JP7093203B2 - Tower-shaped structure and its structural optimization method - Google Patents

Tower-shaped structure and its structural optimization method Download PDF

Info

Publication number
JP7093203B2
JP7093203B2 JP2018040471A JP2018040471A JP7093203B2 JP 7093203 B2 JP7093203 B2 JP 7093203B2 JP 2018040471 A JP2018040471 A JP 2018040471A JP 2018040471 A JP2018040471 A JP 2018040471A JP 7093203 B2 JP7093203 B2 JP 7093203B2
Authority
JP
Japan
Prior art keywords
tower
type
main body
rigidity
shaped structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018040471A
Other languages
Japanese (ja)
Other versions
JP2019157344A (en
Inventor
俊康 三好
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Penta Ocean Construction Co Ltd
Original Assignee
Penta Ocean Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Penta Ocean Construction Co Ltd filed Critical Penta Ocean Construction Co Ltd
Priority to JP2018040471A priority Critical patent/JP7093203B2/en
Publication of JP2019157344A publication Critical patent/JP2019157344A/en
Application granted granted Critical
Publication of JP7093203B2 publication Critical patent/JP7093203B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/727Offshore wind turbines

Description

本発明は、風力発電用施設等の塔型構造物及びその構造最適化方法に関する。 The present invention relates to a tower-shaped structure such as a facility for wind power generation and a method for optimizing the structure thereof.

近年、エネルギー政策の一環として再生可能エネルギーが注目され、風力発電は、重要な電源確保手段として位置付けられている。 In recent years, renewable energy has attracted attention as part of its energy policy, and wind power generation has been positioned as an important means of securing power sources.

特に、洋上風力発電は、陸上に比べて風況が良好であること、居住区域から離れているため騒音等の環境負担が少ないこと等から港湾区域を中心に導入が促進されている。 In particular, the introduction of offshore wind power generation is being promoted mainly in the harbor area because the wind conditions are better than those on land and the environmental burden such as noise is small because it is far from the residential area.

このような風力発電施設は、支持構造物に下端が支持された塔本体部と、塔本体部の上端部に支持された風車(ナセル・ロータ)等からなる風力発電用装置とを備えた塔型構造物となっている。 Such a wind power generation facility is a tower equipped with a tower main body whose lower end is supported by a support structure and a wind power generation device including a wind turbine (nacelle rotor) supported by the upper end of the tower main body. It is a mold structure.

支持構造物としては、一般に、水深60m程度までは着床式、水深60m以深であれば浮体式が用いられている。 As the support structure, a landing type is generally used up to a water depth of about 60 m, and a floating type is used when the water depth is 60 m or deeper.

また、着床式の支持構造物としては、ケーソン式、モノパイル式、杭ジャケット式等があり、近年では、鉄筋コンクリート底版とジャケット方式とを融合したハイブリッド式のものも採用されている(例えば、非特許文献1)。 Further, as the landing type support structure, there are a caisson type, a monopile type, a pile jacket type, etc., and in recent years, a hybrid type that combines a reinforced concrete bottom slab and a jacket type has been adopted (for example, non-type). Patent Document 1).

また、この種の洋上風力発電施設は、風車中心高さが海面から60m以上となるものもあり、今後も大型化が予測されている。 In addition, some offshore wind power generation facilities of this type have a wind turbine center height of 60 m or more from the sea surface, and are expected to grow in size in the future.

一方、このような洋上風力発電施設の構造性能は、建築基準法に従うことを基本としており、風車中心高さが海面から60mを超えるものについては、高層ビル等の建築物と同様の構造性能評価が求められている。 On the other hand, the structural performance of such offshore wind power generation facilities is based on the Building Standards Law, and if the center height of the wind turbine exceeds 60 m from the sea surface, the structural performance evaluation is similar to that of buildings such as high-rise buildings. Is required.

即ち、地震が多発する日本においては、高さ60mを超える構造物の場合、レベル1地震動及びレベル2地震動を用いた時刻歴応答解析によって動的特性を評価した上で構造性能が確保されているかの検討が求められている。 That is, in Japan, where earthquakes occur frequently, in the case of structures with a height of more than 60 m, is the structural performance secured after evaluating the dynamic characteristics by time history response analysis using level 1 earthquake motion and level 2 earthquake motion? Is required to be examined.

尚、時刻歴応答解析とは、構造物を質点・はり・ばね・減衰でモデル化した上で、地表面に時間とともに変化する地動加速度を与え、構造物の各位置における力や変位の変化を、時々刻々とコンピュータによってシミュレーションし、構造物の耐震安全性等を検証する構造計算の手法である。 In the time history response analysis, after modeling the structure with mass points, beams, springs, and damping, the ground surface is given a ground motion acceleration that changes with time, and changes in force and displacement at each position of the structure are measured. This is a structural calculation method that verifies the seismic safety of structures by simulating them from moment to moment with a computer.

一方、風力発電施設は、頂部から支持構造物との接合部までを鋼管製の中空塔状の塔本体部によって構成されており、その塔本体部は、最頂部の2m程度から接合部の5m程度まで外径が漸増する円錐柱状となり、支持構造物上に設置されたトップヘビーのカンチレバー構造とみなすことができる。 On the other hand, the wind power generation facility is composed of a hollow tower-shaped tower body made of steel pipe from the top to the joint with the support structure, and the tower body is from about 2 m at the top to 5 m at the joint. It becomes a conical column whose outer diameter gradually increases to a certain extent, and can be regarded as a top heavy cantilever structure installed on the support structure.

よって、風力発電施設等の塔型構造物は、このような構造的特徴から、時刻歴応答解析における固有モード振り幅が図5に示すようになっている。 Therefore, in the tower-shaped structure such as a wind power generation facility, the intrinsic mode swing width in the time history response analysis is shown in FIG. 5 due to such structural features.

即ち、高層ビル等の高層建築物では、一般的に1次モードの振り幅が卓越し、2次以降の高次モードの振り幅が比較的小さく影響が小さいのに対し、塔型構造物は、2次や3次の高次モードの振り幅が1次モードと同程度であるため、応答加速度が増大する傾向が予想される。 That is, in a high-rise building such as a high-rise building, the swing width of the primary mode is generally predominant, and the swing width of the secondary and subsequent high-order modes is relatively small and the influence is small, whereas the tower type structure has a small influence. Since the swing width of the secondary and tertiary high-order modes is about the same as that of the primary mode, it is expected that the response acceleration tends to increase.

このような塔型構造物は、一般的な高層建築物とは異なり、塔本体部の途中部分、例えば、標高40m付近や60m付近で応答加速度が大きくなることから、全体的に転倒の原因となる層せん断力が大きくなり、転倒に対する安全性確保のために偏心量の許容値を増加させること、即ち、支持構造物を大きくせざるを得ない場合があった。 Unlike general high-rise buildings, such tower-shaped structures have a large response acceleration in the middle of the tower body, for example, near an altitude of 40 m or 60 m, which is a cause of overturning as a whole. In some cases, the layer shearing force becomes large, and the allowable value of the eccentricity is increased in order to ensure safety against overturning, that is, the support structure must be enlarged.

また、経済性の観点から支持構造物の大きさを決定した場合、その支持構造物の大きさに基づく偏心量の許容値に対して余裕が少なくなってしまうという問題があった。 Further, when the size of the support structure is determined from the viewpoint of economic efficiency, there is a problem that the margin becomes small with respect to the allowable value of the eccentricity based on the size of the support structure.

そこで、このような塔型構造物においては、上述のような問題を鑑み、一般の高層建築物と同様に、制振装置を適用した固有モード振り幅の低減が模索されている。 Therefore, in such a tower-shaped structure, in view of the above-mentioned problems, it is sought to reduce the inherent mode swing width by applying a vibration damping device, as in a general high-rise building.

基礎工 vol.12,11頁~15頁、平成25年12月15日Foundation work vol. Pages 12, 11 to 15, December 15, 2013

しかしながら、上述の制振装置の適用に関しては、制振装置を設置するスペースを確保できない場合があり、特に陸上・洋上風力発電施設では、立地条件等に制約があり、制振装置の設置スペースを確保し難い場合があった。 However, regarding the application of the above-mentioned vibration control device, it may not be possible to secure a space for installing the vibration control device. Especially in the onshore / offshore wind power generation facility, there are restrictions on the location conditions, etc. It was sometimes difficult to secure.

また、この種の制振装置は、製作コストが嵩み、建設コストの増大を招くという問題があった。 In addition, this type of vibration damping device has a problem that the manufacturing cost is high and the construction cost is increased.

そこで、本発明は、このような従来の問題に鑑み、簡便な構造で固有モード振り幅に基づく応答加速度の低減を図ることができる塔型構造物及びその構造最適化方法の提供を目的としてなされたものである。 Therefore, in view of such conventional problems, the present invention has been made to provide a tower-shaped structure capable of reducing the response acceleration based on the natural mode swing width with a simple structure and a method for optimizing the structure thereof. It is a thing.

上述の如き従来の問題を解決するための請求項1に記載の発明の特徴は、下端部が着床式の支持構造物に支持された中空塔型の塔本体部と、該塔本体部の上端部に支持された重量物とを備えている塔型構造物において、
前記塔本体部は、前記塔型構造物の時刻歴応答解析モデルを用いた固有値解析で得られる高次振動モードの最大振り幅が生じる高さに対応する高さ方向の所定の範囲に亘って剛性強化部を備え、該剛性強化部は、内側全周に一定の厚さを増した肉厚部を有することにある。
The feature of the invention according to claim 1 for solving the above-mentioned conventional problems is a hollow tower type tower main body whose lower end is supported by a landing type support structure, and the tower main body. In a tower structure with a heavy object supported at the top
The tower main body covers a predetermined range in the height direction corresponding to the height at which the maximum swing width of the higher-order vibration mode obtained by the eigenvalue analysis using the time history response analysis model of the tower structure is generated. It is provided with a rigidity strengthening portion, and the rigidity strengthening portion is to have a wall thickness portion having a certain thickness increased on the entire inner circumference .

請求項2に記載の発明の特徴は、請求項1の構成に加え、前記重量物は、風力発電に用いられる装置であることにある。 A feature of the invention according to claim 2 is that, in addition to the configuration of claim 1, the heavy object is a device used for wind power generation.

請求項3に記載の発明の特徴は、下端部が着床式の支持構造物に支持された中空塔型の塔本体部と、該塔本体部の上端部に支持された重量物とを備えている塔型構造物を、転倒に対する安全性を確保するために最適な構造とする塔型構造物の構造最適化方法であって、前記塔本体部には、応答加速度を低減するための塔本体部の内側全周に一定の厚さを増した肉厚部を設けてなる剛性強化部を備え、該剛性強化部を設ける位置を前記塔型構造物の時刻歴応答解析モデルを用いた固有値解析で得られる高次振動モードの最大振り幅が生じる高さに対応する高さ方向の所定の範囲とすることにある。 The feature of the invention according to claim 3 is a hollow tower type tower main body whose lower end is supported by a landing type support structure, and a heavy object supported by the upper end of the tower main body. This is a structural optimization method for a tower-shaped structure in which the tower-shaped structure is the optimum structure for ensuring safety against overturning, and the tower body is provided with a tower for reducing response acceleration . A rigidity strengthening part is provided on the entire inner circumference of the main body with a thickened part having a certain thickness, and the position where the rigidity strengthening part is provided is a unique value using a time history response analysis model of the tower-shaped structure. The purpose is to set a predetermined range in the height direction corresponding to the height at which the maximum swing width of the higher-order vibration mode obtained by the analysis occurs.

本発明に係る塔型構造物は、請求項1に記載の構成を具備することによって、簡便な構造で固有モード振り幅に基づく応答加速度の低減を図ることができ、支持構造物の小型化又は転倒に対する安全性に余裕を増すことができる。 By providing the structure according to claim 1, the tower-shaped structure according to the present invention can reduce the response acceleration based on the natural mode swing width with a simple structure, and can reduce the size of the support structure or reduce the size of the support structure. It is possible to increase the safety against a fall.

また、本発明において、請求項2に記載の構成を具備することによって、風力発電施設において好適に固有モード振り幅に基づく応答加速度の低減を図ることができる。 Further, in the present invention, by providing the configuration according to claim 2, it is possible to preferably reduce the response acceleration based on the natural mode swing width in the wind power generation facility.

さらに、本発明に係る塔型構造物の構造最適化方法は、請求項3に記載の構成を具備することによって、洋上風力発電施設等の塔型構造物を、簡便な手法で転倒に対する安全性を確保するために最適な構造とすることができる。また、構造の最適化に際し、固有振動数への影響を抑えることができる。 Further, the method for optimizing the structure of the tower-type structure according to the present invention is provided with the configuration according to claim 3, so that the tower-type structure such as an offshore wind power generation facility can be safely overturned by a simple method. The optimum structure can be used to ensure the above. In addition, when optimizing the structure, the influence on the natural frequency can be suppressed.

本発明に係る塔型構造物の一例を示す正面図である。It is a front view which shows an example of the tower type structure which concerns on this invention. 同上の側面図である。It is the same side view. 図1中の剛性強化部を示す部分拡大断面図である。It is a partially enlarged sectional view which shows the rigidity strengthening part in FIG. 時刻歴応答解析に用いる塔型構造物の解析モデル例を示す概略図である。It is a schematic diagram which shows the analysis model example of the tower type structure used for time history response analysis. 従来の塔型構造物の標高に対する固有モード振り幅を示すグラフである。It is a graph which shows the peculiar mode swing width with respect to the elevation of the conventional tower type structure. 剛性強化部を有しない塔型構造物と本発明に係る塔型構造物との標高に対する固有モード振り幅を比較したグラフであって、(a)は剛性強化部を有しない塔型構造物の場合、(b)は本発明に係る塔型構造物の場合を示す。It is a graph comparing the peculiar mode swing width with respect to the altitude of the tower type structure which does not have a rigidity strengthening part and the tower type structure which concerns on this invention, and (a) is a tower type structure which does not have a rigidity reinforcement part. In the case, (b) shows the case of the tower-shaped structure according to the present invention. 同上剛性強化部を有しない塔型構造物と本発明に係る塔型構造物との応答加速度を比較したグラフである。It is the graph which compared the response acceleration of the tower type structure which does not have a rigidity strengthening part and the tower type structure which concerns on this invention.

次に、本発明に係る塔型構造物の実施態様を図1~図7に示した実施例に基づいて説明する。尚、本実施例では、塔型構造物の一例として洋上風力発電施設を例に説明し、図中符号1は水底部、符号2は洋上風力発電施設等の塔型構造物である。 Next, an embodiment of the tower-shaped structure according to the present invention will be described with reference to the examples shown in FIGS. 1 to 7. In this embodiment, an offshore wind power generation facility will be described as an example of a tower-type structure. In the figure, reference numeral 1 is a water bottom portion, and reference numeral 2 is a tower-type structure such as an offshore wind power generation facility.

塔型構造物2は、水底マウンド6に設置された支持構造物3と、下端部が支持構造物3に支持された中空塔型の塔本体部4と、塔本体部4の上端部に支持された重量物である風力発電に用いられる装置(以下、風力発電用装置という)5とを備え、支持構造物3上に塔本体部4が立設され、支持構造物3と塔本体部4とで塔型を成している。 The tower-shaped structure 2 is supported by a support structure 3 installed on the bottom mound 6, a hollow tower-shaped tower main body 4 whose lower end is supported by the support structure 3, and an upper end of the tower main body 4. It is equipped with a device (hereinafter referred to as a wind power generation device) 5 used for wind power generation, which is a heavy object, and a tower main body 4 is erected on the support structure 3, and the support structure 3 and the tower main body 4 are provided. It forms a tower.

支持構造物3は、着床式のものであって、ケーソン式、モノパイル式、杭ジャケット式、鉄筋コンクリート底版とジャケット方式とを融合したハイブリッド式等がある。尚、本実施例は、ハイブリッド式を例に挙げて説明するが、支持構造物3の方式は限定されるも
のではない。
The support structure 3 is a landing type, and includes a caisson type, a monopile type, a pile jacket type, a hybrid type in which a reinforced concrete bottom slab and a jacket type are fused, and the like. In this embodiment, the hybrid type will be described as an example, but the method of the support structure 3 is not limited.

この支持構造物3は、水底マウンド6上に載置された鉄筋コンクリート製の底版7と、底版7上に支持された櫓状のジャケット8とを備え、ジャケット8の上端部に塔本体部4の下端が接合されている。 The support structure 3 includes a reinforced concrete bottom slab 7 placed on the water bottom mound 6 and a turret-shaped jacket 8 supported on the bottom slab 7, and the tower main body 4 is provided at the upper end of the jacket 8. The lower ends are joined.

風力発電用装置5は、塔本体部4の上端に支持されたナセル5aと、ナセル5aに回転可能に支持されたハブ5bと、ハブ5bに支持されたブレード5cとを備え、風力を受けハブ5bとブレード5cとからなるロータが回転することによって発電するようになっている。 The wind power generation device 5 includes a nacelle 5a supported at the upper end of the tower main body 4, a hub 5b rotatably supported by the nacelle 5a, and a blade 5c supported by the hub 5b, and receives wind power. The rotor including the 5b and the blade 5c rotates to generate electricity.

塔本体部4は、複数の塔用鋼管9,9…を上下方向に連結することによって構成され、頂部から支持構造物3との接合部までが中空塔状に形成され、最頂部(例えば、外径2m程度)から接合部(例えば、外径5m程度)まで外径が漸増する円錐柱状となっている。 The tower main body 4 is configured by connecting a plurality of tower steel pipes 9, 9 ... In the vertical direction, and a hollow tower shape is formed from the top to the joint with the support structure 3, and the top (for example, for example). It has a conical columnar shape in which the outer diameter gradually increases from the outer diameter (outer diameter of about 2 m) to the joint (for example, the outer diameter of about 5 m).

また、この塔本体部4は、塔型構造物2の時刻歴応答解析モデルを用いた固有値解析で得られる高次振動モードの最大振り幅が生じる高さに対応する位置にその高さ方向の所定の範囲(10m程度の範囲)に亘って剛性強化部10を備え、転倒の原因となる応答加速度の低減が図られ、転倒に対する安全性を確保するために最適化された構造を成している。 Further, the tower main body 4 is located in the height direction at a position corresponding to the height at which the maximum swing width of the higher-order vibration mode obtained by the eigenvalue analysis using the time history response analysis model of the tower structure 2 is generated. The rigidity strengthening unit 10 is provided over a predetermined range (range of about 10 m), the response acceleration that causes the fall is reduced, and the structure is optimized to ensure the safety against the fall. There is.

剛性強化部10は、図3に示すように、塔用鋼管9の外径をそのままにして内側に厚さを10%程度増した肉厚部11を有し、その部分の剛性が増強され、高次振動モードにおける腹の振り幅を低減させるようになっている。 As shown in FIG. 3, the rigidity strengthening portion 10 has a wall thickness portion 11 having an inner diameter increased by about 10% while keeping the outer diameter of the steel pipe 9 for a tower, and the rigidity of the portion is enhanced. It is designed to reduce the swing width of the belly in the higher vibration mode.

この塔型構造物2は、転倒に対する安全性を確保するために最適な構造とするために高次振動モードの最大振り幅が生じる高さを求める必要があり、先ず、以下のステップに従って塔型構造物2の標高に対する各固有振動数における固有モード振り幅を求める。 It is necessary to obtain the height at which the maximum swing width of the high-order vibration mode is generated in order to make the tower-shaped structure 2 the optimum structure for ensuring the safety against tipping. First, the tower-shaped structure 2 is formed according to the following steps. The natural mode swing width at each natural frequency with respect to the altitude of the structure 2 is obtained.

(ステップ1)
図4に示すように、支持構造物3、塔本体部4、風力発電用装置5からなる塔型構造物2及び地盤を質点・はり・ばね・減衰でモデル化し、解析モデル各節点の「応答加速度時刻歴」を抽出し、各節点の「質量」を乗じた慣性力時刻歴W(t)を求める。尚、支持構造物3を含む塔型構造物2のモデル化においては、支持構造物3の詳細な構造を細分化してモデル化してもよく、構造特性を考慮した上で支持構造物3をそれと等価の「はり」に置き換えてモデル化してもよい。また、地盤とは、水底部1と水底マウンド6とを含む塔型構造物2を支持する地盤をいう。
(Step 1)
As shown in FIG. 4, the tower-type structure 2 including the support structure 3, the tower main body 4, and the wind power generation device 5 and the ground are modeled by mass points, beams, springs, and damping, and the “response” of each node of the analysis model is modeled. The "acceleration time history" is extracted, and the inertial force time history Wi (t) obtained by multiplying the "mass" of each node is obtained. In the modeling of the tower-shaped structure 2 including the support structure 3, the detailed structure of the support structure 3 may be subdivided and modeled, and the support structure 3 may be used in consideration of the structural characteristics. It may be modeled by replacing it with an equivalent "beam". Further, the ground refers to the ground that supports the tower-shaped structure 2 including the water bottom portion 1 and the water bottom mound 6.

(ステップ2)
各節点の慣性力時刻歴W(t)から以下の式に基づいて層せん断力時刻歴Qi(t)を求める。
(数1)
(T)=W(t)・Q(t)
=W(t)+W(t)・Q(t)
=W(t)+W(t)+W(t)+・+W(t)・Qi+1(t)
(Step 2)
The layer shear force time history Qi (t) is obtained from the inertial force time history Wi (t) of each node based on the following equation.
(Number 1)
Q 1 (T) = W 1 (t) · Q 2 (t)
= W 1 (t) + W 2 (t) · Q 3 (t)
= W 1 (t) + W 2 (t) + W 3 (t) + · + Wi (t) · Q i + 1 (t)

(ステップ3)
各節点における層せん断時刻歴Q(t)から、最大値Qimaxを抽出する。
(Step 3)
The maximum value Qimax is extracted from the layer shear time history Qi (t) at each node.

(ステップ4)
各節点間の距離から転倒モーメントMRiを算定する。
(数2)
Ri=Qimax×hi-(i+1)
(Step 4)
The overturning moment MRI is calculated from the distance between each node.
(Number 2)
MRI = Q imax x h i- (i + 1 )

(ステップ5)
支持構造物3に作用する鉛直方向全荷重Vtotalを求め、偏心量eを次式で算出し、偏心量eが許容値以内であることを確認する。

Figure 0007093203000001
尚、転倒モーメントは、節点n、即ち、支持構造物3の下端中央部に作用する転倒の原因となる力として求められる。 (Step 5)
The total vertical load V total acting on the support structure 3 is obtained, the eccentricity e is calculated by the following equation, and it is confirmed that the eccentricity e is within the allowable value.
Figure 0007093203000001
The overturning moment is obtained as a nodal point n, that is, a force acting on the central portion of the lower end of the support structure 3 to cause an overturn.

そして、この塔型構造物2は、支持構造物3に設置されたトップヘビーのカンチレバー構造とみなすことができるので、この構造的特徴に基づいて、塔型構造物2の時刻歴応答解析モデルを用いた固有値解析を実施する。 Since this tower-shaped structure 2 can be regarded as a top-heavy cantilever structure installed on the support structure 3, a time history response analysis model of the tower-shaped structure 2 is based on this structural feature. Perform the eigenvalue analysis used.

図5は、剛性強化部10を有しない塔型構造物2の時刻歴応答解析モデルを用いた固有値解析の結果の一例である。 FIG. 5 is an example of the result of the eigenvalue analysis using the time history response analysis model of the tower type structure 2 having no rigidity strengthening portion 10.

塔型構造物2は、2次や3次の高次モードの振り幅が1次モードと同程度であるため、各高次モードにおいて塔本体部4の途中部分、本実施例では、2次モードで標高40m付近、3次モードにおいて60m付近で応答加速度が増大する。 Since the tower type structure 2 has the same swing width in the secondary and tertiary high-order modes as in the primary mode, the intermediate portion of the tower main body 4 in each high-order mode, in the present embodiment, is secondary. The response acceleration increases near an altitude of 40 m in the mode and around 60 m in the tertiary mode.

また、図5(b)に示すように、4次や5次モードについては、固有値解析で得られる固有振動数が約10Hz程度かそれ以上であり、入力地震動に含まれる該当振動数の影響が少ない場合が多い。 Further, as shown in FIG. 5B, in the 4th and 5th order modes, the natural frequency obtained by the eigenvalue analysis is about 10 Hz or higher, and the influence of the corresponding frequency included in the input seismic motion is affected. Often few.

そこで、2次以上の高次モード振り幅の腹に着目し、また、一般に構造部材の変位がその部材の剛性と反比例することから、図5より最も振り幅の大きい高次モード振り幅の腹位置(本実施例では、最も振り幅の大きい3次モード振り幅の腹位置である標高60m付近)を導き出し、当該腹位置にその高さ方向の所定の範囲(10m程度の範囲)に亘って剛性強化部10を設ける。 Therefore, we pay attention to the antinode of the higher-order mode swing width of the second or higher order, and since the displacement of the structural member is generally inversely proportional to the rigidity of the member, the antinode of the higher-order mode swing width having the largest swing width than FIG. A position (in this embodiment, near an altitude of 60 m, which is the ventral position of the tertiary mode swing width having the largest swing width) is derived, and the abdominal position is over a predetermined range (a range of about 10 m) in the height direction. A rigidity strengthening portion 10 is provided.

このように構成された塔型構造物2は、剛性強化部10を設けることによって、塔型構造物2の応答加速度が大きい部分の剛性が強化され、変位を抑制できるようにしたことによって、図7に示すように、塔構造物全体の応答加速度が低減され、特に、剛性強化部10を設けた位置の応答加速度が低減され、図6に示すように、所定の高次振動モードの振り幅が低減される。 In the tower-shaped structure 2 configured in this way, the rigidity of the portion of the tower-shaped structure 2 having a large response acceleration is strengthened by providing the rigidity strengthening portion 10, and the displacement can be suppressed. As shown in FIG. 7, the response acceleration of the entire tower structure is reduced, in particular, the response acceleration at the position where the rigidity strengthening portion 10 is provided is reduced, and as shown in FIG. 6, the swing width of the predetermined higher vibration mode is reduced. Is reduced.

一方、このような塔型構造物2では、固有振動数が大きく変化すると、動的応答特性に悪影響を及ぼすおそれがある。そこで、塔型構造物2の時刻歴応答解析モデルを用いた固有値解析から得られた固有振動数を比較したところ、以下の表に示すように、剛性強化部10の有無によって固有振動数の大きな違いはなかった。

Figure 0007093203000002
On the other hand, in such a tower-shaped structure 2, if the natural frequency changes significantly, the dynamic response characteristics may be adversely affected. Therefore, when the natural frequencies obtained from the eigenvalue analysis using the time history response analysis model of the tower type structure 2 were compared, as shown in the table below, the natural frequencies were large depending on the presence or absence of the rigidity strengthening portion 10. There was no difference.
Figure 0007093203000002

以上より、この塔型構造物2では、転倒モーメントが低減され、転倒に対する高い安全性を確保することができ、その分、支持構造物3の小型化を図ることが可能となる。 From the above, in this tower-shaped structure 2, the overturning moment is reduced, high safety against overturning can be ensured, and the size of the support structure 3 can be reduced accordingly.

尚、上述の実施例では、3次モードにおける最大振り幅位置に剛性強化部10を設けた例について説明したが、2次モード、4次モード、5次モード等の他の高次モードの最大振り幅が生じる高さに対応する位置に剛性強化部10を備えるようにしてもよい。 In the above-mentioned embodiment, the example in which the rigidity strengthening portion 10 is provided at the maximum swing width position in the tertiary mode has been described, but the maximum of other higher-order modes such as the secondary mode, the quaternary mode, and the fifth-order mode. The rigidity strengthening portion 10 may be provided at a position corresponding to the height at which the swing width is generated.

また、上述の実施例では、洋上風力発電施設を例に説明したが、塔型構造物2はこれに限定されず、陸上の風力発電施設やその他の塔型構造物にも適用することができる。 Further, in the above-described embodiment, the offshore wind power generation facility has been described as an example, but the tower type structure 2 is not limited to this, and can be applied to onshore wind power generation facilities and other tower type structures. ..

1 水底部
2 塔型構造物
3 支持構造物
4 塔本体部
5 風力発電用装置
6 水底マウンド
7 底版
8 ジャケット
9 塔用鋼管
10 剛性強化部
11 肉厚部
1 Water bottom 2 Tower type structure 3 Support structure 4 Tower body 5 Wind power generation equipment 6 Water bottom mound 7 Bottom plate 8 Jacket 9 Steel pipe for tower 10 Rigidity strengthening part 11 Thick part

Claims (3)

下端部が着床式の支持構造物に支持された中空塔型の塔本体部と、該塔本体部の上端部に支持された重量物とを備えている塔型構造物において、
前記塔本体部は、前記塔型構造物の時刻歴応答解析モデルを用いた固有値解析で得られる高次振動モードの最大振り幅が生じる高さに対応する高さ方向の所定の範囲に亘って剛性強化部を備え、該剛性強化部は、内側全周に一定の厚さを増した肉厚部を有することを特徴とする塔型構造物。
In a tower-type structure having a hollow tower-type tower body whose lower end is supported by a landing-type support structure and a heavy object supported by the upper end of the tower body.
The tower main body covers a predetermined range in the height direction corresponding to the height at which the maximum swing width of the higher-order vibration mode obtained by the eigenvalue analysis using the time history response analysis model of the tower structure is generated. A tower-shaped structure including a rigidity-enhanced portion, wherein the rigidity-enhanced portion has a wall-thickened portion having a certain thickness increased on the entire inner circumference .
前記重量物は、風力発電に用いられる装置である請求項1に記載の塔型構造物。 The tower-shaped structure according to claim 1, wherein the heavy object is a device used for wind power generation. 下端部が着床式の支持構造物に支持された中空塔型の塔本体部と、該塔本体部の上端部に支持された重量物とを備えている塔型構造物を、転倒に対する安全性を確保するために最適な構造とする塔型構造物の構造最適化方法であって、
前記塔本体部には、応答加速度を低減するための塔本体部の内側全周に一定の厚さを増した肉厚部を設けてなる剛性強化部を備え、
該剛性強化部を設ける位置を前記塔型構造物の時刻歴応答解析モデルを用いた固有値解析で得られる高次振動モードの最大振り幅が生じる高さに対応する高さ方向の所定の範囲とすることを特徴とする塔型構造物の構造最適化方法。
A tower-type structure having a hollow tower-type tower body whose lower end is supported by a landing-type support structure and a heavy object supported by the upper end of the tower body is safe against tipping over. It is a structural optimization method for tower-shaped structures that has the optimum structure to ensure the properties.
The tower main body is provided with a rigidity strengthening portion provided with a wall thickness portion having a certain thickness increased on the entire inner circumference of the tower main body for reducing response acceleration .
The position where the rigidity strengthening portion is provided is set to a predetermined range in the height direction corresponding to the height at which the maximum swing width of the higher-order vibration mode obtained by the eigenvalue analysis using the time history response analysis model of the tower structure is generated. A method for optimizing the structure of a tower-shaped structure, which is characterized by doing so.
JP2018040471A 2018-03-07 2018-03-07 Tower-shaped structure and its structural optimization method Active JP7093203B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018040471A JP7093203B2 (en) 2018-03-07 2018-03-07 Tower-shaped structure and its structural optimization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018040471A JP7093203B2 (en) 2018-03-07 2018-03-07 Tower-shaped structure and its structural optimization method

Publications (2)

Publication Number Publication Date
JP2019157344A JP2019157344A (en) 2019-09-19
JP7093203B2 true JP7093203B2 (en) 2022-06-29

Family

ID=67995929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018040471A Active JP7093203B2 (en) 2018-03-07 2018-03-07 Tower-shaped structure and its structural optimization method

Country Status (1)

Country Link
JP (1) JP7093203B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111795107A (en) * 2020-07-01 2020-10-20 江苏沃元精密机械有限公司 Damping device for wind power generation base

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008208709A (en) 2007-02-01 2008-09-11 Mizushima General Service Kk Primary mode vibrations damper and vibration damping type steel tube pole
JP2008255602A (en) 2007-04-03 2008-10-23 Toda Constr Co Ltd Variable cross-section tower-like structure constructed by precast construction method
JP2009209623A (en) 2008-03-05 2009-09-17 Ihi Corp Base isolation method and base isolation device for living quarter of construction
WO2011138824A1 (en) 2010-05-06 2011-11-10 三菱重工業株式会社 Sea-borne wind power generation apparatus
JP2016505778A (en) 2012-12-04 2016-02-25 ヴォッベン プロパティーズ ゲーエムベーハーWobben Properties Gmbh Wind turbine generator with damping module or device, structural segment for structure, and damping module

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008208709A (en) 2007-02-01 2008-09-11 Mizushima General Service Kk Primary mode vibrations damper and vibration damping type steel tube pole
JP2008255602A (en) 2007-04-03 2008-10-23 Toda Constr Co Ltd Variable cross-section tower-like structure constructed by precast construction method
JP2009209623A (en) 2008-03-05 2009-09-17 Ihi Corp Base isolation method and base isolation device for living quarter of construction
WO2011138824A1 (en) 2010-05-06 2011-11-10 三菱重工業株式会社 Sea-borne wind power generation apparatus
JP2016505778A (en) 2012-12-04 2016-02-25 ヴォッベン プロパティーズ ゲーエムベーハーWobben Properties Gmbh Wind turbine generator with damping module or device, structural segment for structure, and damping module

Also Published As

Publication number Publication date
JP2019157344A (en) 2019-09-19

Similar Documents

Publication Publication Date Title
Bhattacharya Challenges in design of foundations for offshore wind turbines
Ali et al. Seismic vulnerability of offshore wind turbines to pulse and non‐pulse records
Hemmati et al. Fragility reduction of offshore wind turbines using tuned liquid column dampers
Leite Review of design procedures for monopile offshore wind structures
EP2443342A1 (en) Wind turbine foundation for variable water depth
Chen et al. Application of spherical tuned liquid damper in vibration control of wind turbine due to earthquake excitations
Chew et al. Offshore wind turbine jacket substructure: A comparison study between four-legged and three-legged designs
Kim et al. Feasibility study of new hybrid piled concrete foundation for offshore wind turbine
Yan et al. Dynamic analysis of 10 MW offshore wind turbines with different support structures subjected to earthquake loadings
Huo et al. Dynamic response analysis of wind turbine tubular towers under long-period ground motions with the consideration of soil-structure interaction
JP7093203B2 (en) Tower-shaped structure and its structural optimization method
Vieira et al. A new proposal for an offshore wind foundation for transitional waters
Alotta et al. Seismic protection of land-based wind turbine towers using the tuned inerter damper
Olariu Soil-structure interaction in case of a wind turbine
Liao et al. Dynamic responses of K-type and inverted-K-type jacket support structures for offshore wind-turbines
Rogers et al. Structural dynamics of offshore wind turbines subject to extreme wave loading
Tang et al. Scour effect on dynamic characteristics and responses of offshore wind turbines
Ashish et al. Static and dynamic analysis of jacket substructure for offshore fixed wind turbines
JP6793558B2 (en) Offshore wind power generation facility support structure and its construction method
Jalbi et al. A comparison between advanced and simplified methods to predict the natural frequency of offshore wind turbines incorporating soil-structure interaction
Roni Sahroni Modeling and simulation of offshore wind power platform for 5 MW baseline NREL turbine
Abdelkader Investigation of Hybrid Foundation System for Offshore Wind Turbine
Liu et al. Dynamic analysis of wind turbine tower structures in complex ocean environment
Yuan et al. Effects of Scour on Stiffness of Wide Shallow Bucket Foundation and 1st Natural Frequency of Offshore Wind Turbine
Skourti A review of the available technologies and structural design practices for offshore wind turbines

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220617

R150 Certificate of patent or registration of utility model

Ref document number: 7093203

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150