JP5820678B2 - Offshore structure and its installation structure - Google Patents

Offshore structure and its installation structure Download PDF

Info

Publication number
JP5820678B2
JP5820678B2 JP2011215846A JP2011215846A JP5820678B2 JP 5820678 B2 JP5820678 B2 JP 5820678B2 JP 2011215846 A JP2011215846 A JP 2011215846A JP 2011215846 A JP2011215846 A JP 2011215846A JP 5820678 B2 JP5820678 B2 JP 5820678B2
Authority
JP
Japan
Prior art keywords
steel pipe
pile
legs
offshore structure
offshore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011215846A
Other languages
Japanese (ja)
Other versions
JP2013076240A (en
Inventor
英一郎 佐伯
英一郎 佐伯
一雄 小島
一雄 小島
栄 丸山
栄 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Engineering Co Ltd
Original Assignee
Nippon Steel Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Engineering Co Ltd filed Critical Nippon Steel Engineering Co Ltd
Priority to JP2011215846A priority Critical patent/JP5820678B2/en
Publication of JP2013076240A publication Critical patent/JP2013076240A/en
Application granted granted Critical
Publication of JP5820678B2 publication Critical patent/JP5820678B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A10/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE at coastal zones; at river basins
    • Y02A10/11Hard structures, e.g. dams, dykes or breakwaters

Landscapes

  • Foundations (AREA)
  • Revetment (AREA)

Description

本発明は、海底の地盤に支持をとって立設される海洋構造物、例えば、洋上風力発電機用の支持架台として海域に設置される海洋構造物、および、その設置構造と設置方法に関するものである。   TECHNICAL FIELD The present invention relates to an offshore structure that is erected with support on the ground of the seabed, for example, an offshore structure that is installed in a sea area as a support frame for an offshore wind power generator, and an installation structure and an installation method thereof. It is.

この種の海洋構造物として、モノポールタイプのものや櫓状のジャケットタイプのものが知られている。モノポールタイプのものは、地盤の水平反力と鋼管の曲げ耐力で水平力やモーメントに抵抗するため、鋼管を大径厚肉にしなくてはならず、重量が重くなる、大径鋼管の加工に大型設備を必要とし労力と時間がかかる、大径鋼管の海底地盤への貫入に大型設備を必要とし労力と時間がかかる、等の問題があり、コストも高くなる。また、固有周期の調整が困難であり、減衰率が低く、洋上風力発電機のように大きな振動を伴う装置の支持架台としては、重量の割に支持性能が低いという問題がある。   As this type of marine structure, a monopole type or a saddle type jacket type is known. The monopole type resists horizontal forces and moments due to the horizontal reaction force of the ground and the bending strength of the steel pipe, so the steel pipe must be made large-diameter and thick, and the processing of large-diameter steel pipe increases in weight. This requires a large-scale facility and requires labor and time, and requires large-scale equipment and labor and time to penetrate large-diameter steel pipes into the seabed, resulting in high costs. In addition, it is difficult to adjust the natural period, the attenuation rate is low, and there is a problem that the support performance of the apparatus with a large vibration such as an offshore wind power generator is low in terms of weight.

また、従来の櫓状のジャケットタイプのものは、形状が複雑な割に固有周期の調整が困難であり、減衰率が低く、洋上風力発電機のように大きな振動を伴う装置の支持架台としては、支持性能が低いという問題がある。   In addition, the conventional saddle-shaped jacket type is difficult to adjust the natural period despite its complex shape, has a low damping rate, and is used as a support frame for devices with large vibrations such as offshore wind power generators. There is a problem that the supporting performance is low.

そこで、下記特許文献1に、中心支柱として大径鋼管よりなる中央シャフトを立設し、その中央シャフトを囲むように複数本の直線状の脚材を、下部が広がり上部が窄まった多角錐台をその中心軸線の周りに捩ることで得られる仮想の立体の斜めの各稜線に沿ってそれぞれ配置し、中央シャフトから斜め上方および下方に枝状に延ばした支持材を各脚材に連結することで各脚材を支持するようにした海洋構造物が開示されている。   Therefore, in Patent Document 1 below, a central shaft made of a large-diameter steel pipe is erected as a central support column, and a plurality of linear legs are formed so as to surround the central shaft. Arranged along each oblique ridgeline of a virtual solid obtained by twisting the base around its central axis, and connecting a support material extending in a branch shape obliquely upward and downward from the central shaft to each leg member Thus, an offshore structure that supports each leg member is disclosed.

この海洋構造物によれば、脚材が互いに捩れた位置関係にあることで、固有振動数の調整が容易になると共に、減衰率を高くできるため、洋上風力発電機のように大きな振動を伴う装置の支持架台としての支持性能を高めることができる。   According to this offshore structure, since the legs are in a twisted relationship with each other, the natural frequency can be easily adjusted and the damping rate can be increased, resulting in large vibrations like offshore wind power generators. Support performance as a support frame of the apparatus can be enhanced.

国際公開第2010/144570号International Publication No. 2010/144570

しかしながら、特許文献1に記載された海洋構造物は、複数本の脚材で囲まれた領域の中央に中央シャフトが立設されているため、鋼材使用量や鋼材重量が増加する上、構造が複雑化し組み立てや施工に労力や時間がかかり、高コストになるという問題がある。また、脚材によって囲まれた領域に中心シャフトという障害物が存在することにより、波浪エネルギーや潮流エネルギーの影響を大きく受けやすいという問題もあった。   However, the offshore structure described in Patent Document 1 has a central shaft standing at the center of a region surrounded by a plurality of legs, so that the amount of steel used and the weight of the steel increase, and the structure is There is a problem that it is complicated and requires labor and time for assembly and construction, resulting in high costs. In addition, since there is an obstacle called the central shaft in the area surrounded by the legs, there is a problem that it is easily affected by wave energy and tidal energy.

本発明は、上記事情を考慮し、固有振動数の調整が容易で減衰率を高くすることができると共に、シンプルな構造で低コスト化を図ることができ、しかも、波浪エネルギーや潮流エネルギーの影響の軽減を図ることができて、洋上風力発電機のように大きな振動を伴う装置の支持架台として有効な支持性能を発揮できる海洋構造物およびその設置構造と設置方法を提供することを目的とする。   In consideration of the above circumstances, the present invention can easily adjust the natural frequency and increase the damping rate, and can reduce the cost with a simple structure. Moreover, the effects of wave energy and tidal current energy can be achieved. It is intended to provide an offshore structure that can effectively reduce the load, and can exhibit effective support performance as a support frame for a device with large vibration, such as an offshore wind power generator, and its installation structure and installation method. .

上記課題を解決するために、請求項1の発明の海洋構造物は、下部が広がり上部が窄まった多角錐台をその中心軸線の周りに捩ることで得られる立体を仮想の基本形状とし、その立体の斜めの各稜線に沿って直線状の脚材を配置することで、各脚材の中心線またはその延長線を、前記立体の中心軸線を中心とする仮想の円筒に接するように構成し、その仮想の円筒と前記各脚材の中心線の接点の近傍で前記脚材を接合部材によって相互連結すると共に、前記接合部材を配した高さレベルより下側の前記脚材によって囲まれた領域を開放空間として確保し、前記接合部材として鉛直方向に沿った鉛直プレートを備え、該鉛直プレートを前記各脚材に対し鉛直方向に沿って接合することにより、前記脚材を相互連結し、前記鉛直プレートが、円筒状または円錐筒状の鉛直筒状プレートであり、前記接合部材として水平方向に沿った上下の水平プレートを備え、上側の水平プレートを前記鉛直プレートの上部に接合し、下側の水平プレートを前記鉛直プレートの下部に接合し、それら上下の水平プレートに形成した複数の貫通孔に前記脚材をそれぞれ貫通させて、その貫通部分で前記水平プレートと前記脚材を水平方向に沿って接合することにより、前記脚材を相互連結したことを特徴とする。 In order to solve the above-mentioned problem, the offshore structure of the invention of claim 1 has a solid basic shape obtained by twisting a polygonal frustum whose lower part is widened and the upper part is narrowed around its central axis, By arranging straight legs along the oblique ridgelines of the solid, the center line of each leg or its extension line is in contact with a virtual cylinder centering on the central axis of the solid The legs are interconnected by a joining member in the vicinity of the contact point between the virtual cylinder and the center line of each leg, and are surrounded by the legs below the height level at which the joining member is disposed. A vertical plate along the vertical direction as the joining member, and joining the legs together by joining the vertical plates to the legs along the vertical direction. The vertical plate is cylindrical Alternatively, it is a conical cylinder-shaped vertical cylindrical plate, which includes upper and lower horizontal plates extending in the horizontal direction as the joining member, and an upper horizontal plate is joined to an upper part of the vertical plate, and a lower horizontal plate is joined to the vertical plate. By joining the lower part of the plate, passing the leg material through a plurality of through holes formed in the upper and lower horizontal plates, respectively, and joining the horizontal plate and the leg material along the horizontal direction at the penetration part The legs are interconnected .

請求項2の発明は、請求項1に記載の海洋構造物であって、前記接合部材は、前記鉛直筒状プレートの上下端に円板状の前記水平プレートを配したものであることを特徴とする。 A second aspect of the invention is the offshore structure according to the first aspect, wherein the joining member is a disc-shaped horizontal plate disposed on upper and lower ends of the vertical cylindrical plate. And

請求項3の発明は、請求項1または2に記載の海洋構造物であって、前記接合部材は、前記鉛直筒状プレートと、その上下のリング状の前記水平プレートと、で構成され、上側の前記水平プレートを下側の前記水平プレートよりも大径に構成していることを特徴とする。 Invention of Claim 3 is an offshore structure of Claim 1 or 2, Comprising: The said joining member is comprised by the said vertical cylindrical plate and the said horizontal plate of the ring shape above and below, The upper side The horizontal plate is configured to have a larger diameter than the lower horizontal plate .

請求項の発明は、請求項1〜のいずれか一項に記載の海洋構造物の設置構造であって、前記海洋構造物の脚材を外鋼管と該外鋼管の内部に挿入された内鋼管杭とで構成し、前記海洋構造物を海底に設置して前記内鋼管杭の下端を海底の地盤に挿入し、その状態で前記外鋼管と内鋼管杭とを一体に接合したことを特徴とする。 Invention of Claim 4 is the installation structure of the offshore structure as described in any one of Claims 1-3 , Comprising: The leg material of the offshore structure was inserted in the inside of this outer steel pipe and this outer steel pipe It is composed of an inner steel pipe pile, the marine structure is installed on the seabed, the lower end of the inner steel pipe pile is inserted into the ground of the seabed, and the outer steel pipe and the inner steel pipe pile are joined together in that state. Features.

請求項の発明は、請求項に記載の海洋構造物の設置構造であって、前記内鋼管杭を、下端に羽根の付いた回転貫入杭により構成し、前記海洋構造物を海底に設置して前記回転貫入杭を回転させることでその下端を海底の地盤に貫入させ、その状態で前記外鋼管と前記回転貫入杭とを一体に接合したことを特徴とする。 Invention of Claim 5 is the installation structure of the offshore structure of Claim 4 , Comprising: The said inner steel pipe pile is comprised by the rotation penetration pile with the blade | wing at the lower end, and the said offshore structure is installed in the seabed Then, by rotating the rotary penetration pile, the lower end is penetrated into the ground of the seabed, and the outer steel pipe and the rotary penetration pile are integrally joined in this state.

請求項の発明は、請求項に記載の海洋構造物の設置構造であって、前記外鋼管と前記回転貫入杭との接合を解除可能となし、接合を解除することで、前記回転貫入杭を貫入時と逆方向に回転可能に構成したことを特徴とする。 Invention of Claim 6 is the installation structure of the offshore structure of Claim 5 , Comprising: It becomes possible to cancel | release the joining of the said outer steel pipe and the said rotation penetration pile, and the said rotation penetration by releasing joining. It is characterized in that the pile is configured to be rotatable in the direction opposite to that when penetrating.

請求項の発明は、請求項のいずれか一項に記載の海洋構造物の設置構造であって、前記外鋼管と内鋼管杭の間の空間および前記内鋼管杭の内部の空間の少なくともいずれか一方の空間にコンクリートを充填することで、前記脚材を鋼管コンクリート構造としたことを特徴とする。 The invention of claim 7 is a installation structure of marine structure according to any one of claims 4-6, the space inside space and the inside pipe pile between the outer steel pipe and the inner pipe pile By filling concrete into at least one of the spaces, the leg material has a steel pipe concrete structure.

請求項の発明は、請求項に記載の海洋構造物の設置構造であって、前記充填されたコンクリートと前記外鋼管または内鋼管杭との接触面に、粘性体、粘弾性体、塑性体、または弾塑性体等の減衰率の高い材料を挿入したことを特徴とする。 Invention of Claim 8 is the installation structure of the offshore structure of Claim 7 , Comprising: On the contact surface of the said filled concrete and the said outer steel pipe or an inner steel pipe pile, it is a viscous body, a viscoelastic body, and plasticity. A material having a high attenuation rate such as a body or an elasto-plastic body is inserted.

本発明の第1参考例の発明は、複数の脚材を有する海洋構造物の設置方法であって、前記脚材を外鋼管と該外鋼管の内部に挿入された内鋼管杭とで構成する共に、該内鋼管杭を、下端に羽根の付いた回転貫入杭で構成し、該回転貫入杭を回転する回転貫入機械を前記海洋構造物に装着すると共に、該海洋構造物をクレーンで吊り下げて海底に設置し、その吊り下げ支持した状態を維持しながら前記回転貫入機械により前記回転貫入杭を回転させることで該回転貫入杭の下端を海底の地盤に貫入させ、海底の地盤による支持が確立した段階でクレーンによる海洋構造物の吊り下げを解除すると共に前記外鋼管と前記回転貫入杭とを一体に接合することを特徴とする。 The invention of the first reference example of the present invention is a method for installing an offshore structure having a plurality of legs, and the legs are constituted by an outer steel pipe and an inner steel pipe pile inserted into the outer steel pipe. In both cases, the inner steel pipe pile is composed of a rotary penetrating pile with a blade at the lower end, a rotary penetrating machine for rotating the rotary penetrating pile is mounted on the offshore structure, and the offshore structure is suspended by a crane. The bottom of the rotary penetrating pile is penetrated into the ground of the seabed by rotating the rotary penetrating pile with the rotary penetrating machine while maintaining the suspended and supported state. At the established stage, the suspension of the offshore structure by the crane is released, and the outer steel pipe and the rotary penetrating pile are integrally joined.

本発明の第2参考例の発明は、第1参考例の海洋構造物の設置方法であって、前記回転貫入杭を海底の地盤に貫入している途中および/または貫入した後で、前記回転貫入杭にジャッキの支持を取り、該回転貫入杭の下端の羽根の引き抜き抵抗および押し込み抵抗を反力にして、前記ジャッキを用いて前記外鋼管を上下動させることにより、前記海洋構造物を上下方向にレベル調整することを特徴とする。 The invention of the second reference example of the present invention is an installation method of the offshore structure of the first reference example , wherein the rotation penetrating pile is penetrated into the ground of the seabed and / or after the penetration. Taking the support of the jack on the penetrating pile, making the pulling resistance and pushing resistance of the blades at the lower end of the rotating penetrating pile the reaction force, moving the outer steel pipe up and down using the jack, moving the marine structure up and down The level is adjusted in the direction.

請求項1の海洋構造物によれば、各中心線が仮想の円筒に接するように配された複数の脚材は互いに交わる交点を有さないため、脚材と脚材の間に十分な作業スペースを確保することができ、脚材を順次繋いで長い継ぎ杭を作ることが容易にできる。また、この構造物では、前記立体の中心軸線に直交する面上で各脚材の中心点が構成する円の半径が、前記仮想の円筒と各脚材の中心線の接する高さにおいて最小となり、その接点から下方向および上方向にそれぞれ行くほど徐々に大きくなるので、上方向に行くほど円の半径が大きくなる高さレベルに構造物の頂部を配置することによって、構造物の頂部における作業スペースの確保が容易にできるようになる。また、構造物の下部に向かうほど脚材の間隔が広がるので、構造物の下部での脚材の踏ん張り距離の確保が容易にできるようになる。   According to the offshore structure of claim 1, since the plurality of legs arranged so that each center line is in contact with the virtual cylinder does not have an intersecting point, sufficient work is performed between the legs and the legs. Space can be secured, and it is easy to make long joint piles by sequentially connecting the legs. Further, in this structure, the radius of the circle formed by the center point of each leg member on the plane orthogonal to the central axis of the solid body is minimum at the height at which the virtual cylinder and the center line of each leg member are in contact with each other. Work at the top of the structure by placing the top of the structure at a height level where the radius of the circle increases as it goes upward and downward, respectively, as it goes downward and upward from the contact Space can be secured easily. Moreover, since the space | interval of a leg spreads so that it goes to the lower part of a structure, it becomes easy to ensure the strut distance of the leg in the lower part of a structure.

また、前記仮想の円筒に各中心線が接するように各脚材を配置するだけで各脚材の角度は自由に設定することができるので、軸力と曲げ力の理想的な配分を容易に設定することができる。また、脚材が捩れた関係に位置しているので、捩れ変形を利用して構造物の固有周期の調整が容易にできるようになり、風力発電用の風車などの振動する機械を搭載する場合にも振動応答性を低減することができるし、地震動に対する振動応答性も低減することができき、振動に対する減衰率を高めることができる。また、前記仮想の円筒と各脚材の中心線の接点の近傍、つまり、脚材の間隔が最小となる位置の近傍で、脚材を接合部材によって相互連結するので、接合部材のサイズを小さくすることができる。   In addition, the angle of each leg can be set freely just by arranging each leg so that each center line is in contact with the virtual cylinder, so that the ideal distribution of axial force and bending force can be easily performed. Can be set. In addition, since the legs are located in a twisted relationship, it is possible to easily adjust the natural period of the structure using torsional deformation, and when mounting a vibrating machine such as a wind turbine for wind power generation In addition, vibration responsiveness can be reduced, vibration responsiveness to seismic motion can be reduced, and a damping rate against vibration can be increased. In addition, since the legs are interconnected by the joining members in the vicinity of the contact point between the virtual cylinder and the center line of each leg, that is, in the vicinity of the position where the distance between the legs is minimized, the size of the joining member is reduced. can do.

また、接合部材を配した高さレベルより下側の脚材によって囲まれた領域を開放空間として確保しており、従来例のように脚材によって囲まれた領域の中央に中心シャフトを配置しないで、全部の脚材を一体に結合しているので、中央シャフトがある従来例に比べて、鋼材使用量や鋼材重量を減らすことができる。また、脚材によって囲まれた領域の中央に中心シャフトがないことで、波浪エネルギーや潮流エネルギーをその開放空間で逃がすことができるので、それらのエネルギーによる影響を軽減することができる。また、脚材で囲まれた領域に中央シャフトがない分だけ、構造がシンプルになるので、施工が容易になりコスト低減を図ることができる。   In addition, the area surrounded by the legs below the height level where the joining members are arranged is secured as an open space, and the central shaft is not arranged in the center of the area surrounded by the legs as in the conventional example. Thus, since all the legs are joined together, the amount of steel used and the weight of the steel can be reduced as compared with the conventional example having a central shaft. In addition, since there is no central shaft in the center of the region surrounded by the legs, wave energy and tidal energy can be released in the open space, so that the influence of the energy can be reduced. In addition, since the structure is simplified to the extent that there is no central shaft in the region surrounded by the legs, construction is facilitated and costs can be reduced.

請求項の海洋構造物によれば、鉛直プレートを各脚材に対し鉛直方向に沿って接合することにより脚材を相互連結したので、トラス構造にして脚材を相互連結する場合に比べて、少ない鋼材使用量で容易に必要な強度を得ることができる。 According to the offshore structure of claim 1, since the legs are interconnected by joining the vertical plates to the legs along the vertical direction, compared to the case where the legs are interconnected with a truss structure. The required strength can be easily obtained with a small amount of steel.

請求項の海洋構造物によれば、円筒状または円錐筒状の鉛直筒状プレートを用いて脚材を相互連結したので、構造物の軸方向の剛性強化を図ることができる。 According to the offshore structure of the first aspect , since the legs are interconnected using the cylindrical or conical cylindrical vertical cylindrical plate, the rigidity of the structure in the axial direction can be enhanced.

請求項の海洋構造物によれば、上下の水平プレートに形成した複数の貫通孔に脚材をそれぞれ貫通させて、その貫通部分で水平プレートと脚材を水平方向に沿って接合することにより、脚材を相互連結したので、トラス構造にして脚材を相互連結する場合に比べて、少ない鋼材使用量で容易に必要な強度を得ることができる。また、水平プレートの上面を作業デッキとして利用することができる。 According to the offshore structure of claim 1 , the leg material is respectively penetrated through the plurality of through holes formed in the upper and lower horizontal plates, and the horizontal plate and the leg material are joined along the horizontal direction at the penetration portion. Since the legs are interconnected, the required strength can be easily obtained with a small amount of steel material used compared to the case where the legs are interconnected with a truss structure. Further, the upper surface of the horizontal plate can be used as a work deck.

請求項の海洋構造物の設置構造によれば、脚材を外鋼管と内鋼管杭とで構成し、海洋構造物を海底に設置して、内鋼管杭の下端を海底の地盤に挿入し、その状態で外鋼管と内鋼管杭とを一体に接合しているので、海洋構造物を海底の地盤によって強固に支持することができる。また、施工に当たっては、外鋼管の内部に挿入された内鋼管杭の下端を海底の地盤に挿入するだけであり、外鋼管をガイドにして内鋼管杭を挿入することができるので、施工が容易にできる。 According to the installation structure of the offshore structure of claim 4 , the leg is composed of the outer steel pipe and the inner steel pipe pile, the offshore structure is installed on the seabed, and the lower end of the inner steel pipe pile is inserted into the ground of the seabed. In this state, since the outer steel pipe and the inner steel pipe pile are integrally joined, the offshore structure can be firmly supported by the ground of the seabed. In addition, it is easy to install because the inner steel pipe pile can be inserted using the outer steel pipe as a guide, just by inserting the lower end of the inner steel pipe pile inserted inside the outer steel pipe into the ground of the seabed. Can be.

請求項の海洋構造物の設置構造によれば、下端に羽根の付いた回転貫入杭を内鋼管杭として海底の地盤に貫入させるので、下端の羽根により内鋼管杭の引き抜き抵抗を大きくすることができる。従って、内鋼管杭の根入を少なくしても、海洋構造物の頂部に水平荷重やモーメントが働いた場合に十分な抵抗力を発揮することができる。また、回転貫入杭は、海底の地盤に貫入させることによって大きな引き抜き抵抗や押し込み抵抗を発揮することができるので、回転貫入杭の上部に支持を取ったジャッキを利用することにより、海洋構造物の上下方向のレベル調整を容易に行うことができ、高精度の施工が可能となる。
また、羽根の付いた回転貫入杭は予め外鋼管の内部に挿入しておくことができるので、外鋼管をガイドとしながら内鋼管杭である回転貫入杭を海底の地盤に貫入させることができ、現場施工の効率化と高精度化を図ることが可能となる。また、回転貫入杭は、回転貫入機械で回転させることによって地盤に挿入することができるから、施工の際に、打撃杭のような騒音や振動が発生せず、環境にやさしい施工が可能となる。また、回転貫入杭は、海洋構造物を吊った状態のまま反力を相殺しながら安全に地盤に挿入できるので、施工管理がたやすくできる。また、回転貫入杭は、施工時と逆方向に回転させることにより地盤から容易に引き抜くことができるので、海洋構造物の撤去も容易であり撤去費用も少なくて済む。
According to the installation structure of the offshore structure of claim 5 , since the rotary intrusion pile with blades at the lower end is penetrated into the ground of the seabed as an inner steel pipe pile, the pulling resistance of the inner steel pipe pile is increased by the lower end blades. Can do. Therefore, even if the inner steel pipe piles are reduced in depth, sufficient resistance can be exerted when a horizontal load or moment is applied to the top of the offshore structure. In addition, the rotating penetrating pile can exert a large pulling resistance and pushing resistance by penetrating into the ground of the seabed, so by using a jack supported on the upper part of the rotating penetrating pile, Level adjustment in the vertical direction can be easily performed, and high-precision construction is possible.
In addition, since the rotary penetration pile with blades can be inserted into the outer steel pipe in advance, the rotary penetration pile that is the inner steel pipe pile can be penetrated into the ground of the seabed while using the outer steel pipe as a guide, It is possible to improve the efficiency and accuracy of on-site construction. In addition, since the rotary penetrating pile can be inserted into the ground by rotating it with a rotary penetrating machine, no noise or vibration occurs during construction, and environmentally friendly construction is possible. . Moreover, since the rotation penetration pile can be safely inserted into the ground while canceling the reaction force with the offshore structure suspended, construction management can be easily performed. Moreover, since the rotation penetration pile can be easily pulled out from the ground by rotating in the direction opposite to that at the time of construction, the removal of the offshore structure is easy and the removal cost can be reduced.

請求項の海洋構造物の設置構造によれば、回転貫入杭と外鋼管の接合を解除して回転貫入杭を貫入時と逆方向に回転させることにより、回転貫入杭を地盤から容易に引き抜くことができ、海洋構造物の撤去が容易にできる。 According to the installation structure of the offshore structure of claim 6 , the rotary penetrating pile is easily pulled out from the ground by releasing the joint between the rotating penetrating pile and the outer steel pipe and rotating the rotary penetrating pile in the direction opposite to that at the time of penetration. Can be easily removed.

請求項の海洋構造物の設置構造によれば、脚材を鋼管コンクリート構造にすることにより、外鋼管の外径を大きくすることができると共に薄肉化することが可能となり、重量を増大させないで座屈耐力を向上させることができる。従って、水平材、斜材、筋交い材等の補強材を最小限にした単純な構造を実現することができるし、スパイラル鋼管や電縫鋼管の使用によりコスト低減を図ることもできる。 According to the installation structure of the offshore structure of claim 7 , by using the steel pipe concrete structure as the leg material, the outer diameter of the outer steel pipe can be increased and the wall thickness can be reduced without increasing the weight. The buckling strength can be improved. Therefore, it is possible to realize a simple structure with a minimum of reinforcing materials such as horizontal materials, diagonal materials, bracing materials, and the like, and it is possible to reduce costs by using spiral steel pipes and ERW steel pipes.

請求項の海洋構造物の設置構造によれば、コンクリートと外鋼管または内鋼管杭との接触面に、粘性体、粘弾性体、塑性体、または弾塑性体等の減衰率の高い材料を挿入したので、外鋼管や内鋼管杭とコンクリートとの間の相対変位が可能であり、前記粘性体や粘弾性体などの材料が剪断変形することにより、構造物の減衰率を高めることができる。また、コンクリートと回転貫入杭の間に前記粘性体や粘弾性体などの材料を挿入することにより、コンクリートと回転貫入杭とをアンボンド化することができ、その結果、回転貫入杭を逆回転して引き抜くことが容易に可能となり、構造物の撤去の容易化を図ることができる。 According to the offshore structure installation structure of claim 8, a material having a high damping rate such as a viscous body, a viscoelastic body, a plastic body, or an elastic-plastic body is provided on the contact surface between the concrete and the outer steel pipe or the inner steel pipe pile. Since it is inserted, relative displacement between the outer steel pipe and the inner steel pipe pile and the concrete is possible, and the material such as the viscous body and the viscoelastic body undergoes shear deformation, thereby increasing the damping rate of the structure. . In addition, by inserting a material such as the viscous body or viscoelastic body between the concrete and the rotating penetrating pile, the concrete and the rotating penetrating pile can be unbonded. As a result, the rotating penetrating pile is rotated in the reverse direction. Can be easily pulled out, and the removal of the structure can be facilitated.

第1参考例の海洋構造物の設置方法によれば、外鋼管の内部に挿入した回転貫入杭を回転貫入機械で回転させることにより、クレーンで海洋構造物を吊り下げながら回転貫入杭を精度良く海底の地盤に貫入させることができる。そして回転貫入杭の貫入後に、外鋼管と回転貫入杭を一体に接合することにより、海底の地盤に確実な支持を取りながら海洋構造物を海洋上に設置することができる。従って、海洋上での施工が簡単にでき、コストの低減と工期の短縮を図ることができる。 According to the offshore structure installation method of the first reference example , the rotating penetrating pile inserted into the outer steel pipe is rotated by the rotating penetrating machine, so that the rotating penetrating pile can be accurately suspended while the offshore structure is suspended by the crane. It can penetrate into the seabed. Then, after the penetration of the rotary penetrating pile, the outer steel pipe and the rotary penetrating pile are joined together so that the offshore structure can be installed on the ocean while securely supporting the ground on the seabed. Therefore, construction on the ocean can be simplified, and the cost can be reduced and the construction period can be shortened.

第2参考例の海洋構造物の設置方法によれば、海底の地盤に貫入した回転貫入杭にジャッキの支持を取り、ジャッキを用いて海洋構造物を上下方向にレベル調整するので、精度の良い安定した施工が可能である。 According to the offshore structure installation method of the second reference example , the jack is supported by the rotating penetrating pile that has penetrated into the ground of the seabed, and the level of the offshore structure is adjusted in the vertical direction using the jack. Stable construction is possible.

本発明の第1実施形態の海洋構造物の概略構成を示す斜視図である。It is a perspective view which shows schematic structure of the offshore structure of 1st Embodiment of this invention. 同海洋構造物の脚材の配置を示す斜視図である。It is a perspective view which shows arrangement | positioning of the leg material of the marine structure. 本発明の第2実施形態の海洋構造物の概略構成を示す斜視図である。It is a perspective view which shows schematic structure of the offshore structure of 2nd Embodiment of this invention. 前記第1実施形態の海洋構造物を海域に施工する場合の工程の説明図である。It is explanatory drawing of the process in the case of constructing the marine structure of the said 1st Embodiment in a sea area. 図4の次の工程の説明図である。It is explanatory drawing of the next process of FIG. 図5の次の工程の説明図である。It is explanatory drawing of the next process of FIG. 図6の次の工程の説明図である。It is explanatory drawing of the next process of FIG. 図7の次の工程の説明図である。It is explanatory drawing of the next process of FIG. 図8の次の工程の説明図である。It is explanatory drawing of the next process of FIG. 図9の次の工程の説明図である。FIG. 10 is an explanatory diagram of the next process of FIG. 9. 図10の次の工程の説明図である。It is explanatory drawing of the next process of FIG. 図11の次の工程の説明図である。It is explanatory drawing of the next process of FIG. 図12の次の工程の説明図である。It is explanatory drawing of the next process of FIG. 図13の次の工程の説明図である。It is explanatory drawing of the next process of FIG.

以下、本発明の実施形態を図面を参照して説明する。
図1は第1実施形態の海洋構造物の概略構成を示す斜視図、図2は同海洋構造物の脚材の配置を示す斜視図である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a perspective view showing a schematic configuration of the offshore structure of the first embodiment, and FIG. 2 is a perspective view showing an arrangement of legs of the offshore structure.

図1に示す第1実施形態の海洋構造物1は、洋上風力発電機の支持架台として海底の地盤に設置されるもので、図2に示すように、下部が広がり上部が窄まった多角錐台(本実施形態では三角錐台を示すが、四角錐台以上の多角錐台でも可)をその中心軸線Lの周りに捩ることで得られる立体(特に図示せず)を仮想の基本形状とし、その立体の斜めの各稜線に沿って直線状の脚材2を3本配置することで、各脚材2の中心線Sまたはその延長線を、前記立体の中心軸線Lを中心とする仮想の円筒10に接するように構成している。そして、その仮想の円筒10と各脚材2の中心線Sの接点11の近傍で、図1に示すように、脚材2を上部接合部材20によって相互に連結し、上部接合部材20を配した高さレベルより下側の脚材2によって囲まれた領域を、従来例の中央シャフトのようなものが何も存在しない開放空間5として確保している。また、間隔の開いた3本の脚材2の下端を、三角形状の下部接合部材30で相互に連結している。   A marine structure 1 according to the first embodiment shown in FIG. 1 is installed on the ground at the bottom of the sea as a support frame for an offshore wind power generator. As shown in FIG. A solid (not shown in particular) obtained by twisting a base (in this embodiment, a triangular frustum but a polygonal frustum greater than or equal to a square frustum) around its central axis L is a virtual basic shape. By arranging three straight legs 2 along the oblique ridgelines of the solid, the center line S of each leg 2 or its extension line is assumed to be a virtual centered on the central axis L of the solid. It is comprised so that the cylinder 10 may be contact | connected. Then, in the vicinity of the contact point 11 of the virtual cylinder 10 and the center line S of each leg 2, as shown in FIG. 1, the legs 2 are connected to each other by the upper joining member 20, and the upper joining member 20 is arranged. The area surrounded by the leg 2 below the height level is secured as an open space 5 where there is nothing like the central shaft of the conventional example. Further, the lower ends of the three leg members 2 having an interval are connected to each other by a triangular lower joint member 30.

図1に示すように、上部接合部材20としては、鉛直方向に沿った円筒状の鉛直筒状プレート21の上下端に円板状の水平プレート22を配したものを用いており、鉛直筒状プレート21は各脚材2に対し鉛直方向に沿って接合し、上下端の水平プレート22は、プレート上に形成した複数の貫通孔22aに脚材2をそれぞれ貫通させた状態で、その貫通部分で水平プレート22と脚材2を水平方向に沿って円周状に接合することにより、3本の脚材2を相互に連結している。また、下部接合部材30は、脚材2の下端と下端を繋ぐ3枚のプレート状の梁材31により構成されている。   As shown in FIG. 1, as the upper joining member 20, a cylindrical vertical cylindrical plate 21 along the vertical direction is used in which a disk-shaped horizontal plate 22 is arranged on the upper and lower ends, and the vertical cylindrical shape is used. The plate 21 is joined to each leg member 2 along the vertical direction, and the horizontal plates 22 at the upper and lower ends are in a state where the leg member 2 is passed through a plurality of through holes 22a formed on the plate, respectively. Thus, the three legs 2 are connected to each other by joining the horizontal plate 22 and the legs 2 in a circumferential shape along the horizontal direction. The lower joining member 30 includes three plate-shaped beam members 31 that connect the lower end and the lower end of the leg member 2.

このように構成された海洋構造物1によれば、各中心線Sが仮想の円筒10に接するように配された複数(本実施形態では3本)の脚材2は互いに交わる交点を有さないため、脚材2と脚材2の間に十分な作業スペースを確保することができ、後述するように脚材(内鋼管杭3)を順次繋いで長い継ぎ杭を作ることが容易にできる。   According to the offshore structure 1 configured in this way, a plurality of (three in this embodiment) leg members 2 arranged so that each center line S is in contact with the virtual cylinder 10 have intersections that intersect each other. Therefore, it is possible to secure a sufficient working space between the leg 2 and the leg 2, and it is easy to make a long joint pile by sequentially connecting the legs (inner steel pipe piles 3) as described later. .

また、この海洋構造物1では、図2に示すように、前記立体の中心軸線Lに直交する面上で各脚材2の中心点aが構成する円Aの半径が、仮想の円筒10と各脚材2の中心線Sの接する接点11の高さにおいて最小となり、その接点11から下方向および上方向にそれぞれ行くほど徐々に大きくなるので、上方向に行くほど円Aの半径が大きくなる高さレベルに海洋構造物1の頂部を配置することによって、海洋構造物1の頂部における作業スペースの確保が容易にできるようになる。   Further, in this offshore structure 1, as shown in FIG. 2, the radius of the circle A formed by the center point a of each leg 2 on the plane orthogonal to the solid central axis L is the same as that of the virtual cylinder 10. Since the height of the contact point 11 with which the center line S of each leg 2 is in contact is minimized, the radius of the circle A increases as it goes upward from the contact point 11 as it goes downward and upward. By arranging the top of the offshore structure 1 at the height level, it is possible to easily secure a working space at the top of the offshore structure 1.

また、海洋構造物1の下部に向かうほど脚材2の間隔が広がるので、海洋構造物1の下部での脚材2の踏ん張り距離の確保が容易にできるようになる。また、前記仮想の円筒10に各中心線Sが接するように各脚材2を配置するだけで各脚材2の角度は自由に設定することができるので、軸力と曲げ力の理想的な配分を容易に設定することができる。   Moreover, since the space | interval of the leg material 2 spreads, so that it goes to the lower part of the offshore structure 1, the securing distance of the leg material 2 in the lower part of the offshore structure 1 can be ensured now. Further, the angle of each leg member 2 can be set freely only by arranging each leg member 2 so that each center line S is in contact with the virtual cylinder 10, so that the axial force and the bending force are ideal. Distribution can be set easily.

また、脚材2が捩れた関係に位置しているので、捩れ変形を利用して海洋構造物1の固有周期の調整が容易にできるようになり、風力発電用の風車などの振動する機械を搭載する場合にも振動応答性を低減することができるし、地震動に対する振動応答性も低減することができ、振動に対する減衰率を高めることができる。また、前記仮想の円筒10と各脚材2の中心線Sの接点11の近傍、つまり、脚材2の間隔が最小となる位置の近傍で、脚材2を上部接合部材20によって相互連結するので、上部接合部材20のサイズを小さくすることができる。   Further, since the leg 2 is located in a twisted relationship, the natural period of the offshore structure 1 can be easily adjusted using torsional deformation, and a vibrating machine such as a wind turbine for wind power generation can be used. Even in the case of mounting, vibration responsiveness can be reduced, vibration responsiveness to earthquake motion can be reduced, and a damping rate against vibration can be increased. Further, the leg member 2 is interconnected by the upper joining member 20 in the vicinity of the contact point 11 of the virtual cylinder 10 and the center line S of each leg member 2, that is, in the vicinity of the position where the distance between the leg members 2 is minimized. Therefore, the size of the upper bonding member 20 can be reduced.

また、上部接合部材20を配した高さレベルより下側の脚材2によって囲まれた領域を開放空間5として確保しており、従来例のように脚材によって囲まれた領域に中心シャフトを配置しないで、全部の脚材2を一体に結合しているので、中央シャフトがある従来例に比べて、鋼材使用量や鋼材重量を減らすことができる。また、脚材2によって囲まれた領域の中央に中心シャフトがないことで、波浪エネルギーや潮流エネルギーをその開放空間5で逃がすことができるので、それらのエネルギーによる影響を軽減することができる。また、脚材2で囲まれた領域に中央シャフトがない分だけ、構造がシンプルになるので、施工が容易になりコスト低減を図ることができる。   Moreover, the area | region enclosed by the leg material 2 below the height level which has arrange | positioned the upper joining member 20 is ensured as the open space 5, and a center shaft is set in the area | region enclosed by the leg material like the prior art example. Since all the leg members 2 are joined together without being arranged, the amount of steel material used and the weight of the steel material can be reduced as compared with the conventional example having a central shaft. Moreover, since there is no central shaft in the center of the area | region enclosed by the leg material 2, since wave energy and tidal current energy can be released in the open space 5, the influence by those energy can be reduced. In addition, since the structure is simplified to the extent that there is no central shaft in the region surrounded by the legs 2, the construction is facilitated and the cost can be reduced.

また、本実施形態の海洋構造物1によれば、上部接合部材20に鉛直筒状プレート21と水平プレート22を設け、鉛直筒状プレート21を各脚材2に対し鉛直方向に沿って接合し、水平プレート22に形成した複数の貫通孔22aに脚材2をそれぞれ貫通させて、その貫通部分で水平プレート22と脚材2を水平方向に沿って接合しているので、トラス構造にして脚材2を相互連結する場合に比べて、少ない鋼材使用量で容易に必要な強度(特に軸方向の剛性強度)を得ることができる。また、水平プレート22の上面を作業デッキとして利用することもできる。   Further, according to the offshore structure 1 of the present embodiment, the upper tubular member 21 is provided with the vertical cylindrical plate 21 and the horizontal plate 22, and the vertical cylindrical plate 21 is joined to each leg member 2 along the vertical direction. The leg 2 is passed through the plurality of through-holes 22a formed in the horizontal plate 22 and the horizontal plate 22 and the leg 2 are joined in the horizontal direction at the penetrating portion. Compared with the case where the materials 2 are interconnected, the required strength (particularly the axial stiffness) can be easily obtained with a small amount of steel material used. Further, the upper surface of the horizontal plate 22 can be used as a work deck.

図3は本発明の第2実施形態の海洋構造物1Bの概略構成を示す斜視図である。
この第2実施形態の海洋構造物1Bでは、三角錐台を第1実施形態よりも更に捩った形状の仮想の立体の各稜線に沿って脚材2を配置すると共に、脚材2の中心線Sの接する仮想の円筒(本図では図示せず)を第1実施形態よりより径の大きいものとして脚材2同士の間隔を広めに保ち、更に、上部接合部材20Bを、円錐筒状の鉛直筒状プレート21Bと、その上下のリング状の水平プレート22、23とで構成し、上側の水平プレート23を下側の水平プレート22よりも大径に構成している。それ以外の構成は第1実施形態と同じである。円筒状の鉛直筒状プレート21の代わりに円錐筒状の鉛直筒状プレート2を用いたのは、脚材2が上方に向けて徐々に広がる部分に上部接合材20Bを配置する関係からである。上側の水平プレート23を大径化したのも同じ理由からである。この実施形態の海洋構造物1Bにおいても、第1実施形態と同様の作用効果を得ることができる。更に、脚材2の間隔を広げたので、作業スペースの確保がより容易にできるようになり、作業デッキも広めにすることができる等の効果が得られる。
FIG. 3 is a perspective view showing a schematic configuration of an offshore structure 1B according to the second embodiment of the present invention.
In the offshore structure 1B of the second embodiment, the leg 2 is disposed along each imaginary solid ridgeline in which the triangular frustum is twisted further than in the first embodiment, and the center of the leg 2 is arranged. A virtual cylinder (not shown in the figure) in contact with the line S is made larger in diameter than in the first embodiment, and the distance between the leg members 2 is kept wide, and the upper joint member 20B is formed in a conical cylindrical shape. The vertical cylindrical plate 21 </ b> B and the upper and lower ring-shaped horizontal plates 22, 23 are configured, and the upper horizontal plate 23 is configured to have a larger diameter than the lower horizontal plate 22. Other configurations are the same as those in the first embodiment. Was the cone-cylindrical vertical tubular plate 2 1 instead of the cylindrical vertical tubular plate 21, from the relationship leg members 2 are arranged the upper joint member 20B to gradually spread portion upward It is. The reason for increasing the diameter of the upper horizontal plate 23 is the same reason. Also in the offshore structure 1B of this embodiment, the same effect as that of the first embodiment can be obtained. Furthermore, since the space | interval of the leg material 2 was expanded, the effect that the work space can be secured more easily and the work deck can be made wider can be obtained.

次に上記の構成の海洋構造物1(第2実施形態の海洋構造物1Bでもよい)を海底に設置する場合の設置方法と、それにより得られる設置構造について、図4〜図14図を参照しながら説明する。   Next, referring to FIG. 4 to FIG. 14 for the installation method in the case where the offshore structure 1 having the above configuration (or the offshore structure 1B of the second embodiment) may be installed on the seabed and the installation structure obtained thereby. While explaining.

この海洋構造物1を海底に設置する場合は、各脚材2を、外鋼管と該外鋼管の内部に挿入された内鋼管杭とで構成する。以下の図においては、外鋼管を符号2(便宜上、図1〜図3における脚材と同じ符号とする)で示し、内鋼管杭(回転貫入杭)を符号3で示す。   When this offshore structure 1 is installed on the seabed, each leg member 2 is constituted by an outer steel pipe and an inner steel pipe pile inserted into the outer steel pipe. In the following drawings, the outer steel pipe is indicated by reference numeral 2 (for convenience, the same reference numerals as those of the legs in FIGS. 1 to 3), and the inner steel pipe pile (rotary penetrating pile) is indicated by reference numeral 3.

図4に示すように、予め工場や船上で第1実施形態の海洋構造物1を組み立て、これを台船100上に寝かせて設置海域に搬送し、クレーン110などを用いて外鋼管2(第1実施形態の脚材2に相当)の内部に内鋼管杭3を挿入する。最初の内鋼管杭3としては、下端に羽根3aの付いた回転貫入杭3を使用する。ここでは、下端に羽根があるかないかの違いだけであるので、回転貫入杭も、その上に継ぎ足す内鋼管杭も、同じ符号3で示す。   As shown in FIG. 4, the offshore structure 1 of the first embodiment is assembled in advance in a factory or on a ship, and is laid on a carriage 100 and transported to an installation sea area. The inner steel pipe pile 3 is inserted into the inside of the leg member 2 of one embodiment. As the first inner steel pipe pile 3, a rotary penetrating pile 3 having a blade 3a at the lower end is used. Here, since the only difference is whether or not there is a blade at the lower end, both the rotary penetrating pile and the inner steel pipe pile added on the same are indicated by the same reference numeral 3.

次に回転貫入杭3を外鋼管2に仮固定した状態で、図5に示すように海洋構造物1を起立させ、外鋼管2の上端部に、回転貫入杭3を回転させることができるように回転貫入機械120を取り付けると共に、図6に示すように、回転貫入杭(内鋼管杭)3の上端に次の内鋼管杭3を溶接して継ぎ足す。このような作業の際に、脚材2が互いに捩られた関係で配置されていることにより交点を有しないので、内鋼管杭3の継ぎ足しが無理なく可能になると共に、作業スペースの確保が容易にできる。   Next, with the rotary penetration pile 3 temporarily fixed to the outer steel pipe 2, the offshore structure 1 can be erected as shown in FIG. 5, and the rotary penetration pile 3 can be rotated at the upper end of the outer steel pipe 2. At the same time, as shown in FIG. 6, the next inner steel pipe pile 3 is welded to the upper end of the rotary penetrating pile (inner steel pipe pile) 3 and added. In such a work, since the legs 2 are arranged in a twisted relationship with each other, there is no intersection, so that it is possible to easily add the inner steel pipe pile 3 and to secure the work space easily. Can be.

次に図7に示すように、油圧ポンプ130のホース132を各回転貫入機械120に繋いで準備を完了する。油圧ポンプ10は、図7に示すように台船100上に配置してもよいが、海洋構造物1の上(海底に設置したときに海面上に出る部分)に配置してもよい。また、継ぎ足す内鋼管杭3は1本でも2本でも何本でもよい。まとめて取り付ける場合は、治具を用いるのがよい。また、台船100上で内鋼管杭3の継手部を溶接してもよいが、後述のように予め仮付けしておいて、据え付け時などの本溶接してもよい。 Next, as shown in FIG. 7, the hose 132 of the hydraulic pump 130 is connected to each rotary penetration machine 120 to complete the preparation. The hydraulic pump 1 30 may be disposed on the trolley 100 as shown in FIG. 7, but may be disposed on the offshore structure 1 (portion that emerges on the sea surface when installed on the seabed). . Further, the number of inner steel pipe piles 3 to be added may be one, two or any number. When attaching them together, it is better to use a jig. Moreover, although the joint part of the inner steel pipe pile 3 may be welded on the trolley 100, it may be temporarily attached as will be described later, and may be welded at the time of installation.

そして、図8および図9に示すように、海洋構造物1をクレーン10により台船100上から海上に吊り下ろして海底200に着床させる。外鋼管2の下端が海底200に到達した時点やその前後に、吊り下げた状態のまま、海洋構造物1を位置決めしたり水平レベル調整を行ったりする。その後、海底の地盤201に荷重が十分に伝達されるまで吊り下ろす。この段階で回転貫入杭3の下端の羽根3aは、自重で地盤201に少し貫入される。 Then, as shown in FIGS. 8 and 9, to implantation of the marine structure 1 to the seabed 200 Lower hanging on the sea from above Theissen 100 by the crane 1 1 0. At the time when the lower end of the outer steel pipe 2 reaches the seabed 200 or before and after it, the offshore structure 1 is positioned or the horizontal level is adjusted while being suspended. Then, it is suspended until the load is sufficiently transmitted to the seabed ground 201. At this stage, the blade 3a at the lower end of the rotary penetrating pile 3 is slightly penetrated into the ground 201 by its own weight.

次に回転貫入機械120を台船100上から遠隔コントロールして、図10に示すように、回転貫入杭3を海洋構造物1の倒壊の危険性が無くなるまで地盤201に貫入する。安定性が確保できたら、その段階で海洋構造物1の上に作業員が移動して、クレーン110のワイヤを取り外し、図11に示すように、回転貫入機械120に装着されている図示略の上下加圧ジャッキで海洋構造物1の第1回目の上下方向のレベル調整を行い、更に回転貫入杭3を回転させて貫入させる。このとき、レベル調整に止まらず、必要に応じて、脚材2の長さ調整を個々に行なうことにより、上部接合部材20の水平度の調整も同時に行なう。このレベル調整と回転貫入を何度か繰り返し、図12に示すように、回転貫入杭3の下端が支持層210に到達したことをトルクで確認し、必要トルクまたは必要根入量の確保をした上で打ち止めする。   Next, the rotary penetrating machine 120 is remotely controlled from the top of the carriage 100, and the rotary penetrating pile 3 is penetrated into the ground 201 until the risk of collapse of the offshore structure 1 disappears as shown in FIG. When the stability is secured, the worker moves on the offshore structure 1 at that stage, removes the wire of the crane 110, and as shown in FIG. The first vertical level adjustment of the offshore structure 1 is performed with the vertical pressure jack, and the rotary penetration pile 3 is further rotated to penetrate. At this time, not only the level adjustment but also the adjustment of the level of the upper joint member 20 is performed at the same time by individually adjusting the lengths of the legs 2 as necessary. This level adjustment and rotation penetration were repeated several times, and as shown in FIG. 12, it was confirmed by torque that the lower end of the rotation penetration pile 3 reached the support layer 210, and necessary torque or necessary penetration amount was secured. Stop at the top.

この場合の回転貫入杭3を海底の地盤201に貫入している途中および/または貫入した後の海洋構造物1の上下方向のレベル調整は、回転貫入杭3にジャッキの支持を取り、回転貫入杭3の下端の羽根3aの引き抜き抵抗および押し込み抵抗を反力にして、ジャッキを用いて外鋼管2を上下動させることにより行う。このように繰り返し海洋構造物1を上下方向にレベル調整するので、精度の良い安定した施工が可能となる。   In this case, the level adjustment in the vertical direction of the offshore structure 1 during and / or after the penetration of the rotary penetrating pile 3 into the ground 201 of the seabed is carried out by supporting the rotary penetrating pile 3 with a jack. The pulling resistance and pushing resistance of the blade 3a at the lower end of the pile 3 are set as reaction forces, and the outer steel pipe 2 is moved up and down using a jack. As described above, the level of the offshore structure 1 is adjusted repeatedly in the vertical direction, so that accurate and stable construction can be performed.

その後、図13に示すように、回転貫入機械120を取り外し、内鋼管杭3と外鋼管2の接合を行う。なお、この接合を、後で解除できるようにしておくことにより、海洋構造物1の撤去作業が楽に行えるようになる。更に次の工程で、図14に示すように、コンクリート(狭義のコンクリートの他にグラウト材を含む)6を打設する。この際、外鋼管2と内鋼管杭3の間の空間および内鋼管杭3の内部の空間の少なくともいずれか一方の空間にコンクリート6を打設充填する。そうすることで、海洋構造物1の脚材(外鋼管2または/および内鋼管杭3)を鋼管コンクリート構造とすることができる。また、充填されたコンクリート6と外鋼管2または内鋼管杭3との接触面に、粘性体、粘弾性体、塑性体、または弾塑性体等の減衰率の高い材料を挿入することもできる。そして、以上により全部の工程を終了し、海洋構造物1の設置構造ができ上がる。   Then, as shown in FIG. 13, the rotary penetration machine 120 is removed, and the inner steel pipe pile 3 and the outer steel pipe 2 are joined. In addition, the removal work of the offshore structure 1 can be easily performed now that this joining can be released later. Further, in the next step, concrete (including a grout material in addition to concrete in a narrow sense) 6 is placed as shown in FIG. At this time, the concrete 6 is cast and filled in at least one of the space between the outer steel pipe 2 and the inner steel pipe pile 3 and the inner space of the inner steel pipe pile 3. By doing so, the leg material (outer steel pipe 2 or / and inner steel pipe pile 3) of the marine structure 1 can be made into a steel pipe concrete structure. In addition, a material having a high damping rate such as a viscous body, a viscoelastic body, a plastic body, or an elastic-plastic body can be inserted into the contact surface between the filled concrete 6 and the outer steel pipe 2 or the inner steel pipe pile 3. And all the processes are complete | finished by the above, and the installation structure of the marine structure 1 is completed.

このように施工することにより、海洋構造物1を海底の地盤201や支持層210によって強固に支持することができる。また、施工に当たっては、外鋼管2の内部に挿入された内鋼管杭3の下端を海底の地盤201や支持層210に挿入するだけであり、外鋼管2をガイドにして内鋼管杭3を挿入することができるので、施工が容易にできる。   By constructing in this way, the offshore structure 1 can be firmly supported by the ground 201 and the support layer 210 on the seabed. Moreover, in the construction, only the lower end of the inner steel pipe pile 3 inserted into the outer steel pipe 2 is inserted into the ground 201 or the support layer 210 on the seabed, and the inner steel pipe pile 3 is inserted using the outer steel pipe 2 as a guide. Therefore, construction can be easily performed.

特に、下端に羽根3aの付いた回転貫入杭3を内鋼管杭3として海底の地盤201や支持層210に貫入させるので、下端の羽根3aにより内鋼管杭3の引き抜き抵抗を大きくすることができる。従って、内鋼管杭3の根入を少なくしても、海洋構造物1の頂部に水平荷重やモーメントが働いた場合に十分な抵抗力を発揮することができる。また、回転貫入杭3は、海底の地盤201に貫入させることによって大きな引き抜き抵抗や押し込み抵抗を発揮することができるので、回転貫入杭3の上部に支持を取ったジャッキを利用することにより、海洋構造物1の上下方向のレベル調整並びに水平度の調整を容易に行うことができ、高精度の施工が可能となる。   In particular, since the rotary penetration pile 3 with the blade 3a at the lower end is penetrated into the ground 201 or the support layer 210 as the inner steel pipe pile 3, the pulling resistance of the inner steel pipe pile 3 can be increased by the lower blade 3a. . Therefore, even if the inner steel pipe pile 3 is reduced in depth, sufficient resistance can be exerted when a horizontal load or moment is applied to the top of the offshore structure 1. Moreover, since the rotation penetration pile 3 can exhibit a big pulling resistance and pushing resistance by making it penetrate in the ground 201 of the seabed, by utilizing the jack which supported the upper part of the rotation penetration pile 3, The level adjustment in the vertical direction and the level adjustment of the structure 1 can be easily performed, and high-precision construction is possible.

また、羽根3aの付いた回転貫入杭3は、予め外鋼管2の内部に挿入しておくことができるので、外鋼管2をガイドとしながら内鋼管杭3である回転貫入杭3を海底の地盤201に貫入させることができ、現場施工の効率化と高精度化を図ることが可能となる。また、回転貫入杭3は、回転貫入機械120で回転させることによって地盤201に挿入することができるから、施工の際に、打撃杭のような騒音や振動が発生せず、環境にやさしい施工が可能となる。また、回転貫入杭3は、海洋構造物1をクレーンで吊った状態のまま反力を相殺しながら安全に地盤201に挿入できるので、施工管理がたやすくできる。   Moreover, since the rotation penetration pile 3 with the blade | wing 3a can be previously inserted in the inside of the outer steel pipe 2, the rotation penetration pile 3 which is the inner steel pipe pile 3 is made into the ground of the seabed, using the outer steel pipe 2 as a guide. 201 can be penetrated, and it is possible to increase the efficiency and accuracy of on-site construction. Moreover, since the rotation penetration pile 3 can be inserted in the ground 201 by rotating it with the rotation penetration machine 120, at the time of construction, noise and vibration like a hammering pile are not generated, and environment-friendly construction is performed. It becomes possible. Moreover, since the rotation penetration pile 3 can be safely inserted into the ground 201 while offsetting the reaction force while the offshore structure 1 is suspended by a crane, the construction management can be easily performed.

また、脚材を鋼管コンクリート構造にすることにより、外鋼管2の外径を大きくすることができると共に薄肉化することが可能となるので、重量を増大させないで座屈耐力を向上させることができる。従って、水平材、斜材、筋交い材等の補強材を最小限にした単純な構造を実現することができるし、スパイラル鋼管や電縫鋼管の使用によりコスト低減を図ることもできる。   Moreover, by making the leg material a steel pipe concrete structure, the outer diameter of the outer steel pipe 2 can be increased and the thickness can be reduced, so that the buckling strength can be improved without increasing the weight. . Therefore, it is possible to realize a simple structure with a minimum of reinforcing materials such as horizontal materials, diagonal materials, bracing materials, and the like, and it is possible to reduce costs by using spiral steel pipes and ERW steel pipes.

また、コンクリート6と外鋼管2または内鋼管杭3との接触面に、粘性体、粘弾性体、塑性体、または弾塑性体等の減衰率の高い材料を挿入した場合は、外鋼管2や内鋼管杭3とコンクリート6との間の相対変位が可能となるため、前記粘性体や粘弾性体などの材料が剪断変形することにより、構造物の減衰率を高めることができる。また、コンクリート6と回転貫入杭3の間に前記粘性体や粘弾性体などの材料を挿入することにより、コンクリート6と回転貫入杭3とをアンボンド化することができ、その結果、回転貫入杭3を逆回転して引き抜くことが容易に可能となり、構造物の撤去の容易化を図ることができる。   Further, when a material having a high damping rate such as a viscous body, a viscoelastic body, a plastic body, or an elastic-plastic body is inserted into the contact surface between the concrete 6 and the outer steel pipe 2 or the inner steel pipe pile 3, the outer steel pipe 2 or Since the relative displacement between the inner steel pipe pile 3 and the concrete 6 becomes possible, the material such as the viscous body and the viscoelastic body undergoes shear deformation, thereby increasing the attenuation rate of the structure. Moreover, the concrete 6 and the rotation penetration pile 3 can be unbonded by inserting the material such as the viscous body or the viscoelastic body between the concrete 6 and the rotation penetration pile 3, and as a result, the rotation penetration pile. It is possible to easily rotate 3 and pull it out, so that the structure can be easily removed.

また、後からの撤去の容易化を図る場合は、外鋼管2と回転貫入杭3との接合を解除可能なものとしておくと共に、接合を解除することで、回転貫入杭3を貫入時と逆方向に回転できるようにしておくのがよい(例えば、鋼管とコンクリートをアンボンド化しておく等)。そうしておくことで、回転貫入杭3と外鋼管2の接合を解除して回転貫入杭3を貫入時と逆方向に回転させることにより、回転貫入杭3を地盤201から容易に引き抜くことができて、海洋構造物1の撤去が容易にできるようになり、撤去費用も少なくて済む。   In addition, when facilitating the removal from the rear, the outer steel pipe 2 and the rotary penetrating pile 3 can be released from the joint, and by releasing the joint, the rotary penetrating pile 3 can be reversely inserted. It is better to be able to rotate in the direction (for example, unbonding steel pipe and concrete). By doing so, the rotary penetration pile 3 can be easily pulled out from the ground 201 by releasing the joint between the rotary penetration pile 3 and the outer steel pipe 2 and rotating the rotary penetration pile 3 in the direction opposite to that during penetration. Thus, the offshore structure 1 can be easily removed, and the removal cost can be reduced.

以上、本発明の実施形態について図面を参照して詳述したが、具体的な構成はこの実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の構成の変更等も含まれる。
例えば、前記実施形態では、脚材2を相互連結する接合部材として、円筒状の鉛直プレートを用いた例に付いて説明したが、これに限られることなく、単なる平板上のプレート、あるいはねじれた形状のプレートによって隣り合う脚材同士を連結しても良い。また、水平プレートとしては上下2枚の水平プレートに限られることなく、上下3枚以上の水平プレートを利用しても良い。
As mentioned above, although embodiment of this invention was explained in full detail with reference to drawings, the concrete structure is not restricted to this embodiment, The change of the structure of the range which does not deviate from the summary of this invention, etc. are included.
For example, in the above-described embodiment, the example in which the cylindrical vertical plate is used as the joining member for interconnecting the leg members 2 has been described. However, the present invention is not limited to this, and the plate is simply a flat plate or twisted. Adjacent legs may be connected by a shaped plate. Further, the horizontal plate is not limited to two upper and lower horizontal plates, and three or more horizontal plates may be used.

1 海洋構造物
2 脚材、外鋼管
3 内鋼管杭、回転貫入杭
3a 羽根
5 開放空間
10 仮想の円筒
11 接点
20 上部接合部材
21 円筒状の鉛直筒状プレート
22,23 水平プレート
22a 貫通孔
200 海底
201 地盤
210 支持層
L 中心軸線
S 中心線
DESCRIPTION OF SYMBOLS 1 Offshore structure 2 Leg material, outer steel pipe 3 Inner steel pipe pile, rotation penetration pile 3a Blade | wing 5 Open space 10 Virtual cylinder 11 Contact 20 Upper joint member 21 Cylindrical vertical cylindrical plate 22, 23 Horizontal plate 22a Through-hole 200 Ocean floor 201 Ground 210 Support layer L Center axis S Center line

Claims (8)

下部が広がり上部が窄まった多角錐台をその中心軸線の周りに捩ることで得られる立体を仮想の基本形状とし、その立体の斜めの各稜線に沿って直線状の脚材を配置することで、各脚材の中心線またはその延長線を、前記立体の中心軸線を中心とする仮想の円筒に接するように構成し、その仮想の円筒と前記各脚材の中心線の接点の近傍で前記脚材を接合部材によって相互連結すると共に、前記接合部材を配した高さレベルより下側の前記脚材によって囲まれた領域を開放空間として確保し
前記接合部材として鉛直方向に沿った鉛直プレートを備え、該鉛直プレートを前記各脚材に対し鉛直方向に沿って接合することにより、前記脚材を相互連結し、
前記鉛直プレートが、円筒状または円錐筒状の鉛直筒状プレートであり、
前記接合部材として水平方向に沿った上下の水平プレートを備え、上側の水平プレートを前記鉛直プレートの上部に接合し、下側の水平プレートを前記鉛直プレートの下部に接合し、それら上下の水平プレートに形成した複数の貫通孔に前記脚材をそれぞれ貫通させて、その貫通部分で前記水平プレートと前記脚材を水平方向に沿って接合することにより、前記脚材を相互連結したことを特徴とする海洋構造物。
A solid obtained by twisting a polygonal frustum with a lower part and a narrowed upper part around its central axis is assumed to be a virtual basic shape, and straight legs are arranged along each oblique ridgeline of the solid. The center line of each leg or its extension line is configured to be in contact with a virtual cylinder centered on the central axis of the solid, and in the vicinity of the contact point between the virtual cylinder and the center line of each leg. While interconnecting the legs by a joining member, to secure an area surrounded by the legs below the height level where the joining member is arranged as an open space ,
A vertical plate along the vertical direction is provided as the joining member, and the legs are interconnected by joining the vertical plates to the legs along the vertical direction,
The vertical plate is a cylindrical or conical cylindrical tube;
The joining member includes upper and lower horizontal plates along the horizontal direction, the upper horizontal plate is joined to the upper part of the vertical plate, the lower horizontal plate is joined to the lower part of the vertical plate, and the upper and lower horizontal plates are joined. The legs are interconnected by passing the legs through a plurality of through-holes formed in each other, and joining the horizontal plate and the legs along the horizontal direction at the penetration portions. Offshore structures.
請求項1に記載の海洋構造物であって、  The offshore structure according to claim 1,
前記接合部材は、前記鉛直筒状プレートの上下端に円板状の前記水平プレートを配したものであることを特徴とする海洋構造物。  The marine structure characterized in that the joining member is a disc-shaped horizontal plate disposed on upper and lower ends of the vertical cylindrical plate.
請求項1または2に記載の海洋構造物であって、  The offshore structure according to claim 1 or 2,
前記接合部材は、前記鉛直筒状プレートと、その上下のリング状の前記水平プレートと、で構成され、  The joining member is composed of the vertical cylindrical plate and the horizontal plates of the upper and lower rings.
上側の前記水平プレートを下側の前記水平プレートよりも大径に構成していることを特徴とする海洋構造物。  An offshore structure characterized in that the upper horizontal plate has a larger diameter than the lower horizontal plate.
請求項1〜のいずれか一項に記載の海洋構造物の設置構造であって、
前記海洋構造物の脚材を外鋼管と該外鋼管の内部に挿入された内鋼管杭とで構成し、前記海洋構造物を海底に設置して前記内鋼管杭の下端を海底の地盤に挿入し、その状態で前記外鋼管と内鋼管杭とを一体に接合したことを特徴とする海洋構造物の設置構造。
An installation structure for an offshore structure according to any one of claims 1 to 3 ,
The legs of the offshore structure are composed of an outer steel pipe and an inner steel pipe pile inserted into the outer steel pipe, the offshore structure is installed on the seabed, and the lower end of the inner steel pipe pile is inserted into the ground of the seabed. And the installation structure of the offshore structure characterized by integrally joining the said outer steel pipe and the inner steel pipe pile in that state.
請求項に記載の海洋構造物の設置構造であって、
前記内鋼管杭を、下端に羽根の付いた回転貫入杭により構成し、前記海洋構造物を海底に設置して前記回転貫入杭を回転させることでその下端を海底の地盤に貫入させ、その状態で前記外鋼管と前記回転貫入杭とを一体に接合したことを特徴とする海構造物の設置構造。
The offshore structure installation structure according to claim 4 ,
The inner steel pipe pile is composed of a rotating penetrating pile with a blade at the lower end, and the lower end penetrates into the ground of the sea floor by rotating the rotating penetrating pile by installing the marine structure on the sea floor, and the state installation structure of in marine structure, characterized in that joining the said outer steel pipe and the rotary penetration piles together.
請求項に記載の海洋構造物の設置構造であって、
前記外鋼管と前記回転貫入杭との接合を解除可能となし、接合を解除することで、前記回転貫入杭を貫入時と逆方向に回転可能に構成したことを特徴とする海洋構造物の設置構造。
The marine structure installation structure according to claim 5 ,
The installation of the offshore structure characterized in that the outer steel pipe and the rotary penetrating pile can be unbonded and the rotating penetrating pile can be rotated in the direction opposite to the direction of penetration by releasing the joint. Construction.
請求項のいずれか一項に記載の海洋構造物の設置構造であって、
前記外鋼管と内鋼管杭の間の空間および前記内鋼管杭の内部の空間の少なくともいずれか一方の空間にコンクリートを充填することで、前記脚材を鋼管コンクリート構造としたことを特徴とする海洋構造物の設置構造。
A installation structure of marine structure according to any one of claims 4-6,
A marine characterized in that the leg material has a steel pipe concrete structure by filling concrete in at least one of the space between the outer steel pipe and the inner steel pipe pile and the space inside the inner steel pipe pile. Structure installation structure.
請求項に記載の海洋構造物の設置構造であって、
前記充填されたコンクリートと前記外鋼管または内鋼管杭との接触面に、粘性体、粘弾性体、塑性体、または弾塑性体等の減衰率の高い材料を挿入したことを特徴とする海洋構造物の設置構造。
The marine structure installation structure according to claim 7 ,
A marine structure characterized in that a material having a high damping rate such as a viscous body, a viscoelastic body, a plastic body, or an elastic-plastic body is inserted into a contact surface between the filled concrete and the outer steel pipe or the inner steel pipe pile. Installation structure of things.
JP2011215846A 2011-09-30 2011-09-30 Offshore structure and its installation structure Active JP5820678B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011215846A JP5820678B2 (en) 2011-09-30 2011-09-30 Offshore structure and its installation structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011215846A JP5820678B2 (en) 2011-09-30 2011-09-30 Offshore structure and its installation structure

Publications (2)

Publication Number Publication Date
JP2013076240A JP2013076240A (en) 2013-04-25
JP5820678B2 true JP5820678B2 (en) 2015-11-24

Family

ID=48479888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011215846A Active JP5820678B2 (en) 2011-09-30 2011-09-30 Offshore structure and its installation structure

Country Status (1)

Country Link
JP (1) JP5820678B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106498973A (en) * 2016-12-27 2017-03-15 国网江苏省电力公司经济技术研究院 A kind of assembled type base for power transmission line iron tower and its installation method

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103616604B (en) * 2013-12-16 2016-08-17 中国海洋大学 Tidal Simulation assay device
WO2015179828A1 (en) * 2014-05-23 2015-11-26 Keystone Engineering Inc. Offshore support structure
JP6715663B2 (en) * 2016-04-14 2020-07-01 清水建設株式会社 Steel pipe pile construction method
CN112796927B (en) * 2021-03-05 2022-04-29 江苏科技大学 Forced motion control system of power generation experiment platform and power generation detection system
CN116623709B (en) * 2023-07-13 2024-05-14 中国电建集团重庆工程有限公司 Deepwater pile-tube combined foundation for offshore wind power

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3062875B2 (en) * 1996-01-30 2000-07-12 博 吉田 Impact absorbing pile and its construction method
JP2000073349A (en) * 1998-09-02 2000-03-07 Nippon Steel Corp Jacket with rotary press-in steel pipe pile and its execution method
JP2004044198A (en) * 2002-07-11 2004-02-12 Mitsubishi Heavy Ind Ltd Jacket type foundation
JP3916083B2 (en) * 2004-04-12 2007-05-16 テック大洋工業株式会社 Simple foundation and aggregate of simple foundations
JP4429784B2 (en) * 2004-04-14 2010-03-10 鹿島建設株式会社 How to install underwater structures

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106498973A (en) * 2016-12-27 2017-03-15 国网江苏省电力公司经济技术研究院 A kind of assembled type base for power transmission line iron tower and its installation method

Also Published As

Publication number Publication date
JP2013076240A (en) 2013-04-25

Similar Documents

Publication Publication Date Title
JP5820678B2 (en) Offshore structure and its installation structure
US8458963B2 (en) Device for a bending moment deficient strut connection
EP2836648B1 (en) Offshore structure installation
JP2022517748A (en) Marine platform and manufacturing method with a prefabricated jacket that combines aluminum pipe-concrete concrete-steel pipe
JP6627741B2 (en) Jacket position adjusting mechanism and method of constructing landing type foundation
AU2013214147A1 (en) Foundation structure of an offshore plant, in particular an offshore wind turbine, which foundation structure is to be installed at a low noise level, and installation method therefor
KR20110013929A (en) Net type support device of monopile for supporting seaside or seabed soft ground
JP2017203305A (en) Foundation of offshore facility, offshore facility, and foundation construction method of offshore facility
KR101573064B1 (en) Jig for constructing pile of green energy generating plant on the sea and method for constructing pile on the sea using this same
WO2021106560A1 (en) Support structure for wind power generation device and wind power generation device
JP2013241911A (en) Oceanic wind power generation facility, support device thereof and design method thereof
TWI807091B (en) Pile foundation and construction method of pile foundation
WO2010147481A1 (en) Wind turbine foundation for variable water depth
JP2013525635A (en) Stand structure
KR101043605B1 (en) Multi-type support connector device of monopile for supporting seaside or seabed soft ground
JP2019100070A (en) Foundation structure of offshore wind power generation facility, and construction method of the same
JP6802692B2 (en) Pile head seismic isolation joint structure
JP5204076B2 (en) Seismic retrofit method and seismic retrofit structure for existing buildings
JP6793558B2 (en) Offshore wind power generation facility support structure and its construction method
JP6569317B2 (en) Construction method for pile structures
JP7351820B2 (en) Construction method of foundation structure and foundation structure
JP2016084701A (en) Vibration control building
JP7093203B2 (en) Tower-shaped structure and its structural optimization method
JP2023082720A (en) Support structure for wind power generation facility
JP2024013978A (en) Vibration control structure of tower-like structure, and construction method of tower-like structure with vibration control structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150908

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151005

R150 Certificate of patent or registration of utility model

Ref document number: 5820678

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250