JP2019036504A - Method of manufacturing sealed battery - Google Patents

Method of manufacturing sealed battery Download PDF

Info

Publication number
JP2019036504A
JP2019036504A JP2017158840A JP2017158840A JP2019036504A JP 2019036504 A JP2019036504 A JP 2019036504A JP 2017158840 A JP2017158840 A JP 2017158840A JP 2017158840 A JP2017158840 A JP 2017158840A JP 2019036504 A JP2019036504 A JP 2019036504A
Authority
JP
Japan
Prior art keywords
battery
gas
electrolyte
leakage amount
airtight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017158840A
Other languages
Japanese (ja)
Other versions
JP6766777B2 (en
Inventor
悟史 中嶋
Satoshi Nakajima
悟史 中嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2017158840A priority Critical patent/JP6766777B2/en
Publication of JP2019036504A publication Critical patent/JP2019036504A/en
Application granted granted Critical
Publication of JP6766777B2 publication Critical patent/JP6766777B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)

Abstract

To provide a method of manufacturing a sealed battery, enabling a proper inspection of airtightness of the sealed battery so that a sealed battery with high airtight reliability can be manufactured.SOLUTION: A method of manufacturing a sealed battery 1 includes: a liquid injection step S2 of injecting an electrolyte 17; a gas introduction step S3 of introducing a test gas GS1 into a battery case 10; an encapsulation step S4 of applying an airtight encapsulation to the batter case 10; a test gas detection step S5 of detecting an amount of leakage Q1 of the test gas GS1 leaked outside the battery; an electrolyte derivation gas detection step S8 of detecting an amount of leakage Q2 of an electrolyte derivation gas GS2 leaked outside the battery; and determination steps S6, S7, S9 to S11 having a first step to a third step of determining the airtightness of the sealed battery 1 on the basis of the amount of leakage Q1 and the amount of leakage Q2.SELECTED DRAWING: Figure 3

Description

本発明は、密閉型電池の製造方法に関する   The present invention relates to a method for manufacturing a sealed battery.

リチウムイオン二次電池等の密閉型電池(以下、単に「電池」ともいう)において、電解液が電池内部から電池外部に漏洩したり、水分が電池外部から電池内部に侵入すると、電池性能が低下するなどの問題が生じる。このため、電池の製造過程において、電池の気密性を検査して気密不良品を排除する必要がある。
この気密検査方法としては、例えば以下の手法が挙げられる。即ち、電池ケース内に電解液を注液し、電池ケース内にヘリウムガスなどの検査用ガスを導入した後、電池ケースを気密に封止する。その後、電池内部から電池外部に漏れ出る検査用ガスの漏れ量を検知して、この漏れ量が基準漏れ量以上である場合に、当該電池を気密不良品と判定する。例えば特許文献1に、このような密閉型電池の気密検査方法が開示されている(特許文献1の特許請求の範囲及び背景技術等を参照)。
In a sealed battery such as a lithium ion secondary battery (hereinafter also simply referred to as “battery”), if the electrolyte leaks from the inside of the battery to the outside of the battery or moisture enters the inside of the battery from the outside of the battery, the battery performance deteriorates. Problems occur. For this reason, in the battery manufacturing process, it is necessary to check the airtightness of the battery and eliminate defective products.
Examples of the airtight inspection method include the following methods. That is, the electrolytic solution is injected into the battery case, and a test gas such as helium gas is introduced into the battery case, and then the battery case is hermetically sealed. Thereafter, the leakage amount of the inspection gas leaking from the inside of the battery to the outside of the battery is detected, and when the leakage amount is equal to or greater than the reference leakage amount, the battery is determined to be an airtight defect product. For example, Patent Document 1 discloses such a hermetic inspection method for a sealed battery (see the claims and background art of Patent Document 1).

特開2014−183027JP2014-183027

しかしながら、上述の気密検査方法では、検査用ガスの漏れ量を検知する際に、電池の気密不良部に電解液が付着して気密不良部が電解液で塞がれている場合には、検査用ガスが電池内部から電池外部に漏れ出し難くなる。このため、検査した電池がピンホールや亀裂などの気密不良部を有する気密不良品であるにも拘わらず、検査用ガスの漏れ量が少ないために、良品と誤判定されるおそれがある。   However, in the above-described airtight inspection method, when the leakage amount of the inspection gas is detected, if the electrolytic solution adheres to the airtight defective portion of the battery and the airtight defective portion is blocked with the electrolytic solution, the inspection is performed. It becomes difficult for the working gas to leak from the inside of the battery to the outside of the battery. For this reason, although the inspected battery is an airtight defective product having an airtight defective part such as a pinhole or a crack, there is a risk that the amount of leakage of the inspection gas is small, so that it is erroneously determined as a good product.

本発明は、かかる現状に鑑みてなされたものであって、密閉型電池の気密性を適切に検査して、気密信頼性の高い密閉型電池を製造できる密閉型電池の製造方法を提供することを目的とする。   The present invention has been made in view of the current situation, and provides a method for manufacturing a sealed battery that can appropriately check the hermeticity of a sealed battery and manufacture a sealed battery with high hermetic reliability. With the goal.

上記課題を解決するための本発明の一態様は、密閉型電池の製造方法であって、電池ケース内に電解液を注液する注液工程と、上記電池ケース内に検査用ガスを導入するガス導入工程と、上記注液工程及び上記ガス導入工程の後、上記電池ケースを気密に封止する封止工程と、上記封止工程の後、電池内部から電池外部に漏れ出る上記検査用ガスの漏れ量Q1を検知する検査用ガス検知工程と、上記封止工程の後、電池内部から電池外部に漏れ出る、上記電解液が揮発した電解液由来ガスの漏れ量Q2を検知する電解液由来ガス検知工程と、上記検査用ガスの漏れ量Q1及び上記電解液由来ガスの漏れ量Q2に基づいて、当該密閉型電池の気密性を判定する判定工程と、を備え、上記判定工程は、上記検査用ガスの漏れ量Q1が第1基準漏れ量Q1k以上である場合(Q1≧Q1k)に、当該密閉型電池を気密不良品と判定する第1工程と、上記第1工程で気密不良品と判定されなかった上記密閉型電池について、上記検査用ガスの漏れ量Q1と上記電解液由来ガスの漏れ量Q2との差(|Q1−Q2|)が基準差ΔQk未満である場合(|Q1−Q2|<ΔQk)に、当該密閉型電池を気密性が良好な良品と判定する第2工程と、上記第2工程で上記差(|Q1−Q2|)が上記基準差ΔQk以上(|Q1−Q2|≧ΔQk)と判定された上記密閉型電池について、上記電解液由来ガスの漏れ量Q2が、上記第1基準漏れ量Q1k以下の値に設定した第2基準漏れ量Q2k(Q2k≦Q1k)以上である場合(Q2≧Q2k)に、当該密閉型電池を気密不良品と判定し、上記漏れ量Q2が上記第2基準漏れ量Q2k未満である場合(Q2<Q2k)に、当該密閉型電池を上記良品と判定する第3工程と、を有する密閉型電池の製造方法である。   One embodiment of the present invention for solving the above problems is a method for manufacturing a sealed battery, in which an electrolyte is injected into a battery case, and a test gas is introduced into the battery case. A gas introduction step, a sealing step for hermetically sealing the battery case after the liquid injection step and the gas introduction step, and the inspection gas leaking from the inside of the battery to the outside of the battery after the sealing step. Gas detection step for detecting the leakage amount Q1 of the electrolyte, and after the sealing step, the leakage from the inside of the battery to the outside of the battery. A gas detection step, and a determination step for determining the airtightness of the sealed battery based on the leakage amount Q1 of the inspection gas and the leakage amount Q2 of the electrolyte-derived gas. Inspection gas leak amount Q1 is the first reference leak When it is equal to or greater than Q1k (Q1 ≧ Q1k), the first step of determining the sealed battery as an airtight product and the sealed battery that is not determined as an airtight product in the first step When the difference (| Q1-Q2 |) between the leakage amount Q1 of the gas and the leakage amount Q2 of the electrolyte-derived gas is less than the reference difference ΔQk (| Q1-Q2 | <ΔQk), the sealed battery is hermetically sealed. The sealed battery in which the difference (| Q1-Q2 |) is determined to be equal to or greater than the reference difference ΔQk (| Q1-Q2 | ≧ ΔQk) in the second step in which the non-defective product is determined to be good. When the leakage amount Q2 of the electrolyte-derived gas is equal to or greater than the second reference leakage amount Q2k (Q2k ≦ Q1k) set to a value equal to or less than the first reference leakage amount Q1k (Q2 ≧ Q2k), the sealing Type battery is judged to be airtight and the leakage amount Q And a third step of determining the sealed battery as the non-defective product when 2 is less than the second reference leakage amount Q2k (Q2 <Q2k).

上述の密閉型電池の製造方法では、封止工程の後、電池内部から電池外部に漏れ出る検査用ガスの漏れ量Q1を検知すると共に、電池内部から電池外部に漏れ出る電解液由来ガスの漏れ量Q2を検知する。なお、漏れ量Q1,Q2は、いずれも「Pa・m3/sec」の単位で示される。
気密不良部が生じた気密不良品の電池において、気密不良部に電解液が付着している場合には、この気密不良部を通じて検査用ガスが電池内部から電池外部に漏れ出し難いため、気密不良部に電解液が付着していない場合に比して、検査用ガス検知工程で検知される検査用ガスの漏れ量Q1が少なくなる。
In the above-described sealed battery manufacturing method, after the sealing step, the amount Q1 of the inspection gas leaking from the inside of the battery to the outside of the battery is detected, and the electrolyte-derived gas leaking from the inside of the battery to the outside of the battery is leaked. The quantity Q2 is detected. The leakage amounts Q1 and Q2 are both expressed in units of “Pa · m 3 / sec”.
In the case of a battery with poor airtightness where an airtightness defective part has occurred, if electrolyte is attached to the airtightness defective part, it is difficult for the test gas to leak from the inside of the battery to the outside of the battery through this airtight defective part. Compared to the case where no electrolyte is attached to the portion, the amount of inspection gas leakage Q1 detected in the inspection gas detection step is reduced.

一方、電解液が揮発した電解液由来ガスについて言えば、気密不良部への電解液の付着の有無に拘わらず、電解液由来ガスが気密不良部を通じて電池内部から電池外部に漏れ出るため、電解液由来ガス検知工程で検知される電解液由来ガスの漏れ量Q2はあまり違わない。
従って、判定工程で検査用ガスの漏れ量Q1と電解液由来ガスの漏れ量Q2の両方に基づいて、電池の気密性を判定することにより、気密不良部への電解液の付着の有無に拘わらず、電池の気密性を適切に判定できる。従って、上述の製造方法によれば、密閉型電池の気密性を適切に検査して、気密信頼性の高い密閉型電池を製造できる。
On the other hand, regarding the electrolyte-derived gas from which the electrolyte has volatilized, the electrolyte-derived gas leaks from the inside of the battery to the outside of the battery through the poorly sealed portion regardless of whether the electrolytic solution adheres to the poorly sealed portion. The leak amount Q2 of the electrolyte-derived gas detected in the liquid-derived gas detection step is not so different.
Accordingly, in the determination step, the airtightness of the battery is determined on the basis of both the leakage amount Q1 of the inspection gas and the leakage amount Q2 of the electrolyte-derived gas, thereby regardless of whether the electrolytic solution adheres to the poorly sealed portion. Therefore, the airtightness of the battery can be determined appropriately. Therefore, according to the manufacturing method described above, it is possible to manufacture a sealed battery with high hermetic reliability by appropriately checking the hermeticity of the sealed battery.

また、一般に、検査用ガスの漏れ量Q1を検知する検査ガス用センサの測定精度は、電解液由来ガスの漏れ量Q2を検知する電解液由来ガス用センサの測定精度よりも高い。このため、気密不良部が存在する特定の試験用電池について、検査用ガスの漏れ量Q1及び電解液由来ガスの漏れ量Q2をそれぞれ繰り返し測定した場合、検査用ガスの漏れ量Q1を検査ガス用センサで測定するのに比べて、電解液由来ガスの漏れ量Q2を電解液由来ガス用センサで測定する方が、測定値のバラツキが大きくなり易い。   In general, the measurement accuracy of the test gas sensor that detects the leak amount Q1 of the test gas is higher than the measurement accuracy of the electrolyte solution gas sensor that detects the leak amount Q2 of the electrolyte-derived gas. For this reason, for a specific test battery in which an airtight defect portion exists, when the leakage amount Q1 of the inspection gas and the leakage amount Q2 of the electrolyte-derived gas are repeatedly measured, the leakage amount Q1 of the inspection gas is used for the inspection gas. Compared with the measurement with the sensor, the variation in the measured value tends to increase when the leakage amount Q2 of the electrolyte-derived gas is measured with the sensor for the electrolyte-derived gas.

このため、第3工程において電解液由来ガスの漏れ量Q2の多寡に基づいて当該電池の気密性を判定する際に、第2基準漏れ量Q2kの値が大きすぎると、気密不良品を良品と誤判定する場合が多くなる。そこで、電解液由来ガスの第2基準漏れ量Q2kの値は、誤判定が生じない程度に小さい値に設定することが考えられる。しかし、そうすると、今度は良品を気密不良品と判定(以下、「過判定」ともいう)する電池数が増えて、電池の歩留まりが低下する。   For this reason, when determining the airtightness of the battery based on the leakage amount Q2 of the electrolyte-derived gas in the third step, if the value of the second reference leakage amount Q2k is too large, the defective product is regarded as a good product. There are many cases of erroneous determination. Therefore, it is conceivable that the value of the second reference leakage amount Q2k of the electrolyte-derived gas is set to a value that is small enough to prevent erroneous determination. However, in this case, the number of batteries that are judged as non-airtight products (hereinafter also referred to as “overdetermination”) increases, and the yield of the batteries decreases.

これに対し、上述の密閉型電池の製造方法では、第3工程で電解液由来ガスの漏れ量Q2の多寡に基づいて当該電池の気密性を判定するのに先立ち、第2工程で、検査用ガスの漏れ量Q1と電解液由来ガスの漏れ量Q2との差(|Q1−Q2|)が基準差ΔQk未満である場合(|Q1−Q2|<ΔQk)に、当該電池を良品と判定する。そして、第2工程で差(|Q1−Q2|)が基準差ΔQk以上(|Q1−Q2|≧ΔQk)と判定された電池のみ、第3工程に進む。
このように、上述の製造方法では、第3工程に先立って第2工程で良品と判定した電池については、第3工程を行わない。このため、第2工程を行わずに第3工程を行った場合に比して、第3工程で気密不良品であると過判定される場合を減少できる。つまり、上述の製造方法によれば、第3工程で気密不良品であると過判定される良品の電池数を減らすことができ、電池の歩留まりを向上させることができる。
On the other hand, in the above-described method for manufacturing a sealed battery, prior to determining the airtightness of the battery based on the amount of leakage Q2 of the electrolyte-derived gas in the third step, When the difference (| Q1-Q2 |) between the gas leakage amount Q1 and the electrolyte-derived gas leakage amount Q2 is less than the reference difference ΔQk (| Q1-Q2 | <ΔQk), the battery is determined to be non-defective. . Then, only the battery in which the difference (| Q1-Q2 |) is determined to be greater than or equal to the reference difference ΔQk (| Q1-Q2 | ≧ ΔQk) in the second step proceeds to the third step.
Thus, in the above-described manufacturing method, the third step is not performed for a battery that is determined to be a non-defective product in the second step prior to the third step. For this reason, compared with the case where the 3rd process is performed without performing the 2nd process, the case where it is overdetermined that it is an airtight defect product in the 3rd process can be decreased. That is, according to the manufacturing method described above, the number of non-defective batteries that are over-determined to be airtight defects in the third step can be reduced, and the yield of batteries can be improved.

なお、「検査用ガス」としては、例えば、ヘリウムガスや水素ガスなどが挙げられる。
「注液工程」及び「ガス導入工程」は、先に注液工程を行い、これよりも後にガス導入工程を行ってもよいし、注液工程とガス導入工程を並行して行ってもよい。
「検査用ガス検知工程」及び「電解液由来ガス検知工程」は、先に検査用ガス検知工程を行い、これよりも後に電解液由来ガス検知工程を行ってもよいし、先に電解液由来ガス検知工程を行い、これよりも後に検査用ガス検知工程を行ってもよい。また、検査用ガス検知工程と電解液由来ガス検知工程を並行して行うこともできる。
Examples of the “inspection gas” include helium gas and hydrogen gas.
In the “liquid injection process” and “gas introduction process”, the liquid injection process is performed first, the gas introduction process may be performed later, or the liquid injection process and the gas introduction process may be performed in parallel. .
The "inspection gas detection step" and the "electrolyte-derived gas detection step" may be performed first by performing the inspection gas detection step, and later by the electrolyte-derived gas detection step or by the electrolyte solution first. A gas detection step may be performed, and an inspection gas detection step may be performed later. Also, the inspection gas detection step and the electrolyte-derived gas detection step can be performed in parallel.

実施形態に係る密閉型電池の斜視図である。1 is a perspective view of a sealed battery according to an embodiment. 実施形態に係る密閉型電池の縦断面図である。It is a longitudinal cross-sectional view of the sealed battery which concerns on embodiment. 実施形態に係る密閉型電池の製造方法のフローチャートである。It is a flowchart of the manufacturing method of the sealed battery which concerns on embodiment. 実施形態に係る密閉型電池の製造方法に関し、気密検査装置を用いた気密検査を示す説明図である。It is explanatory drawing which shows the airtight test | inspection using an airtight test | inspection apparatus regarding the manufacturing method of the sealed battery which concerns on embodiment. 実施形態に係り、ヘリウムガスの漏れ量Q1及び電解液由来ガスの漏れ量Q2と頻度分布との関係を示すグラフである。It is a graph which shows the relationship between leak amount Q1 of helium gas, the leak amount Q2 of electrolyte solution origin gas, and frequency distribution in connection with embodiment.

以下、本発明の実施形態を、図面を参照しつつ説明する。図1及び図2に、本実施形態に係る電池(密閉型電池)1の斜視図及び縦断面図を示す。なお、以下では、電池1の電池縦方向BH、電池横方向CH及び電池厚み方向DHを、図1及び図2に示す方向と定めて説明する。
この電池1は、ハイブリッドカーやプラグインハイブリッドカー、電気自動車等の車両などに搭載される角型で密閉型のリチウムイオン二次電池である。電池1は、電池ケース10と、この内部に収容された電極体20と、電池ケース10に支持された正極端子部材50及び負極端子部材60等から構成される。また、電池ケース10内には、電解液17が収容されており、その一部は電極体20内に含浸されている。この電解液17は、エチレンカーボネート(EC)、ジメチルカーボネート(DMC)及びエチルメチルカーボネート(EMC)を体積比30:40:30で混合した非水溶媒に、LiPF6 を1.0Mの濃度で溶解した非水電解液である。
Embodiments of the present invention will be described below with reference to the drawings. 1 and 2 are a perspective view and a longitudinal sectional view of a battery (sealed battery) 1 according to this embodiment. In the following description, the battery longitudinal direction BH, the battery lateral direction CH, and the battery thickness direction DH of the battery 1 are defined as the directions shown in FIGS. 1 and 2.
The battery 1 is a rectangular and sealed lithium ion secondary battery mounted on a vehicle such as a hybrid car, a plug-in hybrid car, or an electric car. The battery 1 includes a battery case 10, an electrode body 20 accommodated therein, a positive terminal member 50 and a negative terminal member 60 supported by the battery case 10, and the like. In addition, an electrolytic solution 17 is accommodated in the battery case 10, and a part thereof is impregnated in the electrode body 20. This electrolytic solution 17 is obtained by dissolving LiPF 6 at a concentration of 1.0 M in a non-aqueous solvent in which ethylene carbonate (EC), dimethyl carbonate (DMC), and ethyl methyl carbonate (EMC) are mixed at a volume ratio of 30:40:30. Non-aqueous electrolyte.

このうち電池ケース10は、直方体箱状で金属(本実施形態ではアルミニウム)からなる。この電池ケース10は、上側のみが開口した有底角筒状のケース本体部材11と、このケース本体部材11の開口を閉塞する形態で溶接された矩形板状のケース蓋部材13とから構成される。このうちケース蓋部材13には、電池ケース10の内外を貫通し、電解液17を電池ケース10内に注入する際に利用される注液孔13hが所定の位置に形成されている。この注液孔13hは、封止部材15がケース蓋部材13に溶接されることにより気密に封止されている。   Among these, the battery case 10 has a rectangular parallelepiped box shape and is made of metal (in this embodiment, aluminum). The battery case 10 is composed of a bottomed rectangular tube-shaped case main body member 11 that is open only on the upper side, and a rectangular plate-shaped case lid member 13 that is welded in a form that closes the opening of the case main body member 11. The Among these, the case lid member 13 is formed with a liquid injection hole 13 h that penetrates the inside and outside of the battery case 10 and is used when the electrolytic solution 17 is injected into the battery case 10 at a predetermined position. The liquid injection hole 13 h is hermetically sealed by welding the sealing member 15 to the case lid member 13.

また、ケース蓋部材13には、アルミニウムからなる正極端子部材50がケース蓋部材13と絶縁された状態で固設されている。この正極端子部材50は、電池ケース10内で電極体20のうち正極板21に接続し導通する一方、ケース蓋部材13を貫通して電池外部まで延びている。また、ケース蓋部材13には、銅からなる負極端子部材60がケース蓋部材13と絶縁された状態で固設されている。この負極端子部材60は、電池ケース10内で電極体20のうち負極板31に接続し導通する一方、ケース蓋部材13を貫通して電池外部まで延びている。   Further, a positive terminal member 50 made of aluminum is fixed to the case lid member 13 in a state of being insulated from the case lid member 13. The positive electrode terminal member 50 is connected to the positive electrode plate 21 of the electrode body 20 in the battery case 10 to be conductive, and extends through the case lid member 13 to the outside of the battery. Further, a negative electrode terminal member 60 made of copper is fixed to the case lid member 13 while being insulated from the case lid member 13. The negative electrode terminal member 60 is connected to and conductive with the negative electrode plate 31 of the electrode body 20 in the battery case 10, and extends through the case lid member 13 to the outside of the battery.

電極体20は、扁平状の捲回型電極体であり、軸線を横倒しにした状態で電池ケース10内に収容されている。電極体20と電池ケース10との間には、絶縁フィルムからなる袋状の絶縁フィルム包囲体19が配置されている。電極体20は、帯状の正極板21と帯状の負極板31とを、帯状で樹脂製の多孔質膜からなる一対のセパレータ41,41を介して互いに重ね、軸線周りに捲回して扁平状に圧縮したものである。正極板21は、帯状のアルミニウム箔からなる正極集電箔の両主面の所定位置に、正極活物質、導電材及び結着剤からなる正極活物質層を帯状に設けてなる。また、負極板31は、帯状の銅箔からなる負極集電箔の両主面の所定位置に、負極活物質、結着剤及び増粘剤からなる負極活物質層を帯状に設けてなる。   The electrode body 20 is a flat wound electrode body, and is housed in the battery case 10 in a state where the axis is laid sideways. Between the electrode body 20 and the battery case 10, a bag-shaped insulating film enclosure 19 made of an insulating film is disposed. The electrode body 20 includes a belt-like positive electrode plate 21 and a belt-like negative electrode plate 31 that are overlapped with each other via a pair of separators 41 and 41 made of a resin-made porous film and wound around an axis to be flat. Compressed. The positive electrode plate 21 is provided with a positive electrode active material layer made of a positive electrode active material, a conductive material, and a binder in a band shape at predetermined positions on both main surfaces of a positive electrode current collector foil made of a belt-like aluminum foil. The negative electrode plate 31 is provided with a negative electrode active material layer made of a negative electrode active material, a binder, and a thickener in a band shape at predetermined positions on both main surfaces of a negative electrode current collector foil made of a strip-like copper foil.

次いで、上記電池1の製造方法について説明する(図3及び図4参照)。まず、ステップS1の組立工程において、電池1xを組み立てる。具体的には、正極板21及び負極板31を、一対のセパレータ41,41を介して互いに重ねて捲回し、扁平状に圧縮して電極体20を形成する。別途、ケース蓋部材13を用意し、これに正極端子部材50及び負極端子部材60を固設しておく(図1及び図2参照)。その後、正極端子部材50及び負極端子部材60を、電極体20の正極板21及び負極板31にそれぞれ溶接する。次に、電極体20に絶縁フィルム包囲体19を被せて、これらをケース本体部材11内に挿入すると共に、ケース本体部材11の開口をケース蓋部材13で塞ぐ。そして、ケース本体部材11とケース蓋部材13とをケース蓋部材13の全周にわたり溶接して電池ケース10を形成する。   Next, a method for manufacturing the battery 1 will be described (see FIGS. 3 and 4). First, in the assembly process of step S1, the battery 1x is assembled. Specifically, the positive electrode plate 21 and the negative electrode plate 31 are overlapped with each other via a pair of separators 41 and 41 and wound into a flat shape to form the electrode body 20. Separately, a case lid member 13 is prepared, and a positive electrode terminal member 50 and a negative electrode terminal member 60 are fixed thereto (see FIGS. 1 and 2). Thereafter, the positive electrode terminal member 50 and the negative electrode terminal member 60 are welded to the positive electrode plate 21 and the negative electrode plate 31 of the electrode body 20, respectively. Next, the electrode body 20 is covered with the insulating film enclosure 19, and these are inserted into the case main body member 11, and the opening of the case main body member 11 is closed with the case lid member 13. Then, the battery case 10 is formed by welding the case body member 11 and the case lid member 13 over the entire circumference of the case lid member 13.

なお、この組立工程S1において、電池1xにピンホールや亀裂などの気密不良部が出来ることがある。気密不良部は、電池ケース10のケース本体部材11とケース蓋部材13との溶接部分や、正極端子部材50及び負極端子部材60と電池ケース10との固設部分に特に生じ易い。しかし、本実施形態では、後述するように、ステップS5〜ステップS11に示す気密検査を行うため、このような気密不良部が生じた電池1xを電池1の製造過程で排除できる。   In the assembly step S1, there may be a case where the battery 1x has an airtight defect portion such as a pinhole or a crack. The hermetic defect portion is particularly likely to occur at a welded portion between the case main body member 11 and the case lid member 13 of the battery case 10 and a fixed portion between the positive electrode terminal member 50 and the negative electrode terminal member 60 and the battery case 10. However, in the present embodiment, as will be described later, since the airtight inspection shown in steps S5 to S11 is performed, the battery 1x in which such an airtight defect portion has occurred can be excluded in the process of manufacturing the battery 1.

次に、この組み立てた電池1xについて、ステップS2の注液工程を行う。即ち、電解液17を、注液孔13hから電池ケース10内に注液して、電極体20内に含浸させる。
次に、ステップS3のガス導入工程において、注液孔13hを通じて、電池ケース10内に検査用ガス(実施形態では、ヘリウムガス)GS1を導入する。
Next, the liquid injection process of step S2 is performed about this assembled battery 1x. That is, the electrolytic solution 17 is injected into the battery case 10 through the injection hole 13 h and impregnated in the electrode body 20.
Next, in the gas introduction process of step S3, an inspection gas (helium gas in the embodiment) GS1 is introduced into the battery case 10 through the injection hole 13h.

次に、ステップS4の封止工程において、電池ケース10を気密に封止する。即ち、封止部材15を電池ケース10のケース蓋部材13に溶接して注液孔13hを気密に封止して、電池ケース10を気密に封止する。なお、ガス導入工程S3の終了時から封止工程S4の開始時までの時間は、できる限り短くする、例えば120秒以内とするのが好ましい。電池ケース10内のヘリウムガスGS1の濃度が低下し過ぎると、後述する気密検査を正常に行えなくなるからである。   Next, in the sealing step in step S4, the battery case 10 is hermetically sealed. That is, the sealing member 15 is welded to the case lid member 13 of the battery case 10 to hermetically seal the liquid injection hole 13h, and the battery case 10 is hermetically sealed. The time from the end of the gas introduction step S3 to the start of the sealing step S4 is preferably as short as possible, for example, within 120 seconds. This is because if the concentration of the helium gas GS1 in the battery case 10 is too low, the airtight inspection described later cannot be performed normally.

なお、この封止工程S4において、封止部材15と電池ケース10との溶接部分に、ピンホールや亀裂などの気密不良部が出来ることがある。しかし、本実施形態では、後述するように、ステップS5〜ステップS11に示す気密検査を行うため、このような気密不良部が生じた電池1を排除できる。   In this sealing step S4, an airtight defect portion such as a pinhole or a crack may be formed at the welded portion between the sealing member 15 and the battery case 10 in some cases. However, in this embodiment, as will be described later, since the airtight inspection shown in Steps S5 to S11 is performed, the battery 1 in which such an airtight defective portion has occurred can be excluded.

次に、この電池1について、ステップS5〜ステップS11に示す気密検査を行う。この気密検査は、図4に示す気密検査装置100を用いて行う。気密検査装置100は、チャンバ110と、チャンバ110内を減圧する真空ポンプ120と、ヘリウムガスGS1を検知可能なヘリウムガス検知器130と、電解液17が揮発した電解液由来ガスGS2を検知可能な電解液由来ガス検知器140とを備える。   Next, the battery 1 is subjected to an airtight inspection shown in steps S5 to S11. This airtight inspection is performed using the airtight inspection apparatus 100 shown in FIG. The hermeticity inspection apparatus 100 can detect the chamber 110, the vacuum pump 120 that depressurizes the chamber 110, the helium gas detector 130 that can detect the helium gas GS1, and the electrolyte-derived gas GS2 in which the electrolyte 17 is volatilized. And an electrolyte-derived gas detector 140.

チャンバ110と真空ポンプ120とは、気体第1流通路121を介して接続されている。この気体第1流通路121の途中には、気体第1流通路121におけるガスの流通をオン・オフする電磁弁123と、気体第1流通路121を流れるガスの流量を調整するニードルバルブ125が配置されている   The chamber 110 and the vacuum pump 120 are connected via a gas first flow passage 121. In the middle of the gas first flow passage 121, there are an electromagnetic valve 123 for turning on and off the gas flow in the gas first flow passage 121 and a needle valve 125 for adjusting the flow rate of the gas flowing through the gas first flow passage 121. Arranged

ヘリウムガス検知器130として、本実施形態では、酸化スズ半導体ガスセンサを用いた。また、ヘリウムガス検知器130は、チャンバ110と気体第1流通路121及び気体第1流通路121から分岐した気体第2流通路131を介して接続されている。この気体第2流通路131の途中には、気体第2流通路131におけるガスの流通をオン・オフする電磁弁133が配置されている。   In this embodiment, a tin oxide semiconductor gas sensor is used as the helium gas detector 130. The helium gas detector 130 is connected to the chamber 110 via a gas first flow path 121 and a gas second flow path 131 branched from the gas first flow path 121. In the middle of the gas second flow path 131, an electromagnetic valve 133 for turning on and off the gas flow in the gas second flow path 131 is disposed.

電解液由来ガス検知器140として、本実施形態では、酸化スズ半導体ガスセンサを用いた。この電解液由来ガス検知器140は、電解液17を構成するエチレンカーボネート(EC)、ジメチルカーボネート(DMC)及びエチルメチルカーボネート(EMC)の各揮発成分をまとめて検知できる。なお、電解液由来ガス検知器140として、燃焼式のガスセンサを用いることもできる。   In the present embodiment, a tin oxide semiconductor gas sensor is used as the electrolytic solution-derived gas detector 140. The electrolytic solution-derived gas detector 140 can collectively detect volatile components of ethylene carbonate (EC), dimethyl carbonate (DMC), and ethyl methyl carbonate (EMC) constituting the electrolytic solution 17. Note that a combustion-type gas sensor can be used as the electrolyte-derived gas detector 140.

電解液由来ガス検知器140は、チャンバ110と気体第1流通路121及び気体第1流通路121から分岐した気体第3流通路141を介して接続されている。更に、この気体第3流通路141は、気体第1流通路121のうち電磁弁123とニードルバルブ125との間の部分に繋がっている。気体第3流通路141のうち、チャンバ110と電解液由来ガス検知器140との間の部分には、チャンバ110と電解液由来ガス検知器140との間の気体第3流通路141におけるガスの流通をオン・オフする電磁弁143が配置されている。また、気体第3流通路141のうち、電解液由来ガス検知器140から気体第1流通路121に達するまでの部分には、電解液由来ガス検知器140から気体第1流通路121までの間の気体第3流通路141におけるガスの流通をオン・オフする電磁弁145と、そのガスの流量を調整するニードルバルブ147が配置されている。   The electrolyte-derived gas detector 140 is connected to the chamber 110 via a gas first flow passage 121 and a gas third flow passage 141 branched from the gas first flow passage 121. Further, the gas third flow passage 141 is connected to a portion of the gas first flow passage 121 between the electromagnetic valve 123 and the needle valve 125. The portion of the gas third flow passage 141 between the chamber 110 and the electrolyte-derived gas detector 140 has gas in the gas third flow passage 141 between the chamber 110 and the electrolyte-derived gas detector 140. An electromagnetic valve 143 for turning on / off the flow is disposed. Further, in the portion of the gas third flow passage 141 from the electrolyte solution derived gas detector 140 to the gas first flow passage 121, there is a space between the electrolyte solution derived gas detector 140 and the gas first flow passage 121. An electromagnetic valve 145 for turning on / off the gas flow in the gas third flow passage 141 and a needle valve 147 for adjusting the flow rate of the gas are arranged.

また、この気密検査装置100では、チャンバ110に、チャンバ110の外部と繋がる気体第4流通路151が接続されている。この気体第4流通路151の途中には、気体第4流通路151におけるガスの流通をオン・オフする電磁弁153と、そのガスの流量を調整するリークバルブ155が配置されている。また、気体第4流通路151の先端には、外部から気体第4流通路151内への異物の混入を防ぐフィルタ157が取り付けられている。
更に、チャンバ110には、チャンバ110の外部と繋がる気体第5流通路161が接続されている。この気体第5流通路161の途中には、気体第5流通路161におけるガスの流通をオン・オフする電磁弁163が配置されている。また、気体第5流通路161の先端には、外部から気体第5流通路161内への異物の混入を防ぐフィルタ165が取り付けられている。
In the airtightness inspection apparatus 100, the gas fourth flow passage 151 connected to the outside of the chamber 110 is connected to the chamber 110. In the middle of the fourth gas flow path 151, an electromagnetic valve 153 for turning on and off the gas flow in the fourth gas flow path 151 and a leak valve 155 for adjusting the flow rate of the gas are arranged. In addition, a filter 157 is attached to the distal end of the fourth gas flow passage 151 to prevent foreign matters from entering the fourth gas flow passage 151 from the outside.
Furthermore, a gas fifth flow passage 161 connected to the outside of the chamber 110 is connected to the chamber 110. In the middle of the fifth gas flow passage 161, an electromagnetic valve 163 for turning on and off the gas flow in the fifth gas flow passage 161 is disposed. In addition, a filter 165 is attached to the tip of the fifth gas flow passage 161 to prevent foreign matters from entering the fifth gas flow passage 161 from the outside.

この気密検査装置100を用いた電池1の気密検査を行うにあたっては、まずチャンバ110内に、封止工程S4を終えた電池1を収容する。その後、真空ポンプ120を作動させ、この状態で電磁弁123を開くと共に、ニードルバルブ125で気体第1流通路121を流れるガスの流量を調整して、チャンバ110内を所定時間にわたり減圧し、チャンバ110内を例えば減圧度0〜20kPa abs(本実施形態では、減圧度1kPa abs以下)まで減圧する。   In performing the airtight inspection of the battery 1 using the airtight inspection device 100, the battery 1 that has finished the sealing step S4 is first housed in the chamber 110. Thereafter, the vacuum pump 120 is operated, and in this state, the electromagnetic valve 123 is opened, the flow rate of the gas flowing through the gas first flow passage 121 is adjusted by the needle valve 125, and the inside of the chamber 110 is depressurized for a predetermined time. The pressure inside 110 is reduced to, for example, a pressure reduction degree of 0 to 20 kPa abs (in this embodiment, a pressure reduction degree of 1 kPa abs or less).

その際、電池1に気密不良部が出来ている場合には、その気密不良部を通じて電池内部から電池外部にヘリウムガスGS1及び電解液由来ガスGS2が漏れ出し、チャンバ110内に滞留する。なお、気密不良部に電解液17が付着して気密不良部が電解液17で塞がれている場合には、ヘリウムガスGS1の漏れ量Q1は少なく、主に電解液由来ガスGS2が電池外部に漏れ出す。   At this time, if the battery 1 has an airtight portion, the helium gas GS1 and the electrolyte-derived gas GS2 leak from the inside of the battery to the outside of the battery through the airtight portion and stay in the chamber 110. Note that when the electrolyte solution 17 adheres to the poorly sealed portion and the poorly sealed portion is blocked with the electrolyte solution 17, the leakage amount Q1 of the helium gas GS1 is small, and the electrolyte-derived gas GS2 is mainly outside the battery. Leak out.

まずステップS5の検査用ガス検知工程において、電池内部から電池外部に漏れ出るヘリウムガスGS1の漏れ量Q1(Pa・m3/sec)を検知する。本実施形態では、気体第1流通路121に配置した電磁弁123を閉じた後に、気体第2流通路131に配置した電磁弁133を開く。これにより、チャンバ110内のガスが気体第1流通路121及びその途中から分岐した気体第2流通路131を通じてヘリウムガス検知器130に送られ、ヘリウムガス検知器130でヘリウムガスGS1の漏れ量Q1(Pa・m3/sec)が検知される。ヘリウムガスGS1の漏れ量Q1を測定した後は、気体第2流通路131の電磁弁133を閉じる。
なお、封止工程S4の終了時から検査用ガス検知工程S5の開始時までの時間は、できる限り短くする、例えば30分以内とするのが好ましい。気密不良部からヘリウムガスGS1が多く漏れ出して、電池ケース10内のヘリウムガスGS1の濃度が大きく低下すると、気密検査を正常に行えなくなるからである。
First, in the inspection gas detection process of step S5, the leak amount Q1 (Pa · m 3 / sec) of the helium gas GS1 leaking from the inside of the battery to the outside of the battery is detected. In this embodiment, after closing the electromagnetic valve 123 arranged in the gas first flow passage 121, the electromagnetic valve 133 arranged in the gas second flow passage 131 is opened. Thereby, the gas in the chamber 110 is sent to the helium gas detector 130 through the gas first flow path 121 and the gas second flow path 131 branched from the middle, and the helium gas detector 130 leaks the helium gas GS1 Q1. (Pa · m 3 / sec) is detected. After measuring the leakage amount Q1 of the helium gas GS1, the electromagnetic valve 133 of the gas second flow path 131 is closed.
The time from the end of the sealing step S4 to the start of the inspection gas detection step S5 is preferably as short as possible, for example, within 30 minutes. This is because if a large amount of helium gas GS1 leaks from the airtight defect portion and the concentration of the helium gas GS1 in the battery case 10 is greatly reduced, the airtight inspection cannot be performed normally.

次に、ステップS6において、測定されたヘリウムガスGS1の漏れ量Q1が、第1基準漏れ量Q1k以上(Q1≧Q1k)であるか否かを判断する。本実施形態では、第1基準漏れ量Q1k=9.5×10-6 Pa・m3/secとした。この第1基準漏れ量Q1kの値については後述する。ステップS6でYES、即ち、ヘリウムガスGS1の漏れ量Q1が第1基準漏れ量Q1k以上である場合には、ステップS7に進み、当該電池1を気密不良品と判定する。当該電池1に許容できない大きさの気密不良部が存在するために、ヘリウムガスGS1の漏れ量Q1が多くなっていると考えられるからである。なお、ステップS6及びステップS7が、前述の判定工程の「第1工程」に該当する。 Next, in step S6, it is determined whether or not the measured leak amount Q1 of the helium gas GS1 is equal to or greater than the first reference leak amount Q1k (Q1 ≧ Q1k). In the present embodiment, the first reference leakage amount Q1k is set to 9.5 × 10 −6 Pa · m 3 / sec. The value of the first reference leakage amount Q1k will be described later. If YES in step S6, that is, if the leakage amount Q1 of the helium gas GS1 is greater than or equal to the first reference leakage amount Q1k, the process proceeds to step S7, and the battery 1 is determined to be an airtight defect product. This is because it is considered that the leak amount Q1 of the helium gas GS1 is increased because the battery 1 has an unacceptable size airtight portion. Steps S6 and S7 correspond to the “first step” in the determination step described above.

一方、ステップS6でNO、即ち、ヘリウムガスGS1の漏れ量Q1が第1基準漏れ量Q1k未満(Q1<Q1k)である場合には、ステップS8に進む。この場合、当該電池1に気密不良部が無いか、或いは、気密不良部が有るが、この気密不良部に電解液17が付着しているために、ヘリウムガスGS1の漏れ量Q1が少なくなっていると考えられる。   On the other hand, if NO in step S6, that is, if the leak amount Q1 of the helium gas GS1 is less than the first reference leak amount Q1k (Q1 <Q1k), the process proceeds to step S8. In this case, the battery 1 does not have an airtight defect portion or has an airtight defect portion. However, since the electrolyte solution 17 adheres to the airtight defect portion, the leakage amount Q1 of the helium gas GS1 is reduced. It is thought that there is.

ステップS8の電解液由来ガス検知工程では、電池内部から電池外部に漏れ出る電解液由来ガスGS2の漏れ量Q2(Pa・m3/sec)を検知する。本実施形態では、気体第3流通路141に配置した電磁弁143及び電磁弁145をそれぞれ開く。これにより、チャンバ110内のガスが気体第1流通路121及びその途中から分岐した気体第3流通路141を通じて電解液由来ガス検知器140に送られ、電解液由来ガス検知器140で電解液由来ガスGS2の漏れ量Q2(Pa・m3/sec)が検知される。電解液由来ガスGS2の漏れ量Q2を測定した後は、気体第3流通路141に配置した電磁弁143及び電磁弁145をそれぞれ閉じる。 In the electrolyte solution-derived gas detection step in step S8, the leakage amount Q2 (Pa · m 3 / sec) of the electrolyte solution-derived gas GS2 that leaks from the inside of the battery to the outside of the battery is detected. In the present embodiment, the electromagnetic valve 143 and the electromagnetic valve 145 arranged in the gas third flow passage 141 are opened. As a result, the gas in the chamber 110 is sent to the electrolyte-derived gas detector 140 through the gas first flow passage 121 and the gas third flow passage 141 branched from the middle, and the electrolyte-derived gas detector 140 derives the electrolyte. The leakage amount Q2 (Pa · m 3 / sec) of the gas GS2 is detected. After measuring the leakage amount Q2 of the electrolyte-derived gas GS2, the electromagnetic valve 143 and the electromagnetic valve 145 disposed in the gas third flow passage 141 are closed.

なお、ニードルバルブ147で気体第3流通路141におけるガスの流量を、例えば5〜1000mL/minの範囲内で調整することにより、電解液由来ガス検知器140の検知感度を良好にできる。また、チャンバ110に繋がる気体第4流通路151に配置した電磁弁153を開くと共に、リークバルブ155で気体第4流通路151を流れるガスの流量を調整することにより、電解液由来ガスGS2がチャンバ110内に滞留するのを抑制して、電解液由来ガスGS2を電解液由来ガス検知器140まで確実に流通させることができる。   In addition, the detection sensitivity of the electrolyte-derived gas detector 140 can be improved by adjusting the flow rate of the gas in the gas third flow passage 141 with the needle valve 147 within a range of, for example, 5 to 1000 mL / min. Further, the electromagnetic valve 153 disposed in the gas fourth flow passage 151 connected to the chamber 110 is opened and the flow rate of the gas flowing through the gas fourth flow passage 151 is adjusted by the leak valve 155, so that the electrolyte-derived gas GS2 is contained in the chamber. It can suppress staying in 110, and can distribute electrolyte solution origin gas GS2 to electrolyte solution origin gas detector 140 certainly.

次に、ステップS9において、測定されたヘリウムガスGS1の漏れ量Q1と電解液由来ガスGS2の漏れ量Q2との漏れ量の差の絶対値ΔQ=|Q1−Q2|が、基準差ΔQk以上(|Q1−Q2|≧ΔQk)であるか否かを判断する。本実施形態では、基準差ΔQk=1.0×10-5 Pa・m3/secとした。この基準差ΔQkの値については後述する。 Next, in step S9, the absolute value ΔQ = | Q1−Q2 | of the difference in leak amount between the measured leak amount Q1 of the helium gas GS1 and the leak amount Q2 of the electrolyte-derived gas GS2 is equal to or greater than the reference difference ΔQk ( It is determined whether or not | Q1−Q2 | ≧ ΔQk). In this embodiment, the reference difference ΔQk = 1.0 × 10 −5 Pa · m 3 / sec. The value of this reference difference ΔQk will be described later.

ステップS9でYES、即ち、漏れ量の差の絶対値ΔQ=|Q1−Q2|が基準差ΔQk以上である場合には、後述するステップS10に進む。この場合、気密不良部に電解液17が付着している可能性がある。
一方、NO、即ち、漏れ量の差の絶対値ΔQ=|Q1−Q2|が基準差ΔQk未満(|Q1−Q2|<ΔQk)である場合には、ステップS11に進み、当該電池1を気密不良部の無い良品(より正確には、気密不良部が全く存在しないか、或いは、気密不良部がごく小さいために電池性能に殆ど影響を与えず良品として取り扱うことが可能な電池)と判定する。この場合、気密不良部に電解液17が付着しておらず、気密不良品については、前述のステップS6及びステップS7で既に気密不良品と判定されているからである。なお、このステップS9及びステップS11が、前述の判定工程の「第2工程」に該当する。
If YES in step S9, that is, if the absolute value ΔQ = | Q1-Q2 | of the difference in leakage amount is greater than or equal to the reference difference ΔQk, the process proceeds to step S10 described later. In this case, there is a possibility that the electrolytic solution 17 adheres to the airtight portion.
On the other hand, if NO, that is, if the absolute value ΔQ = | Q1-Q2 | of the difference in leakage amount is less than the reference difference ΔQk (| Q1-Q2 | <ΔQk), the process proceeds to step S11 and the battery 1 is airtight. A non-defective product with no defective part (more precisely, a battery that can be handled as a non-defective part with little influence on the battery performance because the hermetic defective part is not present at all or is very small) . In this case, the electrolyte solution 17 does not adhere to the airtight defective portion, and the airtight defective product has already been determined as the airtight defective product in Step S6 and Step S7 described above. Steps S9 and S11 correspond to the “second step” of the above-described determination step.

次に、ステップS9でYESと判断され、ステップS10に進んだ場合には、ステップS10で、電解液由来ガスGS2の漏れ量Q2が第2基準漏れ量Q2k以上(Q2≧Q2k)であるか否かを判断する。なお、この第2基準漏れ量Q2kは、第1基準漏れ量Q1k(=9.5×10-6 Pa・m3/sec)以下の値(本実施形態では、Q2k=8.5×10-6 Pa・m3/sec)とする。この第2基準漏れ量Q2kの値については後述する。 Next, if YES is determined in step S9 and the process proceeds to step S10, whether or not the leakage amount Q2 of the electrolyte-derived gas GS2 is equal to or greater than the second reference leakage amount Q2k (Q2 ≧ Q2k) in step S10. Determine whether. The second reference leakage amount Q2k is equal to or less than the first reference leakage amount Q1k (= 9.5 × 10 −6 Pa · m 3 / sec) (Q2k = 8.5 × 10 − in this embodiment). 6 Pa · m 3 / sec). The value of the second reference leakage amount Q2k will be described later.

ここで、YES、即ち、電解液由来ガスGS2の漏れ量Q2が第2基準漏れ量Q2k以上である場合には、前述のステップS7に進み、当該電池1を気密不良品と判定する。当該電池1に許容できない大きさの気密不良部が有るために、電解液由来ガスGS2の漏れ量Q2が多くなっていると考えられるからである。
一方、ステップS10でNO、即ち、電解液由来ガスGS2の漏れ量Q2が第2基準漏れ量Q2k未満(Q2<Q2k)である場合には、ステップS11に進み、当該電池1を気密不良部の無い良品と判定する。電解液由来ガスGS2の漏れ量Q2が少なく、当該電池1に許容できない大きさの気密不良部が存在しないと考えられるからである。なお、これらステップS10、ステップS7及びステップS11が、前述の判定工程の「第3工程」に該当する。
If YES, that is, if the leakage amount Q2 of the electrolyte-derived gas GS2 is equal to or greater than the second reference leakage amount Q2k, the process proceeds to step S7 described above, and the battery 1 is determined to be an airtight defect. This is because it is considered that the leakage amount Q2 of the electrolyte solution-derived gas GS2 is increased because the battery 1 has an unacceptably small airtight portion.
On the other hand, if NO in step S10, that is, if the leakage amount Q2 of the electrolyte-derived gas GS2 is less than the second reference leakage amount Q2k (Q2 <Q2k), the process proceeds to step S11, and the battery 1 is removed from the airtight portion. It is determined that there is no good product. This is because the leakage amount Q2 of the electrolyte-derived gas GS2 is small, and it is considered that there is no airtight defect portion having an unacceptable size in the battery 1. In addition, these step S10, step S7, and step S11 correspond to the "3rd process" of the above-mentioned determination process.

かくして、気密検査が終了する。なお、ステップS6、ステップS7、ステップS9〜ステップS11が、前述の「判定工程」に該当する。その後は、チャンバ110に繋がる気体第5流通路161に配置した電磁弁163を開いて、チャンバ110内を大気開放する。そして、電池1をチャンバ110から取り出し、気密不良品と判定された電池1を排除する。かくして、電池1が完成する。   Thus, the airtight inspection is completed. Note that Step S6, Step S7, and Step S9 to Step S11 correspond to the aforementioned “determination step”. Thereafter, the electromagnetic valve 163 disposed in the gas fifth flow passage 161 connected to the chamber 110 is opened to open the chamber 110 to the atmosphere. Then, the battery 1 is taken out from the chamber 110, and the battery 1 determined to be an airtight product is removed. Thus, the battery 1 is completed.

ここで、前述の第1基準漏れ量Q1k(=9.5×10-6 Pa・m3/sec)、第2基準漏れ量Q2k(=8.5×10-6 Pa・m3/sec)及び基準差ΔQk(=1.0×10-5 Pa・m3/sec)の各値について説明する(図5参照)。図5のグラフは、気密性の良否判断の基準となる試験用電池(所定の大きさの微小な気密不良部が存在する特定の電池1)について、ヘリウムガスGS1の漏れ量Q1及び電解液由来ガスGS2の漏れ量Q2をそれぞれ繰り返し測定して得た結果である。 Here, the first reference leakage amount Q1k (= 9.5 × 10 −6 Pa · m 3 / sec) and the second reference leakage amount Q2k (= 8.5 × 10 −6 Pa · m 3 / sec) are described. Each value of the reference difference ΔQk (= 1.0 × 10 −5 Pa · m 3 / sec) will be described (see FIG. 5). The graph of FIG. 5 shows the leak amount Q1 of helium gas GS1 and the electrolyte derived from a test battery (a specific battery 1 having a minute airtight defect portion of a predetermined size) that is a criterion for determining whether airtightness is good or bad. This is a result obtained by repeatedly measuring the leakage amount Q2 of the gas GS2.

測定されるヘリウムガスGS1の漏れ量Q1は、気密不良部に電解液17が付着していない場合と、気密不良部に電解液17が付着している場合とで異なる。具体的には、気密不良部に電解液17が付着していない場合、ヘリウムガスGS1の漏れ量Q1の測定値は、P1=1.0×10-5 Pa・m3/sec 〜P2=2.0×10-5 Pa・m3/secの範囲内の値となる。そこで、第1基準漏れ量Q1kは、P1=1.0×10-5 Pa・m3/secよりも低い値、本実施形態では、Q1k=9.5×10-6 Pa・m3/secとした。
一方、気密不良部に電解液17が付着している場合、ヘリウムガスGS1の漏れ量Q1の測定値は、P3=6×10-8 Pa・m3/sec〜P4=1.0×10-7 Pa・m3/secの範囲内の値となる。
The amount of leakage Q1 of the measured helium gas GS1 differs between the case where the electrolyte solution 17 is not attached to the poorly sealed portion and the case where the electrolyte solution 17 is attached to the poorly sealed portion. Specifically, when the electrolyte solution 17 does not adhere to the poorly sealed portion, the measured value of the leakage amount Q1 of the helium gas GS1 is P1 = 1.0 × 10 −5 Pa · m 3 / sec. It becomes a value within the range of ~ P2 = 2.0 × 10 −5 Pa · m 3 / sec. Therefore, the first reference leakage amount Q1k is a value lower than P1 = 1.0 × 10 −5 Pa · m 3 / sec. In this embodiment, Q1k = 9.5 × 10 −6 Pa · m 3 / sec. It was.
On the other hand, when the electrolyte solution 17 is attached to the poorly sealed portion, the measured value of the leakage amount Q1 of the helium gas GS1 is P3 = 6 × 10 −8 Pa · m 3 / sec to P4 = 1.0 × 10 −. The value is within the range of 7 Pa · m 3 / sec.

他方、電解液由来ガスGS2の漏れ量Q2の測定値は、気密不良部への電解液17の付着の有無に拘わらず、P5=9.0×10-6 Pa・m3/sec〜P6=2.2×10-5 Pa・m3/secの範囲内の値となる。そこで、第2基準漏れ量Q2kは、P5=9.0×10-6 Pa・m3/secよりも低い値、本実施形態では、Q2k=8.5×10-6 Pa・m3/secとした。 On the other hand, the measured value of the leakage amount Q2 of the electrolyte-derived gas GS2 is P5 = 9.0 × 10 −6 Pa · m 3 / sec to P6 =, regardless of whether or not the electrolyte 17 adheres to the airtight portion. The value is in the range of 2.2 × 10 −5 Pa · m 3 / sec. Therefore, the second reference leakage amount Q2k is a value lower than P5 = 9.0 × 10 −6 Pa · m 3 / sec. In the present embodiment, Q2k = 8.5 × 10 −6 Pa · m 3 / sec. It was.

このように、本実施形態では、ヘリウムガスGS1の漏れ量Q1の測定値バラツキよりも、電解液由来ガスGS2の漏れ量Q2の測定値バラツキが大きくなる。ヘリウムガスGS1の漏れ量Q1の測定値バラツキは小さいため、第1基準漏れ量Q1kを大きめの値(本実施形態では、9.5×10-6 Pa・m3/sec)に設定できる一方、電解液由来ガスGS2の漏れ量Q2の測定値バラツキは大きいため、第2基準漏れ量Q2kを小さめの値(本実施形態では、8.5×10-6 Pa・m3/sec)に設定している。このように漏れ量Q1,Q2の測定値バラツキをそれぞれ考慮した、値の異なる第1基準漏れ量Q1k及び第2基準漏れ量Q2kを用いることにより、ステップS6及びステップS10で過判定(良品を気密不良品と判定)される電池数をそれぞれ抑制できる。 Thus, in this embodiment, the measured value variation of the leakage amount Q2 of the electrolyte-derived gas GS2 becomes larger than the measured value variation of the leakage amount Q1 of the helium gas GS1. Since the measured value variation of the leak amount Q1 of the helium gas GS1 is small, the first reference leak amount Q1k can be set to a larger value (in this embodiment, 9.5 × 10 −6 Pa · m 3 / sec), Since the measured value variation of the leakage amount Q2 of the electrolyte-derived gas GS2 is large, the second reference leakage amount Q2k is set to a smaller value (8.5 × 10 −6 Pa · m 3 / sec in this embodiment). ing. In this way, by using the first reference leakage amount Q1k and the second reference leakage amount Q2k having different values in consideration of variations in the measured values of the leakage amounts Q1 and Q2, overdetermined in step S6 and step S10 (non-defective products are airtight) The number of batteries determined to be defective can be suppressed.

気密不良部に電解液17が付着していない場合、ヘリウムガスGS1の漏れ量Q1の測定値は、最大でP2=2.0×10-5 Pa・m3/secであり、電解液由来ガスGS2の漏れ量Q2の測定値は、最小でP5=9.0×10-6 Pa・m3/secである。これらの差の絶対値ΔPAは、ΔPA=|P2−P5|=1.1×10-5 Pa・m3/secである。従って、気密不良部に電解液17が付着していない場合には、測定されたヘリウムガスGS1の漏れ量Q1と電解液由来ガスGS2の漏れ量Q2との差の絶対値ΔQ=|Q1−Q2|が、ΔPA=1.1×10-5 Pa・m3/sec以下となる。 When the electrolyte solution 17 does not adhere to the airtight portion, the measured value of the leakage amount Q1 of the helium gas GS1 is P2 = 2.0 × 10 −5 Pa · m 3 / sec at the maximum, and the electrolyte-derived gas The minimum measured value of the leakage amount Q2 of GS2 is P5 = 9.0 × 10 −6 Pa · m 3 / sec. The absolute value ΔPA of these differences is ΔPA = | P2-P5 | = 1.1 × 10 −5 Pa · m 3 / sec. Therefore, when the electrolytic solution 17 does not adhere to the poorly sealed portion, the absolute value ΔQ = | Q1-Q2 of the difference between the measured leakage amount Q1 of the helium gas GS1 and the leakage amount Q2 of the electrolytic solution-derived gas GS2. | Becomes ΔPA = 1.1 × 10 −5 Pa · m 3 / sec or less.

一方、気密不良部に電解液17が付着している場合、ヘリウムガスGS1の漏れ量Q1の測定値は、最大でP4=1.0×10-7 Pa・m3/secであり、電解液由来ガスGS2の漏れ量Q2の測定値は、最小でP5=9.0×10-6 Pa・m3/secである。これらの差の絶対値ΔPBは、ΔPB=|P4−P5|=8.9×10-6 Pa・m3/secである。従って、気密不良部に電解液17が付着している場合には、測定されたヘリウムガスGS1の漏れ量Q1と電解液由来ガスGS2の漏れ量Q2との差の絶対値ΔQ=|Q1−Q2|が、ΔPB=8.9×10-6 Pa・m3/sec以上となる。 On the other hand, when the electrolytic solution 17 adheres to the poorly sealed portion, the measured value of the leakage amount Q1 of the helium gas GS1 is P4 = 1.0 × 10 −7 Pa · m 3 / sec at the maximum. The measured value of the leak amount Q2 of the source gas GS2 is at least P5 = 9.0 × 10 −6 Pa · m 3 / sec. The absolute value ΔPB of these differences is ΔPB = | P4-P5 | = 8.9 × 10 −6 Pa · m 3 / sec. Accordingly, when the electrolytic solution 17 is attached to the poorly sealed portion, the absolute value ΔQ = | Q1-Q2 of the difference between the measured leakage amount Q1 of the helium gas GS1 and the leakage amount Q2 of the electrolytic solution-derived gas GS2. | Becomes ΔPB = 8.9 × 10 −6 Pa · m 3 / sec or more.

前述の基準差ΔQkは、ΔPA=1.1×10-5 Pa・m3/secとΔPB=8.9×10-6 Pa・m3/secとの間に設ける。例えば、前述のように基準差ΔQk=1.0×10-5 Pa・m3/secと設定する。
これにより、ステップS9において、漏れ量の差の絶対値ΔQ=|Q1−Q2|が、基準差ΔQk以上である場合には、気密不良部に電解液17が付着している可能性があるため、ステップS10に進んで、電解液由来ガスGS2の漏れ量Q2の多寡に基づいて電池1の気密性を判定する。
The reference difference ΔQk is set between ΔPA = 1.1 × 10 −5 Pa · m 3 / sec and ΔPB = 8.9 × 10 −6 Pa · m 3 / sec. For example, as described above, the reference difference ΔQk = 1.0 × 10 −5 Pa · m 3 / sec is set.
Thereby, in step S9, when the absolute value ΔQ = | Q1-Q2 | of the difference in leakage amount is equal to or larger than the reference difference ΔQk, there is a possibility that the electrolyte solution 17 is attached to the airtight defective portion. In step S10, the airtightness of the battery 1 is determined based on the amount of leakage Q2 of the electrolyte-derived gas GS2.

一方、漏れ量の差の絶対値ΔQ=|Q1−Q2|が、基準差ΔQk未満である場合には、気密不良部に電解液17が付着していないため、ステップS11に進んで、当該電池1を気密不良の無い良品と判定することができる。気密不良部に電解液17が付着していない電池1については、ステップS6の判定で足りるから、ステップS10の判定を行う必要がないからである。   On the other hand, if the absolute value ΔQ = | Q1−Q2 | of the difference in leakage amount is less than the reference difference ΔQk, the electrolytic solution 17 is not attached to the airtight defect portion, so the process proceeds to step S11, and the battery 1 can be determined as a non-defective product without airtight defects. This is because the determination in step S6 is sufficient for the battery 1 in which the electrolyte solution 17 does not adhere to the airtight portion, so that the determination in step S10 is not necessary.

以上で説明したように、電池1の製造方法では、封止工程S4の後、ヘリウムガスGS1の漏れ量Q1を検知すると共に、電解液由来ガスGS2の漏れ量Q2を検知している。
気密不良部が生じた気密不良品の電池において、気密不良部に電解液17が付着している場合には、この気密不良部を通じてヘリウムガスGS1が電池内部から電池外部に漏れ出し難いため、気密不良部に電解液17が付着していない場合に比して、検査用ガス検知工程S5で検知されるヘリウムガスGS1の漏れ量Q1が少なくなる。
As described above, in the manufacturing method of the battery 1, after the sealing step S4, the leakage amount Q1 of the helium gas GS1 is detected and the leakage amount Q2 of the electrolyte-derived gas GS2 is detected.
In an airtight product battery in which an airtight defective portion has occurred, when the electrolyte solution 17 adheres to the airtight defective portion, the helium gas GS1 is difficult to leak from the inside of the battery to the outside of the battery through the airtight defective portion. Compared with the case where the electrolytic solution 17 is not attached to the defective portion, the leakage amount Q1 of the helium gas GS1 detected in the inspection gas detection step S5 is reduced.

一方、電解液由来ガスGS2について言えば、気密不良部への電解液の付着の有無に拘わらず、電解液由来ガスGS2が気密不良部を通じて電池内部から電池外部に漏れ出るため、電解液由来ガス検知工程S8で検知される電解液由来ガスGS2の漏れ量Q2はあまり違わない。
従って、判定工程に該当するステップS6、ステップS7、ステップS9〜ステップS11で、ヘリウムガスGS1の漏れ量Q1と電解液由来ガスGS2の漏れ量Q2の両方に基づいて、電池1の気密性を判定することにより、気密不良部への電解液17の付着の有無に拘わらず、電池1の気密性を適切に判定できる。従って、電池1の製造方法によれば、電池1の気密性を適切に検査して、気密信頼性の高い密閉型電池1を製造できる。
On the other hand, regarding the electrolyte-derived gas GS2, the electrolyte-derived gas GS2 leaks from the inside of the battery to the outside of the battery through the poorly sealed portion regardless of whether or not the electrolytic solution adheres to the poorly sealed portion. The leakage amount Q2 of the electrolyte-derived gas GS2 detected in the detection step S8 is not so different.
Therefore, the airtightness of the battery 1 is determined based on both the leakage amount Q1 of the helium gas GS1 and the leakage amount Q2 of the electrolyte-derived gas GS2 in steps S6, S7, and S9 to S11 corresponding to the determination process. By doing so, the airtightness of the battery 1 can be appropriately determined irrespective of the presence or absence of the electrolyte solution 17 adhering to the airtight defective portion. Therefore, according to the manufacturing method of the battery 1, the hermeticity of the battery 1 can be inspected appropriately, and the sealed battery 1 with high hermetic reliability can be manufactured.

本実施形態では、ヘリウムガスGS1の漏れ量Q1を検知するヘリウムガス検知器130の測定精度は、電解液由来ガスGS2の漏れ量Q2を検知する電解液由来ガス検知器140の測定精度よりも高い。
ステップS10において電解液由来ガスGS2の漏れ量Q2の多寡に基づいて電池1の気密性を判定する際に、第2基準漏れ量Q2kの値が大きすぎると、気密不良品を良品と誤判定する場合が多くなる。そこで、電解液由来ガスGS2の第2基準漏れ量Q2kの値は、誤判定が生じない程度に小さい値に設定することが考えられる。しかし、そうすると、今度は良品を気密不良品と過判定する電池数が増えて、電池1の歩留まりが低下する。
In the present embodiment, the measurement accuracy of the helium gas detector 130 that detects the leak amount Q1 of the helium gas GS1 is higher than the measurement accuracy of the electrolyte solution-derived gas detector 140 that detects the leak amount Q2 of the electrolyte solution-derived gas GS2. .
When the airtightness of the battery 1 is determined based on the amount of leakage Q2 of the electrolyte-derived gas GS2 in step S10, if the value of the second reference leakage amount Q2k is too large, an airtight defective product is erroneously determined as a good product. More cases. Therefore, it is conceivable that the value of the second reference leakage amount Q2k of the electrolyte-derived gas GS2 is set to a value that is small enough to prevent erroneous determination. However, in this case, the number of batteries over-determined that the non-defective product is overly airtight increases, and the yield of the battery 1 decreases.

これに対し、電池1の製造方法では、ステップS10で電解液由来ガスGS2の漏れ量Q2の多寡に基づいて当該電池1の気密性を判定するのに先立ち、ステップS9で、ヘリウムガスGS1の漏れ量Q1と電解液由来ガスの漏れ量Q2との差(|Q1−Q2|)が基準差ΔQk未満である場合(|Q1−Q2|<ΔQk)に、当該電池1を良品と判定している。そして、ステップS9で差(|Q1−Q2|)が基準差ΔQk以上(|Q1−Q2|≧ΔQk)と判定された電池のみ、ステップS10に進める。   On the other hand, in the manufacturing method of the battery 1, prior to determining the airtightness of the battery 1 based on the amount of leakage Q2 of the electrolyte-derived gas GS2 in step S10, the leakage of the helium gas GS1 in step S9. When the difference (| Q1-Q2 |) between the amount Q1 and the leakage amount Q2 of the electrolyte-derived gas is less than the reference difference ΔQk (| Q1-Q2 | <ΔQk), the battery 1 is determined to be a good product. . Only in the case where the difference (| Q1-Q2 |) is determined to be greater than or equal to the reference difference ΔQk (| Q1-Q2 | ≧ ΔQk) in step S9, the process proceeds to step S10.

電池1の製造方法では、このようにステップS9及びステップS11で一部の電池1を良品と判定して除いてステップS10を行わないため、ステップS9及びステップS11で良品と判定された電池1が、ステップS10及びステップS7で気密不良品であると過判定される場合を減少できる。従って、電池1の製造方法によれば、ステップS10及びステップS7で気密不良品であると過判定される良品の電池数を減らすことができ、電池1の歩留まりを向上させることができる。   In the manufacturing method of the battery 1, since some of the batteries 1 are determined to be non-defective products in step S 9 and step S 11 and step S 10 is not performed, the battery 1 determined to be non-defective in step S 9 and step S 11 is obtained. Further, it is possible to reduce the case where it is over-determined that the product is not airtight in step S10 and step S7. Therefore, according to the manufacturing method of the battery 1, it is possible to reduce the number of non-defective batteries that are over-determined to be airtight defects in Step S <b> 10 and Step S <b> 7, and to improve the yield of the battery 1.

以上において、本発明を実施形態に即して説明したが、本発明は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で、適宜変更して適用できることは言うまでもない。
例えば、実施形態では、封止部材15をケース蓋部材13に溶接することにより注液孔13hを気密に封止した電池1を例示したが、注液孔の封止形態はこれに限られない。例えば、注液孔に雌ネジを形成しておき、注液孔にボルトを螺入することにより注液孔を気密に封止した電池や、注液孔にブラインドリベットを挿入して注液孔を気密に封止した電池に、本発明を適用することもできる。
In the above, the present invention has been described with reference to the embodiment. However, the present invention is not limited to the above-described embodiment, and it is needless to say that the present invention can be appropriately modified and applied without departing from the gist thereof.
For example, in the embodiment, the battery 1 in which the liquid injection hole 13h is hermetically sealed by welding the sealing member 15 to the case lid member 13 is illustrated, but the sealing form of the liquid injection hole is not limited thereto. . For example, a battery in which a female screw is formed in the liquid injection hole and a bolt is screwed into the liquid injection hole to hermetically seal the liquid injection hole, or a blind rivet is inserted into the liquid injection hole to inject the liquid injection hole The present invention can also be applied to a battery that is hermetically sealed.

また、実施形態では、組立工程S1において、電池ケース10のケース本体部材11とケース蓋部材13との溶接部分や正極端子部材50及び負極端子部材60と電池ケース10との固設部分などに生じる気密不良と、封止工程S4において、封止部材15と電池ケース10との溶接部分に生じる気密不良とを、ステップS5〜ステップS11の気密検査で検査する場合を例示したが、これに限られない。
例えば、組立工程S1の後、注液工程S2の前に、組立工程S1で生じる気密不良を別途検査し、ステップS5〜ステップS11の気密検査では、封止工程S4で生じる気密不良のみを検査することもできる。この場合、電池1全体を減圧下に配置する必要はなく、例えば封止部材15を覆うように真空パッドを当てることにより、封止部材15と電池ケース10との溶接部分に生じる気密不良を検査することもできる。
Further, in the embodiment, in the assembling step S <b> 1, it occurs in a welded portion between the case main body member 11 and the case lid member 13 of the battery case 10, a fixed portion between the positive terminal member 50 and the negative terminal member 60 and the battery case 10, or the like. The case where the airtight failure and the airtight failure occurring in the welded portion between the sealing member 15 and the battery case 10 in the sealing step S4 are inspected by the airtight inspection in steps S5 to S11 is illustrated, but the present invention is not limited thereto. Absent.
For example, after the assembly process S1 and before the liquid injection process S2, the airtight defect that occurs in the assembly process S1 is separately inspected, and in the airtight inspection in steps S5 to S11, only the airtight defect that occurs in the sealing process S4 is inspected. You can also. In this case, it is not necessary to dispose the entire battery 1 under reduced pressure. For example, by applying a vacuum pad so as to cover the sealing member 15, an airtight defect occurring at the welded portion between the sealing member 15 and the battery case 10 is inspected. You can also

また、実施形態では、先にステップS5でヘリウムガスGS1の漏れ量Q1を測定し、それよりも後にステップS8で電解液由来ガスGS2の漏れ量Q2を測定したが、先に電解液由来ガスGS2の漏れ量Q2を測定し、それよりも後にヘリウムガスGS1の漏れ量Q1を測定してもよい。   In the embodiment, the leakage amount Q1 of the helium gas GS1 is first measured in step S5, and the leakage amount Q2 of the electrolyte-derived gas GS2 is measured later in step S8, but the electrolyte-derived gas GS2 is first measured. The leakage amount Q2 of the helium gas GS1 may be measured after that.

1 電池(密閉型電池)
1x (注液工程前の)電池(密閉型電池)
10 電池ケース
13h 注液孔
15 封止部材
17 電解液
GS1 ヘリウムガス(検査用ガス)
GS2 電解液由来ガス
S1 組立工程
S2 注液工程
S3 ガス導入工程
S4 封止工程
S5 検査用ガス検知工程
S8 電解液由来ガス検知工程
S6,S7,S9〜S11 判定工程
100 気密検査装置
110 チャンバ
130 ヘリウムガス検知器
140 電解液由来ガス検知器
Q1 (ヘリウムガスの)漏れ量
Q1k 第1基準漏れ量
Q2 (電解液由来ガスの)漏れ量
Q2k 第2基準漏れ量
1 battery (sealed battery)
1x battery (before liquid injection process) (sealed battery)
10 Battery Case 13h Injection Hole 15 Sealing Member 17 Electrolyte GS1 Helium Gas (Inspection Gas)
GS2 Electrolyte-derived gas S1 Assembly process S2 Injection process S3 Gas introduction process S4 Sealing process S5 Inspection gas detection process S8 Electrolyte-derived gas detection processes S6, S7, S9 to S11 Determination process 100 Airtightness inspection apparatus 110 Chamber 130 Helium Gas detector 140 Electrolyte-derived gas detector Q1 (Helium gas) leak amount Q1k First reference leak amount Q2 (Electrolyte-derived gas) leak amount Q2k Second reference leak amount

Claims (1)

密閉型電池の製造方法であって、
電池ケース内に電解液を注液する注液工程と、
上記電池ケース内に検査用ガスを導入するガス導入工程と、
上記注液工程及び上記ガス導入工程の後、上記電池ケースを気密に封止する封止工程と、
上記封止工程の後、電池内部から電池外部に漏れ出る上記検査用ガスの漏れ量Q1を検知する検査用ガス検知工程と、
上記封止工程の後、電池内部から電池外部に漏れ出る、上記電解液が揮発した電解液由来ガスの漏れ量Q2を検知する電解液由来ガス検知工程と、
上記検査用ガスの漏れ量Q1及び上記電解液由来ガスの漏れ量Q2に基づいて、当該密閉型電池の気密性を判定する判定工程と、を備え、
上記判定工程は、
上記検査用ガスの漏れ量Q1が第1基準漏れ量Q1k以上である場合(Q1≧Q1k)に、当該密閉型電池を気密不良品と判定する第1工程と、
上記第1工程で気密不良品と判定されなかった上記密閉型電池について、上記検査用ガスの漏れ量Q1と上記電解液由来ガスの漏れ量Q2との差(|Q1−Q2|)が基準差ΔQk未満である場合(|Q1−Q2|<ΔQk)に、当該密閉型電池を気密性が良好な良品と判定する第2工程と、
上記第2工程で上記差(|Q1−Q2|)が上記基準差ΔQk以上(|Q1−Q2|≧ΔQk)と判定された上記密閉型電池について、上記電解液由来ガスの漏れ量Q2が、上記第1基準漏れ量Q1k以下の値に設定した第2基準漏れ量Q2k(Q2k≦Q1k)以上である場合(Q2≧Q2k)に、当該密閉型電池を気密不良品と判定し、上記漏れ量Q2が上記第2基準漏れ量Q2k未満である場合(Q2<Q2k)に、当該密閉型電池を上記良品と判定する第3工程と、を有する
密閉型電池の製造方法。
A method of manufacturing a sealed battery,
An injection process for injecting an electrolyte into the battery case;
A gas introduction step for introducing an inspection gas into the battery case;
After the liquid injection step and the gas introduction step, a sealing step for hermetically sealing the battery case;
After the sealing step, an inspection gas detection step of detecting the leakage amount Q1 of the inspection gas leaking from the inside of the battery to the outside of the battery;
After the sealing step, an electrolyte-derived gas detection step for detecting the leak amount Q2 of the electrolyte-derived gas from which the electrolyte has volatilized leaks from the inside of the battery,
A determination step of determining the airtightness of the sealed battery based on the leakage amount Q1 of the inspection gas and the leakage amount Q2 of the electrolyte-derived gas,
The determination process is as follows:
A first step of determining that the sealed battery is an airtight product when the inspection gas leakage amount Q1 is equal to or greater than the first reference leakage amount Q1k (Q1 ≧ Q1k);
The difference (| Q1-Q2 |) between the leak amount Q1 of the inspection gas and the leak amount Q2 of the electrolyte-derived gas is the reference difference for the sealed battery that is not determined to be an airtight product in the first step. A second step of determining that the sealed battery is a non-defective product having good airtightness when it is less than ΔQk (| Q1-Q2 | <ΔQk);
For the sealed battery in which the difference (| Q1-Q2 |) is determined to be greater than or equal to the reference difference ΔQk (| Q1-Q2 | ≧ ΔQk) in the second step, the leakage amount Q2 of the electrolyte-derived gas is When it is equal to or greater than the second reference leakage amount Q2k (Q2k ≦ Q1k) set to a value equal to or less than the first reference leakage amount Q1k (Q2 ≧ Q2k), the sealed battery is determined to be an airtight defect, and the leakage amount And a third step of determining the sealed battery as the non-defective product when Q2 is less than the second reference leakage amount Q2k (Q2 <Q2k).
JP2017158840A 2017-08-21 2017-08-21 Manufacturing method of sealed battery Active JP6766777B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017158840A JP6766777B2 (en) 2017-08-21 2017-08-21 Manufacturing method of sealed battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017158840A JP6766777B2 (en) 2017-08-21 2017-08-21 Manufacturing method of sealed battery

Publications (2)

Publication Number Publication Date
JP2019036504A true JP2019036504A (en) 2019-03-07
JP6766777B2 JP6766777B2 (en) 2020-10-14

Family

ID=65637682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017158840A Active JP6766777B2 (en) 2017-08-21 2017-08-21 Manufacturing method of sealed battery

Country Status (1)

Country Link
JP (1) JP6766777B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023519630A (en) * 2020-04-09 2023-05-11 寧徳時代新能源科技股▲分▼有限公司 End cover assemblies, battery cells, battery packs and devices

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002117901A (en) * 2000-10-05 2002-04-19 Nec Mobile Energy Kk Sealed battery and its manufacturing method
JP2013182722A (en) * 2012-02-29 2013-09-12 Toyota Motor Corp Battery and manufacturing method of the same
JP2013191452A (en) * 2012-03-14 2013-09-26 Nissan Motor Co Ltd Manufacturing apparatus, manufacturing method and inspection method for battery
JP2014183027A (en) * 2013-03-21 2014-09-29 Toyota Motor Corp Method for manufacturing sealed battery
JP2016195042A (en) * 2015-03-31 2016-11-17 大日本印刷株式会社 Battery manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002117901A (en) * 2000-10-05 2002-04-19 Nec Mobile Energy Kk Sealed battery and its manufacturing method
JP2013182722A (en) * 2012-02-29 2013-09-12 Toyota Motor Corp Battery and manufacturing method of the same
JP2013191452A (en) * 2012-03-14 2013-09-26 Nissan Motor Co Ltd Manufacturing apparatus, manufacturing method and inspection method for battery
JP2014183027A (en) * 2013-03-21 2014-09-29 Toyota Motor Corp Method for manufacturing sealed battery
JP2016195042A (en) * 2015-03-31 2016-11-17 大日本印刷株式会社 Battery manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023519630A (en) * 2020-04-09 2023-05-11 寧徳時代新能源科技股▲分▼有限公司 End cover assemblies, battery cells, battery packs and devices
JP7467674B2 (en) 2020-04-09 2024-04-15 寧徳時代新能源科技股▲分▼有限公司 End cover assembly, battery cell, battery pack and device

Also Published As

Publication number Publication date
JP6766777B2 (en) 2020-10-14

Similar Documents

Publication Publication Date Title
KR101691754B1 (en) Battery manufacturing method
US9680186B2 (en) Method for manufacturing sealed battery
US9780414B2 (en) Method for manufacturing sealed battery
US10727471B2 (en) Method for manufacturing lithium ion polymer battery, battery cell, and lithium ion polymer battery including the same
JP5583480B2 (en) Inspection method for lithium ion secondary battery
US9761915B2 (en) Manufacturig method for battery
JP6017873B2 (en) Sealed battery
KR102072481B1 (en) Method of Inspecting Welding State Using Pressure Gauge
JP2016051683A (en) Secondary battery, and method for measuring gas generated in secondary battery
JP2013084480A (en) Method of manufacturing battery
JP3120122B2 (en) Airtightness inspection method and device for lead storage battery
JP6766777B2 (en) Manufacturing method of sealed battery
JP2013114987A (en) Method of measuring internal pressure of battery
KR100537603B1 (en) Test device for leaking used in secondary battery and method for making secondary battery utilizing the same
KR101718651B1 (en) Production method for sealed batteries
CN112781785A (en) Method for testing internal vacuum degree of soft package battery and quality control method of soft package battery
JP5724696B2 (en) Battery manufacturing method
JP2013182722A (en) Battery and manufacturing method of the same
JP5958756B2 (en) Leakage inspection method for current cutoff valve
KR101990668B1 (en) Method for examining the leaktightness of a closed housing of an electrical component
JP2021025975A (en) Leakage inspection method of battery
JPH0367473A (en) Inspection method for sealed lead-acid battery
US20130143110A1 (en) System and method for enclosing an energy storage cell
KR20230102309A (en) Inspection method of venting defect in secondary battery
JP2014229360A (en) Method for manufacturing sealed battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200818

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200831

R151 Written notification of patent or utility model registration

Ref document number: 6766777

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151