JP5754280B2 - Battery and manufacturing method thereof - Google Patents

Battery and manufacturing method thereof Download PDF

Info

Publication number
JP5754280B2
JP5754280B2 JP2011158690A JP2011158690A JP5754280B2 JP 5754280 B2 JP5754280 B2 JP 5754280B2 JP 2011158690 A JP2011158690 A JP 2011158690A JP 2011158690 A JP2011158690 A JP 2011158690A JP 5754280 B2 JP5754280 B2 JP 5754280B2
Authority
JP
Japan
Prior art keywords
hole
shape
battery
rubber
recovery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011158690A
Other languages
Japanese (ja)
Other versions
JP2013025977A (en
Inventor
貴司 原山
貴司 原山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2011158690A priority Critical patent/JP5754280B2/en
Publication of JP2013025977A publication Critical patent/JP2013025977A/en
Application granted granted Critical
Publication of JP5754280B2 publication Critical patent/JP5754280B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Filling, Topping-Up Batteries (AREA)
  • Secondary Cells (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Description

本発明は、自身の内外を連通する貫通孔を有する電池ケースと、この電池ケース内に収容された電極体とを備え、電池ケースの貫通孔を気密に封止してなる電池、及び、この電池の製造方法に関する。   The present invention includes a battery case having a through hole communicating with the inside and the outside of the battery case, and an electrode body accommodated in the battery case, and a battery formed by hermetically sealing the through hole of the battery case, and The present invention relates to a battery manufacturing method.

従来より、電解液を注入するための注液孔などの貫通孔が設けられた電池ケースと、この電池ケース内に収容された電極体とを備え、電池ケースの貫通孔を気密に封止した電池が知られている。そして、この貫通孔を封止する封止構造として、種々の構造を用いた電池が提案されている。例えば特許文献1〜4には、樹脂栓部と金属蓋部とを有する封止部材で貫通孔を封止する形態の密閉型電池が開示されている。ここで、樹脂栓部は、電池ケースの貫通孔に圧入されており、これ自身で貫通孔を気密に封止している。一方、金属蓋部は、樹脂栓部による封止をより確実なものとするため、樹脂栓部を電池外部から覆いつつ、樹脂栓部を押圧した状態で、その周囲を散点状に溶接するなどして、電池ケースに接合されている。   Conventionally, a battery case provided with a through hole such as a liquid injection hole for injecting an electrolytic solution and an electrode body accommodated in the battery case are hermetically sealed. Batteries are known. And batteries using various structures have been proposed as sealing structures for sealing the through holes. For example, Patent Documents 1 to 4 disclose a sealed battery in which a through hole is sealed with a sealing member having a resin plug portion and a metal lid portion. Here, the resin plug portion is press-fitted into the through hole of the battery case, and the through hole is hermetically sealed by itself. On the other hand, the metal lid part is welded in the form of dots while pressing the resin plug part while covering the resin plug part from the outside of the battery in order to make the sealing with the resin plug part more reliable. Etc., and joined to the battery case.

特開2009−87659号公報JP 2009-87659 A 特開2008−41548号公報JP 2008-41548 A 特開2005−190689号公報JP 2005-190689 A 特開2001−313022号公報JP 2001-313022 A

特許文献1〜4に記載の密閉型電池では、樹脂栓部自身で貫通孔を密栓している。しかしながら、樹脂栓部は、樹脂でできており経時的に劣化するため、樹脂栓部と貫通孔との間の気密性は経時的に低下する。特に、ハイブリッド自動車や電気自動車などの車載用の電池は、例えば10年以上の長期間にわたって使用されるため、この経時劣化による気密性の低下が懸念される。   In the sealed batteries described in Patent Documents 1 to 4, the through hole is sealed with the resin plug part itself. However, since the resin plug portion is made of resin and deteriorates with time, the airtightness between the resin plug portion and the through hole decreases with time. In particular, in-vehicle batteries such as hybrid vehicles and electric vehicles are used over a long period of time, for example, 10 years or more, and there is a concern that the airtightness may decrease due to the deterioration with time.

一方、金属蓋部は、電池ケースに溶接などで接合され、樹脂栓部による封止を確実なものとしている。
しかるに、特許文献1などでは、金属蓋部は電池ケースに、気密に溶接してはいないので、樹脂栓部が経時劣化したときには、そのまま気密性が低下することとなる。
On the other hand, the metal lid part is joined to the battery case by welding or the like to ensure sealing by the resin plug part.
However, in Patent Document 1 and the like, the metal lid portion is not air-tightly welded to the battery case. Therefore, when the resin plug portion deteriorates with time, the air-tightness is lowered as it is.

そこで、樹脂栓部が経時劣化して気密性が低下しても問題がないように、更に金属蓋部を電池ケースに気密に全周溶接などにより接合しておくことが考えられる。
しかしながら、このようにした電池では、製造直後には樹脂栓部がまだ劣化しておらず、樹脂栓部においても気密性が保たれている。このため、もし、金属蓋部と電池ケースとの接合不良による封止不良が生じていたとしても、金属蓋部と電池ケースの間から漏れ出す気体を検知するなどして、金属蓋部の封止不良を検査することができない。
従って、このような構成の電池では、金属蓋部と電池ケースとの間の気密性を確認できなかった。
本発明は、かかる現状に鑑みてなされたものであって、電池ケースの貫通孔を封止する封止部材と電池ケースとの間の気密性を適切に検査できる電池及びその製造方法を提供することを目的とする。
In view of this, it is conceivable that the metal lid portion is further airtightly joined to the battery case by, for example, all-around welding so that there is no problem even if the resin stopper portion deteriorates with time and the airtightness is lowered.
However, in such a battery, the resin plug portion is not yet deteriorated immediately after manufacture, and the airtightness is also maintained in the resin plug portion. For this reason, even if there is a sealing failure due to poor bonding between the metal lid and the battery case, the gas lid is sealed by detecting gas leaking from between the metal lid and the battery case. It is not possible to inspect the stop failure.
Therefore, in the battery having such a configuration, the airtightness between the metal lid portion and the battery case cannot be confirmed.
The present invention has been made in view of the current situation, and provides a battery capable of appropriately inspecting the airtightness between a sealing member for sealing a through hole of a battery case and the battery case, and a method for manufacturing the same. For the purpose.

その態様は、金属からなり、自身の内外を貫通する貫通孔を有する電池ケースと、上記電池ケース内に収容された電極体と、金属からなり、上記貫通孔を外部から覆い、上記電池ケースのうち、上記貫通孔の周縁に位置する貫通孔周縁部に固着して、上記貫通孔を気密に封止する外側封止部材と、上記外側封止部材と上記電池ケースの上記貫通孔周縁部との間の封止空間内に配置され、上記貫通孔に外側から嵌め込んで上記貫通孔を密栓可能でゴム状弾性体からなるゴム状栓体を有する内側封止部材と、上記封止空間内に配置され、記憶されていた第1形状に形状回復された形状記憶材からなる回復後解除部材と、を備える電池の製造方法であって、上記第1形状の記憶を保ちつつ、上記第1形状とは異なる第2形状とされ、形状回復温度以上に昇温させて形状回復させると、上記第1形状の上記回復後解除部材となる部材を、回復前解除部材としたとき、上記内側封止部材の上記ゴム状栓体を外側から上記貫通孔に嵌め込んで、上記貫通孔を密栓すると共に、上記第2形状の上記回復前解除部材を上記第1形状に形状回復させる際の変形によって、上記ゴム状栓体を移動させて、上記ゴム状栓体による上記貫通孔の密栓を解除可能に、上記回復前解除部材を配置する仮封止工程と、上記外側封止部材で、上記貫通孔、上記回復前解除部材、及び、上記内側封止部材を外側から覆い、上記外側封止部材を、上記電池ケースの上記貫通孔周縁部に、気密に固着する固着工程と、上記回復前解除部材を昇温させて、上記第1形状に形状回復させることにより、上記ゴム状栓体を移動させて、上記ゴム状栓体による上記貫通孔の密栓を解除する解除工程と、を備える電池の製造方法である。 The battery case is made of metal and has a through-hole penetrating the inside and outside of the battery case, the electrode body accommodated in the battery case, the metal case covering the through-hole from the outside, and the battery case Among them, an outer sealing member that is fixed to the peripheral edge of the through hole located at the peripheral edge of the through hole and hermetically seals the through hole, the outer sealing member, and the peripheral edge of the through hole of the battery case An inner sealing member having a rubber-like plug body made of a rubber-like elastic body that is fitted in the through-hole and can be tightly plugged into the through-hole, And a post-recovery release member made of a shape memory material whose shape has been restored to the first shape stored in the memory, wherein the first shape while maintaining the memory of the first shape The second shape, which is different from the shape, is below the shape recovery temperature. When the shape is recovered by raising the temperature to the first shape and the member to be the post-recovery release member is a pre-recovery release member, the rubber plug of the inner sealing member is inserted into the through hole from the outside. The rubber-like plug body is moved by the deformation when the shape of the pre-recovery release member of the second shape is restored to the first shape. In the temporary sealing step of disposing the pre-recovery release member so that the sealing plug of the through-hole by the plug body can be released, and the outer sealing member, the through-hole, the pre-recovery release member, and the inner seal The member is covered from the outside, and the outer sealing member is hermetically fixed to the peripheral edge of the through hole of the battery case, and the pre-recovery release member is heated to recover the shape to the first shape. by causing, by moving the rubber stopper A method for producing a battery and a release step for releasing the sealed in the through hole by the rubber-like stopper.

ところで、外側封止部材を貫通孔周縁部に固着するに先立ち、貫通孔を仮封止しておかないと、電池ケース内に注液した電解液が貫通孔周縁部に付着するなど、貫通孔周縁部に汚れが付着して、外側封止部材の固着が適切に行えないなどの不具合を生じるおそれがある。しかるに、この電池の製造方法では、ゴム状栓体を有する内側封止部材で貫通孔を密栓する仮封止工程と、外側封止部材を貫通孔周縁部に気密に固着する固着工程を備える。これにより、内側封止部材のゴム状栓体による貫通孔の密栓(仮封止)を行った状態で、外側封止部材を電池ケースの貫通孔周縁部に、適切に固着することができる。しかも、その後の解除工程で、内側封止部材のゴム状栓体による貫通孔の密栓を解除するので、貫通孔は、ゴム状栓体では封止されず、外側封止部材のみで気密に封止された状態となる。このため、このようにして製造された電池では、その後(出荷前、あるいは出荷後の適宜のタイミングで)、外側封止部材による貫通孔の気密性を適切に検査できる。   By the way, if the through hole is not temporarily sealed before the outer sealing member is fixed to the peripheral portion of the through hole, the electrolyte injected into the battery case adheres to the peripheral portion of the through hole. There is a possibility that the outer peripheral sealing member may not be properly fixed due to dirt attached to the peripheral edge, resulting in a malfunction. However, this battery manufacturing method includes a temporary sealing step in which the through-hole is sealed with an inner sealing member having a rubber-like plug and a fixing step in which the outer sealing member is air-tightly fixed to the peripheral portion of the through-hole. Accordingly, the outer sealing member can be appropriately fixed to the peripheral edge of the through hole of the battery case in a state where the through hole is sealed (temporarily sealed) with the rubber plug of the inner sealing member. In addition, since the sealing plug of the through hole by the rubber plug body of the inner sealing member is released in the subsequent releasing step, the through hole is not sealed by the rubber plug body but is sealed airtight only by the outer sealing member. It will be stopped. For this reason, in the battery manufactured in this way, the airtightness of the through hole by the outer sealing member can be appropriately inspected thereafter (before shipment or at an appropriate timing after shipment).

なお、回復前解除部材とゴム状栓体とは、回復前解除部材の第2形状から第1形状への変形により、結果として、ゴム状栓体を移動させて、ゴム状栓体の貫通孔に対する密栓(仮封止)を解除できる相互の関係(機構)を構成していればよい。
従って、両者を、回復前解除部材の変形により、例えば、ゴム状栓体を貫通孔から抜く方向に持ち上げるなど、ゴム状栓体を直接移動させる関係に構成としても良い。この場合に、回復前解除部材とゴム状栓体とを、別体として構成しても良いし、一体として構成しても良い。
逆に、回復前解除部材とゴム状栓体との間に、他の部材を介在させ、回復前解除部材の変形により、他の部材を移動あるいは変形させ、これによりゴム状栓体を間接的に移動させる構成としても良い。この場合において、回復前解除部材と他の部材とゴム状栓体とを、互いに別体としても良いし、回復前解除部材と他の部材とを一体としても良い、あるいは、他の部材とゴム状栓体とを一体としても良いし、さらには、三者を一体としても良い。
Note that the pre-recovery release member and the rubber-like plug body are formed by moving the rubber-like plug body as a result of the deformation of the pre-recovery release member from the second shape to the first shape, so that the through-hole of the rubber-like plug body What is necessary is just to comprise the mutual relationship (mechanism) which can cancel | release the sealing plug (temporary sealing) with respect to.
Therefore, both may be configured such that the rubber-like plug body is directly moved by, for example, lifting the rubber-like plug body in the direction of pulling out from the through hole by deformation of the release member before recovery. In this case, the pre-recovery release member and the rubber plug may be configured separately or may be configured as a single unit.
Conversely, another member is interposed between the pre-recovery release member and the rubber plug, and the other member is moved or deformed by deformation of the pre-recovery release member, thereby indirectly connecting the rubber plug. It is good also as a structure moved to. In this case, the pre-recovery release member, the other member, and the rubber plug may be separated from each other, the pre-recovery release member and the other member may be integrated, or another member and the rubber. The plug member may be integrated, or further, the three members may be integrated.

ゴム状栓体の材質としては、例えば、ゴム状弾性体であるエチレンプロピレンジエンゴム(EPDM)、エチレンプロピレンジエンゴム(EPDM)に熱可塑性樹脂であるポリプロピレン(PP)を混合した樹脂が挙げられる。   Examples of the material of the rubber plug include ethylene propylene diene rubber (EPDM), which is a rubber-like elastic body, and resins obtained by mixing polypropylene (PP), which is a thermoplastic resin, with ethylene propylene diene rubber (EPDM).

回復前解除部材及び回復後解除部材(以下、両者を総合して呼ぶときは、単に「解除部材」とも言う)は、形状回復温度以上とすることで形状回復する形状記憶材からなる。具体的には、例えば、ポリウレタン、ポリノルボルネンなどからなる形状記憶樹脂で構成したものが挙げられる。なお、形状記憶樹脂では、ガラス転移温度が形状回復温度に相当する。解除部材を構成する形状記憶樹脂としては、形状回復温度であるガラス転移温度が、30〜75℃のものを選択するのが好ましい。ガラス転移温度が、常温(20〜25℃)よりも高温であるため、常温では形状回復しない一方、容易にガラス転移温度以上に昇温させて形状回復させうるからである。
その他に、解除部材を構成する形状記憶材としては、例えば、ニッケル・チタン合金、鉄・マンガン・ケイ素合金などの形状記憶合金が挙げられる。なお、形状記憶合金では、変態点が形状回復温度に相当する。形状記憶合金からなる解除部材を用いる場合も、形状記憶樹脂と同様、形状回復温度である変態点が、30〜75℃のものが好ましい。
また、解除部材は、ゴム状栓体等と前述の関係を有するほか、電池ケースの貫通孔周縁部と別体に構成したものも、一体に形成されたものも採用しうる。
The pre-recovery release member and the post-recovery release member (hereinafter also referred to simply as “release member” when collectively referred to as both) are made of a shape memory material that recovers its shape by setting it to a shape recovery temperature or higher. Specifically, for example, those composed of a shape memory resin made of polyurethane, polynorbornene or the like can be mentioned. In the shape memory resin, the glass transition temperature corresponds to the shape recovery temperature. As the shape memory resin constituting the release member, it is preferable to select one having a glass transition temperature which is a shape recovery temperature of 30 to 75 ° C. This is because the glass transition temperature is higher than room temperature (20 to 25 ° C.), and thus the shape does not recover at room temperature, while the shape can be recovered easily by raising the temperature to the glass transition temperature or higher.
In addition, examples of the shape memory material constituting the release member include shape memory alloys such as nickel / titanium alloys and iron / manganese / silicon alloys. In the shape memory alloy, the transformation point corresponds to the shape recovery temperature. Even when a release member made of a shape memory alloy is used, it is preferable that the transformation point that is the shape recovery temperature is 30 to 75 ° C. as in the case of the shape memory resin.
In addition to the above-described relationship with the rubber plug and the like, the release member may be configured separately from the peripheral portion of the through hole of the battery case, or may be formed integrally.

外側封止部材を電池ケースの貫通孔周縁部に、気密に固着する手法としては、例えば、溶接、ロウ接(ハンダ付け)、接着剤での接着、巻き締めなどの加締めなどの手法が挙げられる。   Examples of a method for airtightly fixing the outer sealing member to the periphery of the through hole of the battery case include methods such as welding, brazing (soldering), bonding with an adhesive, and crimping such as winding. It is done.

また、解除工程において、回復前解除部材を形状回復温度以上に昇温させる手法としては、電池ケース(電池)全体を所定の高温とした恒温槽に投入するなどして、電池ケース及び外側封止部材を含めて、回復前解除部材を形状回復温度以上に昇温させる手法が挙げられる。そのほか、外側封止部材及び電池ケースのうちその付近を、熱板に接触させたり、赤外線ヒータの赤外線を輻射したりして、集中して暖めて、回復前解除部材を形状回復温度以上に昇温させる手法も挙げられる。   Further, in the releasing step, as a method of raising the temperature of the releasing member before recovery to the shape recovery temperature or more, the battery case and the outer sealing are performed by putting the entire battery case (battery) into a constant temperature bath having a predetermined high temperature. A method of raising the temperature of the pre-recovery release member, including the member, to a shape recovery temperature or higher can be mentioned. In addition, the outer sealing member and the battery case in the vicinity thereof are brought into contact with a hot plate or radiated with infrared rays from an infrared heater to warm them intensively, and the pre-recovery release member is raised above the shape recovery temperature. There is also a method of heating.

更に、上述の電池の製造方法であって、前記解除工程の後に、前記外側封止部材と前記電池ケースの前記貫通孔周縁部との間の気密性を検査する、気密検査工程を備える電池の製造方法とすると良い。   Furthermore, in the battery manufacturing method described above, the battery includes an airtight inspection step of inspecting airtightness between the outer sealing member and the peripheral edge of the through hole of the battery case after the releasing step. A manufacturing method is preferable.

この電池の製造方法では、製造段階において、解除工程の後に、外側封止部材と電池ケースの貫通孔周縁部との間の気密性を検査するので、外側封止部材と電池ケースとの気密性を確認した電池を製造できる。   In this battery manufacturing method, since the airtightness between the outer sealing member and the peripheral edge of the through hole of the battery case is inspected after the release step in the manufacturing stage, the airtightness between the outer sealing member and the battery case is checked. Can be manufactured.

なお、気密検査工程における検査手法としては、外側封止部材と電池ケースの貫通孔周縁部との間に求める気密性を検査しうる手法を採用すればよい。例えば、電池を真空チャンバ内に置いて、真空チャンバ内を減圧し、外側封止部材の近傍に、水素ガス検知器を設置して、外側封止部材と電池ケースとの封止が不十分な場合に、電池ケースから漏出する水素ガスを検知する手法が挙げられる。   As an inspection method in the airtight inspection process, a method that can inspect the airtightness required between the outer sealing member and the peripheral edge of the through hole of the battery case may be employed. For example, a battery is placed in a vacuum chamber, the inside of the vacuum chamber is decompressed, a hydrogen gas detector is installed in the vicinity of the outer sealing member, and sealing between the outer sealing member and the battery case is insufficient. In some cases, there is a technique for detecting hydrogen gas leaking from the battery case.

更に、上述の電池の製造方法であって、前記第2形状を有する前記回復前解除部材は、その内径が前記貫通孔よりも径大な筒状であり、前記第1形状を有する前記回復後解除部材は、その内径が上記貫通孔よりも径大な筒状で、その高さが上記第2形状の高さよりも高くされてなり、前記内側封止部材は、前記ゴム状栓体と一体とされた金属板を有し、上記金属板の栓体形成面のうち、周縁部よりも内側の中央部から上記ゴム状栓体が突出する形態とされてなり、前記仮封止工程は、筒状の上記回復前解除部材を、その一方端が前記電池ケースの前記貫通孔周縁部に当接し、かつ、その内側に上記貫通孔が位置する形態に配置し、上記回復前解除部材内及び上記貫通孔内に、上記内側封止部材の上記ゴム状栓体を挿通し、上記貫通孔を密栓すると共に、上記回復前解除部材の他方端に、上記金属板の栓体形成面の上記周縁部を当接させる工程であり、前記解除工程は、上記回復前解除部材を上記第1形状に形状回復させ、上記ゴム状栓体を上記貫通孔から抜去する方向に上記金属板及び上記ゴム状栓体を移動させて、上記ゴム状栓体による上記貫通孔の密栓を解除する工程である電池の製造方法とすると良い。   Furthermore, in the battery manufacturing method described above, the pre-recovery release member having the second shape has a cylindrical shape whose inner diameter is larger than the through hole, and the post-recovery having the first shape. The release member has a cylindrical shape whose inner diameter is larger than that of the through hole, and the height thereof is higher than the height of the second shape. The inner sealing member is integrated with the rubber plug. The rubber plate has a form protruding from the center portion inside the peripheral edge portion of the plug forming surface of the metal plate, and the temporary sealing step The cylindrical release member before recovery is arranged in such a form that one end thereof is in contact with the peripheral edge of the through hole of the battery case and the through hole is located inside thereof, and the inside of the release member before recovery and The rubber plug of the inner sealing member is inserted into the through hole, and the through hole is sealed. In addition, the peripheral portion of the plug forming surface of the metal plate is brought into contact with the other end of the pre-recovery release member, and the release step recovers the pre-recovery release member to the first shape. The battery is a step of releasing the sealing plug of the through hole by the rubber plug by moving the metal plate and the rubber plug in the direction of removing the rubber plug from the through hole. It would be better to do it.

この電池の製造方法では、筒状の解除部材を貫通孔周縁に配置すればよく、解除部材の配置が簡単である。
また、内側封止部材は、ゴム状栓体と一体とされた金属板を有しており、回復後解除部材が変形すると、金属板を押し上げる。これにより、簡単な構造で、内側封止部材のゴム状栓体による貫通孔の密栓を確実に解除できる。
In this battery manufacturing method, a cylindrical release member may be arranged on the periphery of the through hole, and the arrangement of the release member is simple.
Further, the inner sealing member has a metal plate integrated with the rubber plug, and when the release member is deformed after recovery, the inner sealing member pushes up the metal plate. Thereby, with a simple structure, the sealing plug of the through hole by the rubber plug of the inner sealing member can be reliably released.

更に、上述の電池の製造方法であって、前記仮封止工程は、大気圧より低い気圧とした減圧下で、前記内側封止部材の前記ゴム状栓体で前記貫通孔を密栓する工程である電池の製造方法とすると良い。   Furthermore, in the battery manufacturing method described above, the temporary sealing step is a step of sealing the through hole with the rubber plug of the inner sealing member under a reduced pressure that is lower than atmospheric pressure. A method of manufacturing a battery is preferable.

この電池の製造方法では、仮封止工程において、内側封止部材のゴム状栓体による貫通孔の密栓を減圧下で行う。これにより、電池ケース内の減圧状態をその後も維持することができる。このため、その後のコンディショニング(初期充放電)やその後の使用において電池ケース内にガスが発生しても、電池ケース内の内圧が早期に高くなるのを抑制できる。   In this battery manufacturing method, in the temporary sealing step, the through hole is sealed with a rubber plug of the inner sealing member under reduced pressure. Thereby, the pressure-reduced state in a battery case can be maintained after that. For this reason, even if gas is generated in the battery case in the subsequent conditioning (initial charge / discharge) or subsequent use, it is possible to suppress the internal pressure in the battery case from increasing quickly.

更に、上述の電池の製造方法であって、前記貫通孔は、前記電池ケース内に、電解液を注入する注液孔であり、前記仮封止工程は、上記注液孔を通じて、上記電解液を注入する注液工程の後に行う電池の製造方法とすると良い。   Furthermore, in the battery manufacturing method described above, the through hole is a liquid injection hole for injecting an electrolytic solution into the battery case, and the temporary sealing step is performed through the liquid injection hole. It is preferable to use a method for manufacturing a battery after the liquid injection step of injecting the liquid.

この電池の製造方法では、仮封止工程を電解液を注液した後に行うことで、その後の工程で電解液が漏れ出るなどして、貫通孔周縁部に電解液が付着したために、外側封止部材の固着が適切に行えない不具合が生じることを防止することができる。   In this battery manufacturing method, the temporary sealing step is performed after the electrolyte solution is injected, and the electrolyte solution leaks out in the subsequent steps, and the electrolyte solution adheres to the peripheral edge of the through hole. It is possible to prevent a problem that the fixing member cannot be properly fixed.

他の態様は、金属からなり、自身の内外を貫通する貫通孔を有する電池ケースと、上記電池ケース内に収容された電極体と、金属からなり、上記貫通孔を外部から覆い、上記電池ケースのうち、上記貫通孔の周縁に位置する貫通孔周縁部に固着して、上記貫通孔を気密に封止する外側封止部材と、上記外側封止部材と上記電池ケースの上記貫通孔周縁部との間の封止空間内に配置され、上記貫通孔に外側から嵌め込んで上記貫通孔を密栓可能なゴム状弾性体からなるゴム状栓体を有する内側封止部材と、上記封止空間内に配置され、第1形状を有した形状記憶材からなる回復後解除部材と、を備える電池であって、上記内側封止部材の上記ゴム状栓体は、上記貫通孔に外側から嵌め込まれて上記貫通孔を密栓し、上記外側封止部材を固着した後の上記第1形状への形状回復に伴う上記回復後解除部材の変形で、上記貫通孔の密栓を解除されてなる電池である。   Another aspect is a battery case made of metal and having a through-hole penetrating inside and outside of the battery case, an electrode body housed in the battery case, and made of metal, covering the through-hole from the outside, and the battery case An outer sealing member that is firmly attached to a peripheral portion of the through hole located at a peripheral edge of the through hole and hermetically seals the through hole, and a peripheral portion of the through hole of the battery case and the outer sealing member. An inner sealing member having a rubber-like plug body made of a rubber-like elastic body, which is disposed in a sealing space between the outer circumference and can be fitted into the through-hole from the outside to seal the through-hole, and the sealing space And a post-recovery release member made of a shape memory material having a first shape, wherein the rubber plug of the inner sealing member is fitted into the through hole from the outside. The through hole is sealed and the outer sealing member is fixed. In variations of the above recovery after releasing member with the shape recovery of the to the first shape, a battery formed by releasing the sealed in the through hole.

この電池では、外側封止部材を固着した後の回復後解除部材の変形により、ゴム状栓体による貫通孔の密栓が解除されている。このため、外側封止部材の固着前に電解液などが、貫通孔周縁部に付着することによる外側封止部材の固着不良が生じにくい。しかも、外側封止部材の固着後に、ゴム状栓体による密栓が解除されているので、この電池は、外側封止部材による封止の気密性の検査を適切に行うことができる。   In this battery, the sealing plug of the through hole by the rubber plug is released by the deformation of the release member after recovery after fixing the outer sealing member. For this reason, the fixing failure of the outer sealing member due to the electrolytic solution or the like adhering to the peripheral edge of the through hole before the outer sealing member is fixed is unlikely to occur. Moreover, since the sealing plug by the rubber plug is released after the outer sealing member is fixed, this battery can appropriately perform the airtightness inspection of the sealing by the outer sealing member.

実施形態1に係るリチウムイオン二次電池を示す縦断面図である。1 is a longitudinal sectional view showing a lithium ion secondary battery according to Embodiment 1. FIG. 実施形態1に係り、ゴム状栓体と一体とされた金属板を有する内側封止部材の縦断面図である。It is a longitudinal cross-sectional view of the inner side sealing member which concerns on Embodiment 1 and has a metal plate integrated with the rubber-like stopper. 実施形態1に係り、(a)回復前解除部材及び(b)回復後解除部材の縦断面図である。It is a longitudinal cross-sectional view concerning Embodiment 1, (a) Release member before recovery, and (b) Release member after recovery. 実施形態1に係り、仮封止工程後の貫通孔の封止状態を示す縦断面図である。It is a longitudinal cross-sectional view which concerns on Embodiment 1 and shows the sealing state of the through-hole after a temporary sealing process. 実施形態1に係り、固着工程後の貫通孔の封止状態を示す縦断面図である。It is a longitudinal cross-sectional view which concerns on Embodiment 1 and shows the sealing state of the through-hole after the adhering process. 変形形態1に係り、解除工程後の貫通孔の封止状態を示す縦断面図である。It is a longitudinal cross-sectional view which concerns on the modification 1 and shows the sealing state of the through-hole after a cancellation | release process. 実施形態2に係るハイブリッド自動車を示す説明図である。FIG. 6 is an explanatory diagram showing a hybrid vehicle according to a second embodiment. 実施形態3に係るハンマードリルを示す説明図である。It is explanatory drawing which shows the hammer drill which concerns on Embodiment 3. FIG.

(実施形態1)
以下、本発明の実施の形態を、図面を参照しつつ説明する。図1に、本実施形態1に係るリチウムイオン二次電池(密閉型電池)1(以下、単に電池1とも言う)を示す。また、図4〜図6に、貫通孔12H(注液孔)の封止構造を示す(製造過程における状態を含む)。なお、本明細書では、図1及び図4〜図6における上方を電池1の上側UW、下方を電池1の下側DWとして説明する。
(Embodiment 1)
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows a lithium ion secondary battery (sealed battery) 1 (hereinafter also simply referred to as battery 1) according to the first embodiment. Moreover, FIGS. 4-6 shows the sealing structure of the through-hole 12H (injection hole) (including the state in a manufacturing process). In the present specification, the upper side in FIG. 1 and FIGS. 4 to 6 is described as the upper side UW of the battery 1, and the lower side is described as the lower side DW of the battery 1.

この電池1は、ハイブリッド自動車や電気自動車等の車両や、ハンマードリル等の電池使用機器に搭載される角型電池である。この電池1は、直方体形状の電池ケース10、この電池ケース10内に収容された捲回型の電極体20、電池ケース10に支持された正極端子40及び負極端子41等から構成されている(図1参照)。また、電池ケース10内には、非水系の電解液17が保持されている。   The battery 1 is a prismatic battery mounted on a vehicle such as a hybrid vehicle or an electric vehicle, or a battery-powered device such as a hammer drill. The battery 1 includes a rectangular parallelepiped battery case 10, a wound electrode body 20 accommodated in the battery case 10, a positive terminal 40 and a negative terminal 41 supported by the battery case 10 ( (See FIG. 1). Further, a non-aqueous electrolyte solution 17 is held in the battery case 10.

このうち電池ケース10は、金属(本実施形態1ではアルミニウム)により構成されている。この電池ケース10は、上側UWのみが開口した直方体箱状のケース本体部材11と、このケース本体部材11の開口11Hを閉塞する形態で溶接された矩形板状のケース蓋部材12とから構成されている。   Of these, the battery case 10 is made of metal (aluminum in the first embodiment). The battery case 10 includes a rectangular parallelepiped box-shaped case main body member 11 in which only the upper UW is opened, and a rectangular plate-shaped case cover member 12 welded in a form for closing the opening 11H of the case main body member 11. ing.

ケース蓋部材12には、電池ケース10の内圧が所定圧力に達した際に破断する安全弁15が設けられている。また、このケース蓋部材12には、電池ケース10の内外を連通する貫通孔12H(注液孔)が設けられている。この貫通孔12Hは、外側封止部材50で気密に封止されている。   The case lid member 12 is provided with a safety valve 15 that is broken when the internal pressure of the battery case 10 reaches a predetermined pressure. Further, the case lid member 12 is provided with a through hole 12H (liquid injection hole) that communicates the inside and outside of the battery case 10. The through hole 12H is hermetically sealed by the outer sealing member 50.

また、ケース蓋部材12には、それぞれ延出端子部材42とボルト43により構成される正極端子40及び負極端子41が、樹脂からなる絶縁部材44を介して固設されている。電池ケース10内において、正極端子40は電極体20の正極板21(その正極集電部21m)に接続され、負極端子41は電極体20の負極板31(その負極集電部31m)に接続されている。   Further, the case lid member 12 is fixedly provided with a positive electrode terminal 40 and a negative electrode terminal 41 each constituted by an extended terminal member 42 and a bolt 43 via an insulating member 44 made of resin. In the battery case 10, the positive electrode terminal 40 is connected to the positive electrode plate 21 (the positive electrode current collector 21 m) of the electrode body 20, and the negative electrode terminal 41 is connected to the negative electrode plate 31 (the negative electrode current collector 31 m) of the electrode body 20. Has been.

次に、電極体20について説明する。この電極体20は、絶縁フィルムを上側UWのみが開口した袋状に形成した絶縁フィルム包囲体16内に収容され、横倒しにした状態で電池ケース10内に収容されている。この電極体20は、帯状の正極板21と帯状の負極板31とを、帯状のセパレータ34を介して互いに重ねて捲回し、扁平状に圧縮したものである。   Next, the electrode body 20 will be described. The electrode body 20 is accommodated in the insulating film enclosure 16 formed in a bag shape in which only the upper UW is opened, and is accommodated in the battery case 10 in a laid state. This electrode body 20 is obtained by winding a belt-like positive electrode plate 21 and a belt-like negative electrode plate 31 on each other via a belt-like separator 34 and compressing them in a flat shape.

正極板21は、芯材として、帯状のアルミニウム箔からなる正極集電箔22を有する。この正極集電箔22の両主面のうち、幅方向の一部でかつ長手方向に延びる領域上には、正極活物質層23が帯状に設けられている。この正極活物質層23は、正極活物質、導電剤及び結着剤から形成されている。また、正極集電箔22のうち、幅方向の片方の端部は、自身の厚み方向に正極活物質層23が存在しない正極集電部21mとなっており、この正極集電部21mは、前述の正極端子40と接続している。   The positive electrode plate 21 has a positive electrode current collector foil 22 made of a strip-shaped aluminum foil as a core material. A positive electrode active material layer 23 is provided in a strip shape on a region extending in the longitudinal direction in a part of the width direction of both main surfaces of the positive electrode current collector foil 22. The positive electrode active material layer 23 is formed of a positive electrode active material, a conductive agent, and a binder. In addition, one end in the width direction of the positive electrode current collector foil 22 is a positive electrode current collector part 21m in which the positive electrode active material layer 23 does not exist in the thickness direction of the positive electrode current collector foil 22, The positive electrode terminal 40 is connected.

また、負極板31は、芯材として、帯状の銅箔からなる負極集電箔32を有する。この負極集電箔32の両主面のうち、幅方向の一部でかつ長手方向に延びる領域上には、負極活物質層33が帯状に設けられている。この負極活物質層33は、負極活物質、結着剤及び増粘剤から形成されている。また、負極集電箔32のうち、幅方向の片方の端部は、自身の厚み方向に負極活物質層33が存在しない負極集電部31mとなっており、この負極集電部31mは、前述の負極端子41と接続している。   Moreover, the negative electrode plate 31 has the negative electrode current collection foil 32 which consists of strip | belt-shaped copper foil as a core material. On both main surfaces of the negative electrode current collector foil 32, a negative electrode active material layer 33 is provided in a band shape on a region extending in the longitudinal direction and part of the width direction. The negative electrode active material layer 33 is formed of a negative electrode active material, a binder, and a thickener. In addition, one end in the width direction of the negative electrode current collector foil 32 is a negative electrode current collector 31m in which the negative electrode active material layer 33 does not exist in the thickness direction of the negative electrode current collector foil 32. The negative electrode terminal 41 is connected.

また、セパレータ34は、樹脂、具体的にはポリプロピレン(PP)とポリエチレン(PE)からなる多孔質膜であり、帯状をなす。   The separator 34 is a porous film made of resin, specifically, polypropylene (PP) and polyethylene (PE), and has a strip shape.

次に、貫通孔12H(注液孔)の封止構造について説明する。先に説明したように、ケース蓋部材12には、電池ケース10の内外を連通する貫通孔12H(注液孔)が設けられている。そして、この貫通孔12Hは、外側封止部材50で気密に封止されている。   Next, the sealing structure of the through hole 12H (injection hole) will be described. As described above, the case lid member 12 is provided with a through hole 12H (a liquid injection hole) that communicates the inside and the outside of the battery case 10. The through hole 12H is hermetically sealed with the outer sealing member 50.

図6に示すように、外側封止部材50は、金属、具体的には、電池ケース10(ケース蓋部材12)と同じ材質のアルミニウムからなり、上底部50aが平坦な円板状とされ、その周囲に連なって下方ほど拡がるテーパ状の側部50bとで、円錐台形の蓋形をなしている。さらに側部50bの下部には、これに円環状に連なって電池ケース10(ケース蓋部材12)に当接する鍔部50cを有している。そして、この外側封止部材50は、電池ケース10(ケース蓋部材12)のうち、貫通孔12Hの周縁に位置する貫通孔周縁部12cに、ケース外側から、その鍔部50cの周囲全体を溶接することにより、溶接部51で固着されて、貫通孔12Hを気密に封止している。
また、この外側封止部材50と電池ケース10(ケース蓋部材12)の貫通孔周縁部12cとの間の封止空間SS内には、内側封止部材60と回復後解除部材70が配置されている。
As shown in FIG. 6, the outer sealing member 50 is made of metal, specifically, aluminum of the same material as the battery case 10 (case cover member 12), and the upper bottom portion 50a has a flat disk shape. The tapered side part 50b that extends continuously downward from the periphery forms a frustoconical lid. Furthermore, the lower part of the side part 50b has the collar part 50c which contacts the battery case 10 (case cover member 12) in an annular shape. And this outer side sealing member 50 welds the circumference | surroundings of the collar part 50c from the case outer side to the through-hole peripheral part 12c located in the peripheral part of the through-hole 12H among battery case 10 (case cover member 12). As a result, the through hole 12H is hermetically sealed by being fixed by the weld 51.
In addition, an inner sealing member 60 and a post-recovery release member 70 are disposed in a sealing space SS between the outer sealing member 50 and the through-hole peripheral portion 12c of the battery case 10 (case lid member 12). ing.

そのうち、内側封止部材60は、図2に示すように、ゴム状弾性体、具体的には、エチレンプロピレンジエンゴム(EPDM)に熱可塑性樹脂であるポリプロピレン(PP)を混合した樹脂からなるゴム状栓体62と、これと一体とされたアルミニウムからなる円形の金属板61を有する。そして、金属板61の栓体形成面61a(図2中、下向きの面)のうち、環状の周縁部61cよりも内側の中央部61bからゴム状栓体62が突出する形態となっている。このゴム状栓体62は、貫通孔12Hよりも外径及び内径が大きくされた環状をなし、電池ケース10(ケース蓋部材12)に当接して圧縮される部位となる環状圧接部62aと、この環状圧接部62aの内側から図中下方に突出した円錐台形状をなし、貫通孔12H内に挿通される部位となる挿入部62bとからなり、これらが一体に繋がったものである。ここで、挿入部62bは、その先端部が、貫通孔12Hの径よりも小さくされる一方、その基端部は、貫通孔12Hの径よりも大きくされている。そして、このゴム状栓体62の挿入部62bを、貫通孔12Hに外側から嵌め込んで貫通孔12H内に圧入し、挿入部62bの側面の一部を貫通孔12Hの内周面に密接させると共に、環状圧接部62aを電池ケース10(ケース蓋部材12)の貫通孔周縁部12cに圧接させることで、貫通孔12Hを密栓可能な形態とされている。   Among them, as shown in FIG. 2, the inner sealing member 60 is a rubber-like elastic body, specifically, a rubber made of a resin obtained by mixing polypropylene (PP) which is a thermoplastic resin with ethylene propylene diene rubber (EPDM). And a circular metal plate 61 made of aluminum integrated with the plug member 62. And the rubber-like plug body 62 protrudes from the center part 61b inside the annular peripheral edge part 61c in the plug body forming surface 61a (the downward surface in FIG. 2) of the metal plate 61. This rubber-like plug body 62 has an annular shape whose outer diameter and inner diameter are larger than the through hole 12H, and an annular pressure contact portion 62a that becomes a portion compressed against the battery case 10 (case lid member 12); The circular pressure contact portion 62a has a truncated cone shape that protrudes downward in the figure, and includes an insertion portion 62b that is a portion that is inserted into the through hole 12H, and these are integrally connected. Here, the insertion portion 62b has a distal end portion made smaller than the diameter of the through hole 12H, and a proximal end portion made larger than the diameter of the through hole 12H. Then, the insertion portion 62b of the rubber plug 62 is fitted into the through hole 12H from the outside and press-fitted into the through hole 12H, and a part of the side surface of the insertion portion 62b is brought into close contact with the inner peripheral surface of the through hole 12H. At the same time, the annular pressure contact portion 62a is brought into pressure contact with the through hole peripheral edge portion 12c of the battery case 10 (case lid member 12) so that the through hole 12H can be sealed.

また、回復後解除部材70は、図3に示すように、形状記憶樹脂からなり、記憶されていた第1形状K1に形状回復されたものである。一方、この第1形状K1の記憶を保ちつつ、第1形状K1とは異なる第2形状K2とされ、形状回復温度であるガラス転移温度Tg以上に昇温させて形状回復させると、第1形状K1の回復後解除部材70となる部材を、回復前解除部材80とする。この第2形状K2を有する回復前解除部材80は、筒状で、その内径R2が貫通孔12Hよりも径大で、さらにゴム状栓体62の環状圧接部62aの外径よりも径大とされている(図3(a)参照)。一方の第1形状K1を有する回復後解除部材70も、同じく筒状で、その内径R1が貫通孔12Hよりも径大で、さらにゴム状栓体62の環状圧接部62aの外径よりも径大とされている。但し、その高さH1は、第2形状K2の高さH2よりも高くなっている(図3(b)参照)。
すなわち、回復後解除部材70は、第2形状K2から第1形状K1への形状回復に伴う変形で、その高さがH2からH1へと高くなるものである。
なお、本実施形態では、回復後解除部材70及び回復前解除部材80を形成する形状記憶樹脂として、SMPテクノロジーズ社製のポリウレタン系形状記憶ポリマー「ダイアリィ」MM−4500(ガラス転移温度Tg=30℃)を用いた。
Further, as shown in FIG. 3, the post-recovery release member 70 is made of a shape memory resin, and has its shape recovered to the stored first shape K1. On the other hand, while maintaining the memory of the first shape K1, the second shape K2 is different from the first shape K1, and when the shape is recovered by raising the temperature to the glass transition temperature Tg or higher, which is the shape recovery temperature, the first shape A member that becomes the release member 70 after recovery of K1 is a release member 80 before recovery. The pre-recovery release member 80 having the second shape K2 has a cylindrical shape, and its inner diameter R2 is larger than the through hole 12H and larger than the outer diameter of the annular pressure contact portion 62a of the rubber plug 62. (See FIG. 3A). The post-recovery release member 70 having one of the first shapes K1 is also cylindrical, and its inner diameter R1 is larger than the through hole 12H, and further has a diameter larger than the outer diameter of the annular pressure contact portion 62a of the rubber plug 62. It is considered large. However, the height H1 is higher than the height H2 of the second shape K2 (see FIG. 3B).
That is, the post-recovery release member 70 is deformed along with the shape recovery from the second shape K2 to the first shape K1, and its height increases from H2 to H1.
In this embodiment, as a shape memory resin for forming the post-recovery release member 70 and the pre-recovery release member 80, polyurethane-based shape memory polymer “Diary” MM-4500 (glass transition temperature Tg = 30 ° C.) manufactured by SMP Technologies. ) Was used.

そして、封止空間SS内に配置された内側封止部材60のゴム状栓体62は、後述するように、外側封止部材50を固着する前には、貫通孔12Hに外側から嵌め込まれて貫通孔12Hを密栓していた。しかし、外側封止部材50を固着した後に、回復後解除部材70を第1形状K1へと形状回復させることで、この回復後解除部材70で、内側封止部材60の金属板61及びこれと一体となったゴム状栓体62を押し上げて、ゴム状栓体62による貫通孔12Hの密栓を解除したものとなっている(図6参照)。
このように、この電池1では、外側封止部材50の固着後に、回復後解除部材70により、ゴム状栓体62による貫通孔12Hの密栓が解除されている。このため、貫通孔12Hの気密性は、外側封止部材50のみによって保たれている。
The rubber plug 62 of the inner sealing member 60 disposed in the sealing space SS is fitted from the outside into the through hole 12H before the outer sealing member 50 is fixed, as will be described later. The through hole 12H was sealed. However, after fixing the outer sealing member 50, the post-recovery release member 70 is restored to the first shape K1, so that the post-recovery release member 70 uses the metal plate 61 of the inner sealing member 60 and the same. The integrated rubber plug 62 is pushed up to release the sealing plug of the through hole 12H by the rubber plug 62 (see FIG. 6).
As described above, in the battery 1, after the outer sealing member 50 is fixed, the sealing plug of the through hole 12 </ b> H by the rubber-like plug body 62 is released by the post-recovery release member 70. For this reason, the airtightness of the through-hole 12 </ b> H is maintained only by the outer sealing member 50.

なお、本実施形態では、電池ケース10(ケース蓋部材12)の貫通孔周縁部12cのうち、溶接部51により外側封止部材50が固着された外側部位12c2は、内側封止部材60及び回復後解除部材70が配置された内側部位12c1よりも、貫通孔12Hから見て一回り外側に位置している。そして、貫通孔12H近傍である内側部位12c1は、ケース蓋部材12の厚さが部分的に薄くされて、それよりも外側に位置する外側部位12c2よりも一段低くなっており、両者の間には、段差を有している。これにより、回復後解除部材70及び内側封止部材60を配置しやすくすると共に、外側封止部材50の高さを抑えつつ、外側封止部材50(上底部50a,側面部50b)と内側封止部材60の金属板61との間の距離を稼ぐことができる。但し、電池ケース10(ケース蓋部材12)の貫通孔周縁部12cは、必ずしも、このように段差を有する形態である必要はなく、例えば、平板状の貫通孔周縁部に、単に貫通孔を穿孔した形態でも良い。   In the present embodiment, of the through hole peripheral portion 12c of the battery case 10 (case lid member 12), the outer portion 12c2 to which the outer sealing member 50 is secured by the welded portion 51 is the inner sealing member 60 and the recovery. It is located slightly outside of the inner portion 12c1 where the rear release member 70 is disposed as viewed from the through hole 12H. The inner portion 12c1 in the vicinity of the through hole 12H has the case cover member 12 partially made thinner, and is one step lower than the outer portion 12c2 positioned outside the case lid member 12b. Has a step. As a result, the post-recovery release member 70 and the inner sealing member 60 can be easily arranged, and the height of the outer sealing member 50 is suppressed, while the outer sealing member 50 (upper bottom portion 50a, side surface portion 50b) and the inner sealing member are sealed. The distance between the metal plate 61 of the stop member 60 can be earned. However, the through hole peripheral portion 12c of the battery case 10 (case lid member 12) does not necessarily have such a stepped shape. For example, a through hole is simply drilled in a flat plate through hole peripheral portion. It may be in the form.

次いで、本実施形態1に係る電池1の製造方法について説明する。まず、別途形成した帯状の正極板21及び負極板31を、帯状のセパレータ34を介して互いに重ね、円筒状の巻き芯を用いて捲回する。その後、これを扁平状に圧縮して電極体20を形成する。   Next, a method for manufacturing the battery 1 according to the first embodiment will be described. First, the separately formed belt-like positive electrode plate 21 and negative electrode plate 31 are overlapped with each other via a belt-like separator 34 and wound using a cylindrical winding core. Thereafter, the electrode body 20 is formed by compressing it into a flat shape.

一方、安全弁15及び貫通孔12H等を形成したケース蓋部材12と、延出端子部材42及びボルト43とを用意し、射出成形により絶縁部材44を形成して、ケース蓋部材12に正極端子40及び負極端子41を固設しておく。   On the other hand, the case lid member 12 having the safety valve 15 and the through-hole 12H formed therein, the extended terminal member 42 and the bolt 43 are prepared, the insulating member 44 is formed by injection molding, and the positive electrode terminal 40 is formed on the case lid member 12. The negative terminal 41 is fixed.

次に、正極端子40と電極体20の正極集電部21mとを接続(溶接)する。また、負極端子41と電極体20の負極集電部31mとを接続(溶接)する。その後、ケース本体部材11及び絶縁フィルム包囲体16を用意し、ケース本体部材11内に絶縁フィルム包囲体16を介して電極体20を収容すると共に、ケース本体部材11の開口11Hをケース蓋部材12で塞ぐ。そして、レーザ溶接により、ケース本体部材11とケース蓋部材12とを溶接して、電池ケース10を形成する(図1参照)。
また別途、外側封止部材50、内側封止部材60、及び第2形状K2とされた筒状の回復前解除部材80を用意しておく。
Next, the positive electrode terminal 40 and the positive electrode current collector 21m of the electrode body 20 are connected (welded). Further, the negative electrode terminal 41 and the negative electrode current collector 31m of the electrode body 20 are connected (welded). Then, the case main body member 11 and the insulating film enclosure 16 are prepared, and the electrode body 20 is accommodated in the case main body 11 via the insulating film enclosure 16, and the opening 11H of the case main body member 11 is provided with the case lid member 12. Close with. Then, the case body member 11 and the case lid member 12 are welded by laser welding to form the battery case 10 (see FIG. 1).
Separately, an outer sealing member 50, an inner sealing member 60, and a cylindrical pre-recovery release member 80 having a second shape K2 are prepared.

次に、前述の電池を、真空チャンバ内に入れて、真空チャンバ内を減圧する。そして、注液工程において、注液用ノズルを貫通孔12H内に挿入して、注液用ノズルから電池ケース10内に電解液17を注液する。   Next, the aforementioned battery is placed in a vacuum chamber, and the inside of the vacuum chamber is decompressed. In the liquid injection process, a liquid injection nozzle is inserted into the through hole 12H, and the electrolytic solution 17 is injected into the battery case 10 from the liquid injection nozzle.

次に、真空チャンバ内の減圧下で、内側封止部材60のゴム状栓体62で貫通孔12Hを仮封止する(図4参照)。この仮封止工程では、まず、筒状の回復前解除部材80を、その一方端81(図4中、下側DWの面)が電池ケース10の貫通孔周縁部12cに当接し、かつ、その内側に貫通孔12Hが位置する形態に配置する。次に、回復前解除部材80内に内側封止部材60のゴム状栓体62を挿通し、さらに、貫通孔12Hにゴム状栓体62の挿入部62bを圧入する。これと共に、環状圧接部62aを貫通孔周縁部12cに圧接させて、貫通孔12Hを密栓する。これと共に、回復前解除部材80の他方端82(図4中、上側UWの面)に、内側封止部材60の金属板61の栓体形成面61a(図4中、下側DWの面)のうち、周縁部61cを当接させる。
これにより、内側封止部材60のゴム状栓体62で、貫通孔12Hが仮封止されると共に、回復前解除部材80の配置が完了する。
Next, under reduced pressure in the vacuum chamber, the through hole 12H is temporarily sealed with the rubber plug 62 of the inner sealing member 60 (see FIG. 4). In this temporary sealing step, first, the cylindrical pre-recovery release member 80 has one end 81 (the surface of the lower DW in FIG. 4) abutting against the through-hole peripheral portion 12c of the battery case 10, and It arrange | positions in the form in which the through-hole 12H is located inside. Next, the rubber plug 62 of the inner sealing member 60 is inserted into the pre-recovery release member 80, and the insertion portion 62b of the rubber plug 62 is press-fitted into the through hole 12H. At the same time, the annular pressure contact portion 62a is pressed against the peripheral edge portion 12c of the through hole, and the through hole 12H is sealed. At the same time, the plug forming surface 61a (surface of the lower DW in FIG. 4) of the metal plate 61 of the inner sealing member 60 is formed on the other end 82 (surface of the upper UW in FIG. 4) of the release member 80 before recovery. Of these, the peripheral edge 61c is brought into contact.
Thereby, the through-hole 12H is temporarily sealed by the rubber plug 62 of the inner sealing member 60, and the arrangement of the pre-recovery release member 80 is completed.

その後、真空チャンバ内を大気圧に戻して、真空チャンバからこの電池を取り出す。但し、内側封止部材60のゴム状栓体62で仮封止された電池ケース10内は大気圧よりも減圧された状態を保つ。このため、以下の工程は、電池ケース10内を減圧状態に保ったまま、大気圧下で行うことができる。   Thereafter, the inside of the vacuum chamber is returned to atmospheric pressure, and the battery is taken out from the vacuum chamber. However, the inside of the battery case 10 temporarily sealed with the rubber plug 62 of the inner sealing member 60 is kept at a pressure lower than the atmospheric pressure. For this reason, the following processes can be performed under atmospheric pressure while keeping the inside of the battery case 10 in a reduced pressure state.

続く固着工程では、外側封止部材50で、貫通孔12H、回復前解除部材80、及び、内側封止部材60をケース外側から覆い、レーザ溶接により、外側封止部材50(鍔部50c)を、電池ケース10の貫通孔周縁部12c(外側部位12c2)に当接させ、その周囲全体にわたって溶接して、溶接部51で気密に固着する(図5参照)。   In the subsequent fixing step, the outer sealing member 50 covers the through hole 12H, the pre-recovery release member 80, and the inner sealing member 60 from the outside of the case, and the outer sealing member 50 (the flange portion 50c) is formed by laser welding. Then, the battery case 10 is brought into contact with the peripheral edge 12c (outer portion 12c2) of the through hole, welded over the entire periphery thereof, and airtightly fixed at the weld 51 (see FIG. 5).

次の解除工程では、この電池1を45℃に設定した恒温槽に投入する。これにより、回復前解除部材80を、ガラス転移温度Tg=30℃を十分に超える温度まで昇温させて、第2形状K2から第1形状K1に形状回復(変形)させる。すると、回復後解除部材70は、内側封止部材60の金属板61を押し上げて、これと一体となったゴム状栓体62をも押し上げる。そして、ゴム状栓体62の挿入部62bを貫通孔12Hから抜去し、密栓を解除する。これにより、貫通孔12Hの気密性は、外側封止部材50のみによって、保たれた状態となる(図6参照)。その後、電池1を恒温槽から取り出す。
なお、本実施形態では、ガラス転移温度が、Tg=30℃の形状記憶樹脂からなる解除部材を用いたので、常温(20〜25℃)では形状回復しない一方、昇温に用いる恒温槽の設定温度を比較的低くできる。これにより、容易にガラス転移温度Tg以上に昇温させて、解除部材を形状回復させることができる。
In the next releasing step, the battery 1 is put into a thermostat set at 45 ° C. As a result, the pre-recovery release member 80 is heated to a temperature sufficiently exceeding the glass transition temperature Tg = 30 ° C., and the shape is restored (deformed) from the second shape K2 to the first shape K1. Then, the post-recovery release member 70 pushes up the metal plate 61 of the inner sealing member 60 and pushes up the rubber-like plug body 62 integrated therewith. Then, the insertion portion 62b of the rubber plug 62 is removed from the through hole 12H, and the hermetic plug is released. Thereby, the airtightness of the through hole 12H is maintained only by the outer sealing member 50 (see FIG. 6). Then, the battery 1 is taken out from the thermostat.
In this embodiment, since a release member made of a shape memory resin having a glass transition temperature of Tg = 30 ° C. is used, the shape does not recover at room temperature (20 to 25 ° C.), while setting of a thermostatic bath used for temperature rise. The temperature can be relatively low. Thereby, it is possible to easily raise the temperature to the glass transition temperature Tg or higher and recover the shape of the release member.

次に、コンディショニング工程(初期充放電工程)において、この電池1の初期充放電を行う。その際、電池ケース10内には、水素などのガスが発生する。   Next, in the conditioning process (initial charge / discharge process), initial charge / discharge of the battery 1 is performed. At that time, gas such as hydrogen is generated in the battery case 10.

更に、本実施形態1では、気密検査工程において、外側封止部材50と電池ケース10の貫通孔周縁部12cとの間の気密性を検査する。具体的には、この電池1を真空チャンバ内に置いて、真空チャンバ内を減圧する。そして、外側封止部材50の近傍に、水素ガス検知器を設置して、水素ガスを検知する。   Further, in the first embodiment, the airtightness between the outer sealing member 50 and the peripheral edge 12c of the through hole of the battery case 10 is inspected in the airtightness inspection process. Specifically, the battery 1 is placed in a vacuum chamber, and the inside of the vacuum chamber is decompressed. Then, a hydrogen gas detector is installed in the vicinity of the outer sealing member 50 to detect hydrogen gas.

前述のように、電池ケース10内には、初期充放電の際に発生した水素ガスが存在するので、外側封止部材50と電池ケース10の貫通孔周縁部12cとの間に封止不良が生じている場合には、外側封止部材50の外に水素ガスが漏れ出る。従って、水素ガス検知器により水素ガスが検知出来れば、外側封止部材50に封止不良が生じていることが判るので、このような封止不良箇所のある電池を排除できる。かくして、電池1が完成する。   As described above, since the hydrogen gas generated at the time of initial charge / discharge exists in the battery case 10, there is a sealing failure between the outer sealing member 50 and the through hole peripheral portion 12 c of the battery case 10. If it occurs, hydrogen gas leaks out of the outer sealing member 50. Therefore, if hydrogen gas can be detected by the hydrogen gas detector, it can be seen that a sealing failure has occurred in the outer sealing member 50. Therefore, a battery having such a sealing failure portion can be eliminated. Thus, the battery 1 is completed.

以上で説明したように、本実施形態1に係る電池1の製造方法では、仮封止工程と、固着工程と、解除工程とを備える。
仮封止工程では、内側封止部材60のゴム状栓体62を外側から貫通孔12Hに嵌め込んで、貫通孔12Hを密栓する。これと共に、第2形状K2の回復前解除部材80を第1形状K1に形状回復させる際の変形によって、ゴム状栓体62を移動させて、ゴム状栓体62による貫通孔12Hの密栓を解除可能に、回復前解除部材80を配置する。
固着工程では、外側封止部材50で、貫通孔12H、回復前解除部材80、及び、内側封止部材60を外側から覆い、外側封止部材50を、電池ケース10の貫通孔周縁部12cに、気密に固着する。
解除工程では、回復前解除部材80を昇温させて、第1形状K1に形状回復させると共に、内側封止部材60ゴム状栓体62を移動させて、ゴム状栓体62による貫通孔12Hの密栓を解除する。
As described above, the method for manufacturing the battery 1 according to the first embodiment includes the temporary sealing step, the fixing step, and the releasing step.
In the temporary sealing step, the rubber plug 62 of the inner sealing member 60 is fitted into the through hole 12H from the outside, and the through hole 12H is tightly plugged. At the same time, the rubber plug 62 is moved by the deformation when the pre-recovery release member 80 of the second shape K2 is restored to the first shape K1, and the sealing plug of the through hole 12H by the rubber plug 62 is released. A pre-recovery release member 80 is arranged as possible.
In the adhering step, the outer sealing member 50 covers the through hole 12H, the pre-recovery release member 80, and the inner sealing member 60 from the outside, and the outer sealing member 50 is attached to the through hole peripheral portion 12c of the battery case 10. Adherent, airtight.
In the releasing step, the temperature of the pre-recovery release member 80 is raised to restore the shape to the first shape K1, and the inner sealing member 60 rubber-like plug body 62 is moved so that the through-hole 12H is formed by the rubber-like plug body 62. Release the airtight plug.

外側封止部材50を貫通孔周縁部12cに固着するに先立ち、貫通孔12Hを仮封止しておかないと、電池ケース10内に注液した電解液17が貫通孔周縁部12cに付着するなど、貫通孔周縁部12cに汚れが付着して、外側封止部材50の固着が適切に行えないなどの不具合を生じるおそれがある。しかるに、この電池1の製造方法では、仮封止工程と、固着工程と、解除工程を備える。これにより、内側封止部材60のゴム状栓体62による貫通孔12Hの密栓(仮封止)を行った状態で、外側封止部材50を電池ケース10の貫通孔周縁部12cに、適切に固着することができる。しかも、その後の解除工程で、内側封止部材60のゴム状栓体62による貫通孔12Hの密栓を解除するので、貫通孔12Hは、ゴム状栓体62では封止されず、外側封止部材50のみで気密に封止された状態となる。このため、このようにして製造された電池1では、その後の出荷前のタイミングで、外側封止部材50による貫通孔12Hの気密性を適切に検査できる。   Prior to fixing the outer sealing member 50 to the peripheral edge 12c of the through hole, the electrolytic solution 17 injected into the battery case 10 adheres to the peripheral edge 12c of the through hole unless the through hole 12H is temporarily sealed. For example, dirt may adhere to the peripheral edge portion 12c of the through-hole, and there is a risk that the outer sealing member 50 cannot be fixed properly. However, the manufacturing method of the battery 1 includes a temporary sealing step, a fixing step, and a releasing step. Thereby, the outer sealing member 50 is appropriately attached to the through-hole peripheral portion 12c of the battery case 10 in a state where the through-hole 12H is tightly plugged (temporarily sealed) by the rubber plug 62 of the inner sealing member 60. It can be fixed. In addition, since the sealing plug of the through hole 12H by the rubber plug 62 of the inner sealing member 60 is released in the subsequent releasing step, the through hole 12H is not sealed by the rubber plug 62, but the outer sealing member. Only 50 is hermetically sealed. For this reason, in the battery 1 manufactured in this way, the airtightness of the through hole 12H by the outer sealing member 50 can be appropriately inspected at the timing before the subsequent shipment.

更に、この電池1の製造方法では、製造段階において、解除工程の後に、外側封止部材50と電池ケース10の貫通孔周縁部12cとの間の気密性を検査するので、外側封止部材50と電池ケース10との気密性を確認した電池1を製造できる。   Further, in the manufacturing method of the battery 1, since the airtightness between the outer sealing member 50 and the through hole peripheral edge portion 12 c of the battery case 10 is inspected after the releasing step in the manufacturing stage, the outer sealing member 50 is inspected. The battery 1 in which the airtightness between the battery case 10 and the battery case 10 is confirmed can be manufactured.

更に、この電池1の製造方法では、筒状の解除部材(回復前解除部材80及び回復後解除部材70)を貫通孔周縁12cに配置すればよく、解除部材の配置が簡単である。
また、内側封止部材60は、ゴム状栓体62と一体とされた金属板61を有しており、回復後解除部材70が変形すると、金属板61を押し上げる。これにより、簡単な構造で、内側封止部材60のゴム状栓体62による貫通孔12Hの密栓を確実に解除できる。
Furthermore, in this battery 1 manufacturing method, the cylindrical release members (the pre-recovery release member 80 and the post-recovery release member 70) have only to be arranged on the peripheral edge 12c of the through hole, and the arrangement of the release members is simple.
Further, the inner sealing member 60 has a metal plate 61 integrated with the rubber plug 62, and pushes up the metal plate 61 when the release member 70 after recovery is deformed. Thereby, the sealing plug of the through-hole 12H by the rubber-like plug body 62 of the inner sealing member 60 can be reliably released with a simple structure.

更に、この電池1の製造方法では、仮封止工程において、内側封止部材60のゴム状栓体62による貫通孔12Hの密栓を減圧下で行う。これにより、電池ケース10内の減圧状態をその後も維持することができる。このため、コンディショニング(初期充放電)やその後の使用において電池ケース10内にガスが発生しても、電池ケース10内の内圧が早期に高くなるのを抑制できる。   Further, in the method for manufacturing the battery 1, in the temporary sealing step, the through-hole 12H is sealed with a rubber plug 62 of the inner sealing member 60 under reduced pressure. Thereby, the pressure-reduced state in the battery case 10 can be maintained thereafter. For this reason, even if gas is generated in the battery case 10 during conditioning (initial charge / discharge) or subsequent use, it is possible to suppress the internal pressure in the battery case 10 from becoming high at an early stage.

更に、この電池1の製造方法では、仮封止工程を電解液17を注液した後に行うことで、その後の工程で電解液17が漏れ出るなどして、貫通孔周縁部12cに電解液17が付着したために、外側封止部材50の固着が適切に行えない不具合が生じることを防止することができる。   Furthermore, in the manufacturing method of the battery 1, the temporary sealing step is performed after the electrolytic solution 17 is injected, so that the electrolytic solution 17 leaks out in the subsequent steps, and the electrolytic solution 17 is formed in the through-hole peripheral portion 12c. Therefore, it is possible to prevent a problem that the outer sealing member 50 cannot be properly fixed.

また、この電池1では、外側封止部材50を固着した後の回復後解除部材70の変形により、ゴム状栓体62による貫通孔12Hの密栓が解除されている。このため、外側封止部材50の固着前に電解液17などが、貫通孔周縁部12cに付着することによる外側封止部材50の固着不良が生じにくい。しかも、外側封止部材50の固着後に、ゴム状栓体62による密栓が解除されているので、この電池1は、外側封止部材50による封止の気密性の検査を適切に行うことができる。   In the battery 1, the sealing plug of the through-hole 12 </ b> H by the rubber plug 62 is released by the deformation of the post-recovery release member 70 after the outer sealing member 50 is fixed. For this reason, the fixing failure of the outer sealing member 50 due to the electrolytic solution 17 or the like adhering to the through-hole peripheral portion 12c before the outer sealing member 50 is fixed is unlikely to occur. Moreover, since the sealing plug by the rubber plug 62 is released after the outer sealing member 50 is fixed, the battery 1 can appropriately perform the airtightness test of the sealing by the outer sealing member 50. .

(実施形態2)
次いで、第2の実施の形態について説明する。本実施形態2に係るハイブリッド自動車(車両)700(以下、単に自動車700とも言う)は、実施形態1に係る電池1を搭載し、この電池1に蓄えた電気エネルギーを、駆動源の駆動エネルギーの全部または一部として使用するものである(図7参照)。
(Embodiment 2)
Next, a second embodiment will be described. A hybrid vehicle (vehicle) 700 (hereinafter also simply referred to as a vehicle 700) according to the second embodiment is equipped with the battery 1 according to the first embodiment, and the electric energy stored in the battery 1 is used as the drive energy of the drive source. It is used as a whole or a part (see FIG. 7).

この自動車700は、電池1を複数組み合わせた組電池710を搭載し、エンジン740、フロントモータ720及びリアモータ730を併用して駆動するハイブリッド自動車である。具体的には、この自動車700は、その車体790に、エンジン740と、フロントモータ720及びリアモータ730と、組電池710(電池1)と、ケーブル750と、インバータ760とを搭載する。そして、この自動車700は、組電池710(電池1)に蓄えられた電気エネルギを用いて、フロントモータ720及びリアモータ730を駆動できるように構成されている。   The automobile 700 is a hybrid automobile equipped with an assembled battery 710 in which a plurality of batteries 1 are combined and driven by using an engine 740, a front motor 720, and a rear motor 730 in combination. Specifically, the automobile 700 includes an engine 740, a front motor 720 and a rear motor 730, an assembled battery 710 (battery 1), a cable 750, and an inverter 760 on the vehicle body 790. The automobile 700 is configured to be able to drive the front motor 720 and the rear motor 730 using electrical energy stored in the assembled battery 710 (battery 1).

前述したように、電池1は、外側封止部材50による封止の気密性の検査を容易に行うことができるので、この検査を行った電池1を搭載することで、自動車700の信頼性を高くできる。   As described above, since the battery 1 can be easily inspected for hermeticity of sealing by the outer sealing member 50, the reliability of the automobile 700 can be improved by mounting the battery 1 that has been inspected. Can be high.

(実施形態3)
次いで、第3の実施の形態について説明する。本実施形態3のハンマードリル800は、実施形態1に係る電池1を搭載した電池使用機器である(図8参照)。このハンマードリル800は、本体820の底部821に、電池1を含むバッテリパック810(電池1)が収容されており、このバッテリパック810を、ドリルを駆動するためのエネルギー源として利用している。
(Embodiment 3)
Next, a third embodiment will be described. A hammer drill 800 according to the third embodiment is a battery-using device equipped with the battery 1 according to the first embodiment (see FIG. 8). In the hammer drill 800, a battery pack 810 (battery 1) including the battery 1 is accommodated in a bottom portion 821 of a main body 820, and the battery pack 810 is used as an energy source for driving the drill.

前述したように、電池1は、外側封止部材50による封止の気密性の検査を容易に行うことができるので、この検査を行った電池1を搭載することで、ハンマードリル800の信頼性を高くできる。   As described above, since the battery 1 can be easily inspected for hermeticity of sealing by the outer sealing member 50, the reliability of the hammer drill 800 can be improved by mounting the battery 1 that has been inspected. Can be high.

以上において、本発明を実施形態に即して説明したが、本発明は上述の実施形態1〜3に限定されるものではなく、その要旨を逸脱しない範囲で、適宜変更して適用できることは言うまでもない。   In the above, the present invention has been described with reference to the embodiments. However, the present invention is not limited to the above-described first to third embodiments, and it is needless to say that the present invention can be appropriately modified and applied without departing from the gist thereof. Yes.

例えば、実施形態1では、電池ケースの内外を連通する貫通孔12Hを、電解液17を注入するための注液孔として利用した例を示したが、これに限られない。貫通孔としては、例えば、製造途中(初期充放電など)で発生した電池ケース内のガスを放出するための通気孔などが挙げられる。また、実施形態1では、貫通孔12Hを、電池ケース10のうちケース蓋部材12に設けたが、貫通孔の形成位置はこれに限られない。貫通孔は、例えば、ケース本体部材11の側面や底面に設けてもよい。   For example, in Embodiment 1, although the example which utilized the through-hole 12H which connects the inside and outside of a battery case as a liquid injection hole for inject | pouring the electrolyte solution 17 was shown, it is not restricted to this. Examples of the through hole include a vent hole for releasing a gas in the battery case generated during the manufacturing process (such as initial charge / discharge). In the first embodiment, the through hole 12H is provided in the case lid member 12 of the battery case 10, but the formation position of the through hole is not limited to this. For example, the through hole may be provided on the side surface or the bottom surface of the case main body member 11.

また、実施形態1では、解除部材(回復前解除部材80及び回復後解除部材70)を筒状として、内側封止部材60の金属板61を下から押し上げると共に、これと一体となったゴム状栓体62を貫通孔12Hから抜去する形態とした。しかし、解除部材の形態はこれに限られない。
例えば、筒状に一体とされたものではなく、貫通孔周縁部12c上に配置された複数の解除部材で、内側封止部材60の金属板61を下から押し上げる形態としても良い。また、金属板61を下から押し上げるのではなく、解除部材を外側封止部材50(上底部50a)と一体とし、高さ方法に収縮させて、これに係合する内側封止部材60の金属板61及びゴム状栓体62を引き上げる構造としても良い。さらに、金属板を有しない内側封止部材を用い、ゴム状栓体62と解除部材とを一体として、外側封止部材50と一体とした解除部材でゴム状栓体62を直接引き上げる構造としても良い。
また、解除部材を構成する形状記憶材として、形状記憶樹脂に代えて、形状記憶合金の解除部材を用いても良い。
In the first embodiment, the release members (the pre-recovery release member 80 and the post-recovery release member 70) are cylindrical, and the metal plate 61 of the inner sealing member 60 is pushed up from below and is integrated with the rubber plate. The stopper 62 was removed from the through hole 12H. However, the form of the release member is not limited to this.
For example, it is good also as a form which pushes up the metal plate 61 of the inner side sealing member 60 from the bottom with the some releasing member arrange | positioned on the through-hole peripheral part 12c, not what was integrated in the cylinder shape. Further, the metal plate 61 is not pushed up from below, but the release member is integrated with the outer sealing member 50 (upper bottom portion 50a), contracted in a height direction, and engaged with the metal of the inner sealing member 60. The plate 61 and the rubber plug 62 may be pulled up. Further, an inner sealing member that does not have a metal plate is used, and the rubber plug 62 and the release member are integrated, and the rubber plug 62 is directly pulled up by the release member integrated with the outer sealing member 50. good.
Moreover, as a shape memory material which comprises a cancellation | release member, it may replace with shape memory resin and may use the cancellation | release member of a shape memory alloy.

また、実施形態2では、本発明に係る電池1を搭載する車両として、ハイブリッド自動車700を例示したが、これに限られない。本発明に係る電池を搭載する車両としては、例えば、電気自動車、プラグインハイブリッド自動車、ハイブリッド鉄道車両、フォークリフト、電気車いす、電動アシスト自転車、電動スクータなどが挙げられる。   Moreover, in Embodiment 2, although the hybrid vehicle 700 was illustrated as a vehicle carrying the battery 1 which concerns on this invention, it is not restricted to this. Examples of the vehicle on which the battery according to the present invention is mounted include an electric vehicle, a plug-in hybrid vehicle, a hybrid railway vehicle, a forklift, an electric wheelchair, an electrically assisted bicycle, and an electric scooter.

また、実施形態3では、本発明に係る電池1を搭載する電池使用機器として、ハンマードリル800を例示したが、これに限られない。本発明に係る電池を搭載する電池使用機器としては、例えば、パーソナルコンピュータ、携帯電話、電池駆動の電動工具、無停電電源装置など、電池で駆動される各種の家電製品、オフィス機器、産業機器などが挙げられる。   Moreover, in Embodiment 3, although the hammer drill 800 was illustrated as a battery use apparatus which mounts the battery 1 which concerns on this invention, it is not restricted to this. Examples of battery-powered devices equipped with the battery according to the present invention include personal computers, mobile phones, battery-powered electric tools, uninterruptible power supply devices, various home appliances driven by batteries, office equipment, industrial equipment, etc. Is mentioned.

1 リチウムイオン二次電池(密閉型電池)
10 電池ケース
11 ケース本体部材
12 ケース蓋部材
12H 貫通孔(注液孔)
12c 貫通孔周縁部
15 安全弁
17 電解液
20 電極体
40 正極端子
41 負極端子
50 外側封止部材
51 溶接部
SS 封止空間
60 内側封止部材
61 金属板
61a (金属板の)栓体形成面
61b (金属板の栓体形成面の)中央部
61c (金属板の栓体形成面の)周縁部
62 ゴム状栓体
70 回復後解除部材
K1 第1形状
R1 (回復後解除部材(第1形状)の)内径
H1 (回復後解除部材(第1形状)の)高さ
80 回復前解除部材
K2 第2形状
R2 (回復前解除部材(第2形状)の)内径
H2 (回復前解除部材(第2形状)の)高さ
Tg 形状回復温度(形状記憶樹脂のガラス転移温度、形状記憶合金の変態点)
81 (回復前解除部材の)一方端
82 (回復前解除部材の)他方端
1 Lithium ion secondary battery (sealed battery)
10 Battery Case 11 Case Body Member 12 Case Cover Member 12H Through Hole (Liquid Injection Hole)
12c Through-hole peripheral part 15 Safety valve 17 Electrolyte solution 20 Electrode body 40 Positive electrode terminal 41 Negative electrode terminal 50 Outer sealing member 51 Welding part SS Sealing space 60 Inner sealing member 61 Metal plate 61a (metal plate) plug body formation surface 61b Central portion 61c (of the plug body forming surface of the metal plate) Peripheral portion 62 (of the plug body forming surface of the metal plate) Rubber-like plug body 70 Post-recovery release member K1 First shape R1 (Post-recovery release member (first shape) Inner diameter H1 (Recovery release member (first shape)) height 80 Pre-recovery release member K2 Second shape R2 (Pre-recovery release member (second shape)) inner diameter H2 (Recovery release member (second shape) Shape)) height Tg shape recovery temperature (glass transition temperature of shape memory resin, transformation point of shape memory alloy)
81 One end 82 (of the pre-recovery release member) The other end (of the pre-recovery release member)

Claims (6)

金属からなり、自身の内外を貫通する貫通孔を有する電池ケースと、
上記電池ケース内に収容された電極体と、
金属からなり、上記貫通孔を外部から覆い、上記電池ケースのうち、上記貫通孔の周縁に位置する貫通孔周縁部に固着して、上記貫通孔を気密に封止する外側封止部材と、
上記外側封止部材と上記電池ケースの上記貫通孔周縁部との間の封止空間内に配置され、上記貫通孔に外側から嵌め込んで上記貫通孔を密栓可能でゴム状弾性体からなるゴム状栓体を有する内側封止部材と、
上記封止空間内に配置され、記憶されていた第1形状に形状回復された形状記憶材からなる回復後解除部材と、を備える
電池の製造方法であって、
上記第1形状の記憶を保ちつつ、上記第1形状とは異なる第2形状とされ、形状回復温度以上に昇温させて形状回復させると、上記第1形状の上記回復後解除部材となる部材を、回復前解除部材としたとき、
上記内側封止部材の上記ゴム状栓体を外側から上記貫通孔に嵌め込んで、上記貫通孔を密栓すると共に、上記第2形状の上記回復前解除部材を上記第1形状に形状回復させる際の変形によって、上記ゴム状栓体を移動させて、上記ゴム状栓体による上記貫通孔の密栓を解除可能に、上記回復前解除部材を配置する仮封止工程と、
上記外側封止部材で、上記貫通孔、上記回復前解除部材、及び、上記内側封止部材を外側から覆い、上記外側封止部材を、上記電池ケースの上記貫通孔周縁部に、気密に固着する固着工程と、
上記回復前解除部材を昇温させて、上記第1形状に形状回復させることにより、上記ゴム状栓体を移動させて、上記ゴム状栓体による上記貫通孔の密栓を解除する解除工程と、を備える
電池の製造方法。
A battery case made of metal and having a through-hole penetrating inside and outside of itself,
An electrode body housed in the battery case;
An outer sealing member that is made of metal, covers the through hole from the outside, and is fixed to the peripheral edge of the through hole located at the peripheral edge of the through hole in the battery case, and hermetically seals the through hole;
A rubber made of a rubber-like elastic body that is disposed in a sealed space between the outer sealing member and the peripheral edge of the through hole of the battery case, and is fitted into the through hole from the outside so that the through hole can be sealed. An inner sealing member having a shaped plug,
A post-recovery release member made of a shape memory material that is arranged in the sealed space and has been restored to the first shape that has been stored,
A member that becomes a second shape different from the first shape while maintaining the memory of the first shape, and becomes the post-recovery release member of the first shape when the shape is recovered by raising the temperature to a shape recovery temperature or higher. As a release member before recovery,
When the rubber plug of the inner sealing member is fitted into the through hole from the outside to seal the through hole, and the shape of the pre-recovery release member of the second shape is restored to the first shape A temporary sealing step of disposing the pre-recovery release member so that the rubber-like plug body is moved by the deformation of the rubber-like plug body so that the hermetic plug of the through-hole by the rubber-like plug body can be released;
The outer sealing member covers the through hole, the pre-recovery release member, and the inner sealing member from the outside, and the outer sealing member is airtightly fixed to the peripheral edge of the battery case. An adhering process,
Allowed to warm to the pre-recovery release member, by shape recovery to the first shape, a release step of moving the rubber stopper, to release the sealed in the through hole by the rubber stopper, A method for manufacturing a battery comprising:
請求項1に記載の電池の製造方法であって、
前記解除工程の後に、前記外側封止部材と前記電池ケースの前記貫通孔周縁部との間の気密性を検査する、気密検査工程を備える
電池の製造方法。
A battery manufacturing method according to claim 1, comprising:
A manufacturing method of a battery provided with an airtight inspection process of inspecting airtightness between the outer side sealing member and the peripheral part of the penetration hole of the battery case after the release process.
請求項1または請求項2に記載の電池の製造方法であって、
前記第2形状を有する前記回復前解除部材は、
その内径が前記貫通孔よりも径大な筒状であり、
前記第1形状を有する前記回復後解除部材は、
その内径が上記貫通孔よりも径大な筒状で、その高さが上記第2形状の高さよりも高くされてなり、
前記内側封止部材は、前記ゴム状栓体と一体とされた金属板を有し、上記金属板の栓体形成面のうち、周縁部よりも内側の中央部から上記ゴム状栓体が突出する形態とされてなり、
前記仮封止工程は、
筒状の上記回復前解除部材を、その一方端が前記電池ケースの前記貫通孔周縁部に当接し、かつ、その内側に上記貫通孔が位置する形態に配置し、
上記回復前解除部材内及び上記貫通孔内に、上記内側封止部材の上記ゴム状栓体を挿通し、上記貫通孔を密栓すると共に、
上記回復前解除部材の他方端に、上記金属板の栓体形成面の上記周縁部を当接させる工程であり、
前記解除工程は、
上記回復前解除部材を上記第1形状に形状回復させ、上記ゴム状栓体を上記貫通孔から抜去する方向に上記金属板及び上記ゴム状栓体を移動させて、上記ゴム状栓体による上記貫通孔の密栓を解除する工程である
電池の製造方法。
A method for producing a battery according to claim 1 or claim 2,
The pre-recovery release member having the second shape is
The inner diameter is a cylindrical shape larger than the through hole,
The post-recovery release member having the first shape is
The inner diameter is a cylindrical shape larger than the through hole, and the height is higher than the height of the second shape,
The inner sealing member has a metal plate integrated with the rubber-like plug body, and the rubber-like plug body protrudes from a central portion inside the peripheral edge portion of the plug-forming surface of the metal plate. To be in the form of
The temporary sealing step includes
The cylindrical pre-recovery release member is arranged in such a manner that one end thereof is in contact with the peripheral edge of the through hole of the battery case, and the through hole is located on the inside thereof.
Inserting the rubber-like plug body of the inner sealing member into the pre-recovery release member and the through-hole, sealing the through-hole,
A step of bringing the peripheral edge of the plug forming surface of the metal plate into contact with the other end of the release member before recovery,
The release step includes
The shape of the release member before recovery is restored to the first shape, the metal plate and the rubber plug are moved in a direction to remove the rubber plug from the through hole, and the rubber plug is used to move the metal plate and the rubber plug. A method for producing a battery, which is a step of releasing the sealing plug of the through hole.
請求項1〜請求項3のいずれか1項に記載の電池の製造方法であって、
前記仮封止工程は、
大気圧より低い気圧とした減圧下で、前記内側封止部材の前記ゴム状栓体で前記貫通孔を密栓する工程である
電池の製造方法。
It is a manufacturing method of the battery of any one of Claims 1-3, Comprising:
The temporary sealing step includes
A method for producing a battery, which is a step of sealing the through-hole with the rubber-like plug of the inner sealing member under a reduced pressure lower than atmospheric pressure.
請求項1〜請求項4のいずれか1項に記載の電池の製造方法であって、
前記貫通孔は、
前記電池ケース内に、電解液を注入する注液孔であり、
前記仮封止工程は、
上記注液孔を通じて、上記電解液を注入する注液工程の後に行う
電池の製造方法。
It is a manufacturing method of the battery according to any one of claims 1 to 4,
The through hole is
A liquid injection hole for injecting an electrolyte into the battery case,
The temporary sealing step includes
A method for manufacturing a battery, which is performed after a liquid injection step of injecting the electrolytic solution through the liquid injection hole.
金属からなり、自身の内外を貫通する貫通孔を有する電池ケースと、
上記電池ケース内に収容された電極体と、
金属からなり、上記貫通孔を外部から覆い、上記電池ケースのうち、上記貫通孔の周縁に位置する貫通孔周縁部に固着して、上記貫通孔を気密に封止する外側封止部材と、
上記外側封止部材と上記電池ケースの上記貫通孔周縁部との間の封止空間内に配置され、上記貫通孔に外側から嵌め込んで上記貫通孔を密栓可能なゴム状弾性体からなるゴム状栓体を有する内側封止部材と、
上記封止空間内に配置され、第1形状を有した形状記憶材からなる回復後解除部材と、
を備える
電池であって、
上記内側封止部材の上記ゴム状栓体は、
上記貫通孔に外側から嵌め込まれて上記貫通孔を密栓し、上記外側封止部材を固着した後の上記第1形状への形状回復に伴う上記回復後解除部材の変形で、上記貫通孔の密栓を解除されてなる
電池。
A battery case made of metal and having a through-hole penetrating inside and outside of itself,
An electrode body housed in the battery case;
An outer sealing member that is made of metal, covers the through hole from the outside, and is fixed to the peripheral edge of the through hole located at the peripheral edge of the through hole in the battery case, and hermetically seals the through hole;
A rubber made of a rubber-like elastic body, which is disposed in a sealed space between the outer sealing member and the peripheral edge of the through hole of the battery case, and can be fitted into the through hole from the outside to seal the through hole. An inner sealing member having a shaped plug,
A post-recovery release member made of a shape memory material disposed in the sealed space and having a first shape;
A battery comprising:
The rubber plug of the inner sealing member is
The through hole is sealed by the deformation of the post-recovery release member accompanying the shape recovery to the first shape after being fitted into the through hole from the outside to seal the through hole and fixing the outer sealing member. The battery that is released.
JP2011158690A 2011-07-20 2011-07-20 Battery and manufacturing method thereof Active JP5754280B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011158690A JP5754280B2 (en) 2011-07-20 2011-07-20 Battery and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011158690A JP5754280B2 (en) 2011-07-20 2011-07-20 Battery and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2013025977A JP2013025977A (en) 2013-02-04
JP5754280B2 true JP5754280B2 (en) 2015-07-29

Family

ID=47784103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011158690A Active JP5754280B2 (en) 2011-07-20 2011-07-20 Battery and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5754280B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5969356B2 (en) * 2012-11-05 2016-08-17 トヨタ自動車株式会社 Sealed battery manufacturing method, sealed battery sealing member and sealed battery
JP6156109B2 (en) * 2013-12-06 2017-07-05 株式会社豊田自動織機 Temporary sealing plug for power storage device
JP6181593B2 (en) * 2014-04-16 2017-08-16 トヨタ自動車株式会社 Sealed battery and method for manufacturing sealed battery
CN107359304B (en) * 2016-05-10 2020-08-28 宁德时代新能源科技股份有限公司 Lithium ion battery liquid injection hole sealing structure
CN110892557B (en) 2017-07-14 2022-06-28 株式会社杰士汤浅国际 Electric storage element
CN114221016B (en) * 2021-12-15 2023-10-20 深圳市明远自动化设备有限公司 Power battery post assembly machine
CN114843719B (en) * 2022-05-24 2023-09-08 厦门海辰储能科技股份有限公司 Battery and battery module

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01175164A (en) * 1987-12-28 1989-07-11 Toshiba Battery Co Ltd Sealed type cell
JP3600107B2 (en) * 2000-03-09 2004-12-08 松下電器産業株式会社 Sealed battery and sealing method thereof
JP2001313022A (en) * 2000-04-28 2001-11-09 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP2005190689A (en) * 2003-12-24 2005-07-14 Sanyo Electric Co Ltd Sealed type battery
JP4991186B2 (en) * 2006-06-07 2012-08-01 Necエナジーデバイス株式会社 Sealed battery
JP2008041548A (en) * 2006-08-09 2008-02-21 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2009087659A (en) * 2007-09-28 2009-04-23 Sanyo Electric Co Ltd Sealed battery
JP5314359B2 (en) * 2008-08-29 2013-10-16 古河電池株式会社 Lithium secondary battery having a sealing method for a filling plug for a lithium secondary battery, its sealing structure, and its sealing structure

Also Published As

Publication number Publication date
JP2013025977A (en) 2013-02-04

Similar Documents

Publication Publication Date Title
CN104769749B (en) The manufacture method of enclosed-type battery, the seal member of enclosed-type battery and enclosed-type battery
JP5754280B2 (en) Battery and manufacturing method thereof
CN103814457B (en) Battery
CN103620827B (en) Enclosed-type battery
KR101514827B1 (en) Secondary battery and method for manufacturing the same
JP5777093B2 (en) Secondary battery and method for manufacturing secondary battery
KR101523064B1 (en) Cap assembly and secondary battery including the same
KR20140106329A (en) Cap assembly and secondary battery including the same
JP2013084481A (en) Method of manufacturing battery, and battery
JP5821442B2 (en) Battery and battery manufacturing method
JP2013182722A (en) Battery and manufacturing method of the same
JP2013062199A (en) Sealed battery
JP5742610B2 (en) Battery and battery manufacturing method
JP5724696B2 (en) Battery manufacturing method
JP5672042B2 (en) Sealed battery and method for manufacturing sealed battery
JP5918852B2 (en) Manufacturing method of secondary battery
JP5742644B2 (en) Battery manufacturing method and battery
US20240145786A1 (en) Battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150428

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150511

R151 Written notification of patent or utility model registration

Ref document number: 5754280

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151