole of the battery case from the outside with the rubber plug portion of the inner sealing member;
After the first sealing step, the outer sealing member is airtightly and annularly fixed around the hole of the battery case while covering the inner sealing member from the outside to form the sealing space. together, Bei example and a second sealing step of sealing the space gas into the sealing space,
The method for manufacturing a battery, wherein the second sealing step is performed in an atmosphere of gas in the space containing the detectable gas, thereby sealing the gas in the space in the sealed space .
請求項7に記載の電池の製造方法であって、
前記検知可能気体は、ヘリウムガス及びアルゴンガスの少なくともいずれかである
電池の製造方法。
A battery manufacturing method according to claim 7 ,
The method for manufacturing a battery, wherein the detectable gas is at least one of helium gas and argon gas.
請求項7に記載の電池の製造方法であって、
前記検知可能気体は、水素ガスである
電池の製造方法。
A battery manufacturing method according to claim 7 ,
The method for manufacturing a battery, wherein the detectable gas is hydrogen gas.
請求項9に記載の電池の製造方法であって、
前記電池は、前記電池ケース内にも水素ガスが存在する
電池の製造方法。
A method of manufacturing a battery according to claim 9 ,
The battery is a method for manufacturing a battery in which hydrogen gas is also present in the battery case.
自身の内外を連通する貫通孔を有する電池ケースと、
前記電池ケース内に収容された電極体と、
ゴム状弾性体からなり、前記貫通孔を前記電池ケースの外部から気密に封止してなるゴム栓部を有する内側封止部材と、
前記内側封止部材を前記外部から覆いつつ、前記電池ケースのうち前記貫通孔を囲む環状の孔周囲部に気密かつ環状に固着してなる外側封止部材と、を備え、
前記電池ケースと前記内側封止部材と前記外側封止部材との間に形成された気密に封止された空間を、封止空間としたとき、
前記封止空間内に存在する気体である空間内気体は、
前記封止空間から電池外部に漏出したときに、大気中の気体成分と区別して検知可能な検知可能気体を含む
電池の製造方法であって、
前記電池ケースの前記貫通孔を、前記外部から前記内側封止部材の前記ゴム栓部で塞いで、前記貫通孔を気密に封止する第1封止工程と、
前記第1封止工程の後、前記内側封止部材を前記外部から覆いつつ、前記外側封止部材を前記電池ケースの前記孔周囲部に気密かつ環状に固着し、前記封止空間を形成すると共に、前記封止空間内に前記空間内気体を封入する第2封止工程と、を備え、
前記電池ケースのうち、前記封止空間を臨む部位を、第1臨空間部とし、
前記内側封止部材のうち、前記封止空間を臨む部位を、第2臨空間部とし、
前記外側封止部材のうち、前記封止空間を臨む部位を、第3臨空間部としたとき、
少なくとも前記第2封止工程よりも前に、前記第1臨空間部、前記第2臨空間部及び前記第3臨空間部の少なくともいずれかの上に、ガス化により前記検知可能気体となる物質を配置する物質配置工程を備える
電池の製造方法。
A battery case having a through-hole communicating with the inside and outside of itself;
An electrode body housed in the battery case;
An inner sealing member comprising a rubber-like elastic body, and having a rubber plug portion formed by sealing the through hole from the outside of the battery case,
An outer sealing member that is airtight and annularly fixed to an annular hole surrounding portion surrounding the through hole in the battery case while covering the inner sealing member from the outside,
When a hermetically sealed space formed between the battery case, the inner sealing member and the outer sealing member is a sealed space,
The gas in the space, which is a gas existing in the sealed space,
When leaking from the sealed space to the outside of the battery, a method for producing a battery containing a detectable gas that can be detected separately from gas components in the atmosphere,
A first sealing step of sealing the through hole airtightly by closing the through hole of the battery case from the outside with the rubber plug portion of the inner sealing member;
After the first sealing step, the outer sealing member is airtightly and annularly fixed around the hole of the battery case while covering the inner sealing member from the outside to form the sealing space. together, Bei example and a second sealing step of sealing the space gas into the sealing space,
Of the battery case, a portion facing the sealing space is a first space portion,
Of the inner sealing member, a portion facing the sealing space is a second space portion,
Of the outer sealing member, when the portion facing the sealing space is a third space portion,
At least before the second sealing step, the substance that becomes the detectable gas by gasification on at least one of the first living space portion, the second living space portion, and the third living space portion A method for producing a battery, comprising a substance disposing step of disposing a material .
請求項7〜請求項11のいずれか一項に記載の電池の製造方法であって、
前記第2封止工程の後、前記検知可能気体が前記封止空間から電池外部に漏れ出るか否かを検査することにより、前記外側封止部材と前記電池ケースの前記孔周囲部との間の気密性を検査する気密検査工程を更に備える
電池の製造方法。
It is a manufacturing method of the battery according to any one of claims 7 to 11 ,
After the second sealing step, by inspecting whether the detectable gas leaks from the sealing space to the outside of the battery, between the outer sealing member and the hole peripheral portion of the battery case A method for manufacturing a battery, further comprising an airtight inspection step for inspecting airtightness of the battery.
請求項7〜請求項12のいずれか一項に記載の電池の製造方法であって、
前記第1封止工程は、減圧下で行い、
前記第2封止工程は、大気圧下で行う
電池の製造方法。
It is a manufacturing method of the battery according to any one of claims 7 to 12 ,
The first sealing step is performed under reduced pressure,
The second sealing step is a battery manufacturing method performed under atmospheric pressure.
JP2011196496A 2011-09-08 2011-09-08 Battery and battery manufacturing method Active JP5821442B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011196496A JP5821442B2 (en) 2011-09-08 2011-09-08 Battery and battery manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011196496A JP5821442B2 (en) 2011-09-08 2011-09-08 Battery and battery manufacturing method

Publications (2)

Publication Number Publication Date
JP2013058408A JP2013058408A (en) 2013-03-28
JP5821442B2 true JP5821442B2 (en) 2015-11-24

Family

ID=48134103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011196496A Active JP5821442B2 (en) 2011-09-08 2011-09-08 Battery and battery manufacturing method

Country Status (1)

Country Link
JP (1) JP5821442B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015164105A (en) * 2014-02-28 2015-09-10 株式会社Gsユアサ Power storage device
KR102173066B1 (en) * 2014-08-29 2020-11-03 에스케이이노베이션 주식회사 Secondary battery capable of detecting electrolyte leakage and device having the same
JP6733187B2 (en) * 2016-01-27 2020-07-29 株式会社豊田自動織機 Method for manufacturing power storage device
CN212136496U (en) * 2020-10-13 2020-12-11 江苏时代新能源科技有限公司 End cover assembly, battery monomer, battery and power consumption device
CN113267299B (en) * 2021-05-17 2023-02-17 中国第一汽车股份有限公司 Battery box body leakage detection device and detection method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009087659A (en) * 2007-09-28 2009-04-23 Sanyo Electric Co Ltd Sealed battery

Also Published As

Publication number Publication date
JP2013058408A (en) 2013-03-28

Similar Documents

Publication Publication Date Title
JP5969356B2 (en) Sealed battery manufacturing method, sealed battery sealing member and sealed battery
JP5821442B2 (en) Battery and battery manufacturing method
KR101525345B1 (en) Hermetically sealed battery
JP5780308B2 (en) battery
US8178235B2 (en) Battery with cap plate having inclined edge
JP2013084480A (en) Method of manufacturing battery
JP5754280B2 (en) Battery and manufacturing method thereof
KR101718651B1 (en) Production method for sealed batteries
JP2013182722A (en) Battery and manufacturing method of the same
JP5742610B2 (en) Battery and battery manufacturing method
JP6864853B2 (en) Temporary sealing plug for sealed batteries
JP5724696B2 (en) Battery manufacturing method
JP2013084481A (en) Method of manufacturing battery, and battery
JP5675564B2 (en) Battery, rubber sealing member, battery manufacturing method, and rubber sealing member manufacturing method
JP5949130B2 (en) Lithium ion secondary battery and method for producing lithium ion secondary battery
JP2013171801A (en) Sealing method of liquid injection port of battery
KR100537603B1 (en) Test device for leaking used in secondary battery and method for making secondary battery utilizing the same
JP2007329076A (en) Manufacturing method of battery and battery
JP5672042B2 (en) Sealed battery and method for manufacturing sealed battery
JP5742644B2 (en) Battery manufacturing method and battery
JP5772348B2 (en) Battery and battery manufacturing method
JP2019036504A (en) Method of manufacturing sealed battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150908

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150921

R151 Written notification of patent or utility model registration

Ref document number: 5821442

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151