JP5772348B2 - Battery and battery manufacturing method - Google Patents

Battery and battery manufacturing method Download PDF

Info

Publication number
JP5772348B2
JP5772348B2 JP2011163628A JP2011163628A JP5772348B2 JP 5772348 B2 JP5772348 B2 JP 5772348B2 JP 2011163628 A JP2011163628 A JP 2011163628A JP 2011163628 A JP2011163628 A JP 2011163628A JP 5772348 B2 JP5772348 B2 JP 5772348B2
Authority
JP
Japan
Prior art keywords
rubber plug
battery
battery case
hole
internal pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011163628A
Other languages
Japanese (ja)
Other versions
JP2013030280A (en
Inventor
草間 和幸
和幸 草間
松浦 智浩
智浩 松浦
一郎 村田
一郎 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2011163628A priority Critical patent/JP5772348B2/en
Publication of JP2013030280A publication Critical patent/JP2013030280A/en
Application granted granted Critical
Publication of JP5772348B2 publication Critical patent/JP5772348B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Filling, Topping-Up Batteries (AREA)
  • Secondary Cells (AREA)

Description

本発明は、貫通孔を有する電池ケースと、この電池ケース内に収容された電極体と、電池ケースの貫通孔を電池ケースの外部から密栓してなるゴム栓部を有する封止部材とを備える電池に関する。また、この電池の製造方法に関する。   The present invention includes a battery case having a through hole, an electrode body housed in the battery case, and a sealing member having a rubber plug portion formed by sealing the through hole of the battery case from the outside of the battery case. It relates to batteries. Moreover, it is related with the manufacturing method of this battery.

従来より、電解液を注入するための注液孔などの貫通孔が設けられた電池ケースと、この電池ケースに収容された電極体と、貫通孔を電池ケースの外部から密栓してなるゴム栓部を有する封止部材とを備える電池が知られている。更に、この電池において、電池ケースの内圧を大気圧よりも減圧した状態で、封止部材のゴム栓部で貫通孔を密栓して電池ケースを気密に封止し、その後に初期充電を施したものがある。   Conventionally, a battery case provided with a through hole such as a liquid injection hole for injecting an electrolyte, an electrode body accommodated in the battery case, and a rubber plug formed by sealing the through hole from the outside of the battery case A battery including a sealing member having a portion is known. Further, in this battery, in the state where the internal pressure of the battery case was reduced from the atmospheric pressure, the battery case was hermetically sealed by sealing the through hole with the rubber plug portion of the sealing member, and then the initial charge was performed. There is something.

例えば特許文献1に、このような電池が開示されている(特許文献1の請求の範囲、図1等を参照)。このように電池ケース内を減圧した状態で電池ケースを気密封止することで、初期充電時など、充放電に伴って電池ケース内にガスが発生した場合でも、電池ケースの内圧が早期に高くなるのを抑制できる。従って、電池を長期にわたりより安全に使用できる。   For example, Patent Literature 1 discloses such a battery (see the claims of Patent Literature 1, FIG. 1 and the like). By sealing the battery case in a state where the inside of the battery case is decompressed in this way, even when gas is generated in the battery case due to charge / discharge, such as during initial charging, the internal pressure of the battery case is increased early. Can be suppressed. Therefore, the battery can be used more safely over a long period of time.

特開2001−256965号JP 2001-256965 A

ところで、電池ケース内を減圧した状態で電池ケースを気密封止した電池では、電池ケース内が適切に減圧されているか否かを検査したい。しかし、気密封止された電池ケースの内圧を直接測定することは難しい。
そこで、電池ケースの内圧を直接測定する代わりに、減圧封止する前と後で電池ケースの厚みを測定し、その厚み差から電池ケース内の減圧状態を推測する方法が考えられる。しかし、この検査方法では、電池ケースの肉厚が厚いなど電池ケースの剛性が高いと、封止前後で電池ケースに厚み差が生じ難いため、電池ケース内の減圧状態を正確に判断するのが難しい。或いは、電池ケースと電極体との間に隙間が無い形態の電池では、電池ケース内を減圧しても、封止前後で電池ケースが内側に凹まないので、そもそも電池ケースの厚み差を測定することができない。
By the way, in a battery in which the battery case is hermetically sealed in a state where the inside of the battery case is decompressed, it is desired to inspect whether or not the inside of the battery case is appropriately decompressed. However, it is difficult to directly measure the internal pressure of the hermetically sealed battery case.
Therefore, instead of directly measuring the internal pressure of the battery case, a method is conceivable in which the thickness of the battery case is measured before and after sealing under reduced pressure, and the reduced pressure state in the battery case is estimated from the thickness difference. However, in this inspection method, if the battery case has a high rigidity, such as a thick battery case, it is difficult for the battery case to have a thickness difference before and after sealing. difficult. Alternatively, in the case of a battery with no gap between the battery case and the electrode body, even if the inside of the battery case is depressurized, the battery case is not recessed inward before and after sealing. I can't.

そこで、本件発明者らは、電池ケースを減圧封止した後に、ゴム栓部を所定の力で引き抜く引き抜き試験を行って、ゴム栓部が引き抜かれたか否かで、電池ケース内が適切に減圧されている良品か、何らかの原因で電池ケースの内圧が大気圧となってしまった不良品かを判別することを考えた。この引き抜き試験では、ゴム栓部が引き抜かれなかった電池を良品とし、ゴム栓部が引き抜かれた電池は不良品と判断する。   Therefore, the inventors of the present invention, after sealing the battery case under reduced pressure, conducted a pull-out test in which the rubber plug portion was pulled out with a predetermined force, and the inside of the battery case was appropriately depressurized depending on whether or not the rubber plug portion was pulled out. It was considered to determine whether the product is a non-defective product or a defective product in which the internal pressure of the battery case has become atmospheric pressure for some reason. In this pull-out test, a battery in which the rubber plug portion is not pulled out is regarded as a non-defective product, and a battery in which the rubber plug portion is pulled out is determined as a defective product.

ところで、ゴム栓部は貫通孔(注液孔)に圧入されている。このため、ゴム栓部を引き抜く際、ゴム栓部には、電池ケース内が負圧とされていることに伴って生じる引き込み力の他、ゴム栓部と貫通孔との間に摩擦力も生じるが、この摩擦力には大きなバラツキが生じる。そして、この摩擦力が大きい個体では、実際には電池ケースの内圧が大気圧となっていた不良品であっても、ゴム栓部が引き抜かれないために、良品(電池ケース内が適切に減圧されている電池)であると判断される場合があり、適切に検査を行い得ないことがあった。   By the way, the rubber plug portion is press-fitted into the through hole (liquid injection hole). For this reason, when the rubber plug portion is pulled out, the rubber plug portion also generates a frictional force between the rubber plug portion and the through hole in addition to the pulling force generated when the inside of the battery case is set to a negative pressure. This frictional force has a large variation. In the case of an individual with high frictional force, even if it is a defective product in which the internal pressure of the battery case is actually atmospheric pressure, the rubber plug part is not pulled out. In some cases, the battery could not be properly inspected.

本発明は、かかる現状に鑑みてなされたものであって、電池ケース内が適切に減圧された電池、及び、この電池の製造方法を提供することを目的とする。   This invention is made | formed in view of this present condition, Comprising: It aims at providing the battery in which the inside of a battery case was pressure-reduced appropriately, and the manufacturing method of this battery.

上記課題を解決するための本発明の一態様は、自身の内外を連通する貫通孔を有する電池ケースと、前記電池ケース内に収容された電極体と、ゴム状弾性体からなり、前記貫通孔に前記電池ケースの外部から圧入してこの貫通孔を密栓してなるゴム栓部を有する封止部材と、を備え、初期充電前の前記電池ケースの内圧を、大気圧Paよりも減圧された初期内圧Pbとして、前記ゴム栓部で前記貫通孔を密栓し、その後に前記初期充電を施してなる電池であって、前記貫通孔は、内周面が円筒状をなす円筒部を有し、前記ゴム栓部は、前記貫通孔の軸線方向に直交する断面が円形で前記軸線方向の外側ほど径大となるテーパ状の側面をなすテーパ部を有し、前記テーパ部は、前記円筒部の前記外側の開口端縁である外側円筒端縁で、最も高い圧縮率に圧縮されてなり、前記貫通孔の前記円筒部の内径をdとし、前記ゴム栓部の前記テーパ部のうち、前記外側円筒端縁で最大に圧縮された最大圧縮部の、圧縮前の外径をDとし、前記ゴム栓部の硬度をHとし、前記電池ケースの内圧を大気圧Paとした状態で、大気圧Pa下で前記ゴム栓部を引き抜いたときに、前記ゴム栓部に生じる引き抜き耐力Faが取り得る範囲を第1耐力範囲AFaとし、前記電池ケースの内圧を前記初期内圧Pbとして、前記ゴム栓部で前記貫通孔を密栓した後、前記初期充電前に、大気圧Pa下で前記ゴム栓部を引き抜いたときに、前記ゴム栓部に生じる引き抜き耐力Fbが取り得る範囲を第2耐力範囲AFbとしたとき、前記円筒部の内径d、前記最大圧縮部の外径D、及び、前記ゴム栓部の硬度Hを、前記第1耐力範囲AFaと前記第2耐力範囲AFbとが互いに離間する大きさとしてなり、閾値Fsを前記第1耐力範囲AFaと前記第2耐力範囲AFbとの間の値としたとき、前記電池ケースの内圧を前記初期内圧Pbとして、前記ゴム栓部で前記貫通孔を密栓した後に、大気圧Pa下で最大で前記閾値Fsまでの引き抜き力Fhを前記ゴム栓部に掛けて、前記ゴム栓部の引き抜きを試みて、前記ゴム栓部が引き抜かれなかった電池について、前記初期充電を施してなる電池である。   One aspect of the present invention for solving the above-described problem is a battery case having a through-hole communicating with the inside and outside of the battery case, an electrode body accommodated in the battery case, and a rubber-like elastic body. And a sealing member having a rubber plug portion that is press-fitted from the outside of the battery case and tightly plugs the through hole, and the internal pressure of the battery case before the initial charge is reduced from the atmospheric pressure Pa. As the initial internal pressure Pb, the battery plug is formed by sealing the through hole with the rubber plug portion and then performing the initial charging, and the through hole has a cylindrical portion whose inner peripheral surface forms a cylindrical shape, The rubber plug portion has a tapered portion that has a circular cross section perpendicular to the axial direction of the through-hole and has a tapered side surface that increases in diameter toward the outer side in the axial direction. The outer cylindrical edge that is the outer opening edge, the highest The inner diameter of the cylindrical portion of the through hole is d, and the maximum compression portion compressed to the maximum at the outer cylindrical edge of the taper portion of the rubber plug portion is compressed before compression. When the rubber plug part is pulled out under the atmospheric pressure Pa in a state where the outer diameter of the rubber plug part is D, the hardness of the rubber plug part is H, and the internal pressure of the battery case is the atmospheric pressure Pa, the rubber plug part The range in which the pulling-out strength Fa generated in the battery can be taken as the first yield strength range AFa, the internal pressure of the battery case as the initial internal pressure Pb, and after sealing the through hole with the rubber plug portion, before the initial charging, When the rubber cap portion is pulled out under Pa and the pulling proof strength Fb generated in the rubber plug portion can be taken as a second proof strength range AFb, the inner diameter d of the cylindrical portion and the outer diameter of the maximum compression portion D and the hardness H of the rubber plug portion, When the first proof stress range AFa and the second proof stress range AFb are separated from each other, and the threshold value Fs is a value between the first proof stress range AFa and the second proof stress range AFb, the battery After the internal pressure of the case is set to the initial internal pressure Pb and the through hole is sealed with the rubber plug portion, a pulling force Fh up to the threshold value Fs at atmospheric pressure Pa is applied to the rubber plug portion, and the rubber plug The battery is obtained by performing the initial charging on a battery in which the rubber plug part is not pulled out by trying to pull out the part.

この電池では、貫通孔の円筒部の内径d、ゴム栓部の最大圧縮部の外径D、及び、ゴム栓部の硬度Hを、第1耐力範囲AFaと第2耐力範囲AFbとが互いに離間する大きさとしている。そして、電池ケースの内圧を初期内圧Pbとして、ゴム栓部で貫通孔を密栓した後に、大気圧Pa下で最大で閾値Fs(第1耐力範囲AFaと第2耐力範囲AFbとの間の所定値)までの引き抜き力Fhをゴム栓部に掛けて、ゴム栓部の引き抜きを試みて、ゴム栓部材が引き抜かれなかった電池について、初期充電を施している。   In this battery, the first proof stress range AFa and the second proof stress range AFb are separated from each other in terms of the inner diameter d of the cylindrical portion of the through hole, the outer diameter D of the maximum compression portion of the rubber plug portion, and the hardness H of the rubber plug portion. The size is to be. Then, after the internal pressure of the battery case is set to the initial internal pressure Pb and the through hole is tightly plugged with the rubber plug portion, the threshold value Fs (predetermined value between the first proof stress range AFa and the second proof stress range AFb is reached under the atmospheric pressure Pa. ) Is applied to the rubber plug portion to try to pull out the rubber plug portion, and the battery in which the rubber plug member is not pulled out is initially charged.

ゴム栓部の引き抜きを試みたときに、電池ケース内が適切に減圧されている良品の電池では、ゴム栓部が引き抜かれない。一方、何らかの原因で電池ケースの内圧が大気圧になってしまった不良品の電池では、ゴム栓部が確実に引き抜かれるので、これを排除できる。そして、ゴム栓部が引き抜かれず、その後に初期充電が行われた電池は、電池ケース内が適切に減圧された電池として提供できる。   When an attempt is made to pull out the rubber plug portion, the rubber plug portion is not pulled out in a good battery in which the inside of the battery case is appropriately decompressed. On the other hand, in the case of a defective battery in which the internal pressure of the battery case has become atmospheric pressure for some reason, the rubber plug portion is reliably pulled out, which can be eliminated. And the battery by which the rubber plug part was not pulled out and the initial charge was performed after that can be provided as a battery in which the inside of the battery case is appropriately decompressed.

更に、上記の電池であって、前記引き抜き耐力Faの平均値をFav、標準偏差をσaとし、前記第1耐力範囲AFaを、
Fav−4σa≦Fa≦Fav+4σa …式(1)
で定め、前記引き抜き耐力Fbの平均値をFbv、標準偏差をσbとし、前記第2耐力範囲AFbを、
Fbv−4σb≦Fb≦Fbv+4σb …式(2)
で定めたとき、前記円筒部の内径d、前記最大圧縮部の外径D、及び、前記ゴム栓部の硬度Hを、
Fav+4σa<Fbv−4σb …式(3)
の関係を満たす大きさとしてなり、前記閾値Fsを、
Fav+4σa<Fs<Fbv−4σb 式(4)
の関係を満たす値とした電池とすると良い。
Further, in the battery described above, the average value of the pullout strength Fa is Fav, the standard deviation is σa, and the first strength range AFa is
Fav-4σa ≦ Fa ≦ Fav + 4σa (1)
And the average value of the pulling strength Fb is Fbv, the standard deviation is σb, and the second strength range AFb is
Fbv-4σb ≦ Fb ≦ Fbv + 4σb Equation (2)
, The inner diameter d of the cylindrical portion, the outer diameter D of the maximum compression portion, and the hardness H of the rubber plug portion,
Fav + 4σa <Fbv-4σb (3)
And the threshold value Fs is
Fav + 4σa <Fs <Fbv-4σb Formula (4)
A battery satisfying this relationship is preferable.

第1耐力範囲AFa及び第2耐力範囲AFbを式(1)及び式(2)のように定めることで、ガウス分布を前提とすると、理論上、99.9937%の確率で引き抜き耐力Faがこの第1耐力範囲AFaに含まれ、また、99.9937%の確率で引き抜き耐力Fbがこの第2耐力範囲AFaに含まれる。従って、実際に生産される電池のほぼ全てについて、引き抜き耐力Fa,Fbがこれら第1,第2耐力範囲AFa,AFbに含まれると考えられるので、閾値Fsを適切な値に定めることができる。これにより、ゴム栓部の引き抜きにおいて、電池ケースの内圧が大気圧となった不良品をより確実に排除し、電池ケース内が適切に減圧された良品のみをより確実に選別できる。   By defining the first proof stress range AFa and the second proof stress range AFb as in equations (1) and (2), assuming that a Gaussian distribution is assumed, the pullout proof strength Fa is theoretically 99.9937%. It is included in the first proof stress range AFa, and the pullout proof strength Fb is included in the second proof stress range AFa with a probability of 99.99937%. Accordingly, it is considered that the pullout proof strengths Fa and Fb are included in the first and second proof load ranges AFa and AFb for almost all the batteries that are actually produced, and thus the threshold value Fs can be set to an appropriate value. As a result, when the rubber plug portion is pulled out, defective products in which the internal pressure of the battery case becomes atmospheric pressure can be more reliably eliminated, and only good products whose pressure is appropriately reduced in the battery case can be more reliably selected.

また、引き抜き耐力Faの平均値Fav及び標準偏差をσaと、引き抜き耐力Fbの平均値Fbv及び標準偏差σbを求め、これらが式(3)を満たすように、円筒部の内径d、最大圧縮部の外径D、及びゴム栓部の硬度Hの大きさを選択するだけで、第1耐力範囲AFaと第2耐力範囲AFbとを互いに離間させることができる。従って、内径d、外径D及び硬度Hの大きさを、容易かつ適切に定めることができる。   In addition, the average value Fav and standard deviation of the pulling strength Y are determined as σa, and the average value Fbv and standard deviation σb of the pulling strength Yb are determined. The first proof stress range AFa and the second proof stress range AFb can be separated from each other simply by selecting the outer diameter D and the hardness H of the rubber plug portion. Accordingly, the inner diameter d, the outer diameter D, and the hardness H can be easily and appropriately determined.

更に、上記の電池であって、前記円筒部の内径d、前記最大圧縮部の外径D、及び、前記ゴム栓部の硬度Hを、前記引き抜き耐力Faの前記平均値Fav及び前記引き抜き耐力Fbの前記平均値Fbvが、
Fbv>2Fav …式(5)
の関係を満たす大きさとしてなる電池とすると良い。
Further, in the battery described above, the inner diameter d of the cylindrical portion, the outer diameter D of the maximum compression portion, and the hardness H of the rubber plug portion are set as the average value Fav of the pullout strength Fa and the pullout strength Fb. The average value Fbv of
Fbv> 2Fav Formula (5)
It is preferable that the battery has a size that satisfies the above relationship.

このように、引き抜き耐力Fbの平均値Fbvを引き抜き耐力Faの平均値Favの2倍を超える値にすれば、平均値Fbvと平均値Favとの間が十分に大きくなるので、第1耐力範囲AFaと第2耐力範囲AFbとの間をより大きく離間させることができる。これにより、閾値Fsを適切に選択してゴム栓部の引き抜きを試みたときに、何らかの原因で電池ケースの内圧が大気圧になってしまった不良品の電池について、より確実にゴム栓部が引き抜かれる。従って、電池ケース内が適切に減圧された電池のみをより確実に選別できる。   In this way, if the average value Fbv of the pulling strength Yb is set to a value exceeding twice the average value Fav of the pulling strength Y, the space between the average value Fbv and the average value Fav is sufficiently large. The distance between AFa and the second yield strength range AFb can be further increased. Thereby, when the threshold value Fs is appropriately selected and the rubber plug portion is pulled out, the rubber plug portion is more reliably connected to a defective battery whose internal pressure of the battery case has become atmospheric pressure for some reason. Pulled out. Therefore, it is possible to more reliably sort only the batteries whose pressure is appropriately reduced in the battery case.

更に、上記の電池であって、前記円筒部の内径d(mm)、前記最大圧縮部の外径D(mm)、及び、前記ゴム栓部の硬度H(°、但し、この硬度Hは、新JIS規格K6235に準じ、硬度計にタイプAデュロメータを用いて測定した値である。)を、前記初期内圧Pb(kPa)に対して、
|Pb|・π・d・D2 /(D2 −d2 )>3.7×102 ×H−8.1×103 …式(6)
の関係を満たす大きさとしてなる電池とすると良い。
Furthermore, in the battery described above, the inner diameter d (mm) of the cylindrical portion, the outer diameter D (mm) of the maximum compression portion, and the hardness H of the rubber plug portion (°, where the hardness H is According to the new JIS standard K6235, it is a value measured using a type A durometer as a hardness meter.) With respect to the initial internal pressure Pb (kPa)
| Pb | · π · d · D 2 / (D 2 −d 2 )> 3.7 × 10 2 × H−8.1 × 10 3 Formula (6)
It is preferable that the battery has a size that satisfies the above relationship.

この式(6)は、後述するように、前述の式(5)から導かれる関係式である。従って、式(6)を満たすように、円筒部171の内径d(mm)、最大圧縮部183pの外径D(mm)、及びゴム栓部材183の硬度H(°)の大きさを選択するだけで、式(5)の関係をも満たすことができる。よって、これら内径d(mm)、外径D(mm)及び硬度H(°)の大きさを、容易かつ適切に定めることができる。   This expression (6) is a relational expression derived from the above-described expression (5), as will be described later. Therefore, the inner diameter d (mm) of the cylindrical portion 171, the outer diameter D (mm) of the maximum compression portion 183 p, and the hardness H (°) of the rubber plug member 183 are selected so as to satisfy Expression (6). Only the relationship of Formula (5) can be satisfied. Accordingly, the inner diameter d (mm), the outer diameter D (mm), and the hardness H (°) can be easily and appropriately determined.

また、他の態様は、自身の内外を連通する貫通孔を有する電池ケースと、前記電池ケース内に収容された電極体と、ゴム状弾性体からなり、前記貫通孔に前記電池ケースの外部から圧入してこの貫通孔を密栓してなるゴム栓部を有する封止部材と、を備え、初期充電前の前記電池ケースの内圧を、大気圧Paよりも減圧された初期内圧Pbとして、前記ゴム栓部で前記貫通孔を密栓し、その後に前記初期充電を施してなり、前記貫通孔は、内周面が円筒状をなす円筒部を有し、前記ゴム栓部は、前記貫通孔の軸線方向に直交する断面が円形で前記軸線方向の外側ほど径大となるテーパ状の側面をなすテーパ部を有し、前記テーパ部は、前記円筒部の前記外側の開口端縁である外側円筒端縁で、最も高い圧縮率に圧縮されてなり、前記貫通孔の前記円筒部の内径をdとし、前記ゴム栓部の前記テーパ部のうち、前記外側円筒端縁で最大に圧縮された最大圧縮部の、圧縮前の外径をDとし、前記ゴム栓部の硬度をHとし、前記電池ケースの内圧を大気圧Paとした状態で、大気圧Pa下で前記ゴム栓部を引き抜いたときに、前記ゴム栓部に生じる引き抜き耐力Faが取り得る範囲を第1耐力範囲AFaとし、前記電池ケースの内圧を前記初期内圧Pbとして、前記ゴム栓部で前記貫通孔を密栓した後、前記初期充電前に、大気圧Pa下で前記ゴム栓部を引き抜いたときに、前記ゴム栓部に生じる引き抜き耐力Fbが取り得る範囲を第2耐力範囲AFbとしたとき、前記円筒部の内径d、前記最大圧縮部の外径D、及び、前記ゴム栓部の硬度Hを、前記第1耐力範囲AFaと前記第2耐力範囲AFbとが互いに離間する大きさとしてなる電池の製造方法であって、前記電池ケースの内圧を前記初期内圧Pbに減圧した状態で、前記封止部材の前記ゴム栓部を、前記貫通孔に前記外側から圧入して前記貫通孔を密栓し、前記電池ケースを気密に封止する封栓工程と、閾値Fsを前記第1耐力範囲AFaと前記第2耐力範囲AFbとの間の値としたとき、前記封栓工程の後、大気圧Pa下で最大で前記閾値Fsまでの引き抜き力Fhを前記ゴム栓部に掛けて、前記ゴム栓部の引き抜きを試みる引き抜き試験工程と、前記引き抜き試験工程で前記ゴム栓部が引き抜かれなかった電池について、前記初期充電を施す初期充電工程と、を備える電池の製造方法である。   In another aspect, the battery case includes a battery case having a through-hole communicating with the inside and the outside of the battery case, an electrode body accommodated in the battery case, and a rubber-like elastic body. A sealing member having a rubber plug portion that is press-fitted and tightly plugs the through hole, and the internal pressure of the battery case before the initial charge is set to an initial internal pressure Pb that is reduced from the atmospheric pressure Pa, and the rubber The through hole is hermetically plugged with a plug portion, and then the initial charging is performed. The through hole has a cylindrical portion whose inner peripheral surface is cylindrical, and the rubber plug portion is an axis of the through hole. An outer cylindrical end that is a circular cross-section perpendicular to the direction and has a tapered side surface that increases in diameter toward the outer side in the axial direction, and the tapered portion is an opening edge of the outer side of the cylindrical portion. At the edge, compressed to the highest compression rate, The inner diameter of the cylindrical portion is d, and the outer diameter of the maximum compression portion compressed at the outer cylindrical end edge of the taper portion of the rubber plug portion to the maximum is D, and the rubber plug portion A range in which the pulling strength Fa generated in the rubber plug portion can be obtained when the rubber plug portion is pulled out under the atmospheric pressure Pa in a state where the hardness is H and the internal pressure of the battery case is the atmospheric pressure Pa is a first range. When the rubber plug portion is pulled out under the atmospheric pressure Pa after the through hole is sealed with the rubber plug portion and the initial pressure is set, with the proof stress range AFa and the internal pressure of the battery case as the initial internal pressure Pb When the second yield strength range AFb is a range that can be taken by the pulling strength Fb generated in the rubber plug portion, the inner diameter d of the cylindrical portion, the outer diameter D of the maximum compression portion, and the hardness H of the rubber plug portion. The first proof stress range AFa and the second proof stress A method of manufacturing a battery having a size separated from the surrounding AFb, wherein the rubber plug portion of the sealing member is inserted into the through hole in a state where the internal pressure of the battery case is reduced to the initial internal pressure Pb. A sealing step of sealingly fitting the through hole by press-fitting from the outside and hermetically sealing the battery case, and the threshold value Fs is a value between the first proof stress range AFa and the second proof stress range AFb. Then, after the plugging step, a pulling test step for applying a pulling force Fh up to the threshold value Fs up to the threshold value Fs under the atmospheric pressure Pa to try to pull out the rubber plug portion, and the pulling test step And an initial charging step of performing the initial charging on the battery from which the rubber plug portion has not been pulled out.

この電池の製造方法では、封栓工程において、電池ケースの内圧を初期内圧Pbに減圧した状態で、ゴム栓部で貫通孔を密栓した後に、引き抜き試験工程において、このゴム栓部の引き抜き試験を行う。その際、電池ケース内が適切に減圧されている良品の電池では、ゴム栓部材が引き抜かれない。一方、何らかの原因で電池ケースの内圧が大気圧になってしまった不良品の電池では、ゴム栓部が確実に引き抜かれる。従って、ゴム栓部が引き抜かれなかった電池を選別することにより、電池ケース内が適切に減圧されている良品のみを確実に選別できる。   In this battery manufacturing method, in the plugging step, the internal pressure of the battery case is reduced to the initial internal pressure Pb, and after the through hole is sealed with the rubber plug portion, the pull-out test of the rubber plug portion is performed in the pull-out test step. Do. At that time, the rubber plug member is not pulled out in a non-defective battery in which the pressure inside the battery case is appropriately reduced. On the other hand, in a defective battery in which the internal pressure of the battery case has become atmospheric pressure for some reason, the rubber plug portion is reliably pulled out. Therefore, by sorting out the batteries from which the rubber plug portions have not been pulled out, it is possible to reliably sort out only the non-defective products in which the inside of the battery case is appropriately decompressed.

引き抜き試験工程では、閾値Fsを第1耐力範囲AFaと第2耐力範囲AFbとの間の所定値とし、最大でこの閾値Fsまでの引き抜き力Fhをゴム栓部に掛ける。前述のように、ゴム栓部は貫通孔に圧入されているため、ゴム栓部を引き抜く際、ゴム栓部と貫通孔との間に摩擦力も生じるが、この摩擦力には大きなバラツキが生じ得る。   In the pull-out test step, the threshold value Fs is set to a predetermined value between the first proof stress range AFa and the second proof stress range AFb, and the pulling force Fh up to the maximum threshold value Fs is applied to the rubber plug portion. As described above, since the rubber plug portion is press-fitted into the through-hole, when the rubber plug portion is pulled out, a frictional force is also generated between the rubber plug portion and the through-hole, but this frictional force may vary greatly. .

しかし、閾値Fsを第1耐力範囲AFaを超える値とすることで、この摩擦力にバラツキがあっても、摩擦力を越える引き抜き力Fhをゴム栓部に掛けることができるので、電池ケースの内圧が大気圧となった不良品の電池は、ゴム栓部が確実に引き抜かれる。一方、閾値Fsを第2耐力範囲AFbを下回る値とすることで、摩擦力にバラツキがあっても、電池ケース内が適切に減圧された電池では、ゴム栓部が引き抜かれない。従って、電池ケースの内圧が大気圧となった不良品を排除して、電池ケース内が適切に減圧された良品のみを容易かつ確実に選別できる。よって、電池ケース内が適切に減圧された電池を容易に製造できる。   However, by setting the threshold value Fs to a value exceeding the first proof stress range AFa, even if this friction force varies, the pulling force Fh exceeding the friction force can be applied to the rubber plug portion. If the battery is defective, the rubber plug is securely pulled out. On the other hand, by setting the threshold value Fs to a value lower than the second proof stress range AFb, even if the friction force varies, the rubber plug portion is not pulled out in a battery in which the inside of the battery case is appropriately decompressed. Therefore, it is possible to easily and reliably select only non-defective products in which the internal pressure of the battery case is appropriately reduced by eliminating defective products whose internal pressure in the battery case has become atmospheric pressure. Therefore, a battery in which the inside of the battery case is appropriately decompressed can be easily manufactured.

更に、上記の電池の製造方法であって、前記引き抜き耐力Faの平均値をFav、標準偏差をσaとし、前記第1耐力範囲AFaを、
Fav−4σa≦Fa≦Fav+4σa …式(1)
で定め、前記引き抜き耐力Fbの平均値をFbv、標準偏差をσbとし、前記第2耐力範囲AFbを、
Fbv−4σb≦Fb≦Fbv+4σb …式(2)
で定めたとき、前記円筒部の内径d、前記最大圧縮部の外径D、及び、前記ゴム栓部の硬度Hを、
Fav+4σa<Fbv−4σb …式(3)
の関係を満たす大きさとしてなり、前記閾値Fsを、
Fav+4σa<Fs<Fbv−4σb …式(4)
の関係を満たす値とする電池の製造方法とすると良い。
Furthermore, in the battery manufacturing method described above, the average value of the pullout strength Fa is Fav, the standard deviation is σa, and the first strength range AFa is
Fav-4σa ≦ Fa ≦ Fav + 4σa (1)
And the average value of the pulling strength Fb is Fbv, the standard deviation is σb, and the second strength range AFb is
Fbv-4σb ≦ Fb ≦ Fbv + 4σb Equation (2)
, The inner diameter d of the cylindrical portion, the outer diameter D of the maximum compression portion, and the hardness H of the rubber plug portion,
Fav + 4σa <Fbv-4σb (3)
And the threshold value Fs is
Fav + 4σa <Fs <Fbv-4σb Equation (4)
A battery manufacturing method with a value satisfying the above relationship is preferable.

第1耐力範囲AFa及び第2耐力範囲AFbを式(1)及び式(2)のように定めることで、ガウス分布を前提とすれば、理論上、99.9937%の確率で引き抜き耐力Faがこの第1耐力範囲AFaに含まれ、また、99.9937%の確率で引き抜き耐力Fbがこの第2耐力範囲AFaに含まれる。従って、実際に生産される電池のほぼ全てについて、引き抜き耐力Fa,Fbがこれら第1,第2耐力範囲AFa,AFbに含まれると考えられるので、閾値Fsを適切な値に定めることができる。これにより、ゴム栓部の引き抜きにおいて、電池ケースの内圧が大気圧となった不良品をより確実に排除し、電池ケース内が適切に減圧された良品のみをより確実に選別できる。   By defining the first proof stress range AFa and the second proof stress range AFb as in the formulas (1) and (2), if the Gaussian distribution is assumed, the pullout proof strength Fa is theoretically 99.9937%. The first yield strength range AFa is included, and the pullout yield strength Fb is included in the second yield strength range AFa with a probability of 99.99937%. Accordingly, it is considered that the pullout proof strengths Fa and Fb are included in the first and second proof load ranges AFa and AFb for almost all the batteries that are actually produced, and thus the threshold value Fs can be set to an appropriate value. As a result, when the rubber plug portion is pulled out, defective products in which the internal pressure of the battery case becomes atmospheric pressure can be more reliably eliminated, and only good products whose pressure is appropriately reduced in the battery case can be more reliably selected.

また、引き抜き耐力Faの平均値Fav及び標準偏差をσaと、引き抜き耐力Fbの平均値Fbv及び標準偏差σbを求め、これらが式(3)を満たすように、円筒部の内径d、最大圧縮部の外径D、及びゴム栓部の硬度Hの大きさを選択するだけで、第1耐力範囲AFaと第2耐力範囲AFbとを互いに離間させることができる。従って、内径d、外径D及び硬度Hの大きさを、容易かつ適切に定めることができる。   In addition, the average value Fav and standard deviation of the pulling strength Y are determined as σa, and the average value Fbv and standard deviation σb of the pulling strength Yb are determined. The first proof stress range AFa and the second proof stress range AFb can be separated from each other simply by selecting the outer diameter D and the hardness H of the rubber plug portion. Accordingly, the inner diameter d, the outer diameter D, and the hardness H can be easily and appropriately determined.

更に、上記の電池の製造方法であって、前記円筒部の内径d、前記最大圧縮部の外径D、及び、前記ゴム栓部の硬度Hを、前記引き抜き耐力Faの前記平均値Fav及び前記引き抜き耐力Fbの前記平均値Fbvが、
Fbv>2Fav …式(5)
の関係を満たす大きさとしてなる電池の製造方法とすると良い。
Further, in the battery manufacturing method described above, the inner diameter d of the cylindrical portion, the outer diameter D of the maximum compression portion, and the hardness H of the rubber plug portion are set to the average value Fav of the pulling strength Fa and the The average value Fbv of the drawing strength Fb is
Fbv> 2Fav Formula (5)
A battery manufacturing method having a size satisfying the above relationship is preferable.

このように、引き抜き耐力Fbの平均値Fbvを引き抜き耐力Faの平均値Favの2倍を超える値にすれば、平均値Fbvと平均値Favとの間が十分に大きくなるので、第1耐力範囲AFaと第2耐力範囲AFbとの間をより大きく離間させることができる。これにより、閾値Fsを適切に選択してゴム栓部の引き抜きを試みたときに、何らかの原因で電池ケースの内圧が大気圧になってしまった不良品の電池について、より確実にゴム栓部が引き抜かれる。従って、電池ケース内が適切に減圧された電池のみをより確実に選別できる。   In this way, if the average value Fbv of the pulling strength Yb is set to a value exceeding twice the average value Fav of the pulling strength Y, the space between the average value Fbv and the average value Fav is sufficiently large. The distance between AFa and the second yield strength range AFb can be further increased. Thereby, when the threshold value Fs is appropriately selected and the rubber plug portion is pulled out, the rubber plug portion is more reliably connected to a defective battery whose internal pressure of the battery case has become atmospheric pressure for some reason. Pulled out. Therefore, it is possible to more reliably sort only the batteries whose pressure is appropriately reduced in the battery case.

更に、上記の電池の製造方法であって、前記円筒部の内径d(mm)、前記最大圧縮部の外径D(mm)、及び、前記ゴム栓部の硬度H(°、但し、この硬度Hは、新JIS規格K6235に準じ、硬度計にタイプAデュロメータを用いて測定した値である。)を、前記初期内圧Pb(kPa)に対して、
|Pb|・π・d・D2 /(D2 −d2 )>3.7×102 ×H−8.1×103 …式(6)
の関係を満たす大きさとしてなる電池の製造方法とすると良い。
Furthermore, in the battery manufacturing method, the inner diameter d (mm) of the cylindrical portion, the outer diameter D (mm) of the maximum compression portion, and the hardness H (° of the rubber plug portion, where this hardness is H is a value measured using a type A durometer as a hardness meter in accordance with the new JIS standard K6235.) With respect to the initial internal pressure Pb (kPa)
| Pb | · π · d · D 2 / (D 2 −d 2 )> 3.7 × 10 2 × H−8.1 × 10 3 Formula (6)
A battery manufacturing method having a size satisfying the above relationship is preferable.

この式(6)は、後述するように、前述の式(5)から導かれる関係式である。従って、式(6)を満たすように、円筒部171の内径d(mm)、最大圧縮部183pの外径D(mm)、及びゴム栓部材183の硬度H(°)の大きさを選択するだけで、式(5)の関係をも満たすことができる。よって、これら内径d(mm)、外径D(mm)及び硬度H(°)の大きさを、容易かつ適切に定めることができる。   This expression (6) is a relational expression derived from the above-described expression (5), as will be described later. Therefore, the inner diameter d (mm) of the cylindrical portion 171, the outer diameter D (mm) of the maximum compression portion 183 p, and the hardness H (°) of the rubber plug member 183 are selected so as to satisfy Expression (6). Only the relationship of Formula (5) can be satisfied. Accordingly, the inner diameter d (mm), the outer diameter D (mm), and the hardness H (°) can be easily and appropriately determined.

実施形態1に係るリチウムイオン二次電池を示す縦断面図である。1 is a longitudinal sectional view showing a lithium ion secondary battery according to Embodiment 1. FIG. 実施形態1に係り、電極体を示す斜視図である。1 is a perspective view showing an electrode body according to Embodiment 1. FIG. 実施形態1に係り、正極板及び負極板をセパレータを介して互いに重ねた状態を示す部分平面図である。FIG. 3 is a partial plan view illustrating a state in which the positive electrode plate and the negative electrode plate are overlapped with each other via a separator according to the first embodiment. 実施形態1に係り、ケース蓋部材、正極端子及び負極端子等を示す分解斜視図である。FIG. 3 is an exploded perspective view illustrating a case lid member, a positive electrode terminal, a negative electrode terminal, and the like according to the first embodiment. 実施形態1に係り、注液孔及び封止部材の近傍を示す部分拡大縦断面図である。FIG. 4 is a partially enlarged longitudinal sectional view showing the vicinity of a liquid injection hole and a sealing member according to the first embodiment. 実施形態1に係り、図5の上方から見た、封止部材の近傍を示す部分拡大平面図である。FIG. 6 is a partially enlarged plan view showing the vicinity of the sealing member according to the first embodiment when viewed from above in FIG. 5. 実施形態1に係り、封止部材を示す縦断面図である。It is a longitudinal cross-sectional view which concerns on Embodiment 1 and shows a sealing member. 実施形態1に係り、ケース蓋部材の注液孔の近傍を示す部分拡大縦断面図である。FIG. 4 is a partially enlarged longitudinal sectional view showing the vicinity of a liquid injection hole of a case lid member according to the first embodiment. 実施形態1に係るリチウムイオン二次電池の製造方法に関し、封止部材のゴム栓部材に引き抜き力Fhを掛けて、ゴム栓部材の引き抜きを試みる引き抜き試験工程の様子を示す説明図である。It is explanatory drawing which shows the mode of the pulling-out test process which tries pulling out of the rubber plug member by applying pulling force Fh to the rubber plug member of a sealing member regarding the manufacturing method of the lithium ion secondary battery which concerns on Embodiment 1. FIG. 実施形態1の変形形態に係り、注液孔及び封止部材の近傍を示す部分拡大縦断面図である。FIG. 6 is a partially enlarged longitudinal sectional view showing the vicinity of a liquid injection hole and a sealing member according to a modification of the first embodiment. ゴム栓部材のゴム硬度Hと引き抜き耐力Fとの関係を示すグラフである。It is a graph which shows the relationship between the rubber hardness H of a rubber stopper member, and the drawing strength F. ゴム栓部材の最大圧縮部の圧縮率Cと引き抜き耐力Fとの関係を示すグラフである。It is a graph which shows the relationship between the compression rate C of the largest compression part of a rubber plug member, and the drawing strength F. 電池ケースの内圧を大気圧とした電池と、電池ケース内が適切に減圧された電池について、それぞれ10個のサンプルで測定した引き抜き耐力Fの測定結果を示すグラフである。It is a graph which shows the measurement result of the drawing strength F measured with the 10 samples, respectively about the battery which made the internal pressure of the battery case atmospheric pressure, and the battery in which the inside of the battery case was reduced appropriately. 実施形態2に係るハイブリッド自動車を示す説明図である。FIG. 6 is an explanatory diagram showing a hybrid vehicle according to a second embodiment. 実施形態3に係るハンマードリルを示す説明図である。It is explanatory drawing which shows the hammer drill which concerns on Embodiment 3. FIG.

(実施形態1)
以下、本発明の実施の形態を、図面を参照しつつ説明する。図1に、本実施形態1に係るリチウムイオン二次電池(電池)100(以下、単に電池100とも言う)を示す。また、図2及び図3に、この電池100を構成する捲回型の電極体120及びこれを展開した状態を示す。また、図4に、ケース蓋部材113、正極端子150及び負極端子160等の詳細を示す。また、図5及び図6に、注液孔(貫通孔)170及び封止部材180の近傍の形態を示す。なお、図1,図4及び図5における上方を電池100の上側、下方を電池100の下側として説明する。
(Embodiment 1)
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows a lithium ion secondary battery (battery) 100 (hereinafter also simply referred to as battery 100) according to the first embodiment. 2 and 3 show a wound electrode body 120 constituting the battery 100 and a state in which the electrode body 120 is developed. FIG. 4 shows details of the case lid member 113, the positive terminal 150, the negative terminal 160, and the like. 5 and FIG. 6 show forms near the liquid injection hole (through hole) 170 and the sealing member 180. FIG. 1, 4, and 5, the upper side is the upper side of battery 100, and the lower side is the lower side of battery 100.

この電池100は、ハイブリッド自動車や電気自動車等の車両や、ハンマードリル等の電池使用機器に搭載される角型電池である。この電池100は、直方体形状の電池ケース110、この電池ケース110内に収容された捲回型の電極体120、電池ケース110に支持された正極端子150及び負極端子160等から構成されている(図1参照)。また、電池ケース110内には、非水系の電解液117が保持されている。   The battery 100 is a square battery that is mounted on a vehicle such as a hybrid vehicle or an electric vehicle, or a battery-powered device such as a hammer drill. The battery 100 includes a rectangular parallelepiped battery case 110, a wound electrode body 120 accommodated in the battery case 110, a positive electrode terminal 150 and a negative electrode terminal 160 supported by the battery case 110 ( (See FIG. 1). In addition, a non-aqueous electrolyte solution 117 is held in the battery case 110.

このうち電池ケース110は、金属(本実施形態1ではアルミニウム)により形成されている。この電池ケース110は、上側のみが開口した箱状のケース本体部材111と、このケース本体部材111の開口111hを閉塞する形態で溶接されたケース蓋部材113とから構成されている(図1及び図4参照)。ケース蓋部材113は、電池ケース110の内部を向く内側主面113cと、電池ケース110の外部を向く外側主面113dとを有する矩形板状をなす。   Of these, the battery case 110 is made of metal (aluminum in the first embodiment). The battery case 110 includes a box-shaped case main body member 111 that is open only on the upper side, and a case lid member 113 that is welded so as to close the opening 111h of the case main body member 111 (see FIG. 1 and FIG. 1). (See FIG. 4). The case lid member 113 has a rectangular plate shape having an inner main surface 113 c facing the inside of the battery case 110 and an outer main surface 113 d facing the outside of the battery case 110.

ケース蓋部材113には、その長手方向の中央付近に、電池ケース110の内圧が所定圧力に達した際に破断する非復帰型の安全弁115が設けられている。また、この安全弁115の近傍には、ケース蓋部材113を貫通し、電池ケース110の内外を連通する後述する注液孔(貫通孔)170が設けられている。この注液孔170は、後述する封止部材180のゴム栓部材183で気密に封止(密栓)されている。   The case lid member 113 is provided with a non-returnable safety valve 115 that breaks when the internal pressure of the battery case 110 reaches a predetermined pressure near the center in the longitudinal direction. Further, near the safety valve 115, a liquid injection hole (through hole) 170, which will be described later, is provided through the case lid member 113 and communicating between the inside and outside of the battery case 110. The liquid injection hole 170 is hermetically sealed (sealed) with a rubber plug member 183 of a sealing member 180 described later.

なお、この電池100では、電池ケース110内が大気圧Pa(=0kPa)よりも減圧された状態(負圧)となっている。具体的には、後述するように、封止時の電池ケース110の内圧(初期内圧Pb)はPb=−80kPaであるが、コンディショニング(初期充電)により電池ケース110内でガスが発生するため、出荷時の電池ケース110の内圧(出荷時内圧Pc)はPc=−50kPa程度である。なお、本明細書では、原則として、出荷時内圧Pcや初期内圧Pb等を、絶対真空を基準(零点)とした絶対圧ではなく、大気圧を基準(零点)としたゲージ圧で記載する。   In this battery 100, the inside of the battery case 110 is in a state (negative pressure) that is depressurized from the atmospheric pressure Pa (= 0 kPa). Specifically, as described later, the internal pressure (initial internal pressure Pb) of the battery case 110 at the time of sealing is Pb = −80 kPa, but gas is generated in the battery case 110 by conditioning (initial charge). The internal pressure (the internal pressure Pc at the time of shipment) of the battery case 110 at the time of shipment is about Pc = −50 kPa. In this specification, in principle, the shipping internal pressure Pc, the initial internal pressure Pb, and the like are described not by absolute pressure with reference to the absolute vacuum (zero point) but with gauge pressure with reference to the atmospheric pressure (zero point).

また、ケース蓋部材113には、それぞれ通電端子部材151とボルト153により構成される正極端子150及び負極端子160が、樹脂からなる絶縁部材155を介して固設されている(図1及び図4参照)。電池ケース110内において、正極端子150は電極体120の正極板121(その正極集電部121m)に接続され、負極端子160は電極体120の負極板131(その負極集電部131m)に接続されている(図1参照)。   The case lid member 113 is fixedly provided with a positive terminal 150 and a negative terminal 160 each composed of a current-carrying terminal member 151 and a bolt 153 via an insulating member 155 made of resin (FIGS. 1 and 4). reference). In the battery case 110, the positive terminal 150 is connected to the positive plate 121 (its positive current collecting part 121 m) of the electrode body 120, and the negative terminal 160 is connected to the negative plate 131 (its negative current collecting part 131 m) of the electrode body 120. (See FIG. 1).

次に、電極体120について説明する。この電極体120は、絶縁フィルムを上側のみが開口した袋状に形成した絶縁フィルム包囲体119内に収容され、横倒しにした状態で電池ケース110内に収容されている(図1参照)。この電極体120は、帯状の正極板121と帯状の負極板131とを、帯状のセパレータ141を介して互いに重ねて(図3参照)、軸線AX周りに捲回し、扁平状に圧縮したものである(図2参照)。   Next, the electrode body 120 will be described. The electrode body 120 is housed in an insulating film enclosure 119 formed in a bag shape having an insulating film opened only on the upper side, and is housed in the battery case 110 in a laid state (see FIG. 1). This electrode body 120 is obtained by rolling a belt-like positive electrode plate 121 and a belt-like negative electrode plate 131 to each other via a belt-like separator 141 (see FIG. 3), winding around an axis line AX, and compressing to a flat shape. Yes (see FIG. 2).

正極板121は、芯材として、帯状のアルミニウム箔からなる正極集電箔122を有する。この正極集電箔122の両主面のうち、幅方向の一部でかつ長手方向に延びる領域上には、それぞれ正極活物質層123,123が長手方向(図3中、左右方向)に帯状に設けられている。これらの正極活物質層123,123は、正極活物質、導電剤及び結着剤から形成されている。   The positive electrode plate 121 has a positive electrode current collector foil 122 made of a strip-shaped aluminum foil as a core material. On both main surfaces of the positive electrode current collector foil 122, the positive electrode active material layers 123 and 123 are strip-shaped in the longitudinal direction (left and right direction in FIG. 3) on a part extending in the longitudinal direction and extending in the longitudinal direction. Is provided. These positive electrode active material layers 123 and 123 are formed of a positive electrode active material, a conductive agent, and a binder.

正極板121のうち、自身の厚み方向に正極集電箔122及び正極活物質層123,123が存在する帯状の部位が、正極部121wである。この正極部121wは、電極体120を構成した状態において、その全域がセパレータ141を介して負極板131の後述する負極部131wと対向している(図3参照)。また、正極板121に正極部121wを設けたことに伴い、正極集電箔122のうち、幅方向の片方の端部(図3中、上方)は、長手方向に帯状に延び、自身の厚み方向に正極活物質層123が存在しない正極集電部121mとなっている。この正極集電部121mの幅方向の一部は、セパレータ141から軸線AX方向の一方側SAに渦巻き状をなして突出しており、前述の正極端子150と接続している(図1参照)。   In the positive electrode plate 121, a belt-like portion where the positive electrode current collector foil 122 and the positive electrode active material layers 123 and 123 exist in the thickness direction of the positive electrode plate 121 is the positive electrode portion 121 w. In the state where the electrode body 120 is configured, the entire area of the positive electrode portion 121w is opposed to a later-described negative electrode portion 131w of the negative electrode plate 131 via the separator 141 (see FIG. 3). In addition, with the provision of the positive electrode part 121w on the positive electrode plate 121, one end part in the width direction (upward in FIG. 3) of the positive electrode current collector foil 122 extends in a band shape in the longitudinal direction, and has its own thickness. The positive electrode current collector portion 121m has no positive electrode active material layer 123 in the direction. A part of the positive electrode current collector 121m in the width direction protrudes from the separator 141 in a spiral shape to one side SA in the axis AX direction, and is connected to the positive electrode terminal 150 (see FIG. 1).

また、負極板131は、芯材として、帯状の銅箔からなる負極集電箔132を有する。この負極集電箔132の両主面のうち、幅方向の一部でかつ長手方向に延びる領域上には、それぞれ負極活物質層133,133が長手方向(図3中、左右方向)に帯状に設けられている。これらの負極活物質層133,133は、負極活物質、結着剤及び増粘剤から形成されている。   Moreover, the negative electrode plate 131 has the negative electrode current collection foil 132 which consists of strip | belt-shaped copper foil as a core material. On both main surfaces of the negative electrode current collector foil 132, negative electrode active material layers 133 and 133 are band-like in the longitudinal direction (left and right direction in FIG. 3) on a portion extending in the longitudinal direction and extending in the longitudinal direction. Is provided. These negative electrode active material layers 133 and 133 are formed of a negative electrode active material, a binder, and a thickener.

負極板131のうち、自身の厚み方向に負極集電箔132及び負極活物質層133,133が存在する帯状の部位が、負極部131wである。この負極部131wは、電極体120を構成した状態において、その全域がセパレータ141と対向している。また、負極板131に負極部131wを設けたことに伴い、負極集電箔132のうち、幅方向の片方の端部(図3中、下方)は、長手方向に帯状に延び、自身の厚み方向に負極活物質層133が存在しない負極集電部131mとなっている。この負極集電部131mの幅方向の一部は、セパレータ141から軸線AX方向の他方側SBに渦巻き状をなして突出しており、前述の負極端子160と接続している(図1参照)。   In the negative electrode plate 131, a strip-shaped portion where the negative electrode current collector foil 132 and the negative electrode active material layers 133 and 133 are present in the thickness direction of the negative electrode plate 131 is the negative electrode portion 131w. The entire area of the negative electrode portion 131 w faces the separator 141 in a state where the electrode body 120 is configured. In addition, as a result of providing the negative electrode portion 131w on the negative electrode plate 131, one end portion (downward in FIG. 3) in the width direction of the negative electrode current collector foil 132 extends in a band shape in the longitudinal direction and has its own thickness. The negative electrode current collector portion 131m has no negative electrode active material layer 133 in the direction. A part of the negative electrode current collector 131m in the width direction protrudes from the separator 141 toward the other side SB in the axis AX direction in a spiral shape, and is connected to the negative electrode terminal 160 (see FIG. 1).

また、セパレータ141は、樹脂、具体的にはポリプロピレン(PP)とポリエチレン(PE)からなる多孔質膜であり、帯状をなす。   The separator 141 is a porous film made of resin, specifically, polypropylene (PP) and polyethylene (PE), and has a strip shape.

次に、注液孔170及び封止部材180について説明する(図5〜図8参照)。
注液孔170は、電解液117を電池ケース110内に注入するために、ケース蓋部材113の内側主面113cと外側主面113dとの間を貫通する形態で軸線BX方向に延びる孔であり、電池ケース110の内外を連通している。この注液孔170は、軸線BX方向の内側BC(電池内部側、図5及び図8中、下方)に位置し、内側主面113cに開口する円筒部171と、この円筒部171に繋がり、軸線BX方向の外側BD(電池外部側、図5及び図8中、上方)に位置し、外側主面113dに開口するテーパ孔部173とからなる。
Next, the liquid injection hole 170 and the sealing member 180 will be described (see FIGS. 5 to 8).
The liquid injection hole 170 is a hole extending in the direction of the axis BX so as to penetrate between the inner main surface 113c and the outer main surface 113d of the case lid member 113 in order to inject the electrolytic solution 117 into the battery case 110. The inside and outside of the battery case 110 are communicated. The liquid injection hole 170 is located on the inner side BC (inside the battery, in FIG. 5 and FIG. 8, lower) in the direction of the axis BX, and is connected to the cylindrical portion 171 that opens to the inner main surface 113 c, and the cylindrical portion 171. It is formed of a tapered hole portion 173 that is located on the outer side BD in the direction of the axis BX (on the outside of the battery, upward in FIGS. 5 and 8) and opens to the outer main surface 113d.

円筒部171は、円筒状をなす円筒状内周面171fで構成されており、内側BCの開口端縁である内側円筒端縁171fcから外側BDの開口端縁である外側円筒端縁171fdまで、内径dはd=2.20mmである。
また、テーパ孔部173は、軸線BX方向に直交する断面が円形で外側BDほど径大となるテーパ状、本実施形態1では、径が外側BDほど直線的に大きくなる円錐台の側面状をなすテーパ状内周面173fで構成されている。テーパ孔部173のうち、内側BCの開口端縁である内側テーパ端縁173fcの内径は、円筒部171の内径dと同じく、2.20mmであり、外側BDの開口端縁である外側テーパ端縁173fdの内径は、2.30mmである。
The cylindrical portion 171 is configured by a cylindrical inner peripheral surface 171f having a cylindrical shape, from an inner cylindrical edge 171fc which is an opening edge of the inner BC to an outer cylindrical edge 171fd which is an opening edge of the outer BD. The inner diameter d is d = 2.20 mm.
In addition, the tapered hole portion 173 has a tapered shape in which a cross section perpendicular to the direction of the axis BX is circular and the outer BD has a larger diameter, and in the first embodiment, the side surface of the truncated cone whose diameter increases linearly as the outer BD increases. A tapered inner peripheral surface 173f is formed. The inner diameter of the inner tapered edge 173fc, which is the opening edge of the inner BC, of the tapered hole portion 173 is 2.20 mm, similar to the inner diameter d of the cylindrical portion 171, and the outer tapered end, which is the opening edge of the outer BD. The inner diameter of the edge 173fd is 2.30 mm.

一方、封止部材180は、被覆部材(被覆部)181と、これに接合されたゴム栓部材(ゴム栓部)183とから構成されている。このうち被覆部材181は、電池ケース110の材質と同じ材質、具体的には、アルミニウムからなる。この被覆部材181は、封止部材180の軸線CX方向の内側CC(ケース蓋部材113側、図5及び図7中、下方)に位置する主面である被覆部内側面181cと、これに平行で軸線CX方向の外側CD(ケース蓋部材113とは反対側、図5及び図7中、上方)に位置する主面である被覆部外側面181dとを有し、注液孔170のテーパ孔部173(その外側テーパ端縁173fd)の内径よりも径大な円板状をなす。   On the other hand, the sealing member 180 includes a covering member (covering portion) 181 and a rubber plug member (rubber plug portion) 183 joined thereto. Among these, the covering member 181 is made of the same material as that of the battery case 110, specifically, aluminum. The covering member 181 is parallel to the covering portion inner side surface 181c, which is a main surface located on the inner side CC (the case lid member 113 side, the lower side in FIGS. 5 and 7) of the sealing member 180 in the axis CX direction. A taper hole portion of the liquid injection hole 170, which has a covering portion outer surface 181 d that is a main surface located on the outer side CD in the axis CX direction (on the opposite side to the case lid member 113, the upper side in FIGS. 5 and 7). 173 (the outer tapered end edge 173fd) has a disk shape larger than the inner diameter.

この被覆部材181は、注液孔170を軸線BX方向の外側BDから覆い、注液孔170と同軸になる形態で、電池ケース110(そのケース蓋部材113)に固着されている(図5参照)。具体的には、被覆部材181の外周縁に沿う円環状の周縁部181mが、ケース蓋部材113のうち注液孔170の周囲を囲む円環状の孔周囲部113mに、周方向の4カ所で等間隔にスポット溶接されている。これにより、周方向に等間隔に互いに離間した4つのスポット溶接部181y,181y,…が形成され、被覆部材181がケース蓋部材113に固着されている。   The covering member 181 covers the liquid injection hole 170 from the outer side BD in the axis BX direction, and is fixed to the battery case 110 (the case lid member 113) in a form coaxial with the liquid injection hole 170 (see FIG. 5). ). Specifically, an annular peripheral portion 181m along the outer peripheral edge of the covering member 181 is formed at four locations in the circumferential direction on an annular hole peripheral portion 113m surrounding the liquid injection hole 170 in the case lid member 113. Spot welded at equal intervals. As a result, four spot welds 181y, 181y,... Spaced apart from each other at equal intervals in the circumferential direction are formed, and the covering member 181 is fixed to the case lid member 113.

また、ゴム栓部材183は、ゴム状弾性体、具体的には、ゴム硬度HがH=50°のエチレンプロピレンジエンゴム(EPDM)からなる。なお、ゴム硬度Hは、新JIS規格K6235に準じて測定し、硬度計には、タイプAデュロメータを用いる。
このゴム栓部材183は、径小な頂面183cと径大な底面183dとこれらの間を結ぶ側面183fとを有する円錐台状をなす。頂面183cは、注液孔170の円筒部171(内径d)よりも径小となっている。また、底面183dは、頂面183cよりも径大で、かつ、注液孔170の円筒部171(内径d)よりも径大で、かつ、注液孔170のテーパ孔部173の外側テーパ端縁173fdよりも径小となっている。本実施形態1では、ゴム栓部材183全体が、前述の「テーパ部」に相当する。
The rubber plug member 183 is made of a rubber-like elastic body, specifically, ethylene propylene diene rubber (EPDM) having a rubber hardness H of H = 50 °. The rubber hardness H is measured according to the new JIS standard K6235, and a type A durometer is used as the hardness meter.
The rubber plug member 183 has a truncated cone shape having a top surface 183c having a small diameter, a bottom surface 183d having a large diameter, and a side surface 183f connecting between them. The top surface 183c is smaller in diameter than the cylindrical portion 171 (inner diameter d) of the liquid injection hole 170. The bottom surface 183d is larger in diameter than the top surface 183c, larger in diameter than the cylindrical portion 171 (inner diameter d) of the liquid injection hole 170, and the outer tapered end of the taper hole portion 173 of the liquid injection hole 170. The diameter is smaller than the edge 173fd. In the first embodiment, the entire rubber plug member 183 corresponds to the aforementioned “tapered portion”.

このゴム栓部材183は、その底面183dが被覆部材181の被覆部内側面181cの中央に接合されて、被覆部材181と一体化されている。このゴム栓部材183は、被覆部材181の被覆部内側面181cから軸線BX,CX方向の内側BC,CCに延びて、注液孔170内に挿入されている。そして、ゴム栓部材183の側面183fが、注液孔170のうち、円筒部171をなす円筒状内周面171fとテーパ孔部173をなすテーパ状内周面173fとの境界部分に気密に圧接する形態で、ゴム栓部材183が注液孔170に圧入されている。これにより、ゴム栓部材183は、円筒部171の外側円筒端縁171fd及びテーパ孔部173の内側テーパ端縁173fcで、最も高い圧縮率C(本実施形態1ではC=5.24%)に圧縮されている。ゴム栓部材183のうち、この最大に圧縮された最大圧縮部183pの圧縮前の外径Dは、D=2.26mmである。かくして、注液孔170は、ゴム栓部材183で密栓されている。   The bottom surface 183 d of the rubber plug member 183 is joined to the center of the covering portion inner side surface 181 c of the covering member 181, and is integrated with the covering member 181. The rubber plug member 183 extends from the inner surface 181c of the covering portion of the covering member 181 to the inner sides BC and CC in the directions of the axes BX and CX, and is inserted into the liquid injection hole 170. Then, the side surface 183f of the rubber plug member 183 is hermetically pressed to the boundary portion of the liquid injection hole 170 between the cylindrical inner peripheral surface 171f forming the cylindrical portion 171 and the tapered inner peripheral surface 173f forming the tapered hole portion 173. In this manner, the rubber plug member 183 is press-fitted into the liquid injection hole 170. As a result, the rubber plug member 183 has the highest compression rate C (C = 5.24% in the first embodiment) at the outer cylindrical end edge 171fd of the cylindrical portion 171 and the inner tapered end edge 173fc of the tapered hole portion 173. It is compressed. Of the rubber plug member 183, the outer diameter D before compression of the maximum compression portion 183p compressed to the maximum is D = 2.26 mm. Thus, the liquid injection hole 170 is tightly plugged with the rubber plug member 183.

なお、本明細書では、最大圧縮部183pの圧縮率C(%)は、次のようにして求める。即ち、圧縮前の最大圧縮部183p(図7参照)は、軸線CX方向の直交する横断面の断面積がπ×D2/4であり、圧縮後の最大圧縮部183p(図5参照)は、軸線CX方向の直交する横断面の断面積がπ×d2/4である。これより圧縮率C(%)を次のように近似した。
C=100×(π×D2/4−π×d2/4)/(π×D2/4)
=100(D2−d2)/D2 …式(7)
In the present specification, the compression rate C (%) of the maximum compression unit 183p is obtained as follows. That is, the maximum compression unit 183p before compression (see FIG. 7) is an axis line CX direction perpendicular sectional area π × D 2/4 of the transverse section of the, maximum compression unit 183p after compression (see FIG. 5) is , the cross-sectional area of the cross section perpendicular to the axis CX direction is π × d 2/4. From this, the compression ratio C (%) was approximated as follows.
C = 100 × (π × D 2/4-π × d 2/4) / (π × D 2/4)
= 100 (D 2 -d 2) / D 2 ... formula (7)

この電池100では、後述するように、初期充電前に、電池ケース110の内圧を、大気圧Paよりも減圧された初期内圧Pb(本実施形態1ではPb=−80kPa)の状態にして、封止部材180のゴム栓部183で注液孔170を密栓し、電池ケース110を気密に封止したものである。初期充電を行うと、電池ケース110内にガスが発生するので、初期充電後の(出荷時の)電池ケース110の内圧(出荷時内圧Pc)は、前述のように、平均してPc=−50kPaである。   In this battery 100, as will be described later, the internal pressure of the battery case 110 is set to an initial internal pressure Pb (Pb = −80 kPa in the first embodiment) reduced from the atmospheric pressure Pa before the initial charging. The liquid injection hole 170 is sealed with a rubber plug portion 183 of the stopper member 180, and the battery case 110 is hermetically sealed. Since gas is generated in the battery case 110 when the initial charging is performed, the internal pressure (shipping internal pressure Pc) of the battery case 110 after the initial charging (at the time of shipment) averages Pc = − as described above. 50 kPa.

次いで、この電池100の製造方法について説明する。まず、別途形成した帯状の正極板121及び負極板131を、帯状のセパレータ141を介して互いに重ね(図3参照)、巻き芯を用いて軸線AX周りに捲回する。その後、これを扁平状に圧縮して電極体120を形成する(図2参照)。   Next, a method for manufacturing the battery 100 will be described. First, a separately formed belt-like positive electrode plate 121 and negative electrode plate 131 are overlapped with each other via a belt-like separator 141 (see FIG. 3) and wound around an axis AX using a winding core. Thereafter, this is compressed into a flat shape to form the electrode body 120 (see FIG. 2).

また、安全弁115及び注液孔170等を形成したケース蓋部材113と、通電端子部材151及びボルト153とを用意し、これらを射出成形用の金型にセットする。そして、射出成形により絶縁部材155を一体的に成形して、ケース蓋部材113に正極端子150及び負極端子160を固設する(図4参照)。   In addition, a case lid member 113 having a safety valve 115, a liquid injection hole 170, etc., an energizing terminal member 151 and a bolt 153 are prepared, and these are set in an injection mold. Then, the insulating member 155 is integrally formed by injection molding, and the positive electrode terminal 150 and the negative electrode terminal 160 are fixed to the case lid member 113 (see FIG. 4).

次に、正極端子150と電極体120の正極集電部121mとを接続(溶接)する。また、負極端子160と電極体120の負極集電部131mとを接続(溶接)する。その後、ケース本体部材111及び絶縁フィルム包囲体119を用意し、ケース本体部材111内に絶縁フィルム包囲体119を介して電極体120を収容すると共に、ケース本体部材111の開口111hをケース蓋部材113で塞ぐ。そして、レーザ溶接により、ケース本体部材111とケース蓋部材113とを溶接して、電池ケース110を形成する(図1参照)。   Next, the positive electrode terminal 150 and the positive electrode current collector 121m of the electrode body 120 are connected (welded). Further, the negative electrode terminal 160 and the negative electrode current collector 131m of the electrode body 120 are connected (welded). Thereafter, a case main body member 111 and an insulating film enclosure 119 are prepared, the electrode body 120 is accommodated in the case main body member 111 via the insulating film enclosure 119, and an opening 111 h of the case main body member 111 is formed in the case lid member 113. Close with. Then, the case body member 111 and the case lid member 113 are welded by laser welding to form the battery case 110 (see FIG. 1).

また別途、被覆部材181とゴム栓部材183とからなる封止部材180(図7参照)を形成しておく。具体的には、金属板からなる被覆部材181を射出成形用の金型にセットし、射出成形によりゴム栓部材183を一体的に成形する。   Separately, a sealing member 180 (see FIG. 7) composed of a covering member 181 and a rubber plug member 183 is formed. Specifically, the covering member 181 made of a metal plate is set in an injection molding die, and the rubber plug member 183 is integrally formed by injection molding.

次に、前述の電池を、真空チャンバ内に入れて、真空チャンバ内を減圧し、電池ケース110の内圧を本実施形態1では−90kPaとする。そして、注液用ノズルを注液孔170内に挿入して、注液用ノズルから電池ケース110内に電解液117を注液する。その後、注液孔170の周囲(孔周囲部113m等)を不織布で拭いて清掃する。なお、電池ケース110の内圧(−90kPa)を、次述する初期内圧Pb(本実施形態1ではPb=−80kPa)よりも更に減圧しているのは、電解液117を速やかに注入するためである。   Next, the aforementioned battery is placed in a vacuum chamber, the inside of the vacuum chamber is decompressed, and the internal pressure of the battery case 110 is set to −90 kPa in the first embodiment. Then, a liquid injection nozzle is inserted into the liquid injection hole 170, and the electrolytic solution 117 is injected into the battery case 110 from the liquid injection nozzle. Thereafter, the periphery of the liquid injection hole 170 (hole peripheral portion 113m, etc.) is wiped and cleaned with a nonwoven fabric. The reason why the internal pressure (−90 kPa) of the battery case 110 is further reduced than the initial internal pressure Pb (Pb = −80 kPa in the first embodiment) described below is to quickly inject the electrolytic solution 117. is there.

次に、封栓工程において、初期内圧Pb=−80kPaの条件下で、電池ケース110を気密に封止する。即ち、封止部材180のうちのゴム栓部材183を、注液孔170にその軸線BX方向の外側BDから圧入して注液孔170を密栓し、電池ケース110を気密に封止する(図9参照)。その後、真空チャンバ内を大気圧に戻して、真空チャンバからこの電池を取り出す。電池ケース110は、封栓工程で減圧による保持力によって気密に封止されているので、電池100を大気圧下に戻してもその減圧状態を保っており、内圧は初期内圧Pb=−80kPa程度となる。   Next, in the sealing step, the battery case 110 is hermetically sealed under the condition of the initial internal pressure Pb = −80 kPa. That is, the rubber plug member 183 of the sealing member 180 is press-fitted into the liquid injection hole 170 from the outer side BD in the direction of the axis BX to seal the liquid injection hole 170, and the battery case 110 is hermetically sealed (FIG. 9). Thereafter, the inside of the vacuum chamber is returned to atmospheric pressure, and the battery is taken out from the vacuum chamber. Since the battery case 110 is hermetically sealed by the holding force due to the reduced pressure in the plugging step, the reduced pressure state is maintained even when the battery 100 is returned to the atmospheric pressure, and the internal pressure is about the initial internal pressure Pb = −80 kPa. It becomes.

次に、引き抜き試験工程について説明する。本実施形態1に係る電池100において、電池ケース110の内圧を大気圧Paとした状態で、大気圧Pa下でゴム栓部材183を引き抜いたときに、ゴム栓部材183に生じる引き抜き耐力Fa(N)が取り得る範囲を第1耐力範囲AFa(N)とすると、この第1耐力範囲AFaは、後述するように、0.101〜0.195Nである。
また、この電池100において、電池ケース110の内圧を初期内圧Pb(本実施形態1ではPb=−80kPa)として、ゴム栓部材183で注液孔170を密栓した後、初期充電前に、大気圧Pa下でゴム栓部材183を引き抜いたときに、ゴム栓部材183に生じる引き抜き耐力Fb(N)が取り得る範囲を第2耐力範囲AFb(N)とすると、この第2耐力範囲AFbは、後述するように、0.269〜0.373Nである。
Next, the drawing test process will be described. In the battery 100 according to the first embodiment, when the rubber plug member 183 is pulled out under the atmospheric pressure Pa in the state where the internal pressure of the battery case 110 is set to the atmospheric pressure Pa, the pull-out strength Fa (N ) Is a first proof stress range AFa (N), the first proof stress range AFa is 0.101 to 0.195N as will be described later.
In the battery 100, the internal pressure of the battery case 110 is set to the initial internal pressure Pb (Pb = −80 kPa in the first embodiment), the liquid injection hole 170 is sealed with the rubber plug member 183, and then the atmospheric pressure is set before the initial charge. Assuming that the pulling strength Fb (N) generated in the rubber plug member 183 when the rubber plug member 183 is pulled out under Pa is a second strength range AFb (N), the second strength range AFb is described later. As shown, it is 0.269 to 0.373N.

このうち引き抜き耐力Faは、例えば次のようにして求める。まず、封栓工程において、減圧下ではなく、大気圧Pa下で封止部材180のゴム栓部材183で注液孔170を密栓し、電池ケース110を気密に封止する。その後、封止部材180の被覆部材181を軸線BX,CX方向の外側BD,CDに引っ張り、封止部材180(ゴム栓部材183)の引き抜きを試みる。その際、引き抜き力Fhを徐々に大きくしていき、ゴム栓部材183が注液孔170から引き抜かれた時の引き抜き力Fhを、その電池100の引き抜き耐力Faとする。   Of these, the pulling strength Fa is determined as follows, for example. First, in the plugging step, the liquid injection hole 170 is sealed with the rubber plug member 183 of the sealing member 180 not under reduced pressure but under atmospheric pressure Pa, and the battery case 110 is hermetically sealed. Thereafter, the covering member 181 of the sealing member 180 is pulled toward the outer side BD, CD in the direction of the axis BX, CX, and an attempt is made to pull out the sealing member 180 (rubber plug member 183). At this time, the pull-out force Fh is gradually increased, and the pull-out force Fh when the rubber plug member 183 is pulled out from the liquid injection hole 170 is defined as the pull-out resistance Fa of the battery 100.

本実施形態1では、20個の電池100について、それぞれ引き抜き耐力Faを測定した。この引き抜き耐力Faの測定結果の一部(サンプル10個分)を図13に示す。その結果、引き抜き耐力Faの平均値Favが、Fav=0.1480N、標準偏差σaが、σa=0.0118Nであった。   In the first embodiment, the pulling strength Fa was measured for each of the 20 batteries 100. FIG. 13 shows a part of the measurement results of the pullout strength Fa (for 10 samples). As a result, the average value Fav of the pullout proof strength Fa was Fav = 0.1480N, and the standard deviation σa was σa = 0.118N.

ここで、第1耐力範囲AFaを前述の式(1)で与えると、ガウス分布を前提とすれば、理論上、99.9937%の確率で引き抜き耐力Faがこの第1耐力範囲AFaに含まれるので、実際に生産される電池100のほぼ全てについて、引き抜き耐力Faがこの第1耐力範囲AFaに含まれると考えられる。そこで、本実施形態1では、式(1)で与える第1耐力範囲AFaを、引き抜き耐力Fa(N)が取り得る範囲とした。
AFa:Fav−4σa≦Fa≦Fav+4σa …式(1)
この式(1)に、Fav=0.1480N、σa=0.0118Nを代入することにより、第1耐力範囲AFaは、前述のように、0.101〜0.195Nと求まる。
Here, when the first proof stress range AFa is given by the above-described equation (1), the pullout proof strength Fa is theoretically included in the first proof stress range AFa with a probability of 99.99937%, assuming a Gaussian distribution. Therefore, it is considered that the pullout proof strength Fa is included in the first proof strength range AFa for almost all of the batteries 100 that are actually produced. Therefore, in the first embodiment, the first proof stress range AFa given by the expression (1) is set to a range that the pulling proof strength Fa (N) can take.
AFa: Fav−4σa ≦ Fa ≦ Fav + 4σa Formula (1)
By substituting Fav = 0.1480N and σa = 0.118N into this equation (1), the first proof stress range AFa is obtained as 0.101 to 0.195N as described above.

また、引き抜き耐力Fbは、例えば次のようにして求める。まず、前述の封栓工程を行って、電池ケース110の内圧を初期内圧Pbをした状態で、封止部材180のゴム栓部材183で注液孔170を密栓し、電池ケース110を気密に封止する。その後、封止部材180の被覆部材181を軸線BX,CX方向の外側BD,CDに引っ張り、封止部材180(ゴム栓部材183)の引き抜きを試みる。その際、引き抜き力Fhを徐々に大きくしていき、ゴム栓部材183が注液孔170から引き抜かれた時の引き抜き力Fhを、その電池100の引き抜き耐力Fbとする。   Further, the pulling strength Fb is obtained as follows, for example. First, the sealing step is performed, and with the internal pressure of the battery case 110 set to the initial internal pressure Pb, the liquid injection hole 170 is sealed with the rubber plug member 183 of the sealing member 180, and the battery case 110 is hermetically sealed. Stop. Thereafter, the covering member 181 of the sealing member 180 is pulled toward the outer side BD, CD in the direction of the axis BX, CX, and an attempt is made to pull out the sealing member 180 (rubber plug member 183). At that time, the pull-out force Fh is gradually increased, and the pull-out force Fh when the rubber plug member 183 is pulled out from the liquid injection hole 170 is defined as the pull-out resistance Fb of the battery 100.

本実施形態1では、20個の電池100について、それぞれ引き抜き耐力Fbを測定した。この引き抜き耐力Fbの測定結果の一部(サンプル10個分)を図13に示す。その結果、引き抜き耐力Fbの平均値Fbvが、Fbv=0.3210N、標準偏差σbが、σb=0.0131Nであった。   In the first embodiment, the pulling strength Fb was measured for each of the 20 batteries 100. FIG. 13 shows a part of the measurement result of the pullout strength Fb (for 10 samples). As a result, the average value Fbv of the drawing strength Fb was Fbv = 0.210N, and the standard deviation σb was σb = 0.131N.

ここで、第2耐力範囲AFbを、前述の式(2)で与えると、ガウス分布を前提とすれば、理論上、99.9937%の確率で引き抜き耐力Fbが第2耐力範囲AFbに含まれるので、実際に生産される電池100のほぼ全てについて、引き抜き耐力Fbがこの第2耐力範囲AFbに含まれると考えられる。そこで、本実施形態1では、式(2)で与える第2耐力範囲AFbを、引き抜き耐力Fb(N)が取り得る範囲とした。
AFb:Fbv−4σb≦Fb≦Fbv+4σb …式(2)
この式(2)に、Fbv=0.3210N、σb=0.0131Nを代入することにより、第2耐力範囲AFbは、前述のように、0.269〜0.373Nと求まる。
Here, when the second proof stress range AFb is given by the above-described formula (2), if the Gaussian distribution is assumed, the pullout proof strength Fb is theoretically included in the second proof stress range AFb with a probability of 99.99937%. Therefore, it is considered that the pullout proof strength Fb is included in the second proof stress range AFb for almost all the batteries 100 that are actually produced. Therefore, in the first embodiment, the second yield strength range AFb given by the expression (2) is set to a range that the pulling strength Fb (N) can take.
AFb: Fbv−4σb ≦ Fb ≦ Fbv + 4σb Equation (2)
By substituting Fbv = 0.210N and σb = 0.0131N into this equation (2), the second proof stress range AFb is obtained as 0.269 to 0.373N as described above.

このように本実施形態1では、第1耐力範囲AFaが0.101〜0.195Nであり、第2耐力範囲AFbが0.269〜0.373Nであるため、これらの範囲AFa,AFbは互いに離間している(これらの範囲AFa,AFbは互いに重ならない)。   As described above, in the first embodiment, the first proof stress range AFa is 0.101 to 0.195N, and the second proof stress range AFb is 0.269 to 0.373N. They are separated (the ranges AFa and AFb do not overlap each other).

次に、閾値Fsを、第1耐力範囲AFaと第2耐力範囲AFbとの間の所定値とする。本実施形態1では、閾値Fs=0.25Nとした。そして、この閾値Fsを上限としたゴム栓部材183の引き抜きを試みる。具体的には、封止部材180の被覆部材181に吸着ヘッダを減圧吸着させて、この吸着ヘッダを最大で閾値Fsまでの引き抜き力Fhで、軸線BX,CX方向の外側BD,CDに引っ張る。これにより、引き抜き力Fhをゴム栓部材183に掛けて、封止部材180(ゴム栓部材183)の引き抜きを試みる(図9参照)。なお、吸着ヘッダ内の減圧度を、引き抜き力Fhが閾値Fsとなった時点で、吸着ヘッダが封止部材180(その被覆部材181)から離れるように調整することで、封止部材180(ゴム栓部材183)に掛ける引き抜き力Fhを最大で閾値Fsまでとすることができる。或いは、吸着ヘッダ内の減圧度は十分に高くしておき、吸着ヘッダを持ち上げる力を直接制御することで、封止部材180(ゴム栓部材183)に掛ける引き抜き力Fhを閾値Fsまで変化させてもよい。   Next, the threshold value Fs is set to a predetermined value between the first proof stress range AFa and the second proof stress range AFb. In the first embodiment, the threshold value Fs = 0.25N. Then, an attempt is made to pull out the rubber plug member 183 with the threshold value Fs as an upper limit. Specifically, the suction header is vacuum-sucked by the covering member 181 of the sealing member 180, and the suction header is pulled to the outer sides BD and CD in the directions of the axes BX and CX with the pull-out force Fh up to the threshold value Fs. Thus, the pulling force Fh is applied to the rubber plug member 183 to try to pull out the sealing member 180 (rubber plug member 183) (see FIG. 9). The degree of pressure reduction in the suction header is adjusted so that the suction header is separated from the sealing member 180 (its covering member 181) when the pull-out force Fh reaches the threshold value Fs. The pulling force Fh applied to the plug member 183) can be set to a maximum value up to the threshold value Fs. Alternatively, the degree of decompression in the suction header is sufficiently high, and the pulling force Fh applied to the sealing member 180 (rubber plug member 183) is changed to the threshold value Fs by directly controlling the force for lifting the suction header. Also good.

その際、閾値Fsは、第1耐力範囲AFaを超える値であるので、圧入によりゴム栓部材183と注液孔170との間に生じる摩擦力にバラツキがあっても、この摩擦力を越える引き抜き力Fhを封止部材180(ゴム栓部材183)に掛けることができる。このため、何らかの原因で電池ケース110の内圧が大気圧Paとなってしまった不良品は、封止部材180(ゴム栓部材183)が確実に引き抜かれる。一方、閾値Fsは、第2耐力範囲AFbを下回る値であるので、摩擦力にバラツキがあっても、電池ケース110内が適切に減圧されている良品は、封止部材180(ゴム栓部材183)が引き抜かれない。従って、封止部材180(ゴム栓部材183)が引き抜かれた不良品を確実に排除し、封止部材180(ゴム栓部材183)が引き抜かれなかった良品のみを確実に選別できる。   At this time, the threshold value Fs exceeds the first proof stress range AFa. Therefore, even if the friction force generated between the rubber plug member 183 and the liquid injection hole 170 varies due to the press-fitting, the extraction exceeds the friction force. The force Fh can be applied to the sealing member 180 (rubber plug member 183). For this reason, the sealing member 180 (rubber plug member 183) is reliably pulled out from a defective product in which the internal pressure of the battery case 110 has become the atmospheric pressure Pa for some reason. On the other hand, since the threshold value Fs is a value lower than the second proof stress range AFb, even if the frictional force varies, a good product whose pressure inside the battery case 110 has been appropriately reduced is the sealing member 180 (rubber plug member 183). ) Is not pulled out. Therefore, defective products from which the sealing member 180 (rubber plug member 183) has been pulled out can be surely excluded, and only good products from which the sealing member 180 (rubber plug member 183) has not been pulled out can be reliably selected.

次に、溶接工程において、選別された良品の電池100について、封止部材180の被覆部材181をケース蓋部材113に溶接する。具体的には、封止部材180の被覆部材181を軸線BX,CX方向の内側BC,DCに押圧した状態で、レーザ溶接により、被覆部材181の周縁部181mをケース蓋部材113の孔周囲部113mに、周方向の4カ所で等間隔にスポット溶接する。
その後、初期充電工程(コンディショニング工程)において、選別された良品の電池100について初期充電を行う。その際、電池ケース110内には、ガスが発生するので、電池ケース110の内圧は、前述のように、初期内圧Pb=−80kPa程度から、平均して出荷時内圧Pc=−50kPaとなる。かくして、電池100が完成する。
Next, in the welding process, the covering member 181 of the sealing member 180 is welded to the case lid member 113 for the selected good battery 100. Specifically, in a state where the covering member 181 of the sealing member 180 is pressed against the inner sides BC and DC in the directions of the axes BX and CX, the peripheral portion 181m of the covering member 181 is formed around the hole of the case lid member 113 by laser welding. Spot welding is performed at equal intervals at four locations in the circumferential direction at 113 m.
Thereafter, in the initial charging step (conditioning step), the selected non-defective battery 100 is initially charged. At that time, since gas is generated in the battery case 110, the internal pressure of the battery case 110 is, on average, from the initial internal pressure Pb = -80 kPa to the shipping internal pressure Pc = -50 kPa on average. Thus, the battery 100 is completed.

ここで、本実施形態1に係る電池100における、初期内圧Pb(kPa)と、注液孔170の円筒部171の内径d(mm)と、ゴム栓部材183の最大圧縮部183pの外径D(mm)と、ゴム栓部材183の硬度H(°)と、第1耐力範囲AFa(N)及び第2耐力範囲AFb(N)との関係について説明する。   Here, in the battery 100 according to the first embodiment, the initial internal pressure Pb (kPa), the inner diameter d (mm) of the cylindrical portion 171 of the liquid injection hole 170, and the outer diameter D of the maximum compression portion 183p of the rubber plug member 183. The relationship between (mm), the hardness H (°) of the rubber plug member 183, the first proof stress range AFa (N), and the second proof stress range AFb (N) will be described.

本実施形態1に係る電池100は、図13のグラフに示すように、引き抜き耐力Fbの平均値Fbv(=0.3210N)が、引き抜き耐力Faの平均値Fav(=0.1480N)の2倍よりも大きくなっているので、前述の式(5)が成り立っている。また、このように平均値Fbvを平均値Favの2倍を超える値にすれば、図13のグラフのように、平均値Fbvと平均値Favとの間を十分に大きくすることができ、第1耐力範囲AFaと第2耐力範囲AFbとの間を大きく離間させることができる。
Fbv>2Fav …式(5)
In the battery 100 according to the first embodiment, as shown in the graph of FIG. 13, the average value Fbv (= 0.3210N) of the pullout strength Fb is twice the average value Fav (= 0.1480N) of the pullout strength Fa. Therefore, the above equation (5) is established. Further, if the average value Fbv is set to a value exceeding twice the average value Fav in this way, the average value Fbv and the average value Fav can be sufficiently increased as shown in the graph of FIG. The first proof stress range AFa and the second proof stress range AFb can be greatly separated.
Fbv> 2Fav Formula (5)

ところで、ゴム栓部材183を注液孔170から引き抜く際、ゴム栓部材183には、電池ケース110内を負圧にしたことによって生じる引き込み力Fd(N)と、ゴム栓部材183を注液孔170に圧入したことによってゴム栓部材183と注液孔170との間に生じる摩擦力(=引き抜き耐力Fa(N))とが掛かる。従って、引き抜き耐力Fb(N)は、引き込み力Fd(N)と摩擦力(=引き抜き耐力Fa(N))との和に等しい。
Fb=Fd+Fa …式(8)
更に、引き抜き耐力Fbの平均値Fbv(N)は、引き込み力Fdの平均値Fdv(N)と摩擦力の平均値(=引き抜き耐力Faの平均値Fav(N))との和に等しいと考えられるので、次の式(9)が成り立つ。
Fbv=Fdv+Fav …式(9)
By the way, when the rubber plug member 183 is pulled out from the liquid injection hole 170, the rubber plug member 183 is supplied with the pulling force Fd (N) generated by the negative pressure inside the battery case 110 and the rubber plug member 183. A friction force (= drawing strength Fa (N)) generated between the rubber plug member 183 and the liquid injection hole 170 is applied by being press-fitted into 170. Accordingly, the pulling strength Fb (N) is equal to the sum of the pulling force Fd (N) and the frictional force (= pulling strength Fa (N)).
Fb = Fd + Fa (8)
Further, the average value Fbv (N) of the pulling strength Fb is considered to be equal to the sum of the average value Fdv (N) of the pulling force Fd and the average value of the frictional force (= the average value Fav (N) of the pulling strength Fa). Therefore, the following equation (9) is established.
Fbv = Fdv + Fav Equation (9)

引き込み力Fdの平均値Fdv(N)は、初期内圧Pb(kPa)、注液孔170の円筒部171の内径d(mm)、大気圧Paの絶対圧p(=101.325kPa)、1(atm)=101.325(kPa)=0.101325(N/mm2 )=p×10-3 から、次の式(10)で表すことができる。
Fdv=(|Pb|/p)×(π・d2/4)×(p×10-3
=|Pb|・π・d2 /4000 …式(10)
The average value Fdv (N) of the pull-in force Fd is the initial internal pressure Pb (kPa), the inner diameter d (mm) of the cylindrical portion 171 of the liquid injection hole 170, the absolute pressure p (= 101.325 kPa) of the atmospheric pressure Pa, 1 ( From (atm) = 101.325 (kPa) = 0.101325 (N / mm 2 ) = p × 10 −3 , it can be expressed by the following formula (10).
Fdv = (| Pb | / p ) × (π · d 2/4) × (p × 10 -3)
= | Pb | · π · d 2/4000 ... (10)

更に、この式(10)を前述の式(9)に代入すると、次の式(11)となる。
Fbv=|Pb|・π・d2 /4000+Fav …式(11)
引き込み力Fdの平均値Fdvに対して、摩擦力の平均値(=引き抜き耐力Faの平均値Fav)は小さい。また、この式(11)において、引き抜き耐力Faの平均値Favが仮に零であるとすれば、その分だけ引き抜き耐力Fbの平均値Fbvが小さくなる。
Further, when this equation (10) is substituted into the above equation (9), the following equation (11) is obtained.
Fbv = | Pb | · π · d 2/4000 + Fav ... formula (11)
The average value of the frictional force (= the average value Fav of the pull-out resistance Fa) is smaller than the average value Fdv of the pull-in force Fd. Further, in this equation (11), if the average value Fav of the pullout proof strength Fa is zero, the average value Fbv of the pullout proof strength Fb decreases accordingly.

第1耐力範囲AFaと第2耐力範囲AFbとを互いに離間させる、即ち、第2耐力範囲AFbの最小値(Fbv−4σb)を第1耐力範囲AFaの最大値(Fav+4σa)よりも大きくすることを考えるときに、式(11)で与えられるFbvよりも小さい、次の式(12)で与えられるFbvを用いて計算すれば、より安全方向に計算できる。つまり、式(12)で与えられる小さなFbvを用いて、第2耐力範囲AFbの最小値(Fbv−4σb)が第1耐力範囲AFaの最大値(Fav+4σa)よりも大きくなるように計算すれば、それよりも大きな、式(11)で与えられるFbvでも、第2耐力範囲AFbの最小値(Fbv−4σb)は、第1耐力範囲AFaの最大値(Fav+4σa)よりも大きくなる。そこで、式(11)において便宜的に引き抜き耐力Faの平均値FavをFav=0(零)として、式(12)を以下の計算に用いる。
Fbv=|Pb|・π・d2 /4000 …式(12)
The first proof stress range AFa and the second proof stress range AFb are separated from each other, that is, the minimum value (Fbv-4σb) of the second proof stress range AFb is made larger than the maximum value (Fav + 4σa) of the first proof stress range AFa. When thinking, if it calculates using Fbv given by following Formula (12) smaller than Fbv given by Formula (11), it can calculate in a safer direction. In other words, using the small Fbv given by equation (12), if the minimum value (Fbv-4σb) of the second proof stress range AFb is calculated to be larger than the maximum value (Fav + 4σa) of the first proof stress range AFa, Even in the larger Fbv given by the equation (11), the minimum value (Fbv−4σb) of the second proof stress range AFb is larger than the maximum value (Fav + 4σa) of the first proof stress range AFa. Therefore, for convenience, in Expression (11), the average value Fav of the pullout proof strength Fa is set to Fav = 0 (zero), and Expression (12) is used for the following calculation.
Fbv = | Pb | · π · d 2/4000 ... formula (12)

一方、摩擦力の平均値(=引き抜き耐力Faの平均値Fav(N))は、ゴム硬度H(°)と引き抜き耐力F(N)との関係式と、圧縮率C(%)と引き抜き耐力F(N)との関係式と、定数k(1/N)と、円筒部171の内径d(mm)を含む関係式とを用いて、次のように表すことができる。
Fav=(ゴム硬度Hと引き抜き耐力Fとの関係式)×(圧縮率Cと引き抜き耐力Fとの関係式)×(定数k)×(内径dを含む関係式) …式(13)
On the other hand, the average value of the frictional force (= average value Fav (N) of the pulling strength Fa) is the relational expression between the rubber hardness H (°) and the pulling strength F (N), the compression rate C (%), and the pulling strength. Using the relational expression with F (N), the constant k (1 / N), and the relational expression including the inner diameter d (mm) of the cylindrical portion 171, it can be expressed as follows.
Fav = (Relationship between rubber hardness H and pulling strength F) × (Relationship between compressibility C and pulling strength F) × (Constant k) × (Relationship including inner diameter d) Equation (13)

このうち、ゴム硬度H(°)と引き抜き耐力F(N)との関係式は、図11のグラフより、次のように求められる。
F=4.0×10-3×H−9.0×10-2 …式(14)
Among these, the relational expression between the rubber hardness H (°) and the pulling strength F (N) is obtained from the graph of FIG. 11 as follows.
F = 4.0 × 10 −3 × H-9.0 × 10 −2 Formula (14)

なお、図11のグラフは、次の測定結果から得られたものである。即ち、ゴム硬度Hを変えた複数の電池について、電池ケースの内圧を大気圧Paとした状態で、大気圧Pa下でゴム栓部材を引き抜いたときの引き抜き耐力F(N)をそれぞれ測定した。ゴム硬度Hは、50°、60°または70°とした。また、この試験では、注液孔の円筒部の内径dをd=1.60mmとし、ゴム栓部材の最大圧縮部の圧縮率CをC=5.50%とした。それ以外は、実施形態1の電池100と同じである。   In addition, the graph of FIG. 11 was obtained from the following measurement result. That is, with respect to a plurality of batteries with different rubber hardness H, the pulling-out strength F (N) when the rubber plug member was pulled out under the atmospheric pressure Pa with the internal pressure of the battery case being set to the atmospheric pressure Pa was measured. The rubber hardness H was 50 °, 60 ° or 70 °. In this test, the inner diameter d of the cylindrical portion of the injection hole was d = 1.60 mm, and the compression ratio C of the maximum compression portion of the rubber plug member was C = 5.50%. The rest is the same as the battery 100 of the first embodiment.

また、圧縮率C(%)と引き抜き耐力F(N)との関係式は、図12のグラフより、次のように求められる。
F=2.0×10-2 ×C …式(15)
圧縮率C(%)は、前述の式(7)のように、C=100(D2−d2)/D2 と変形できるので、これを式(15)に代入する。
F=2.0(D2−d2)/D2 …式(16)
Further, a relational expression between the compression rate C (%) and the pulling strength F (N) is obtained from the graph of FIG. 12 as follows.
F = 2.0 × 10 −2 × C (15)
Since the compression rate C (%) can be transformed to C = 100 (D 2 −d 2 ) / D 2 as in the above-described equation (7), this is substituted into the equation (15).
F = 2.0 (D 2 −d 2 ) / D 2 Formula (16)

なお、図12のグラフは、次の測定結果から得られたものである。即ち、ゴム栓部材の最大圧縮部の圧縮率Cを変えた複数の電池について、電池ケースの内圧を大気圧Paとした状態で、大気圧Pa下でゴム栓部材を引き抜いたときの引き抜き耐力F(N)をそれぞれ測定した。圧縮率Cは、5.50%または20.0%とした。また、この試験では、注液孔の円筒部の内径dをd=1.60mmとし、ゴム栓部材のゴム硬度を50°とした。それ以外は、実施形態1の電池100と同じである。   In addition, the graph of FIG. 12 was obtained from the following measurement result. That is, with respect to a plurality of batteries in which the compression ratio C of the maximum compression portion of the rubber plug member is changed, the pulling resistance strength F when the rubber plug member is pulled out under the atmospheric pressure Pa with the internal pressure of the battery case being set to the atmospheric pressure Pa. (N) was measured respectively. The compression rate C was 5.50% or 20.0%. In this test, the inner diameter d of the cylindrical portion of the liquid injection hole was d = 1.60 mm, and the rubber hardness of the rubber plug member was 50 °. The rest is the same as the battery 100 of the first embodiment.

式(14)と式(16)は、共にゴム硬度H=50°、圧縮率C=5.50%での実験結果から導いた関係式であるので、これらの式を結びつけるために、その共通の引き抜き耐力F=0.11(N)で除して、これを定数k(1/N)とする。
k=1/0.11 …式(17)
また、内径dを含む関係式は、図11及び図12に示した結果が内径d=1.60mmでの実験結果であるため、次の式(18)となる。
(内径dを含む関係式)=d/1.6 …式(18)
Since both formula (14) and formula (16) are relational expressions derived from the experimental results with rubber hardness H = 50 ° and compression ratio C = 5.50%, in order to link these formulas, This is divided by the pull-out strength F = 0.11 (N), and this is set as a constant k (1 / N).
k = 1 / 0.11 Formula (17)
The relational expression including the inner diameter d is the following expression (18) because the results shown in FIGS. 11 and 12 are the experimental results when the inner diameter d = 1.60 mm.
(Relational formula including inner diameter d) = d / 1.6 Formula (18)

次に、式(13)に、式(14),式(16)〜式(18)を代入すると、次の式(19)が得られる。
Fav=(4.0×10-3×H−9.0×10-2 )×(2.0(D2−d2)/D2 )×(1/0.11)×(d/1.6) …式(19)
Next, when Expression (14) and Expression (16) to Expression (18) are substituted into Expression (13), the following Expression (19) is obtained.
Fav = (4.0 × 10 −3 × H−9.0 × 10 −2 ) × (2.0 (D 2 −d 2 ) / D 2 ) × (1 / 0.11) × (d / 1 .6) Formula (19)

次に、式(5)に、式(12)及び式(19)を代入してまとめると、前述の式(20)が得られる。
|Pb|・π・d・D2 /(D2 −d2 )>3.7×102 ×H−8.1×103 …式(6)
なお、この式(6)の右辺における「3.7×102 」は、より安全方向に計算できるように、3桁目を切り上げて有効数字を2桁としたものであり、「8.1×103 」は、より安全方向に計算できるように、3桁目を切り捨てて有効数字を2桁としたものである。
Next, when the formula (12) and the formula (19) are substituted into the formula (5) and put together, the above-described formula (20) is obtained.
| Pb | · π · d · D 2 / (D 2 −d 2 )> 3.7 × 10 2 × H−8.1 × 10 3 Formula (6)
In addition, “3.7 × 10 2 ” on the right side of the equation (6) is obtained by rounding up the third digit to 2 significant digits so that it can be calculated in a safer direction. “× 10 3 ” is obtained by rounding down the third digit to two significant digits so that it can be calculated more safely.

本実施形態1に係る電池100は、前述のように、注液孔170の円筒部171の内径dがd=2.20mm、ゴム栓部材183の最大圧縮部183pの外径DがD=2.26mm、ゴム栓部材183の硬度HがH=50°である。従って、初期内圧Pb=−80kPaに対して、式(6)の関係を満たしている。   In the battery 100 according to the first embodiment, as described above, the inner diameter d of the cylindrical portion 171 of the liquid injection hole 170 is d = 2.20 mm, and the outer diameter D of the maximum compression portion 183p of the rubber plug member 183 is D = 2. .26 mm, and the hardness H of the rubber plug member 183 is H = 50 °. Therefore, the relationship of Expression (6) is satisfied with respect to the initial internal pressure Pb = −80 kPa.

以上で説明したように、本実施形態1に係る電池100は、自身の内外を連通する注液孔(貫通孔)170を有する電池ケース110と、この電池ケース110内に収容された電極体120と、ゴム状弾性体からなり、注液孔170に電池ケース110の外部から圧入してこの注液孔170を密栓してなるゴム栓部材(ゴム栓部)183を有する封止部材180とを備える。また、この電池100は、初期充電前の電池ケース110の内圧を、大気圧Paよりも減圧された初期内圧Pbとして、ゴム栓部材183で注液孔170を密栓し、その後に初期充電を施してなる。   As described above, the battery 100 according to the first embodiment includes the battery case 110 having the liquid injection hole (through hole) 170 that communicates the inside and the outside of the battery 100 and the electrode body 120 accommodated in the battery case 110. And a sealing member 180 having a rubber plug member (rubber plug portion) 183 that is made of a rubber-like elastic body and is press-fitted into the liquid injection hole 170 from the outside of the battery case 110 to seal the liquid injection hole 170 tightly. Prepare. Further, in this battery 100, the internal pressure of the battery case 110 before the initial charge is set to the initial internal pressure Pb that is reduced from the atmospheric pressure Pa, and the liquid injection hole 170 is sealed with the rubber plug member 183, and then the initial charge is performed. It becomes.

また、注液孔170は、内周面171fが円筒状をなす円筒部171を有する。また、ゴム栓部材183は、注液孔170の軸線BX方向に直交する断面が円形で軸線BX方向の外側BDほど径大となるテーパ状の側面183fをなすテーパ部を有する(ゴム栓部材183全体がテーパ部に相当する)。このゴム栓部材(テーパ部)183は、円筒部171の外側BDの開口端縁である外側円筒端縁171fdで、最も高い圧縮率に圧縮されてなる。   Further, the liquid injection hole 170 has a cylindrical portion 171 having an inner peripheral surface 171f forming a cylindrical shape. Further, the rubber plug member 183 has a tapered portion forming a tapered side surface 183f having a circular cross section perpendicular to the axis BX direction of the liquid injection hole 170 and having a diameter larger toward the outer side BD in the axis BX direction (rubber plug member 183). The whole corresponds to the taper portion). The rubber plug member (tapered portion) 183 is compressed to the highest compression rate at the outer cylindrical end edge 171 fd which is the opening end edge of the outer side BD of the cylindrical portion 171.

注液孔170の円筒部171の内径をdとし、ゴム栓部材(テーパ部)183のうち、外側円筒端縁171fdで最大に圧縮された最大圧縮部183pの、圧縮前の外径をDとし、ゴム栓部材183の硬度をHとする。また、電池ケース110の内圧を大気圧Paとした状態で、大気圧Pa下でゴム栓部材183を引き抜いたときに、ゴム栓部材183に生じる引き抜き耐力Faが取り得る範囲を第1耐力範囲AFaとする。また、電池ケース110の内圧を初期内圧Pbとして、ゴム栓部材183で注液孔170を密栓した後、初期充電前に、大気圧Pa下でゴム栓部材183を引き抜いたときに、ゴム栓部材183に生じる引き抜き耐力Fbが取り得る範囲を第2耐力範囲AFbとする。そして、円筒部171の内径d、最大圧縮部183pの外径D、及び、ゴム栓部材183の硬度Hを、第1耐力範囲AFaと第2耐力範囲AFbとが互いに離間する大きさとしてなる。   The inner diameter of the cylindrical portion 171 of the liquid injection hole 170 is d, and the outer diameter before compression of the maximum compression portion 183p of the rubber plug member (tapered portion) 183 that is compressed to the maximum at the outer cylindrical edge 171fd is D. The hardness of the rubber plug member 183 is H. Further, when the rubber plug member 183 is pulled out under the atmospheric pressure Pa with the internal pressure of the battery case 110 being set to the atmospheric pressure Pa, a range in which the pull-out strength Fa generated in the rubber plug member 183 can be taken is a first strength range AFa. And Further, when the internal pressure of the battery case 110 is set to the initial internal pressure Pb and the liquid injection hole 170 is sealed with the rubber plug member 183 and then the rubber plug member 183 is pulled out under the atmospheric pressure Pa before the initial charge, the rubber plug member A range that can be taken by the pulling-out strength Fb generated in 183 is defined as a second strength range AFb. Then, the inner diameter d of the cylindrical portion 171, the outer diameter D of the maximum compression portion 183 p, and the hardness H of the rubber plug member 183 are such that the first proof stress range AFa and the second proof stress range AFb are separated from each other.

そして、この電池100は、閾値Fsを第1耐力範囲AFaと第2耐力範囲AFbとの間の値としたとき、電池ケース110の内圧を初期内圧Pbとして、ゴム栓部材183で注液孔170を密栓した後に、大気圧Pa下で最大で閾値Fsまでの引き抜き力Fhをゴム栓部材183に掛けて、ゴム栓部材183の引き抜きを試みて、ゴム栓部材183が引き抜かれなかった電池100について、初期充電を施してなる。   In the battery 100, when the threshold value Fs is a value between the first proof stress range AFa and the second proof stress range AFb, the internal pressure of the battery case 110 is set as the initial internal pressure Pb, and the liquid injection hole 170 is filled with the rubber plug member 183. The battery 100 in which the rubber plug member 183 was not pulled out by applying the pulling force Fh up to the threshold value Fs up to the threshold value Fs under the atmospheric pressure Pa to the rubber plug member 183 and trying to pull out the rubber plug member 183. The initial charge is applied.

この電池100では、注液孔170の円筒部171の内径d、ゴム栓部材183の最大圧縮部183pの外径D、及び、ゴム栓部材183の硬度Hを、第1耐力範囲AFaと第2耐力範囲AFbとが互いに離間する大きさとしている。そして、電池ケース110の内圧を初期内圧Pbとして、ゴム栓部材183で注液孔170を密栓した後に、大気圧Pa下で最大で閾値Fs(第1耐力範囲AFaと第2耐力範囲AFbとの間の値)までの引き抜き力Fhをゴム栓部材183に掛けて、ゴム栓部材183の引き抜きを試みて、ゴム栓部材183が引き抜かれなかった電池100について、初期充電を施している。   In the battery 100, the inner diameter d of the cylindrical portion 171 of the liquid injection hole 170, the outer diameter D of the maximum compression portion 183p of the rubber plug member 183, and the hardness H of the rubber plug member 183 are set to the first proof stress range AFa and the second. The proof stress range AFb is separated from each other. Then, the internal pressure of the battery case 110 is set to the initial internal pressure Pb, and the liquid injection hole 170 is tightly plugged with the rubber plug member 183, and then the maximum threshold value Fs (at the first proof stress range AFa and the second proof stress range AFb) under the atmospheric pressure Pa The battery 100 in which the rubber plug member 183 has not been pulled out by applying a pulling force Fh up to a value between the rubber plug member 183 and trying to pull out the rubber plug member 183 is subjected to initial charging.

ゴム栓部材183の引き抜きを試みたときに、電池ケース110内が適切に減圧されている良品の電池100は、ゴム栓部材183が引き抜かれない。一方、何らかの原因で電池ケース110の内圧が大気圧になってしまった不良品の電池は、ゴム栓部材183が確実に引き抜かれるので、これを排除できる。そして、ゴム栓部材183が引き抜かれず、その後に初期充電が行われた本実施形態1に係る電池100は、電池ケース110内が適切に減圧された電池として提供できる。   When trying to pull out the rubber plug member 183, the rubber plug member 183 is not pulled out from a good battery 100 in which the inside of the battery case 110 is appropriately decompressed. On the other hand, a defective battery whose internal pressure in the battery case 110 has become atmospheric pressure for some reason can be removed because the rubber plug member 183 is reliably pulled out. Then, the battery 100 according to the first embodiment in which the rubber plug member 183 is not pulled out and the initial charging is performed thereafter can be provided as a battery in which the inside of the battery case 110 is appropriately decompressed.

更に、本実施形態1に係る電池100では、引き抜き耐力Faの平均値をFav、標準偏差をσaとし、第1耐力範囲AFaを、
Fav−4σa≦Fa≦Fav+4σa …式(1)
で定め、引き抜き耐力Fbの平均値をFbv、標準偏差をσbとし、第2耐力範囲AFbを、
Fbv−4σb≦Fb≦Fbv+4σb …式(2)
で定めたとき、円筒部171の内径d、最大圧縮部183pの外径D、及び、ゴム栓部材183の硬度Hを、
Fav+4σa<Fbv−4σb …式(3)
の関係を満たす大きさとしてなる。
また、閾値Fsを、
Fav+4σa<Fs<Fbv−4σb …式(4)
の関係を満たす値としている。
Furthermore, in the battery 100 according to the first embodiment, the average value of the pullout proof stress Fa is Fav, the standard deviation is σa, and the first proof stress range AFa is
Fav-4σa ≦ Fa ≦ Fav + 4σa (1)
The average value of the pulling strength Fb is Fbv, the standard deviation is σb, and the second strength range AFb is
Fbv-4σb ≦ Fb ≦ Fbv + 4σb Equation (2)
, The inner diameter d of the cylindrical portion 171, the outer diameter D of the maximum compression portion 183 p, and the hardness H of the rubber plug member 183,
Fav + 4σa <Fbv-4σb (3)
The size satisfies the relationship.
Also, the threshold value Fs is set to
Fav + 4σa <Fs <Fbv-4σb Equation (4)
The value satisfies the relationship.

第1耐力範囲AFa及び第2耐力範囲AFbを上記のように式(1)及び式(2)のように定めることで、ガウス分布を前提とすると、理論上、99.9937%の確率で引き抜き耐力Faがこの第1耐力範囲AFaに含まれ、また、99.9937%の確率で引き抜き耐力Fbがこの第2耐力範囲AFaに含まれる。従って、実際に生産される電池100のほぼ全てについて、引き抜き耐力Fa,Fbがこれら第1,第2耐力範囲AFa,AFbに含まれると考えられるので、閾値Fsを適切な値に定めることができる。これにより、ゴム栓部材183の引き抜きにおいて、電池ケース110の内圧が大気圧となった不良品をより確実に排除し、電池ケース110内が適切に減圧された良品のみをより確実に選別できる。   By defining the first proof stress range AFa and the second proof stress range AFb as shown in the equations (1) and (2) as described above, it is theoretically extracted with a probability of 99.9937% assuming a Gaussian distribution. The proof stress Fa is included in the first proof stress range AFa, and the pullout proof strength Fb is included in the second proof stress range AFa with a probability of 99.99937%. Accordingly, it is considered that the pullout proof strengths Fa and Fb are included in the first and second proof stress ranges AFa and AFb for almost all of the batteries 100 that are actually produced, and thus the threshold value Fs can be set to an appropriate value. . Thereby, when the rubber plug member 183 is pulled out, defective products whose internal pressure in the battery case 110 has become atmospheric pressure can be more reliably excluded, and only good products whose pressure in the battery case 110 is appropriately reduced can be more reliably selected.

また、引き抜き耐力Faの平均値Fav及び標準偏差をσaと、引き抜き耐力Fbの平均値Fbv及び標準偏差σbを求め、これらが式(3)を満たすように、円筒部170の内径d、最大圧縮部183pの外径D、及びゴム栓部材183の硬度Hの大きさを選択するだけで、第1耐力範囲AFaと第2耐力範囲AFbとを互いに離間させることができる。従って、内径d、外径D及び硬度Hの大きさを、容易かつ適切に定めることができる。   Further, the average value Fav and standard deviation of the pulling strength Fa are calculated as σa, and the average value Fbv and standard deviation σb of the pulling strength Fb are obtained, and the inner diameter d and the maximum compression of the cylindrical portion 170 are satisfied so that these satisfy the formula (3). The first proof stress range AFa and the second proof stress range AFb can be separated from each other only by selecting the outer diameter D of the portion 183p and the hardness H of the rubber plug member 183. Accordingly, the inner diameter d, the outer diameter D, and the hardness H can be easily and appropriately determined.

また、本実施形態1では、円筒部171の内径d、最大圧縮部183pの外径D、及び、ゴム栓部材183の硬度Hを、引き抜き耐力Faの平均値Fav及び引き抜き耐力Fbの平均値Fbvが、
Fbv>2Fav …式(5)
の関係を満たす大きさとしてなる。
In the first embodiment, the inner diameter d of the cylindrical portion 171, the outer diameter D of the maximum compression portion 183 p, and the hardness H of the rubber plug member 183, the average value Fav of the pullout strength Fa and the average value Fbv of the pullout strength Fb. But,
Fbv> 2Fav Formula (5)
The size satisfies the relationship.

このように、引き抜き耐力Fbの平均値Fbvを引き抜き耐力Faの平均値Favの2倍を超える値にすれば、平均値Fbvと平均値Favとの間が十分に大きくなるので、第1耐力範囲AFaと第2耐力範囲AFbとの間をより大きく離間させることができる。これにより、閾値Fsを適切に選択してゴム栓部材183の引き抜きを試みたときに、何らかの原因で電池ケース110の内圧が大気圧になってしまった不良品の電池は、より確実にゴム栓部材183が引き抜かれる。従って、電池ケース110内が適切に減圧された電池100のみをより確実に選別できる。   In this way, if the average value Fbv of the pulling strength Yb is set to a value exceeding twice the average value Fav of the pulling strength Y, the space between the average value Fbv and the average value Fav is sufficiently large. The distance between AFa and the second yield strength range AFb can be further increased. Thereby, when the threshold value Fs is appropriately selected and the rubber plug member 183 is pulled out, a defective battery whose internal pressure of the battery case 110 has become atmospheric pressure for some reason is more reliably fixed. The member 183 is pulled out. Therefore, only the battery 100 in which the inside of the battery case 110 is appropriately decompressed can be more reliably selected.

なお、本実施形態では、上記のように、引き抜き耐力Fbの平均値Fbvを引き抜き耐力Faの平均値Favの2倍を超える値にしているが、平均値Fbvを平均値Favの3倍を超える値や4倍を超える値などとすることもできる。
Fbv>3Fav …式(20)
Fbv>4Fav …式(21)
In the present embodiment, as described above, the average value Fbv of the drawing strength Fb is set to a value exceeding twice the average value Fav of the drawing strength Fa, but the average value Fbv exceeds three times the average value Fav. It can also be a value or a value exceeding 4 times.
Fbv> 3Fav Formula (20)
Fbv> 4Fav Formula (21)

また、本実施形態1では、円筒部171の内径d(mm)、最大圧縮部183pの外径D(mm)、及び、ゴム栓部材183の硬度H(°、但し、この硬度Hは、新JIS規格K6235に準じ、硬度計にタイプAデュロメータを用いて測定した値である。)を、前記初期内圧Pb(kPa)に対して、
|Pb|・π・d・D2 /(D2 −d2 )>3.7×102 ×H−8.1×103 …式(6)
の関係を満たす大きさとしてなる。
In the first embodiment, the inner diameter d (mm) of the cylindrical portion 171, the outer diameter D (mm) of the maximum compression portion 183 p, and the hardness H (° of the rubber plug member 183, provided that the hardness H According to JIS standard K6235, it is a value measured using a type A durometer as a hardness meter.) With respect to the initial internal pressure Pb (kPa)
| Pb | · π · d · D 2 / (D 2 −d 2 )> 3.7 × 10 2 × H−8.1 × 10 3 Formula (6)
The size satisfies the relationship.

前述したように、この式(6)は、式(5)から導かれる関係式である。従って、式(6)を満たすように、円筒部171の内径d(mm)、最大圧縮部183pの外径D(mm)、及びゴム栓部材183の硬度H(°)の大きさを選択するだけで、式(5)の関係をも満たすことができる。よって、これら内径d(mm)、外径D(mm)及び硬度H(°)の大きさを、容易かつ適切に定めることができる。   As described above, this expression (6) is a relational expression derived from expression (5). Therefore, the inner diameter d (mm) of the cylindrical portion 171, the outer diameter D (mm) of the maximum compression portion 183 p, and the hardness H (°) of the rubber plug member 183 are selected so as to satisfy Expression (6). Only the relationship of Formula (5) can be satisfied. Accordingly, the inner diameter d (mm), the outer diameter D (mm), and the hardness H (°) can be easily and appropriately determined.

また、本実施形態1に係る電池100の製造方法は、電池ケース110の内圧を初期内圧Pbに減圧した状態で、封止部材180のゴム栓部材183を、注液孔(貫通孔)170に外側BDから圧入して注液孔170を密栓し、電池ケース110を気密に封止する封栓工程を備える。また、この製造方法は、閾値Fsを第1耐力範囲AFaと第2耐力範囲AFbとの間の値としたとき、封栓工程の後、大気圧Pa下で最大で閾値Fsまでの引き抜き力Fhをゴム栓部材183に掛けて、ゴム栓部材183の引き抜きを試みる引き抜き試験工程を備える。更に、この製造方法は、引き抜き試験工程でゴム栓部材183が引き抜かれなかった電池100について、初期充電を施す初期充電工程を備える。   Further, in the manufacturing method of the battery 100 according to the first embodiment, the rubber plug member 183 of the sealing member 180 is made into the liquid injection hole (through hole) 170 in a state where the internal pressure of the battery case 110 is reduced to the initial internal pressure Pb. A sealing process is provided in which the liquid injection hole 170 is sealed by press-fitting from the outside BD, and the battery case 110 is hermetically sealed. Further, in this manufacturing method, when the threshold value Fs is a value between the first proof stress range AFa and the second proof stress range AFb, the pulling force Fh up to the maximum threshold value Fs under the atmospheric pressure Pa after the sealing step. Is pulled out on the rubber plug member 183, and a pull-out test step for trying to pull out the rubber plug member 183 is provided. Furthermore, this manufacturing method includes an initial charging step of performing initial charging on the battery 100 from which the rubber plug member 183 has not been pulled out in the pull-out test step.

この電池100の製造方法では、封栓工程において、電池ケース110の内圧を初期内圧Pbに減圧した状態で、ゴム栓部材183で注液孔170を密栓した後に、引き抜き試験工程において、このゴム栓部材183の引き抜き試験を行う。その際、電池ケース110内が適切に減圧されている良品の電池100は、ゴム栓部材183が引き抜かれない。一方、何らかの原因で電池ケース110の内圧が大気圧になってしまった不良品の電池は、ゴム栓部材183が確実に引き抜かれる。従って、ゴム栓部材183が引き抜かれなかった電池100を選別することにより、電池ケース110内が適切に減圧されている良品のみを確実に選別できる。   In the battery 100 manufacturing method, in the plugging step, after the liquid injection hole 170 is sealed with the rubber plug member 183 while the internal pressure of the battery case 110 is reduced to the initial internal pressure Pb, this rubber plug is used in the pull-out test step. A pull-out test of the member 183 is performed. At that time, the rubber plug member 183 is not pulled out of the non-defective battery 100 in which the pressure inside the battery case 110 is appropriately reduced. On the other hand, the rubber plug member 183 is reliably pulled out from a defective battery whose internal pressure in the battery case 110 has become atmospheric pressure for some reason. Therefore, by sorting out the batteries 100 from which the rubber plug member 183 has not been pulled out, it is possible to reliably sort out only the non-defective products in which the inside of the battery case 110 is appropriately decompressed.

引き抜き試験工程では、閾値Fsを第1耐力範囲AFaと第2耐力範囲AFbとの間の所定値とし、最大でこの閾値Fsまでの引き抜き力Fhをゴム栓部材183に掛ける。前述のように、ゴム栓部材183は注液孔170に圧入されているため、ゴム栓部材183を引き抜く際、ゴム栓部材183と注液孔170との間に摩擦力も生じるが、この摩擦力には大きなバラツキが生じることがある。   In the pull-out test step, the threshold value Fs is set to a predetermined value between the first proof stress range AFa and the second proof stress range AFb, and the pulling force Fh up to the maximum threshold value Fs is applied to the rubber plug member 183. As described above, since the rubber plug member 183 is press-fitted into the liquid injection hole 170, a frictional force is also generated between the rubber plug member 183 and the liquid injection hole 170 when the rubber plug member 183 is pulled out. In some cases, large variations may occur.

しかし、閾値Fsを第1耐力範囲AFaを超える値とすることで、この摩擦力にバラツキがあっても、摩擦力を越える引き抜き力Fhをゴム栓部材183に掛けることができるので、電池ケース110の内圧が大気圧となった不良品の電池は、ゴム栓部材183が確実に引き抜かれる。一方、閾値Fsを第2耐力範囲AFbを下回る値とすることで、摩擦力にバラツキがあっても、電池ケース110内が適切に減圧された電池100では、ゴム栓部材183が引き抜かれない。従って、電池ケース110の内圧が大気圧となった不良品を排除して、電池ケース110内が適切に減圧された良品のみを容易かつ確実に選別できる。よって、電池ケース110内が適切に減圧された電池100を容易に製造できる。   However, by setting the threshold value Fs to a value exceeding the first proof stress range AFa, even if the friction force varies, the pulling force Fh exceeding the friction force can be applied to the rubber plug member 183. The rubber plug member 183 is reliably pulled out of a defective battery whose internal pressure is atmospheric pressure. On the other hand, by setting the threshold value Fs to a value lower than the second proof stress range AFb, even if the frictional force varies, the rubber plug member 183 is not pulled out in the battery 100 in which the inside of the battery case 110 is appropriately decompressed. Therefore, defective products whose internal pressure in the battery case 110 becomes atmospheric pressure can be excluded, and only good products whose pressure in the battery case 110 is appropriately reduced can be easily and reliably selected. Therefore, the battery 100 in which the inside of the battery case 110 is appropriately decompressed can be easily manufactured.

(実施形態2)
次いで、第2の実施の形態について説明する。本実施形態2に係るハイブリッド自動車(車両)700(以下、単に自動車700とも言う)は、実施形態1に係る電池100を搭載し、この電池100に蓄えた電気エネルギを、駆動源の駆動エネルギの全部または一部として使用するものである(図14参照)。
(Embodiment 2)
Next, a second embodiment will be described. A hybrid vehicle (vehicle) 700 (hereinafter also simply referred to as a vehicle 700) according to the second embodiment is equipped with the battery 100 according to the first embodiment, and the electric energy stored in the battery 100 is used as the drive energy of the drive source. It is used as a whole or a part (see FIG. 14).

この自動車700は、電池100を複数組み合わせた組電池710を搭載し、エンジン740、フロントモータ720及びリアモータ730を併用して駆動するハイブリッド自動車である。具体的には、この自動車700は、その車体790に、エンジン740と、フロントモータ720及びリアモータ730と、組電池710(電池100)と、ケーブル750と、インバータ760とを搭載する。そして、この自動車700は、組電池710(電池100)に蓄えられた電気エネルギを用いて、フロントモータ720及びリアモータ730を駆動できるように構成されている。   The automobile 700 is a hybrid automobile equipped with an assembled battery 710 in which a plurality of batteries 100 are combined and driven by using an engine 740, a front motor 720, and a rear motor 730 in combination. Specifically, the automobile 700 includes an engine 740, a front motor 720 and a rear motor 730, an assembled battery 710 (battery 100), a cable 750, and an inverter 760 on the vehicle body 790. The automobile 700 is configured to be able to drive the front motor 720 and the rear motor 730 using electrical energy stored in the assembled battery 710 (battery 100).

前述したように、電池100は、電池ケース110内が適切に減圧されており、使用(充放電)に伴い電池ケース110内でガスが発生しても長期にわたり安全に使用できる。従って、これを搭載した自動車700の性能及び安全性を特に高くできる。   As described above, the battery 100 is appropriately decompressed in the battery case 110 and can be used safely for a long time even if gas is generated in the battery case 110 during use (charging / discharging). Therefore, the performance and safety of the automobile 700 equipped with the same can be particularly improved.

(実施形態3)
次いで、第3の実施の形態について説明する。本実施形態3のハンマードリル800は、実施形態1に係る電池100を搭載した電池使用機器である(図15参照)。このハンマードリル800は、本体820の底部821に、電池100を含むバッテリパック810が収容されており、このバッテリパック810を、ドリルを駆動するためのエネルギー源として利用している。
(Embodiment 3)
Next, a third embodiment will be described. A hammer drill 800 according to the third embodiment is a battery-using device equipped with the battery 100 according to the first embodiment (see FIG. 15). In the hammer drill 800, a battery pack 810 including the battery 100 is accommodated in a bottom portion 821 of a main body 820, and the battery pack 810 is used as an energy source for driving the drill.

前述したように、電池100は、電池ケース110内が適切に減圧されており、使用(充放電)に伴い電池ケース110内でガスが発生しても長期にわたり安全に使用できる。従って、これを搭載したハンマードリル800の性能及び安全性を特に高くできる。   As described above, the battery 100 is appropriately decompressed in the battery case 110 and can be used safely for a long time even if gas is generated in the battery case 110 during use (charging / discharging). Therefore, the performance and safety of the hammer drill 800 equipped with this can be particularly enhanced.

以上において、本発明を実施形態に即して説明したが、本発明は上述の実施形態1〜3に限定されるものではなく、その要旨を逸脱しない範囲で、適宜変更して適用できることは言うまでもない。
例えば、実施形態1では、電池ケースの内外を連通する「貫通孔」として、電解液117を注入するための注液孔170を例示したが、貫通孔は注液孔に限られない。貫通孔としては、例えば、電池ケース内のガスを抜くための通気孔などが挙げられる。また、実施形態1では、「貫通孔」を、電池ケース110のうちケース蓋部材113に設けたが、貫通孔の形成位置はこれに限られない。貫通孔は、例えば、ケース本体部材111の側面や底面に設けてもよい。
In the above, the present invention has been described with reference to the embodiments. However, the present invention is not limited to the above-described first to third embodiments, and it is needless to say that the present invention can be appropriately modified and applied without departing from the gist thereof. Yes.
For example, in the first embodiment, the liquid injection hole 170 for injecting the electrolytic solution 117 is exemplified as the “through hole” that communicates the inside and outside of the battery case. However, the through hole is not limited to the liquid injection hole. As the through hole, for example, a vent hole for venting gas in the battery case can be cited. In the first embodiment, the “through hole” is provided in the case lid member 113 of the battery case 110, but the formation position of the through hole is not limited to this. For example, the through hole may be provided on a side surface or a bottom surface of the case main body member 111.

また、実施形態1では、「貫通孔」として、円筒部171とテーパ孔部173とからなる注液孔170を例示したが、貫通孔の形態はこれに限られない。例えば、貫通孔をその全体が円筒部のみからなる形態としてもよい。また、図10に示すように、貫通孔(注液孔)270を、内周面271fが円筒状をなす円筒部271と、この円筒部271の軸線BX方向の外側BDに繋がり、側面273f1が円筒状、底面273f2が平面をなす凹部273とからなる形態としてもよい。   Moreover, in Embodiment 1, although the liquid injection hole 170 which consists of the cylindrical part 171 and the taper hole part 173 was illustrated as a "through-hole", the form of a through-hole is not restricted to this. For example, it is good also as a form which the whole through hole consists only of a cylindrical part. Further, as shown in FIG. 10, the through-hole (injection hole) 270 is connected to a cylindrical portion 271 having an inner peripheral surface 271f having a cylindrical shape and an outer side BD in the axial line BX direction of the cylindrical portion 271 and a side surface 273f1 is formed. It is good also as a form which consists of the cylindrical shape and the recessed part 273 where the bottom face 273f2 makes a plane.

また、実施形態1では、「電極体」として、各々帯状をなす正極板121及び負極板131をセパレータ141を介して互いに重ねて捲回してなる捲回型の電極体120を例示したが、電極体の形態はこれに限られない。例えば、電極体を、各々所定形状(例えば矩形状など)をなす正極板及び負極板をセパレータを介して交互に複数積層してなる積層型としてもよい。   In the first embodiment, as the “electrode body”, the wound-type electrode body 120 in which the positive electrode plate 121 and the negative electrode plate 131 each having a band shape are wound on each other via the separator 141 is illustrated. The form of the body is not limited to this. For example, the electrode body may be a stacked type in which a plurality of positive and negative electrode plates each having a predetermined shape (for example, a rectangular shape) are alternately stacked via a separator.

また、実施形態1では、「封止部材」として、金属製の被覆部材181にゴム栓部材183を接合した封止部材180を例示したが、封止部材の形態はこれに限られない。例えば、封止部材をその全体がゴム栓部材のみからなる形態(封止部材の全体がゴム状弾性体からなる形態)としてもよい。この場合、封止部材を電池ケースに溶接できないので、貫通孔への圧入のみで封止部材を電池ケースに固定する。また、実施形態1では、被覆部材181とゴム栓部材183とを一体化させているが、これらを別体としてもよい。   In Embodiment 1, the sealing member 180 in which the rubber plug member 183 is joined to the metal covering member 181 is illustrated as the “sealing member”, but the form of the sealing member is not limited thereto. For example, the sealing member may have a configuration in which the entire sealing member is formed only of a rubber plug member (a configuration in which the entire sealing member is formed of a rubber-like elastic body). In this case, since the sealing member cannot be welded to the battery case, the sealing member is fixed to the battery case only by press-fitting into the through hole. In the first embodiment, the covering member 181 and the rubber plug member 183 are integrated, but these may be separated.

また、実施形態1では、「ゴム栓部」として、テーパ状の側面183fを有し円錐台状をなすテーパ部のみからなるゴム栓部材183を例示したが、ゴム栓部の形態はこれに限定されない。例えば、図10に示す封止部材280のように、ゴム栓部材(ゴム栓部)283を、テーパ状の側面285fを有し円錐台状をなすテーパ部285と、このテーパ部285の軸線CX方向の外側CDに繋がり、円柱状をなす円柱部286とからなる形態としてもよい。このゴム栓部材283も、テーパ部285(その最大圧縮部285p)が、注液孔270の円筒部171のうち軸線BX方向の外側BDの開口端縁(外側円筒端縁271fd)で、最も高い圧縮率に圧縮されている。   In the first embodiment, as the “rubber plug portion”, the rubber plug member 183 including only the tapered portion having the tapered side surface 183f and the truncated cone shape is illustrated, but the form of the rubber plug portion is limited to this. Not. For example, like a sealing member 280 shown in FIG. 10, a rubber plug member (rubber plug portion) 283 includes a tapered portion 285 having a tapered side surface 285f and a truncated cone shape, and an axis CX of the tapered portion 285. It is good also as a form which consists of the cylindrical part 286 which connects to the outer side CD of a direction, and makes a column shape. This rubber plug member 283 also has the highest taper portion 285 (its maximum compression portion 285p) at the opening edge (outer cylindrical edge 271fd) of the outer BD in the axis BX direction in the cylindrical portion 171 of the liquid injection hole 270. Compressed to compression rate.

また、実施形態1では、「ゴム栓部」として、EPDMからなるゴム栓部材183を例示したが、ゴム栓部をなすゴム状弾性体の材質はこれに限られない。ゴム状弾性体の材質として、例えば、スチレンブタジエンゴム(SBR)、ニトリルゴム(NBR)、ポリプロピレン(PP)、ペルフルオロアルコキシフッ素樹脂(PFA)などが挙げられる。   In the first embodiment, the rubber plug member 183 made of EPDM is exemplified as the “rubber plug portion”, but the material of the rubber-like elastic body forming the rubber plug portion is not limited thereto. Examples of the rubber-like elastic material include styrene butadiene rubber (SBR), nitrile rubber (NBR), polypropylene (PP), and perfluoroalkoxy fluororesin (PFA).

また、実施形態1では、被覆部材181を、スポット溶接により電池ケース110に固着したが、固着方法はこれに限られない。例えば、全周溶接により、被覆部材181を電池ケース110に固着してもよい。また、ロウ材や接着剤を用いて、被覆部材181を電池ケース110に固着してもよい。   In Embodiment 1, the covering member 181 is fixed to the battery case 110 by spot welding, but the fixing method is not limited to this. For example, the covering member 181 may be fixed to the battery case 110 by all-around welding. Further, the covering member 181 may be fixed to the battery case 110 using a brazing material or an adhesive.

また、実施形態1では、「第1耐力範囲AFa」を、引き抜き耐力Faの平均値Favと標準偏差σaから、
Fav−4σa≦Fa≦Fav+4σa …式(1)
と定めたが、これに限られない。第1耐力範囲AFaは、例えば、
Fav−6σa≦Fa≦Fav+6σa
としてもよい。また、n個(例えば100個)のサンプルを測定して得られた引き抜き耐力Faの値をそのまま用いて、その最小値から最大値までを第1耐力範囲AFaと定めてもよい。
In the first embodiment, the “first proof stress range AFa” is calculated from the average value Fav of the pullout proof strength Fa and the standard deviation σa.
Fav-4σa ≦ Fa ≦ Fav + 4σa (1)
However, it is not limited to this. The first proof stress range AFa is, for example,
Fav−6σa ≦ Fa ≦ Fav + 6σa
It is good. Further, the value of the pulling strength Fa obtained by measuring n (for example, 100) samples may be used as it is, and the minimum value to the maximum value may be defined as the first strength range AFa.

また、実施形態1では、「第2耐力範囲AFb」を、引き抜き耐力Fbの平均値Fbvと標準偏差をσbから、
Fbv−4σb≦Fb≦Fbv+4σb …式(2)
と定めたが、これに限られない。第2耐力範囲AFbは、例えば、
Fbv−6σb≦Fb≦Fav+6σb
としてもよい。また、n個(例えば100個)のサンプルを測定して得られた引き抜き耐力Fbの値をそのまま用いて、その最小値から最大値までを第2耐力範囲AFbと定めてもよい。
In the first embodiment, the “second proof stress range AFb” is calculated from the average value Fbv and standard deviation of the pulling proof strength Fb from σb.
Fbv-4σb ≦ Fb ≦ Fbv + 4σb Equation (2)
However, it is not limited to this. The second proof stress range AFb is, for example,
Fbv−6σb ≦ Fb ≦ Fav + 6σb
It is good. Alternatively, the value of the pulling strength Fb obtained by measuring n (for example, 100) samples may be used as it is, and the minimum value to the maximum value may be defined as the second strength range AFb.

また、実施形態1では、引き抜き試験工程においてゴム栓部材183を引き抜く際の閾値Fsを、Fs=0.25Nとしたが、閾値Fsはこの値に限定されない。閾値Fsは、第1耐力範囲AFaと第2耐力範囲AFbとの間の値から適宜選択すればよい。但し、第1耐力範囲AFaの上限値よりも第2耐力範囲AFbの下限値に近い値を閾値Fsとするのが好ましい。このような閾値Fsにすれば、電池ケース110の内圧が大気圧にはなっていないものの、何らかの原因で減圧度が著しく小さくなってしまった電池100も、引き抜き試験工程でゴム栓部材183が引き抜かれる。従って、電池ケース110内がより適切に減圧されている電池100のみをより確実に選別できるからである。   In the first embodiment, the threshold value Fs when the rubber plug member 183 is pulled out in the pull-out test process is set to Fs = 0.25N. However, the threshold value Fs is not limited to this value. The threshold value Fs may be appropriately selected from values between the first proof stress range AFa and the second proof stress range AFb. However, it is preferable that the threshold value Fs is a value closer to the lower limit value of the second proof stress range AFb than the upper limit value of the first proof stress range AFa. With such a threshold value Fs, the rubber plug member 183 is also pulled out in the pull-out test process even in the battery 100 in which the internal pressure of the battery case 110 is not atmospheric pressure, but the pressure reduction degree is extremely small for some reason. It is. Therefore, only the battery 100 in which the inside of the battery case 110 is more appropriately decompressed can be more reliably selected.

また、実施形態2では、本発明に係る電池100を搭載する車両として、ハイブリッド自動車700を例示したが、これに限られない。本発明に係る電池を搭載する車両としては、例えば、電気自動車、プラグインハイブリッド自動車、ハイブリッド鉄道車両、フォークリフト、電気車いす、電動アシスト自転車、電動スクータなどが挙げられる。   Moreover, in Embodiment 2, although the hybrid vehicle 700 was illustrated as a vehicle carrying the battery 100 which concerns on this invention, it is not restricted to this. Examples of the vehicle on which the battery according to the present invention is mounted include an electric vehicle, a plug-in hybrid vehicle, a hybrid railway vehicle, a forklift, an electric wheelchair, an electrically assisted bicycle, and an electric scooter.

また、実施形態3では、本発明に係る電池100を搭載する電池使用機器として、ハンマードリル800を例示したが、これに限られない。本発明に係る電池を搭載する電池使用機器としては、例えば、パーソナルコンピュータ、携帯電話、電池駆動の電動工具、無停電電源装置など、電池で駆動される各種の家電製品、オフィス機器、産業機器などが挙げられる。   Moreover, although Embodiment 3 illustrated the hammer drill 800 as a battery using apparatus which mounts the battery 100 which concerns on this invention in Embodiment 3, it is not restricted to this. Examples of battery-powered devices equipped with the battery according to the present invention include personal computers, mobile phones, battery-powered electric tools, uninterruptible power supply devices, various home appliances driven by batteries, office equipment, industrial equipment, etc. Is mentioned.

100 リチウムイオン二次電池(電池)
110 電池ケース
111 ケース本体部材
113 ケース蓋部材
120 電極体
170,270 注液孔(貫通孔)
171,271 円筒部
171f 円筒状内周面(内周面)
171fc 内側円筒端縁
171fd 外側円筒端縁
173 テーパ孔部
180,280 封止部材
181 被覆部材(被覆部)
183 ゴム栓部材(ゴム栓部、テーパ部)
283 ゴム栓部材(ゴム栓部)
285 テーパ部
286 円柱部
183p,285p 最大圧縮部
700 ハイブリッド自動車(車両)
710 組電池
800 ハンマードリル(電池使用機器)
810 バッテリパック
BX (注液孔の)軸線
BC (注液孔の軸線方向の)内側
BD (注液孔の軸線方向の)外側
CX (封止部材の)軸線
CC (封止部材の軸線方向の)内側
CD (封止部材の軸線方向の)外側
d (注液孔の円筒部の)内径
D (ゴム栓部材のうち最大圧縮部の圧縮前の)外径
100 Lithium ion secondary battery (battery)
110 Battery case 111 Case body member 113 Case lid member 120 Electrode body 170, 270 Injection hole (through hole)
171, 271 Cylindrical portion 171 f Cylindrical inner peripheral surface (inner peripheral surface)
171fc Inner cylindrical edge 171fd Outer cylindrical edge 173 Tapered hole 180,280 Sealing member 181 Cover member (cover)
183 Rubber stopper member (Rubber stopper part, taper part)
283 Rubber stopper member (Rubber stopper part)
285 Tapered portion 286 Column portion 183p, 285p Maximum compression portion 700 Hybrid vehicle (vehicle)
710 battery pack 800 hammer drill (equipment using batteries)
810 Battery pack BX (injection hole) axis BC (in the injection hole axial direction) inner side BD (in the injection hole axial direction) outer side CX (in sealing member) axis CC (in the sealing member axial direction) ) Inner CD (in the axial direction of the sealing member) Outer d (Inner diameter of the cylindrical part of the injection hole) D Outer diameter (before compression of the maximum compression part of the rubber plug member)

Claims (8)

自身の内外を連通する貫通孔を有する電池ケースと、
前記電池ケース内に収容された電極体と、
ゴム状弾性体からなり、前記貫通孔に前記電池ケースの外部から圧入してこの貫通孔を密栓してなるゴム栓部を有する封止部材と、を備え、
初期充電前の前記電池ケースの内圧を、大気圧Paよりも減圧された初期内圧Pbとして、前記ゴム栓部で前記貫通孔を密栓し、その後に前記初期充電を施してなる
電池であって、
前記貫通孔は、内周面が円筒状をなす円筒部を有し、
前記ゴム栓部は、前記貫通孔の軸線方向に直交する断面が円形で前記軸線方向の外側ほど径大となるテーパ状の側面をなすテーパ部を有し、
前記テーパ部は、前記円筒部の前記外側の開口端縁である外側円筒端縁で、最も高い圧縮率に圧縮されてなり、
前記貫通孔の前記円筒部の内径をdとし、
前記ゴム栓部の前記テーパ部のうち、前記外側円筒端縁で最大に圧縮された最大圧縮部の、圧縮前の外径をDとし、
前記ゴム栓部の硬度をHとし、
前記電池ケースの内圧を大気圧Paとした状態で、大気圧Pa下で前記ゴム栓部を引き抜いたときに、前記ゴム栓部に生じる引き抜き耐力Faが取り得る範囲を第1耐力範囲AFaとし、
前記電池ケースの内圧を前記初期内圧Pbとして、前記ゴム栓部で前記貫通孔を密栓した後、前記初期充電前に、大気圧Pa下で前記ゴム栓部を引き抜いたときに、前記ゴム栓部に生じる引き抜き耐力Fbが取り得る範囲を第2耐力範囲AFbとしたとき、
前記円筒部の内径d、前記最大圧縮部の外径D、及び、前記ゴム栓部の硬度Hを、前記第1耐力範囲AFaと前記第2耐力範囲AFbとが互いに離間する大きさとしてなり、
閾値Fsを前記第1耐力範囲AFaと前記第2耐力範囲AFbとの間の値としたとき、
前記電池ケースの内圧を前記初期内圧Pbとして、前記ゴム栓部で前記貫通孔を密栓した後に、
大気圧Pa下で最大で前記閾値Fsまでの引き抜き力Fhを前記ゴム栓部に掛けて、前記ゴム栓部の引き抜きを試みて、
前記ゴム栓部が引き抜かれなかった電池について、前記初期充電を施してなる
電池。
A battery case having a through-hole communicating with the inside and outside of itself;
An electrode body housed in the battery case;
A sealing member comprising a rubber-like elastic body, and having a rubber plug portion that is press-fitted into the through hole from the outside of the battery case and tightly plugs the through hole;
The internal pressure of the battery case before the initial charge is an initial internal pressure Pb reduced from the atmospheric pressure Pa, the battery plug is sealed with the through hole, and then the initial charge is performed,
The through hole has a cylindrical portion whose inner peripheral surface forms a cylindrical shape,
The rubber plug portion has a tapered portion forming a tapered side surface having a circular cross section perpendicular to the axial direction of the through hole and having a larger diameter toward the outer side in the axial direction,
The tapered portion is compressed to the highest compression rate at the outer cylindrical edge which is the outer opening edge of the cylindrical portion,
The inner diameter of the cylindrical portion of the through hole is d,
Of the taper portion of the rubber plug portion, the outer diameter before compression of the maximum compression portion compressed to the maximum at the outer cylindrical edge is D,
The rubber plug has a hardness of H,
With the internal pressure of the battery case set to atmospheric pressure Pa, when the rubber plug portion is pulled out under atmospheric pressure Pa, a range that can be taken by the pulling strength Fa generated in the rubber plug portion is a first strength range AFa,
When the internal pressure of the battery case is set to the initial internal pressure Pb, the rubber plug portion is sealed when the rubber plug portion is pulled out under an atmospheric pressure Pa after the through hole is sealed with the rubber plug portion and before the initial charging. When the range that can be taken by the pulling strength Fb that occurs in the second strength range AFb,
The inner diameter d of the cylindrical portion, the outer diameter D of the maximum compression portion, and the hardness H of the rubber plug portion are such that the first proof stress range AFa and the second proof stress range AFb are separated from each other,
When the threshold value Fs is a value between the first proof stress range AFa and the second proof stress range AFb,
After the internal pressure of the battery case is the initial internal pressure Pb and the through hole is sealed with the rubber plug portion,
Applying a pulling force Fh up to the threshold value Fs at the maximum under atmospheric pressure Pa to the rubber plug part, and trying to pull out the rubber plug part,
A battery obtained by performing the initial charging on a battery from which the rubber plug portion has not been pulled out.
請求項1に記載の電池であって、
前記引き抜き耐力Faの平均値をFav、標準偏差をσaとし、前記第1耐力範囲AFaを、
Fav−4σa≦Fa≦Fav+4σaで定め、
前記引き抜き耐力Fbの平均値をFbv、標準偏差をσbとし、前記第2耐力範囲AFbを、
Fbv−4σb≦Fb≦Fbv+4σbで定めたとき、
前記円筒部の内径d、前記最大圧縮部の外径D、及び、前記ゴム栓部の硬度Hを、
Fav+4σa<Fbv−4σb
の関係を満たす大きさとしてなり、
前記閾値Fsを、
Fav+4σa<Fs<Fbv−4σb
の関係を満たす値とした
電池。
The battery according to claim 1,
The average value of the pullout proof strength Fa is Fav, the standard deviation is σa, and the first proof load range AFa is
Fav−4σa ≦ Fa ≦ Fav + 4σa,
The average value of the pullout proof strength Fb is Fbv, the standard deviation is σb, and the second proof stress range AFb is
When Fbv-4σb ≦ Fb ≦ Fbv + 4σb,
The inner diameter d of the cylindrical portion, the outer diameter D of the maximum compression portion, and the hardness H of the rubber plug portion,
Fav + 4σa <Fbv-4σb
As a size that satisfies the relationship
The threshold value Fs is
Fav + 4σa <Fs <Fbv-4σb
A battery that satisfies the above relationship.
請求項2に記載の電池であって、
前記円筒部の内径d、前記最大圧縮部の外径D、及び、前記ゴム栓部の硬度Hを、
前記引き抜き耐力Faの前記平均値Fav及び前記引き抜き耐力Fbの前記平均値Fbvが、
Fbv>2Fav
の関係を満たす大きさとしてなる
電池。
The battery according to claim 2,
The inner diameter d of the cylindrical portion, the outer diameter D of the maximum compression portion, and the hardness H of the rubber plug portion,
The average value Fav of the pullout strength Fa and the average value Fbv of the pullout strength Fb are:
Fbv> 2Fav
A battery that has a size that satisfies the above relationship.
請求項3に記載の電池であって、
前記円筒部の内径d(mm)、前記最大圧縮部の外径D(mm)、及び、前記ゴム栓部の硬度H(°、但し、この硬度Hは、新JIS規格K6235に準じ、硬度計にタイプAデュロメータを用いて測定した値である。)を、前記初期内圧Pb(kPa)に対して、
|Pb|・π・d・D2 /(D2 −d2 )>3.7×102 ×H−8.1×103
の関係を満たす大きさとしてなる
電池。
The battery according to claim 3,
The inner diameter d (mm) of the cylindrical portion, the outer diameter D (mm) of the maximum compression portion, and the hardness H (° of the rubber plug portion, where the hardness H is a hardness meter according to the new JIS standard K6235. Is a value measured using a type A durometer) with respect to the initial internal pressure Pb (kPa).
| Pb | · π · d · D 2 / (D 2 −d 2 )> 3.7 × 10 2 × H−8.1 × 10 3
A battery that has a size that satisfies the above relationship.
自身の内外を連通する貫通孔を有する電池ケースと、
前記電池ケース内に収容された電極体と、
ゴム状弾性体からなり、前記貫通孔に前記電池ケースの外部から圧入してこの貫通孔を密栓してなるゴム栓部を有する封止部材と、を備え、
初期充電前の前記電池ケースの内圧を、大気圧Paよりも減圧された初期内圧Pbとして、前記ゴム栓部で前記貫通孔を密栓し、その後に前記初期充電を施してなり、
前記貫通孔は、内周面が円筒状をなす円筒部を有し、
前記ゴム栓部は、前記貫通孔の軸線方向に直交する断面が円形で前記軸線方向の外側ほど径大となるテーパ状の側面をなすテーパ部を有し、
前記テーパ部は、前記円筒部の前記外側の開口端縁である外側円筒端縁で、最も高い圧縮率に圧縮されてなり、
前記貫通孔の前記円筒部の内径をdとし、
前記ゴム栓部の前記テーパ部のうち、前記外側円筒端縁で最大に圧縮された最大圧縮部の、圧縮前の外径をDとし、
前記ゴム栓部の硬度をHとし、
前記電池ケースの内圧を大気圧Paとした状態で、大気圧Pa下で前記ゴム栓部を引き抜いたときに、前記ゴム栓部に生じる引き抜き耐力Faが取り得る範囲を第1耐力範囲AFaとし、
前記電池ケースの内圧を前記初期内圧Pbとして、前記ゴム栓部で前記貫通孔を密栓した後、前記初期充電前に、大気圧Pa下で前記ゴム栓部を引き抜いたときに、前記ゴム栓部に生じる引き抜き耐力Fbが取り得る範囲を第2耐力範囲AFbとしたとき、
前記円筒部の内径d、前記最大圧縮部の外径D、及び、前記ゴム栓部の硬度Hを、前記第1耐力範囲AFaと前記第2耐力範囲AFbとが互いに離間する大きさとしてなる
電池の製造方法であって、
前記電池ケースの内圧を前記初期内圧Pbに減圧した状態で、前記封止部材の前記ゴム栓部を、前記貫通孔に前記外側から圧入して前記貫通孔を密栓し、前記電池ケースを気密に封止する封栓工程と、
閾値Fsを前記第1耐力範囲AFaと前記第2耐力範囲AFbとの間の値としたとき、
前記封栓工程の後、大気圧Pa下で最大で前記閾値Fsまでの引き抜き力Fhを前記ゴム栓部に掛けて、前記ゴム栓部の引き抜きを試みる引き抜き試験工程と、
前記引き抜き試験工程で前記ゴム栓部が引き抜かれなかった電池について、前記初期充電を施す初期充電工程と、を備える
電池の製造方法。
A battery case having a through-hole communicating with the inside and outside of itself;
An electrode body housed in the battery case;
A sealing member comprising a rubber-like elastic body, and having a rubber plug portion that is press-fitted into the through hole from the outside of the battery case and tightly plugs the through hole;
The internal pressure of the battery case before the initial charge is the initial internal pressure Pb reduced from the atmospheric pressure Pa, and the through hole is sealed with the rubber plug portion, and then the initial charge is performed.
The through hole has a cylindrical portion whose inner peripheral surface forms a cylindrical shape,
The rubber plug portion has a tapered portion forming a tapered side surface having a circular cross section perpendicular to the axial direction of the through hole and having a larger diameter toward the outer side in the axial direction,
The tapered portion is compressed to the highest compression rate at the outer cylindrical edge which is the outer opening edge of the cylindrical portion,
The inner diameter of the cylindrical portion of the through hole is d,
Of the taper portion of the rubber plug portion, the outer diameter before compression of the maximum compression portion compressed to the maximum at the outer cylindrical edge is D,
The rubber plug has a hardness of H,
With the internal pressure of the battery case set to atmospheric pressure Pa, when the rubber plug portion is pulled out under atmospheric pressure Pa, a range that can be taken by the pulling strength Fa generated in the rubber plug portion is a first strength range AFa,
When the internal pressure of the battery case is set to the initial internal pressure Pb, the rubber plug portion is sealed when the rubber plug portion is pulled out under an atmospheric pressure Pa after the through hole is sealed with the rubber plug portion and before the initial charging. When the range that can be taken by the pulling strength Fb that occurs in the second strength range AFb,
A battery in which the inner diameter d of the cylindrical portion, the outer diameter D of the maximum compression portion, and the hardness H of the rubber plug portion are such that the first proof stress range AFa and the second proof stress range AFb are separated from each other. A manufacturing method of
In a state where the internal pressure of the battery case is reduced to the initial internal pressure Pb, the rubber plug portion of the sealing member is press-fitted into the through-hole from the outside to seal the through-hole, and the battery case is hermetically sealed A sealing step for sealing;
When the threshold value Fs is a value between the first proof stress range AFa and the second proof stress range AFb,
After the sealing step, a pulling test step of applying a pulling force Fh up to the threshold value Fs up to the threshold value Fs under atmospheric pressure Pa to try to pull out the rubber plug portion;
A battery manufacturing method comprising: an initial charging step of performing the initial charging for a battery in which the rubber plug portion is not pulled out in the pull-out test step.
請求項5に記載の電池の製造方法であって、
前記引き抜き耐力Faの平均値をFav、標準偏差をσaとし、前記第1耐力範囲AFaを、
Fav−4σa≦Fa≦Fav+4σaで定め、
前記引き抜き耐力Fbの平均値をFbv、標準偏差をσbとし、前記第2耐力範囲AFbを、
Fbv−4σb≦Fb≦Fbv+4σbで定めたとき、
前記円筒部の内径d、前記最大圧縮部の外径D、及び、前記ゴム栓部の硬度Hを、
Fav+4σa<Fbv−4σb
の関係を満たす大きさとしてなり、
前記閾値Fsを、
Fav+4σa<Fs<Fbv−4σb
の関係を満たす値とする
電池の製造方法。
A battery manufacturing method according to claim 5,
The average value of the pullout proof strength Fa is Fav, the standard deviation is σa, and the first proof load range AFa is
Fav−4σa ≦ Fa ≦ Fav + 4σa,
The average value of the pullout proof strength Fb is Fbv, the standard deviation is σb, and the second proof stress range AFb is
When Fbv-4σb ≦ Fb ≦ Fbv + 4σb,
The inner diameter d of the cylindrical portion, the outer diameter D of the maximum compression portion, and the hardness H of the rubber plug portion,
Fav + 4σa <Fbv-4σb
As a size that satisfies the relationship
The threshold value Fs is
Fav + 4σa <Fs <Fbv-4σb
A battery manufacturing method having a value satisfying the above relationship.
請求項6に記載の電池の製造方法であって、
前記円筒部の内径d、前記最大圧縮部の外径D、及び、前記ゴム栓部の硬度Hを、
前記引き抜き耐力Faの前記平均値Fav及び前記引き抜き耐力Fbの前記平均値Fbvが、
Fbv>2Fav
の関係を満たす大きさとしてなる
電池の製造方法。
It is a manufacturing method of the battery of Claim 6, Comprising:
The inner diameter d of the cylindrical portion, the outer diameter D of the maximum compression portion, and the hardness H of the rubber plug portion,
The average value Fav of the pullout strength Fa and the average value Fbv of the pullout strength Fb are:
Fbv> 2Fav
A battery manufacturing method having a size satisfying the above relationship.
請求項7に記載の電池の製造方法であって、
前記円筒部の内径d(mm)、前記最大圧縮部の外径D(mm)、及び、前記ゴム栓部の硬度H(°、但し、この硬度Hは、新JIS規格K6235に準じ、硬度計にタイプAデュロメータを用いて測定した値である。)を、前記初期内圧Pb(kPa)に対して、
|Pb|・π・d・D2 /(D2 −d2 )>3.7×102 ×H−8.1×103
の関係を満たす大きさとしてなる
電池の製造方法。
A battery manufacturing method according to claim 7,
The inner diameter d (mm) of the cylindrical portion, the outer diameter D (mm) of the maximum compression portion, and the hardness H (° of the rubber plug portion, where the hardness H is a hardness meter according to the new JIS standard K6235. Is a value measured using a type A durometer) with respect to the initial internal pressure Pb (kPa).
| Pb | · π · d · D 2 / (D 2 −d 2 )> 3.7 × 10 2 × H−8.1 × 10 3
A battery manufacturing method having a size satisfying the above relationship.
JP2011163628A 2011-07-26 2011-07-26 Battery and battery manufacturing method Expired - Fee Related JP5772348B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011163628A JP5772348B2 (en) 2011-07-26 2011-07-26 Battery and battery manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011163628A JP5772348B2 (en) 2011-07-26 2011-07-26 Battery and battery manufacturing method

Publications (2)

Publication Number Publication Date
JP2013030280A JP2013030280A (en) 2013-02-07
JP5772348B2 true JP5772348B2 (en) 2015-09-02

Family

ID=47787145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011163628A Expired - Fee Related JP5772348B2 (en) 2011-07-26 2011-07-26 Battery and battery manufacturing method

Country Status (1)

Country Link
JP (1) JP5772348B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014170648A (en) * 2013-03-01 2014-09-18 Sumitomo Electric Ind Ltd Sealing structure of sealed battery, and sealed battery
CN108987128B (en) * 2018-06-08 2023-08-11 铜陵泽辉电子有限责任公司 Supercapacitor end cover assembly
CN115693050B (en) * 2021-07-30 2024-03-12 宁德时代新能源科技股份有限公司 Battery cell, manufacturing method and manufacturing equipment thereof, battery and electricity utilization device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4111621B2 (en) * 1999-03-17 2008-07-02 三洋電機株式会社 Sealed battery, sealing plug for sealed battery, and injection hole sealing method
JP3600107B2 (en) * 2000-03-09 2004-12-08 松下電器産業株式会社 Sealed battery and sealing method thereof
JP2003004579A (en) * 2001-06-15 2003-01-08 Sony Corp Apparatus for testing sealability
JP2009087659A (en) * 2007-09-28 2009-04-23 Sanyo Electric Co Ltd Sealed battery

Also Published As

Publication number Publication date
JP2013030280A (en) 2013-02-07

Similar Documents

Publication Publication Date Title
JP5814000B2 (en) Sealed battery
US10014515B2 (en) Battery
JP5969356B2 (en) Sealed battery manufacturing method, sealed battery sealing member and sealed battery
EP2228848B1 (en) Cylinder type secondary battery with electrode tab protection
JP6363893B2 (en) Secondary battery
JP5246268B2 (en) Lithium ion secondary battery, vehicle and battery-equipped equipment
WO2013076831A1 (en) Secondary battery manufacturing method and secondary battery
EP3024054B1 (en) Rechargeable battery having terminal
JP5772348B2 (en) Battery and battery manufacturing method
JP5652306B2 (en) Batteries, assembled batteries and vehicles
KR101233440B1 (en) Secondary battery
JP2013084481A (en) Method of manufacturing battery, and battery
JP5724696B2 (en) Battery manufacturing method
JP2013182722A (en) Battery and manufacturing method of the same
JP5742610B2 (en) Battery and battery manufacturing method
JP5675564B2 (en) Battery, rubber sealing member, battery manufacturing method, and rubber sealing member manufacturing method
US9893346B2 (en) Rechargeable battery having short-circuit member
JP5672042B2 (en) Sealed battery and method for manufacturing sealed battery
JP5742644B2 (en) Battery manufacturing method and battery
JP6260356B2 (en) Battery restraint jig
US20140220425A1 (en) Accumulator
JP2012209024A (en) Sealed battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150615

R151 Written notification of patent or utility model registration

Ref document number: 5772348

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees