JP5816116B2 - Vacuum measuring device - Google Patents

Vacuum measuring device Download PDF

Info

Publication number
JP5816116B2
JP5816116B2 JP2012070484A JP2012070484A JP5816116B2 JP 5816116 B2 JP5816116 B2 JP 5816116B2 JP 2012070484 A JP2012070484 A JP 2012070484A JP 2012070484 A JP2012070484 A JP 2012070484A JP 5816116 B2 JP5816116 B2 JP 5816116B2
Authority
JP
Japan
Prior art keywords
vacuum
molten metal
filter
orifice
measuring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012070484A
Other languages
Japanese (ja)
Other versions
JP2013205011A (en
Inventor
三浦 邦明
邦明 三浦
浅葉 信
信 浅葉
千明 山村
千明 山村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sukegawa Electric Co Ltd
Original Assignee
Sukegawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sukegawa Electric Co Ltd filed Critical Sukegawa Electric Co Ltd
Priority to JP2012070484A priority Critical patent/JP5816116B2/en
Publication of JP2013205011A publication Critical patent/JP2013205011A/en
Application granted granted Critical
Publication of JP5816116B2 publication Critical patent/JP5816116B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Fluid Pressure (AREA)

Description

本発明は、溶融金属の蒸気や飛沫が飛散するような空間に真空計を取り付けて当該空間の真空度を計測する装置に関し、特に飛散する蒸気や飛沫が真空計の内部に浸入して真空計による真空測定の障害となること及び蒸気や飛沫によりもたらされる真空計の故障の発生を防止した真空測定装置に関する。   The present invention relates to an apparatus for measuring the degree of vacuum of a space by attaching a vacuum gauge to a space where molten metal vapor or droplets are scattered, and in particular, the scattered vapor or splash penetrates into the vacuum gauge and the vacuum gauge The present invention relates to a vacuum measuring apparatus that prevents the occurrence of a vacuum gauge failure caused by steam and droplets.

例えば溶融アルミニウム等の溶融金属を収納した減圧溶融金属槽内において、溶融金属にArガスなどの不活性ガスを吹き込み、溶融金属を攪拌、循環させることで、溶融金属内に含まれるガスや不純物を溶融金属内部から放出させ、キャリアガスとしての不活性ガスと共に溶融金属内部から除去する溶融金属の精製装置が使用されている。   For example, in a reduced pressure molten metal tank containing molten metal such as molten aluminum, an inert gas such as Ar gas is blown into the molten metal, and the molten metal is stirred and circulated, so that the gas and impurities contained in the molten metal are removed. An apparatus for purifying molten metal is used which is discharged from the inside of the molten metal and removed from the inside of the molten metal together with an inert gas as a carrier gas.

図1は、このような溶融金属精製装置の一例を示す。例えばこの溶融金属精製装置では溶融金属槽11と共に不純物除去槽1が並立して設けられている。
溶融金属槽11の内部にはアルミニウム等の金属16が収納され、この金属16が溶融金属槽11の外側に設けられたヒータ17により加熱されて溶融状態とされる。この溶融金属槽11の内部の溶融金属16には溶融金属槽11の内部に垂下した電極15の下端が浸漬され、当該溶融金属16の状態、具体的にはその温度や液位が検知される。この溶融金属槽11の中には、窒素ガス供給源13から窒素ガスが供給後、窒素減圧装置19によって1/100気圧以下に減圧される。溶融金属槽11の天板側には溶融金属供給筒12が設けられ、この溶融金属供給筒12は蓋18により開閉される。この溶融金属供給筒12と溶融金属槽11の内部との間は遮蔽板14により遮熱されている。
FIG. 1 shows an example of such a molten metal purification apparatus. For example, in this molten metal purification apparatus, the impurity removal tank 1 is provided side by side with the molten metal tank 11.
A metal 16 such as aluminum is accommodated in the molten metal tank 11, and the metal 16 is heated by a heater 17 provided outside the molten metal tank 11 to be in a molten state. The lower end of the electrode 15 suspended in the molten metal tank 11 is immersed in the molten metal 16 inside the molten metal tank 11, and the state of the molten metal 16, specifically, its temperature and liquid level are detected. . In the molten metal tank 11, after nitrogen gas is supplied from the nitrogen gas supply source 13, the pressure is reduced to 1/100 atm or less by the nitrogen pressure reducing device 19. A molten metal supply cylinder 12 is provided on the top plate side of the molten metal tank 11, and the molten metal supply cylinder 12 is opened and closed by a lid 18. The molten metal supply cylinder 12 and the interior of the molten metal tank 11 are shielded by a shielding plate 14.

溶融金属槽11の内部にアルミニウム等の溶融金属16が収納された後に、溶融金属供給管9は、溶融金属によって閉止されるので、溶融金属槽11と不純物除去槽1内が同時に減圧可能状態になる。
一方、不純物除去槽1の外壁にはヒータ20が取り付けられ、その内壁の底部に溶融金属8を収納し、その内部がフィルター3を設けた排気筒2を通して真空ポンプ4により溶融金属槽11と同時に排気される。また、この排気前にガス置換するように、アルゴンガス供給源5から不純物除去槽1内にアルゴンガスが送り込まれ、不純物除去槽1内は、溶融金属槽11と同時減圧後は常に溶融金属槽11と同じか低い圧力、例えばPaオーダーの真空状態に設定される。不純物除去槽1の内部と排気筒2との間は遮蔽板6により遮熱されている。溶融金属槽11の内部と不純物除去槽1内は、同時に減圧されているから溶融金属供給管9を通して不純物除去槽1に溶融金属16が移動することはない。例えば溶融金属槽11の内部の圧力が1kPaで不純物除去槽1の内部の圧力が1Paに設定すると、不純物除去槽1との圧力差の約1kPaに見合った分だけ溶融金属が、溶融金属槽11の内部の溶融金属供給管9内で押し上げられるだけである。溶融金属16が溶融アルミニウムの場合、比重が2.5g/cmとすると、4cm押し上げられるだけである。
After the molten metal 16 such as aluminum is accommodated in the molten metal tank 11, the molten metal supply pipe 9 is closed by the molten metal, so that the molten metal tank 11 and the impurity removal tank 1 can be depressurized at the same time. Become.
On the other hand, a heater 20 is attached to the outer wall of the impurity removal tank 1, the molten metal 8 is accommodated in the bottom of the inner wall, and the inside is simultaneously with the molten metal tank 11 by the vacuum pump 4 through the exhaust cylinder 2 provided with the filter 3. Exhausted. In addition, argon gas is sent from the argon gas supply source 5 into the impurity removal tank 1 so that the gas is replaced before the exhaust, and the impurity removal tank 1 is always in the molten metal tank after being simultaneously decompressed with the molten metal tank 11. 11 is set to a pressure equal to or lower than 11, for example, a vacuum state on the order of Pa. The interior of the impurity removal tank 1 and the exhaust pipe 2 are shielded by a shielding plate 6. Since the inside of the molten metal tank 11 and the inside of the impurity removal tank 1 are depressurized at the same time, the molten metal 16 does not move to the impurity removal tank 1 through the molten metal supply pipe 9. For example, if the pressure inside the molten metal tank 11 is set to 1 kPa and the pressure inside the impurity removal tank 1 is set to 1 Pa, the molten metal is converted into the molten metal tank 11 by an amount corresponding to about 1 kPa of the pressure difference from the impurity removal tank 1. It is only pushed up in the molten metal supply pipe 9 inside. When the molten metal 16 is molten aluminum, if the specific gravity is 2.5 g / cm 3 , it is only pushed up by 4 cm.

前記不純物除去槽1の上部から溶融金属槽11の溶融金属16の中に溶融アルミニウム供給管9が配管され、溶融金属槽11に窒素ガスを導入すると、この溶融アルミニウム供給管9を通して不純物除去槽1へ溶融金属槽11の中から溶融金属16が圧送される。不純物除去槽1側の溶融アルミニウム供給管9の下端には、邪魔板7が取り付けられ、溶融金属16がこの邪魔板7に当たって飛散し、不純物除去槽1に溜る。   When a molten aluminum supply pipe 9 is piped from the upper part of the impurity removal tank 1 into the molten metal 16 of the molten metal tank 11 and nitrogen gas is introduced into the molten metal tank 11, the impurity removal tank 1 is passed through the molten aluminum supply pipe 9. The molten metal 16 is pumped from the molten metal tank 11. A baffle plate 7 is attached to the lower end of the molten aluminum supply pipe 9 on the impurity removal tank 1 side, and the molten metal 16 strikes the baffle plate 7 and scatters and accumulates in the impurity removal tank 1.

溶融アルミニウム供給管9を通して不純物除去供給槽1へ溶融金属槽11の中の溶融金属16が圧送されると、溶融金属16が邪魔板7により飛散し溶融アルミニウムの表面積が拡大される。これにより溶融金属16に含まれるガスや蒸気圧の高い不純物が溶融金属16の内部から放出される。溶融金属16の内部から放出されたガスや蒸気圧の高いマグネシウムや鉛や亜鉛等の不純物の蒸気は、溶融金属槽11の中に送り込まれるキャリアガスとしての窒素ガスとアルゴンガス等の不活性ガスと共に運転中の真空ポンプ4で不純物除去槽1の排気筒2のフィルター3で除去される。   When the molten metal 16 in the molten metal tank 11 is pumped to the impurity removal supply tank 1 through the molten aluminum supply pipe 9, the molten metal 16 is scattered by the baffle plate 7 and the surface area of the molten aluminum is increased. As a result, gas contained in the molten metal 16 and impurities with high vapor pressure are released from the inside of the molten metal 16. Gases released from the inside of the molten metal 16 and vapors of impurities such as magnesium, lead and zinc having a high vapor pressure are inert gases such as nitrogen gas and argon gas as carrier gases sent into the molten metal tank 11. At the same time, it is removed by the filter 3 of the exhaust pipe 2 of the impurity removal tank 1 by the vacuum pump 4 in operation.

このように減圧下でアルゴンガス中を飛散する溶融金属16から水素ガスや蒸気圧の高い不純物を除去する装置では、アルゴンガスを流しながらPaオーダーの真空圧力で行われている。溶融金属16が溶融アルミニウムの場合は、窒素と僅かに反応して窒化物を作って、不純物の蒸発を妨げるので、アルゴンガス中で飛散させる必要がある。溶融アルミニウムを押し出すための溶融金属槽11に供給するガスもアルゴンガスが最適だが、元来溶融金属槽11内の処理されるべき溶融金属16は図1に示す量より多く、押し出している間のガスはコスト低減の為に窒素ガスで説明した。鉄等の高温で溶融される金属用の減圧不純物除去装置は、RH装置と呼ばれ、どの製鉄所でも使われている。これらのRH装置では、大容量の真空ポンプとして蒸気エゼクターポンプが使われ、硫黄や水素等の非金属元素を排気する手段となっている。   Thus, in the apparatus which removes hydrogen gas and impurities with high vapor pressure from the molten metal 16 scattered in the argon gas under reduced pressure, it is performed at a vacuum pressure on the order of Pa while flowing the argon gas. In the case where the molten metal 16 is molten aluminum, it reacts slightly with nitrogen to form a nitride, preventing the evaporation of impurities, so it must be scattered in argon gas. Argon gas is also optimal as the gas supplied to the molten metal tank 11 for extruding the molten aluminum, but the amount of molten metal 16 to be processed originally in the molten metal tank 11 is larger than the amount shown in FIG. The gas was explained using nitrogen gas for cost reduction. A reduced pressure impurity removing device for metals such as iron that is melted at a high temperature is called an RH device and is used in any steelworks. In these RH apparatuses, a steam ejector pump is used as a large-capacity vacuum pump, which is a means for exhausting non-metallic elements such as sulfur and hydrogen.

他方、アルミニウムスクラップ等の比較的低温で溶融する金属用の場合、鉄用に比べると溶湯温度が低いのでフラックスや塩素ガスによる精製でも十分可能である。そのため前述のような手段はあまり普及していない。ところが塩素ガスを使用した設備は環境対策が大変である。そこで近年ではスクラップアルミニウムについても、その中のマグネシウムや亜鉛や鉛等を前述した手段で除去したいとの要望が高まっている。   On the other hand, in the case of a metal that melts at a relatively low temperature, such as aluminum scrap, the molten metal temperature is lower than that for iron, so that purification by flux or chlorine gas is sufficiently possible. Therefore, the means as described above are not so popular. However, facilities using chlorine gas are difficult to take environmental measures. Therefore, in recent years, there is an increasing demand for removing magnesium, zinc, lead and the like in scrap aluminum by the above-described means.

しかし、溶融アルミニウムの蒸気は腐食性が高いため、真空計の使用は困難である。一般の真空計をそのまま使用し、設置すると、早期に故障し、使用出来なくなる。そのため、不活性ガスと減圧による溶融アルミニウムの精製装置では、真空計の設置に特別な技術と工夫が要求される。   However, since the vapor of molten aluminum is highly corrosive, it is difficult to use a vacuum gauge. If a general vacuum gauge is used as it is and installed, it will fail early and become unusable. Therefore, special techniques and devices are required for installing a vacuum gauge in an apparatus for purifying molten aluminum using inert gas and reduced pressure.

特開2012−009290号公報JP 2012-009290 A 特開2007−510272号公報JP 2007-510272 A 特開2004−349102号公報JP 2004-349102 A 特開平10−281911号公報Japanese Patent Laid-Open No. 10-281911

溶融金属精製装置の概略を示す断面図である。It is sectional drawing which shows the outline of a molten metal refinement | purification apparatus. 本発明による真空測定装置の一実施例を示す概念図である。It is a conceptual diagram which shows one Example of the vacuum measuring apparatus by this invention. 本発明による真空測定装置の他の実施例を示す概念図である。It is a conceptual diagram which shows the other Example of the vacuum measuring apparatus by this invention. 本発明による真空測定装置の他の実施例を示す概念図である。It is a conceptual diagram which shows the other Example of the vacuum measuring apparatus by this invention.

本発明は、前記従来の課題に鑑みてなされたもので、溶融金属の蒸気が浸入しにくく、その浸入による真空計の障害が起こりにくい真空測定装置を提供するものである。特に真空空間に真空計を取り付けるのに好適な構造を提供することを目的とする。   The present invention has been made in view of the above-described conventional problems, and provides a vacuum measuring apparatus in which molten metal vapor is less likely to enter and obstruction of a vacuum gauge due to the intrusion is less likely to occur. In particular, an object is to provide a structure suitable for mounting a vacuum gauge in a vacuum space.

本発明では、前記の目的を達成するため、真空空間33に上向きに接続した分岐ダクト状のフィルター部32の先端に真空計31を取り付ける。そしてこのフィルター部32を加熱することにより、蒸気の凝固を防止すると共に、その中にオリフィス34を設けて真空計31への蒸気や液滴の浸入を防止し、真空空間33に復流させるようにした。   In the present invention, in order to achieve the above object, the vacuum gauge 31 is attached to the tip of the branch duct-shaped filter part 32 connected upward to the vacuum space 33. The filter unit 32 is heated to prevent the vapor from solidifying, and the orifice 34 is provided therein to prevent the vapor and droplets from entering the vacuum gauge 31 so as to return to the vacuum space 33. I made it.

すなわち、本発明による真空測定装置は、減圧された真空空間33に上向きに分岐ダクト状のフィルター部32を接続し、このフィルター部32を加熱すると共に、その上端に真空計31を取り付け、フィルター部32に蒸気や液滴をトラップするオリフィス34を設けたものである。さらにこのオリフィス34の下部には、それらオリフィス34及びフィルター部32の壁面に付着した液滴を下方へ流す切欠き状のドレン36を設ける。蒸気や液滴を真空空間33に復流させるためフィルター部32の上向き勾配θ1は、液滴が自然に流れ落ちやすい最低の角度の7゜以上がよい。 That is, the vacuum measuring apparatus according to the present invention connects a filter unit 32 having a branched duct shape upward to a decompressed vacuum space 33, heats the filter unit 32, and attaches a vacuum gauge 31 to the upper end of the filter unit 32. 32 is provided with an orifice 34 for trapping vapor or droplets. Further, a notch-shaped drain 36 is provided below the orifice 34 to allow the liquid droplets adhering to the wall surfaces of the orifice 34 and the filter portion 32 to flow downward. The upward gradient θ1 of the filter portion 32 for returning the steam and droplets to the vacuum space 33 is preferably 7 ° or more, which is the lowest angle at which the droplets easily flow down.

オリフィス34はフィルター部32の途中に設けた仕切状のものであり、複数段設けるのが好ましい。オリフィス34には希薄気体分子を通す分子通過孔35が設けられている。フィルター部32にオリフィス34を複数段設けた場合は、それらオリフィス34の分子通過孔35は互いに各オリフィス34の面方向にずれて配置するのがよい。 The orifice 34 has a partition shape provided in the middle of the filter portion 32, and is preferably provided in a plurality of stages. The orifice 34 is provided with a molecule passage hole 35 through which a rare gas molecule passes. In the case where a plurality of stages of orifices 34 are provided in the filter portion 32, the molecular passage holes 35 of the orifices 34 are preferably arranged so as to be shifted from each other in the surface direction of the orifices 34 .

このような本発明による真空測定装置では、真空空間33の中の希薄ガスがフィルター部32を通して真空計31に導入され、ガス分子が真空計31で検知されて真空が測定される。このとき、フィルター部32は、真空空間33に上向きに接続されているため、真空空間33から真空計31には液滴が浸入しにくい。また、フィルター部32に液滴が浸入しても、フィルター部32は加熱されているため、その中で液滴が凝固せず、フィルター部32の勾配に沿って真空空間33側に復流し、排出される。   In such a vacuum measuring apparatus according to the present invention, the diluted gas in the vacuum space 33 is introduced into the vacuum gauge 31 through the filter unit 32, and gas molecules are detected by the vacuum gauge 31 to measure the vacuum. At this time, since the filter unit 32 is connected upward to the vacuum space 33, it is difficult for droplets to enter the vacuum gauge 31 from the vacuum space 33. Even if the liquid droplets enter the filter unit 32, the filter unit 32 is heated, so that the liquid droplets do not solidify and return to the vacuum space 33 side along the gradient of the filter unit 32, Discharged.

これに加え、フィルター部32にオリフィス34が設けられていることにより、このオリフィス34によっても液滴が真空計31側に浸入するのが阻止される。特に、フィルター部32にオリフィス34を複数段設け、それらオリフィス34の分子通過孔35を互いに面方向にずれて配置すると、前記液滴の阻止効果がさらに高くなる。オリフィス34の下部に切欠き状のドレン36を設けていることにより、それらオリフィス34及びフィルター部32の壁面に付着した液滴をフィルター部32の勾配に沿って下方へ流し、真空空間33側への復流を促すことが出来る。 In addition to this, since the orifice 34 is provided in the filter portion 32, the orifice 34 also prevents liquid droplets from entering the vacuum gauge 31 side. In particular, if the filter section 32 is provided with a plurality of stages of orifices 34 and the molecular passage holes 35 of the orifices 34 are shifted from each other in the plane direction, the effect of blocking the droplets is further enhanced. By providing a notch-shaped drain 36 at the lower part of the orifice 34, the droplets adhering to the wall surfaces of the orifice 34 and the filter part 32 are caused to flow downward along the gradient of the filter part 32 and to the vacuum space 33 side. Can be encouraged.

このように本発明による真空測定装置では、真空計31で真空空間33の真空を測定するに当たり、フィルター部32とそれに設けたオリフィス34により真空計31に蒸気や液滴が到達し難くなる。よって蒸気や液滴の浸入に起因する真空計31の障害が起こりにくくなり、安定した真空測定が可能となる。   As described above, in the vacuum measuring apparatus according to the present invention, when the vacuum gauge 31 measures the vacuum in the vacuum space 33, it is difficult for vapor and droplets to reach the vacuum gauge 31 by the filter portion 32 and the orifice 34 provided thereon. Therefore, the trouble of the vacuum gauge 31 due to the intrusion of vapor or droplets is less likely to occur, and stable vacuum measurement is possible.

本発明では、前記の目的を達成するため、真空空間33に上向きに接続した分岐ダクト状のフィルター部32を設け、その上端に真空計31を取り付けた。前記フィルター部32は加熱すると共に、その内部に蒸気や液滴をトリップするオリフィス34を設けた。
以下、本発明を実施するための最良の形態について、実施例をあげて詳細に説明する。
In the present invention, in order to achieve the above object, a branch duct-like filter portion 32 connected upward is provided in the vacuum space 33, and a vacuum gauge 31 is attached to the upper end thereof. The filter unit 32 is heated and provided with an orifice 34 for tripping vapor and droplets.
Hereinafter, the best mode for carrying out the present invention will be described in detail with reference to examples.

図2は、本発明による真空測定装置の一実施例を示している。例えば前述した溶融アルミニウムの精製装置等においては、減圧される真空空間33を有している。図2はこの真空空間33に真空計31を取り付ける構造を示している。この図2の例では真空空間33は垂直な配管状となっている例であり、矢印は気体の流れる方向を示している。   FIG. 2 shows an embodiment of a vacuum measuring device according to the present invention. For example, the above-described apparatus for purifying molten aluminum has a vacuum space 33 to be decompressed. FIG. 2 shows a structure in which the vacuum gauge 31 is attached to the vacuum space 33. In the example of FIG. 2, the vacuum space 33 is an example of a vertical pipe shape, and an arrow indicates the direction of gas flow.

この真空空間33に上向き勾配を与えてダクト管状のフィルター部32が接続されていると共に、このフィルター部32は熱源37によりその中の液滴が凝固しない程度の温度に加熱される。真空計31はこのフィルター部32の上端に設けられている。フィルター部32は上向き勾配である限り、途中で角度が変化していてもよい。また他の管状ダクトが分岐する構造であってもよい。何れにしてもフィルター部32の真空空間33に対する接続位置より高い位置に真空計31を設ける。図2に示すフィルター部32の勾配はθ1であるが、このθ1は、液滴が自然に流れ落ちやすい最低の角度の7゜以上とする。また熱源37は、図示のようにフィルター部32の近傍に配置する他、筒状のフィルター部32を囲むようにワイヤ状のヒータを巻いた状態で取り付けてもよい。   A duct-shaped filter section 32 is connected to the vacuum space 33 by giving an upward gradient, and the filter section 32 is heated by a heat source 37 to a temperature at which droplets therein do not solidify. The vacuum gauge 31 is provided at the upper end of the filter portion 32. As long as the filter portion 32 has an upward slope, the angle may change midway. Moreover, the structure where another tubular duct branches may be sufficient. In any case, the vacuum gauge 31 is provided at a position higher than the connection position of the filter unit 32 to the vacuum space 33. The gradient of the filter section 32 shown in FIG. 2 is θ1, and this θ1 is set to 7 ° or more, which is the minimum angle at which the droplets easily flow down. Further, the heat source 37 may be disposed in the vicinity of the filter portion 32 as illustrated, or may be attached in a state where a wire heater is wound so as to surround the tubular filter portion 32.

フィルター部32にはオリフィス34が設けられている。前述のようにフィルター部32はダクト管状であり、このオリフィス34はフィルター部32を途中で仕切る仕切板状である。図2の実施例では、フィルター部32の内部通路は円筒形であり、オリフィス34はこれを仕切る円板形である。このオリフィス34には1個所以上にガス分子を通すための分子通過孔35が設けられている。   The filter part 32 is provided with an orifice 34. As described above, the filter portion 32 has a duct shape, and the orifice 34 has a partition plate shape that partitions the filter portion 32 on the way. In the embodiment of FIG. 2, the internal passage of the filter portion 32 has a cylindrical shape, and the orifice 34 has a disk shape for partitioning it. The orifice 34 is provided with a molecule passage hole 35 for passing gas molecules at one or more places.

オリフィス34は、フィルター部32に複数段、より具体的には3段以上設けることが好ましい。各オリフィス34に設けた分子通過孔35は、それらの面方向に互いにずれて設けられている。例えばあるオリフィス34の分子通過孔35が中心付近に設けた場合、それより上にあるオリフィス34の分子通過孔35は中心から偏った位置に設ける。図2において矢印は下段のオリフィス34を分子が通過する状態を示している。   The orifice 34 is preferably provided in the filter portion 32 in a plurality of stages, more specifically, three or more stages. The molecule passage holes 35 provided in the respective orifices 34 are provided so as to be shifted from each other in the surface direction. For example, when the molecule passage hole 35 of an orifice 34 is provided in the vicinity of the center, the molecule passage hole 35 of the orifice 34 above it is provided at a position deviated from the center. In FIG. 2, the arrow indicates a state in which molecules pass through the lower orifice 34.

また、オリフィス34の一部又は全部には、切欠状のドレン36を設ける。このドレン36は、オリフィス34の下部、すなわちフィルター部32の底面側に設ける。図2の実施例では、下から2段のオリフィス34にドレン36を設けている。下段のみではなく、全てのオリフィス34にドレンを設けてもよい。   A cut-out drain 36 is provided in a part or all of the orifice 34. The drain 36 is provided below the orifice 34, that is, on the bottom surface side of the filter portion 32. In the embodiment of FIG. 2, a drain 36 is provided in the orifice 34 in the two stages from the bottom. The drain may be provided not only in the lower stage but in all the orifices 34.

このような真空測定装置において真空計31を使用する時、加熱されるフィルター部32が水分や溶融金属の飛沫が真空計31に浸入するのを防止し、溶融金属を溶融状態のまま真空空間33に復流させるのに重要な働きをする。しかし、単にフィルター部32を設置しただけでは、すぐに目詰りしてしまう。そこで大きな飛沫を取ってから、その飛沫もフィルター部32で凝固しない程度に加熱しながら自然に液滴となして真空空間33に復流させ、フィルター部32から排出するのが良い。この状態でフィルター部32を介して、系内の真空圧力を測定するのが有効である。   When the vacuum gauge 31 is used in such a vacuum measuring device, the heated filter unit 32 prevents moisture and molten metal splashes from entering the vacuum gauge 31, and the vacuum space 33 remains in a molten state while the molten metal remains in a molten state. It plays an important role in returning to the river. However, if the filter part 32 is simply installed, it will be clogged immediately. Therefore, after taking a large droplet, it is preferable that the droplet is naturally converted into a droplet while being heated to such an extent that it is not solidified by the filter unit 32, and then returned to the vacuum space 33 and discharged from the filter unit 32. In this state, it is effective to measure the vacuum pressure in the system through the filter unit 32.

飛沫流から液滴が四方八方へ散乱したとき、液滴が真空計31の検出部に付着し又は液滴が真空計31の検出部を閉塞すると、真空計31が正確な測定値を示さなくなる。従って、液滴が真空計31に侵入することを防止するために、オリフィス34を設ける。オリフィス34は3段以上とする。複数段のオリフィス34の分子通過孔35は互いに面方向にずれているので、液滴は真空計31まで届くのを阻止する。真空計31に到達する前にオリフィス34でトラップされた液滴はオリフィス34の切欠状のドレン36を通ってフィルター部32の底部に導かれ、その後フィルター部32を通って真空空間33に復流し、排出される。液滴がスムーズに流れて真空空間33に復流するためにはフィルター部32の勾配θ1は、液滴が自然に流れ落ちやすい最低の角度の7°以上必要である。   When the droplets are scattered in all directions from the splash flow, if the droplets adhere to the detection part of the vacuum gauge 31 or if the droplets block the detection part of the vacuum gauge 31, the vacuum gauge 31 does not show an accurate measurement value. . Accordingly, the orifice 34 is provided to prevent the liquid droplet from entering the vacuum gauge 31. The orifice 34 has three or more stages. Since the molecule passage holes 35 of the plurality of orifices 34 are displaced from each other in the plane direction, the droplets are prevented from reaching the vacuum gauge 31. The liquid droplet trapped at the orifice 34 before reaching the vacuum gauge 31 is guided to the bottom of the filter unit 32 through the notch-shaped drain 36 of the orifice 34, and then returns to the vacuum space 33 through the filter unit 32. Discharged. In order for the liquid droplets to flow smoothly and return to the vacuum space 33, the gradient θ1 of the filter unit 32 needs to be 7 ° or more, which is the minimum angle at which the liquid droplets naturally flow down.

図3は、本発明による真空測定装置の他の実施例を示しており、この例では真空空間33は水平な配管状のものが例示されている。フィルター部32はこの水平な真空空間33に対して垂直に分岐配管され、熱源37により加熱される。フィルター部32の上端に真空計31を設けたこと、フィルター部32に分子通過孔35を有するオリフィス34を複数段設けたこと、各オリフィス34の分子通過孔35が面方向にずれていること、少なくとも下段側のオリフィス34に切欠状のドレン36を設けていること等は図2より前述した実施例と同様である。オリフィス34はθ2の勾配をもってフィルター部32の内部に設けられており、このθ2は、液滴が自然に流れ落ちやすい最低の角度の7゜以上とする。   FIG. 3 shows another embodiment of the vacuum measuring apparatus according to the present invention. In this example, the vacuum space 33 is illustrated as a horizontal pipe. The filter part 32 is branched vertically to the horizontal vacuum space 33 and heated by a heat source 37. A vacuum gauge 31 is provided at the upper end of the filter part 32, a plurality of orifices 34 having molecular passage holes 35 are provided in the filter part 32, and the molecular passage holes 35 of each orifice 34 are displaced in the surface direction. The notch-shaped drain 36 is provided at least in the lower orifice 34 as in the embodiment described above with reference to FIG. The orifice 34 is provided inside the filter portion 32 with a gradient of θ2, and this θ2 is set to 7 ° or more, which is the minimum angle at which the droplets easily flow down.

この実施例においても、各オリフィス34の分子通過孔35は面方向にずれているので、液滴は真空計31まで届かない。真空計31に到達する前にトラップされた液滴は切欠状のドレン36を通って真空空間33に復流し、排出される。   Also in this embodiment, since the molecular passage hole 35 of each orifice 34 is displaced in the surface direction, the droplet does not reach the vacuum gauge 31. The droplets trapped before reaching the vacuum gauge 31 return to the vacuum space 33 through the notch-shaped drain 36 and are discharged.

図4は、これらフィルター部32の後にバルブ39と金属メッシュフィルター38を取り付けた後に、真空計31を取り付けた場合を示している。これに拠って非常に細かい不純物蒸気が、金属メッシュフィルター38で取り除かれ、メンテナンス時にバルブ39を閉めて、金属メッシュフィルター38を交換するだけで、真空計31を再稼働することが出来る。フィルター部32は温度が高いので耐熱性と耐食性があればこの金属メッシュフィルター38に替わってセラミックフィルターでも良い。フィルター部32の内部の構成は図3により前述した実施例と同じであるので、説明を省略する。
これらの実施例による真空計31は、真空ポンプ4と不純物除去槽1との間の真空空間33に取り付けられる。
FIG. 4 shows a case where the vacuum gauge 31 is attached after the valve 39 and the metal mesh filter 38 are attached after the filter portion 32. Accordingly, very fine impurity vapor is removed by the metal mesh filter 38, and the vacuum gauge 31 can be restarted by simply closing the valve 39 and replacing the metal mesh filter 38 during maintenance. Since the filter portion 32 has a high temperature, a ceramic filter may be used instead of the metal mesh filter 38 as long as it has heat resistance and corrosion resistance. The internal configuration of the filter unit 32 is the same as that of the embodiment described above with reference to FIG.
The vacuum gauge 31 according to these embodiments is attached to the vacuum space 33 between the vacuum pump 4 and the impurity removal tank 1.

本発明は、例えば溶融金属にArガスなどの不活性ガスを吹き込み、溶融金属を攪拌、循環させることで、溶融金属内に含まれるガスや不純物を溶融金属内部から放出させ、溶融金属内部から除去する溶融金属の精製装置における真空測定等に適用することが可能である。   In the present invention, for example, an inert gas such as Ar gas is blown into the molten metal, and the molten metal is stirred and circulated, so that gas and impurities contained in the molten metal are released from the molten metal and removed from the molten metal. It is possible to apply to the vacuum measurement etc. in the refiner | purifier of the molten metal to do.

31 真空計
32 フィルター部
33 真空空間
34 オリフィス
35 分子通過孔
36 ドレン
37 熱源
38 金属メッシュフィルター
39 バルブ
31 Vacuum gauge 32 Filter part 33 Vacuum space 34 Orifice 35 Molecular passage hole 36 Drain 37 Heat source 38 Metal mesh filter 39 Valve

Claims (6)

減圧される真空空間(33)に真空計(31)を設けた真空測定装置において、前記真空空間(33)に上向きに分岐ダクト状のフィルター部(32)を接続し、このフィルター部(32)を加熱すると共に、その上端に真空計(31)を取り付け、フィルター部(32)に蒸気や液滴をトラップするオリフィス(34)を設け、このオリフィス(34)の下部にそれらオリフィス(34)及びフィルター部(32)の壁面に付着した液滴を下方へ流す切欠き状のドレン(36)を設けたことを特徴とする真空測定装置。 In the vacuum measuring device provided with a vacuum gauge (31) in the vacuum space (33) to be depressurized, a branch duct-shaped filter part (32) is connected upward to the vacuum space (33), and this filter part (32) And a vacuum gauge (31) is attached to the upper end of the filter, and an orifice (34) for trapping vapor and droplets is provided in the filter part (32). The orifice (34) and A vacuum measuring device provided with a notch-shaped drain (36) for allowing droplets adhering to the wall surface of the filter portion (32) to flow downward . フィルター部(32)の上向き勾配θ1を7゜以上としたことを特徴とする請求項1に記載の真空測定装置。 The vacuum measuring device according to claim 1, wherein the upward gradient θ1 of the filter section (32) is 7 ° or more. オリフィス(34)をフィルター部(32)の途中に複数段設けたことを特徴とする請求項1又は2に記載の真空測定装置。 The vacuum measuring device according to claim 1 or 2, wherein a plurality of orifices (34) are provided in the middle of the filter portion (32). オリフィス(34)は希薄気体分子を通す分子通過孔(35)が設けられていることを特徴とする請求項1〜3の何れかに記載の真空測定装置。 The vacuum measuring device according to any one of claims 1 to 3, wherein the orifice (34) is provided with a molecule passage hole (35) through which a rare gas molecule passes. それらオリフィス(34)の分子通過孔(35)は互いに各オリフィス(34)の面方向にずれて配置されていることを特徴とする請求項4に記載の真空測定装置。 5. The vacuum measuring device according to claim 4, wherein the molecular passage holes (35) of the orifices (34) are arranged so as to be shifted from each other in the surface direction of the orifices (34). フィルター部(32)と真空計(31)との間にバルブ(39)と金属メッシュフィルター(38)を取り付けことを特徴とする請求項1〜の何れかに記載の真空測定装置。 Vacuum measuring device according to any one of claims 1 to 5, characterized in that fitted with valve (39) and the metal mesh filter (38) between the filter unit (32) gauge (31).
JP2012070484A 2012-03-27 2012-03-27 Vacuum measuring device Active JP5816116B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012070484A JP5816116B2 (en) 2012-03-27 2012-03-27 Vacuum measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012070484A JP5816116B2 (en) 2012-03-27 2012-03-27 Vacuum measuring device

Publications (2)

Publication Number Publication Date
JP2013205011A JP2013205011A (en) 2013-10-07
JP5816116B2 true JP5816116B2 (en) 2015-11-18

Family

ID=49524275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012070484A Active JP5816116B2 (en) 2012-03-27 2012-03-27 Vacuum measuring device

Country Status (1)

Country Link
JP (1) JP5816116B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58101155U (en) * 1981-12-29 1983-07-09 株式会社大阪真空機器製作所 Dust trap for vacuum gauge
JPH10153510A (en) * 1996-11-21 1998-06-09 Nec Kansai Ltd Vacuum apparatus and diaphragm vacuum gauge
JP4877320B2 (en) * 2008-12-26 2012-02-15 第一真空エンジニアリング株式会社 Impurity inflow prevention device

Also Published As

Publication number Publication date
JP2013205011A (en) 2013-10-07

Similar Documents

Publication Publication Date Title
US8101131B2 (en) Chlorosilanes purifying apparatus and chlorosilanes manufacturing method
US20130098974A1 (en) Apparatus And Method For Providing An Inerting Gas During Soldering
JP2011506435A5 (en)
JP6120852B2 (en) Liquid fuel capture device
JP5816116B2 (en) Vacuum measuring device
WO2008010319A1 (en) Cleaning device
US9044701B2 (en) Gas purification apparatus and related method
CN109181786B (en) Improved process for coke oven gas desulfurization
JP2014185713A (en) Tank protection container
JP5409185B2 (en) Air salinity measuring method and measuring system
ES2674770T3 (en) Solid water separation to sample water spray from a continuous casting machine
JP3464583B2 (en) Na recovery method and apparatus
CN109181785B (en) Coke oven gas desulfurizing tower
TW201909996A (en) Inertial impactor with particle loading effect, wet impact surface
KR102600367B1 (en) Immersion sensor for determining the chemical composition of molten metal
KR102593663B1 (en) Moisture trap for analysis of atmospheric air sample and System of analysis for air pollutant using the same
JP2001113112A (en) Wet type aerosol removing device
JP3072008B2 (en) Atmospheric sampling equipment in soldering equipment
JP2010016227A (en) Semiconductor manufacturing apparatus and exhaust trap device
EP2361323B1 (en) Method and device for measuring a chemical composition of a liquid metal suitable for coating a steel strip
JP5803779B2 (en) Cracked oil recovery device and cracked oil manufacturing method
JP2007205606A (en) Dust generation suppressing device
JP6155169B2 (en) Filter
CN105377471A (en) Lead retaining purge plug
US20090107154A1 (en) Cooling trap unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150908

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150925

R150 Certificate of patent or registration of utility model

Ref document number: 5816116

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250