JP5815296B2 - Exhaust gas purification device for internal combustion engine - Google Patents

Exhaust gas purification device for internal combustion engine Download PDF

Info

Publication number
JP5815296B2
JP5815296B2 JP2011135388A JP2011135388A JP5815296B2 JP 5815296 B2 JP5815296 B2 JP 5815296B2 JP 2011135388 A JP2011135388 A JP 2011135388A JP 2011135388 A JP2011135388 A JP 2011135388A JP 5815296 B2 JP5815296 B2 JP 5815296B2
Authority
JP
Japan
Prior art keywords
amount
clogging
exhaust
exhaust gas
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011135388A
Other languages
Japanese (ja)
Other versions
JP2013002388A (en
Inventor
伊藤 嘉康
嘉康 伊藤
慎一郎 吉瀧
慎一郎 吉瀧
信一 日下部
信一 日下部
義 豊田
義 豊田
昌明 岡村
昌明 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Toyota Motor Corp
Original Assignee
Toyota Industries Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp, Toyota Motor Corp filed Critical Toyota Industries Corp
Priority to JP2011135388A priority Critical patent/JP5815296B2/en
Priority to EP12733217.9A priority patent/EP2721263B1/en
Priority to AU2012270014A priority patent/AU2012270014B2/en
Priority to PCT/IB2012/001285 priority patent/WO2012172423A1/en
Publication of JP2013002388A publication Critical patent/JP2013002388A/en
Application granted granted Critical
Publication of JP5815296B2 publication Critical patent/JP5815296B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/103Oxidation catalysts for HC and CO only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/025Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/14Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the exhaust system
    • F02M26/15Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the exhaust system in relation to engine exhaust purifying apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics

Description

本発明は、内燃機関の排気浄化装置に関するものである。   The present invention relates to an exhaust emission control device for an internal combustion engine.

近年、一部の内燃機関の排気系には、排気中のPM(Particulate Matter:粒子状物質)を捕集するフィルタ等の排気浄化部材が設けられている。
この排気浄化部材には、浄化機能の回復等を行うために添加剤供給が行われる場合がある。例えば、特許文献1に記載の装置では、フィルタ内に捕集されたPMが堆積すると、フィルタでの圧力損失が増大してしまうため、フィルタに添加剤として燃料を供給することにより捕集されたPMを焼失させて、同フィルタを再生するようにしている。
In recent years, exhaust systems of some internal combustion engines have been provided with exhaust purification members such as filters that collect PM (particulate matter) in the exhaust.
The exhaust purification member may be supplied with an additive in order to recover the purification function or the like. For example, in the apparatus described in Patent Document 1, when PM collected in the filter accumulates, pressure loss in the filter increases, and thus the fuel is collected by supplying fuel as an additive to the filter. PM is burned out and the filter is regenerated.

特開2007−23792号公報JP 2007-23792 A

ところで、排気浄化部材に供給される添加剤は、排気浄化部材での燃焼や酸化反応等によって基本的には気化・焼失される。しかし、一部の添加剤が燃焼や酸化反応等によって焼失されることなく、そのまま比較的温度の低い排気浄化部材の前端面に付着してしまうと、前端面に付着した添加剤がバインダとなってPM等を吸着し、排気浄化部材の前端面にPMによる詰まりを生じさせるおそれがある。   By the way, the additive supplied to the exhaust purification member is basically vaporized and burnt down by combustion, oxidation reaction, etc. in the exhaust purification member. However, if some of the additives adhere to the front end surface of the exhaust purification member having a relatively low temperature without being burned off by combustion or oxidation reaction, the additive adhering to the front end surface becomes a binder. Then, PM or the like may be adsorbed, and the front end surface of the exhaust purification member may be clogged with PM.

この発明は、こうした実情に鑑みてなされたものであり、その目的は、排気浄化部材の前端面におけるPMの詰まりを好適に低減することのできる内燃機関の排気浄化装置を提供することにある。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide an exhaust purification device for an internal combustion engine that can suitably reduce clogging of PM on the front end surface of the exhaust purification member.

以下、上記目的を達成するための手段及びその作用効果について記載する。
請求項1に記載の発明は、排気通路に設けられた排気浄化部材と、同排気浄化部材に添加剤を供給する添加剤供給機構と、排気を吸気通路に還流させる排気還流機構と、同排気還流機構による排気の還流量を機関運転状態に基づいて制御する制御部とを備える内燃機関の排気浄化装置において、前記排気浄化部材の前端面の詰まり量が予め定められた閾値を超えたときには、前記還流量を減少させる減少量に補正係数を乗じて、前記詰まり量が前記閾値を超えていないときに比して前記還流量を減少させ、前記補正係数は、前記詰まり量が多いときほど前記還流量の減少量を多くすることをその要旨とする。
In the following, means for achieving the above object and its effects are described.
The invention according to claim 1 is an exhaust purification member provided in an exhaust passage, an additive supply mechanism that supplies an additive to the exhaust purification member, an exhaust recirculation mechanism that recirculates exhaust to the intake passage, and the exhaust In an exhaust gas purification device for an internal combustion engine comprising a control unit that controls the recirculation amount of exhaust gas by the recirculation mechanism based on the engine operating state, when the clogging amount of the front end surface of the exhaust purification member exceeds a predetermined threshold value, Multiplying the reduction amount for reducing the reflux amount by a correction coefficient to reduce the reflux amount as compared to when the clogging amount does not exceed the threshold value , the correction coefficient increases as the clogging amount increases. The gist is to increase the amount of decrease in the reflux amount .

同構成によれば、前端面の詰まり量が閾値を超えて多くなったときには、排気の還流量が減少されることにより、排気浄化部材に流入する排気の流量が増大するようになる。このように排気の流量が増大すると、排気の流速が高まるため、排気浄化部材の前端面に詰まったPMは排気の動圧によって吹き飛ばされるようになる。従って、同構成によれば、排気浄化部材の前端面におけるPMの詰まりを好適に低減することができるようになる。   According to this configuration, when the amount of clogging on the front end surface exceeds the threshold value, the amount of exhaust gas flowing into the exhaust gas purification member is increased by reducing the exhaust gas recirculation amount. When the flow rate of the exhaust gas increases in this way, the flow rate of the exhaust gas increases, so that PM clogged in the front end surface of the exhaust gas purification member is blown away by the dynamic pressure of the exhaust gas. Therefore, according to this configuration, it is possible to suitably reduce PM clogging on the front end face of the exhaust purification member.

なお、排気を高温化することによって排気浄化部材の前端面における詰まりを低減させることも可能であるが、こうした排気の高温化は常に行えるものではなく、例えば排気温度が比較的低い機関の低負荷時などでは、排気の高温化が困難である。一方、上記構成では、排気の流量を増大させるようにしており、こうした処理は機関の低負荷時などであっても実行可能である。従って、同構成によれば、詰まりを低減させる処理の実行機会を増加させることも可能になる。   Although it is possible to reduce the clogging of the front end face of the exhaust purification member by increasing the exhaust temperature, such a high temperature of the exhaust is not always possible, for example, a low load of an engine having a relatively low exhaust temperature. At times, it is difficult to raise the temperature of the exhaust. On the other hand, in the above configuration, the flow rate of the exhaust gas is increased, and such processing can be executed even when the engine is under a low load. Therefore, according to the configuration, it is possible to increase the execution opportunity of the process for reducing clogging.

また、排気の還流量を減少させることで、排気浄化部材に流れ込む排気の流量を増加させるようにしているため、排気流量を増加させるためだけの機構を別途設けることなく、前端面の詰まりを低減させることができる。
さらに、詰まり量が多いときほど還流量の減少量を多くするように構成しているため、詰まり量が多く、より多くのPMを吹き飛ばす必要があるときほど、排気浄化部材に流れ込む排気の流量は多くされる。従って、還流量の減少量を詰まり量に応じて適切に設定することができる。
請求項2に記載の発明は、排気通路に設けられた排気浄化部材と、同排気浄化部材に添加剤を供給する添加剤供給機構と、排気を吸気通路に還流させる排気還流機構と、同排気還流機構による排気の還流量を機関運転状態に基づいて制御する制御部とを備える内燃機関の排気浄化装置において、内燃機関の負荷状態であっても、前記排気浄化部材の前端面の詰まり量が予め定められた閾値を超えたときには、前記還流量を減少させる減少量に補正係数を乗じて、前記詰まり量が前記閾値を超えていないときに比して前記還流量を減少させ、前記詰まり量が所定の量に達するまで前記補正係数を増大させることを要旨とする。
同構成によれば、上記請求項1に記載の発明と同様に、排気浄化部材の前端面におけるPMの詰まりを好適に低減することができる。なお、請求項3に記載の発明のように、詰まり量が所定の量に達した以降は、前記補正係数を固定する構成を採用することができる。
In addition, by reducing the recirculation amount of the exhaust gas, the flow rate of the exhaust gas flowing into the exhaust gas purification member is increased. Therefore, the clogging of the front end surface is reduced without providing a separate mechanism for increasing the exhaust gas flow rate. Can be made.
Furthermore, since the amount of reduction in the reflux amount is increased as the amount of clogging increases, the flow rate of the exhaust gas flowing into the exhaust purification member increases as the amount of clogging increases and more PM needs to be blown off. To be more. Therefore, it is possible to appropriately set the reduction amount of the reflux amount according to the clogging amount.
The invention according to claim 2 is an exhaust purification member provided in the exhaust passage, an additive supply mechanism for supplying an additive to the exhaust purification member, an exhaust recirculation mechanism for recirculating exhaust gas to the intake passage, and the exhaust In an exhaust gas purification apparatus for an internal combustion engine comprising a control unit that controls an exhaust gas recirculation amount based on an engine operating state, the amount of clogging of the front end surface of the exhaust purification member is reduced even in a load state of the internal combustion engine. When a predetermined threshold value is exceeded, a reduction coefficient for reducing the reflux amount is multiplied by a correction coefficient to reduce the reflux amount as compared with when the clogging amount does not exceed the threshold value, and the clogging amount. The gist is to increase the correction coefficient until the value reaches a predetermined amount.
According to this configuration, similarly to the first aspect of the invention, PM clogging on the front end face of the exhaust purification member can be suitably reduced. As in the invention described in claim 3, after the clogging amount reaches a predetermined amount, a configuration in which the correction coefficient is fixed can be employed.

請求項に記載の発明は、請求項1〜3のいずれか一項に記載の内燃機関の排気浄化装置において、前記詰まり量は、機関回転速度及び燃料噴射量に基づいて算出される詰まり量の増加量と、吸入空気量に基づいて算出される詰まり量の減少量との差を求めることで算出されることをその要旨とする。 According to a fourth aspect of the present invention, in the exhaust gas purification apparatus for an internal combustion engine according to any one of the first to third aspects, the clogging amount is calculated based on an engine speed and a fuel injection amount. The gist of this is that it is calculated by obtaining the difference between the increase amount of air and the decrease amount of the clogging amount calculated based on the intake air amount.

排気浄化部材の前端面に詰まりを生じさせるPMは、機関の燃料に由来するものであり、基本的には燃料噴射量が多いほど前端面の詰まり量は多くなる。また、機関回転速度が高いほど単位時間当たりの排気の排出量が多くなってPMの排出量も増大するため、基本的には機関回転速度が高いほど前端面の詰まり量は多くなる。他方、吸入空気量が多いほど排気通路を流れる排気の流量は多くなるため、前端面からPMが吹き飛ばされやすくなる。従って、吸入空気量が多いほど前端面の詰まり量は少なくなる。そこで、同構成では、機関回転速度及び燃料噴射量に基づいて詰まり量の増加量を算出するとともに、吸入空気量に基づいて詰まり量の減少量を算出し、これら増加量と減少量との差を求めることで前端面でのPMの詰まり量を算出するようにしており、同構成によれば前端面の詰まり量を好適に推定することができるようになる。   The PM that causes clogging of the front end surface of the exhaust purification member is derived from the fuel of the engine. Basically, the larger the fuel injection amount, the greater the clogging amount of the front end surface. Further, the higher the engine rotational speed, the larger the exhaust amount per unit time and the PM exhaust amount. Therefore, basically, the higher the engine rotational speed, the greater the amount of clogging at the front end face. On the other hand, since the flow rate of the exhaust gas flowing through the exhaust passage increases as the intake air amount increases, PM is easily blown off from the front end surface. Therefore, as the intake air amount increases, the amount of clogging at the front end surface decreases. Therefore, in this configuration, the increase amount of the clogging amount is calculated based on the engine speed and the fuel injection amount, and the decrease amount of the clogging amount is calculated based on the intake air amount, and the difference between the increase amount and the decrease amount is calculated. Thus, the amount of clogging of the PM at the front end face is calculated, and according to this configuration, the amount of clogging of the front end face can be estimated appropriately.

請求項に記載の発明は、請求項に記載の内燃機関の排気浄化装置において、前記詰まり量の増加量は、大気圧が低いほど多くされることをその要旨とする。
PMを構成する成分の1つである煤は、大気圧が低く酸素密度が低いほど機関から排出されやすい。そこで、同構成では、大気圧が低いほど、算出される詰まり量の増加量が多くなるようにしており、これにより詰まり量の増加量に対して大気圧が与える影響を好適に補正することができる。
The invention according to claim 5 is the exhaust gas purification apparatus for an internal combustion engine according to claim 4 , wherein the increase amount of the clogging amount is increased as the atmospheric pressure is lower.
Soot, which is one of the components constituting PM, is more easily discharged from the engine as the atmospheric pressure is lower and the oxygen density is lower. Therefore, in the same configuration, as the atmospheric pressure is lower, the calculated increase amount of the clogging amount is increased so that the influence of the atmospheric pressure on the increase amount of the clogging amount can be suitably corrected. it can.

請求項に記載の発明は、請求項またはに記載の内燃機関の排気浄化装置において、前記詰まり量の減少量は、前記排気浄化部材の前端面の温度が高いほど多くされることをその要旨とする。 According to a sixth aspect of the present invention, in the exhaust gas purification apparatus for an internal combustion engine according to the fourth or fifth aspect , the reduction amount of the clogging amount is increased as the temperature of the front end face of the exhaust purification member is higher. The gist.

前端面に付着したPMは、排気浄化部材の前端面の温度が高いほど酸化や焼失が促進されて量が減少していく。そこで、同構成では、排気浄化部材の前端面の温度が高いほど、算出される詰まり量の減少量が多くなるようにしており、これにより詰まり量の減少量に対して排気浄化部材の前端面温度が与える影響を好適に補正することができる。   The amount of the PM adhering to the front end surface decreases as the temperature of the front end surface of the exhaust purification member increases, so that oxidation and burning are promoted. Therefore, in the same configuration, as the temperature of the front end surface of the exhaust purification member is higher, the calculated reduction amount of the clogging amount is increased, so that the front end surface of the exhaust purification member is reduced with respect to the reduction amount of the clogging amount. The influence of temperature can be suitably corrected.

請求項7に記載の発明は、請求項1〜6のいずれか1項に記載の内燃機関の排気浄化装置において、機関回転速度が高いほど前記還流量の減少量は少なくされることをその要旨とする。また、請求項に記載の発明は、請求項1〜のいずれか1項に記載の内燃機関の排気浄化装置において、機関回転速度が低いほど前記還流量の減少量は多くされることをその要旨とする。 A seventh aspect of the present invention is the exhaust gas purification apparatus for an internal combustion engine according to any one of the first to sixth aspects, wherein the reduction amount of the recirculation amount is reduced as the engine rotational speed is higher. And The invention according to claim 8, in the exhaust purification system of an internal combustion engine according to any one of claims 1 to 7 that the engine rotational speed decrease amount of low enough the recirculation amount is often The gist.

機関回転速度が低くなるにつれて内燃機関から排出される排気の量は減少するため、排気によって行われる前端面の詰まりを低減させる効果は小さくなってしまう。この点、同構成によれば、機関回転速度が低いほど排気還流量の減少量が多くされることにより、排気浄化部材に流れ込む排気の流量は多くなる。そのため、同構成によれば、機関回転速度に依らず前端面の詰まりを好適に低減させることができる。   Since the amount of exhaust discharged from the internal combustion engine decreases as the engine speed decreases, the effect of reducing the clogging of the front end surface caused by exhaust becomes small. In this regard, according to the same configuration, the amount of exhaust gas flowing into the exhaust purification member increases by increasing the amount of decrease in the exhaust gas recirculation amount as the engine speed decreases. Therefore, according to the configuration, clogging of the front end face can be suitably reduced regardless of the engine rotation speed.

本発明にかかる内燃機関の排気浄化装置の一実施形態について、これが適用される内燃機関及びその周辺構成を示す概略図。BRIEF DESCRIPTION OF THE DRAWINGS Schematic which shows the internal combustion engine to which this is applied, and its periphery structure about one Embodiment of the exhaust gas purification device of the internal combustion engine concerning this invention. 詰まり量の算出処理の手順を示すフローチャート。The flowchart which shows the procedure of the calculation process of clogging amount. 機関回転速度及び燃料噴射量と基本詰まり量との関係を示すグラフ。The graph which shows the relationship between engine rotation speed, fuel injection amount, and basic clogging amount. 大気圧と基本詰まり量との関係を示すグラフ。The graph which shows the relationship between atmospheric pressure and basic clogging amount. 空気量比と空気量補正係数の関係を示すグラフ。The graph which shows the relationship between air quantity ratio and an air quantity correction coefficient. 吸入空気量及び前端面温度と詰まり減少量との関係を示すグラフ。The graph which shows the relationship between intake air amount and front end surface temperature, and clogging reduction amount. 詰まり量の低減処理の手順を示すフローチャート。The flowchart which shows the procedure of the reduction process of clogging. 機関回転速度とEGR減少値との関係を示すグラフ。The graph which shows the relationship between an engine speed and an EGR reduction value. 詰まり量と詰まり補正係数との関係を示すグラフ。The graph which shows the relationship between the amount of clogging, and a clogging correction coefficient.

以下、この発明にかかる内燃機関の排気浄化装置をディーゼルエンジンの排気浄化装置に具体化した一実施形態について、図1〜図9を併せ参照して説明する。
図1に示すように、エンジン1には複数の気筒#1〜#4が設けられている。シリンダヘッド2には複数の燃料噴射弁4a〜4dが取り付けられている。これら燃料噴射弁4a〜4dは各気筒#1〜#4の燃焼室に燃料を噴射する。また、シリンダヘッド2には、外気を気筒内に導入するための吸気ポートと燃焼ガスを気筒外へ排出するための排気ポート6a〜6dとが各気筒#1〜#4に対応して設けられている。
Hereinafter, an embodiment in which an exhaust gas purification apparatus for an internal combustion engine according to the present invention is embodied in an exhaust gas purification apparatus for a diesel engine will be described with reference to FIGS.
As shown in FIG. 1, the engine 1 is provided with a plurality of cylinders # 1 to # 4. A plurality of fuel injection valves 4 a to 4 d are attached to the cylinder head 2. These fuel injection valves 4a to 4d inject fuel into the combustion chambers of the cylinders # 1 to # 4. Further, the cylinder head 2 is provided with intake ports for introducing outside air into the cylinders and exhaust ports 6a to 6d for discharging combustion gas outside the cylinders corresponding to the respective cylinders # 1 to # 4. ing.

燃料噴射弁4a〜4dは、高圧燃料を蓄圧するコモンレール9に接続されている。コモンレール9はサプライポンプ10に接続されている。サプライポンプ10は燃料タンク内の燃料を吸入するとともにコモンレール9に高圧燃料を供給する。コモンレール9に供給された高圧燃料は、各燃料噴射弁4a〜4dの開弁時に同燃料噴射弁4a〜4dから気筒内に噴射される。   The fuel injection valves 4a to 4d are connected to a common rail 9 that accumulates high-pressure fuel. The common rail 9 is connected to the supply pump 10. The supply pump 10 sucks fuel in the fuel tank and supplies high-pressure fuel to the common rail 9. The high-pressure fuel supplied to the common rail 9 is injected into the cylinder from the fuel injection valves 4a to 4d when the fuel injection valves 4a to 4d are opened.

吸気ポートにはインテークマニホールド7が接続されている。インテークマニホールド7は吸気通路3に接続されている。この吸気通路3内には吸入空気量を調整するための吸気絞り弁16が設けられている。   An intake manifold 7 is connected to the intake port. The intake manifold 7 is connected to the intake passage 3. An intake throttle valve 16 for adjusting the intake air amount is provided in the intake passage 3.

排気ポート6a〜6dにはエキゾーストマニホールド8が接続されている。エキゾーストマニホールド8は排気通路26に接続されている。
排気通路26の途中には、排気成分を浄化する触媒装置30が設けられている。この触媒装置30の内部には、排気の流れ方向に対して直列に酸化触媒31及びフィルタ32が配設されている。
An exhaust manifold 8 is connected to the exhaust ports 6a to 6d. The exhaust manifold 8 is connected to the exhaust passage 26.
In the middle of the exhaust passage 26, a catalyst device 30 for purifying exhaust components is provided. Inside the catalyst device 30, an oxidation catalyst 31 and a filter 32 are arranged in series with respect to the flow direction of the exhaust gas.

酸化触媒31には、排気中のHCを酸化処理する触媒が担持されている。また、フィルタ32は、排気中のPM(粒子状物質)を捕集する部材であって、多孔質のセラミックで構成されており、排気中のPMは多孔質の壁を通過する際に捕集される。   The oxidation catalyst 31 carries a catalyst for oxidizing HC in the exhaust. The filter 32 is a member that collects PM (particulate matter) in the exhaust gas, and is made of a porous ceramic. The PM in the exhaust gas is collected when it passes through the porous wall. Is done.

また、シリンダヘッド2には、酸化触媒31やフィルタ32に添加剤として燃料を供給するために燃料添加弁5が設けられている。この燃料添加弁5は、燃料供給管27を介して前記サプライポンプ10に接続されており、同燃料添加弁5からは第4気筒#4の排気ポート6d内に向けて燃料が噴射される。この噴射された燃料は、排気とともに酸化触媒31やフィルタ32に到達する。なお、燃料添加弁5の配設位置は、排気系にあって触媒装置30の上流側であれば適宜変更するも可能である。また、燃料添加弁5や燃料供給管27、サプライポンプ10は上記の添加剤供給機構を構成する。   The cylinder head 2 is provided with a fuel addition valve 5 for supplying fuel as an additive to the oxidation catalyst 31 and the filter 32. The fuel addition valve 5 is connected to the supply pump 10 via a fuel supply pipe 27, and fuel is injected from the fuel addition valve 5 into the exhaust port 6d of the fourth cylinder # 4. The injected fuel reaches the oxidation catalyst 31 and the filter 32 together with the exhaust gas. The position of the fuel addition valve 5 can be changed as appropriate as long as it is in the exhaust system and upstream of the catalyst device 30. The fuel addition valve 5, the fuel supply pipe 27, and the supply pump 10 constitute the additive supply mechanism.

この他、エンジン1には排気還流機構(以下、EGR装置という)が備えられている。このEGR装置は、吸入空気に排気の一部を導入することで気筒内の燃焼温度を低下させてNOxの発生量を低減させる装置である。この装置は吸気通路3と排気通路26とを連通するEGR通路13、同EGR通路13に設けられたEGR弁15、EGRクーラ14等により構成されている。EGR弁15はその開度を調整することにより排気通路26から吸気通路3に導入される排気の還流量、すなわちEGR量EKを調整する。EGRクーラ14はEGR通路13内を流れる排気の温度を低下させる。またEGR弁15にはEGR弁開度センサ22が配設されており、このEGR弁開度センサ22によりEGR弁15の開度、すなわちEGR弁開度EAが検出される。EGR弁15の開度は、機関運転状態に基づいて設定されるEGR率に対応した開度となるように制御される。なお、EGR率が高いほどEGR弁15の開度は大きくされ、これによりEGR量EKは増大される。ちなみに、EGR率とは、「気筒内に流入するEGR量/(気筒内に流入する新気量+気筒内に流入するEGR量)」で求められる値である。   In addition, the engine 1 is provided with an exhaust gas recirculation mechanism (hereinafter referred to as an EGR device). This EGR device is a device that reduces the amount of NOx generated by lowering the combustion temperature in the cylinder by introducing part of the exhaust gas into the intake air. This device is composed of an EGR passage 13 communicating the intake passage 3 and the exhaust passage 26, an EGR valve 15 provided in the EGR passage 13, an EGR cooler 14, and the like. The EGR valve 15 adjusts the recirculation amount of the exhaust gas introduced from the exhaust passage 26 into the intake passage 3, that is, the EGR amount EK, by adjusting the opening degree thereof. The EGR cooler 14 reduces the temperature of the exhaust gas flowing in the EGR passage 13. The EGR valve 15 is provided with an EGR valve opening sensor 22, and the EGR valve opening sensor 22 detects the opening of the EGR valve 15, that is, the EGR valve opening EA. The opening degree of the EGR valve 15 is controlled to be an opening degree corresponding to the EGR rate set based on the engine operating state. Note that the higher the EGR rate, the larger the opening of the EGR valve 15, thereby increasing the EGR amount EK. Incidentally, the EGR rate is a value obtained by “the amount of EGR flowing into the cylinder / (the amount of fresh air flowing into the cylinder + the amount of EGR flowing into the cylinder)”.

また、エンジン1は排気圧を利用して気筒に導入される吸入空気を過給するターボチャージャ11を備えている。吸気側タービンと吸気絞り弁16との間の吸気通路3には、このターボチャージャ11の過給により温度が上昇する吸入空気の温度を低下させるため、インタークーラ18が備えられている。   The engine 1 also includes a turbocharger 11 that supercharges intake air introduced into the cylinder using exhaust pressure. An intercooler 18 is provided in the intake passage 3 between the intake side turbine and the intake throttle valve 16 in order to reduce the temperature of intake air whose temperature rises due to supercharging of the turbocharger 11.

エンジン1には、機関運転状態を検出するための各種センサが取り付けられている。例えば、エアフロメータ19は吸気通路3内の吸入空気量GAを検出する。絞り弁センサ20は吸気絞り弁16の開度である絞り弁開度TAを検出する。酸化触媒31の排気下流側に設けられた第1温度センサ33は、酸化触媒31を通過した直後の排気の温度である第1排気温度Thiを測定する。酸化触媒31の排気下流側に設けられたフィルタ32の排気下流側に設けられた第2温度センサ34は、フィルタ32を通過した直後の排気の温度である第2排気温度Thoを検出する。機関回転速度センサ23はクランクシャフトの回転速度、すなわち機関回転速度NEを検出する。アクセルセンサ24はアクセルペダルの踏み込み量、すなわちアクセル操作量ACCPを検出する。空燃比センサ21は排気の空燃比λを検出する。   Various sensors for detecting the engine operation state are attached to the engine 1. For example, the air flow meter 19 detects the intake air amount GA in the intake passage 3. The throttle valve sensor 20 detects a throttle valve opening TA that is the opening of the intake throttle valve 16. The first temperature sensor 33 provided on the exhaust gas downstream side of the oxidation catalyst 31 measures a first exhaust temperature Thi that is the temperature of the exhaust gas immediately after passing through the oxidation catalyst 31. A second temperature sensor 34 provided on the exhaust downstream side of the filter 32 provided on the exhaust downstream side of the oxidation catalyst 31 detects a second exhaust temperature Tho that is the temperature of the exhaust immediately after passing through the filter 32. The engine rotation speed sensor 23 detects the rotation speed of the crankshaft, that is, the engine rotation speed NE. The accelerator sensor 24 detects an accelerator pedal depression amount, that is, an accelerator operation amount ACCP. The air-fuel ratio sensor 21 detects the air-fuel ratio λ of the exhaust.

これら各種センサの出力は制御装置25に入力される。この制御装置25は、中央処理制御装置(CPU)、各種プログラムやマップ等を予め記憶した読出専用メモリ(ROM)、CPUの演算結果等を一時記憶するランダムアクセスメモリ(RAM)、タイマカウンタ、入力インターフェース、出力インターフェース等を備えたマイクロコンピュータを中心に構成されている。そして、この制御装置25により、例えば、燃料噴射弁4a〜4dの燃料噴射量制御や燃料噴射時期制御、サプライポンプ10の吐出圧力制御、吸気絞り弁16を開閉するアクチュエータ17の駆動量制御、EGR弁15の開度制御、燃料添加弁5の噴射制御等、エンジン1の各種制御が行われる。なお、この制御装置25は、排気還流機構による排気の還流量を機関運転状態に基づいて制御する上記制御部を構成する。また、上記フィルタ32に捕集されたPMを燃焼させるフィルタの再生処理等といった各種の排気浄化制御も同制御装置25によって行われる。   The outputs of these various sensors are input to the control device 25. The control device 25 includes a central processing control device (CPU), a read only memory (ROM) that stores various programs and maps in advance, a random access memory (RAM) that temporarily stores CPU calculation results, a timer counter, an input The microcomputer is mainly configured with an interface, an output interface, and the like. The control device 25 controls, for example, fuel injection amount control and fuel injection timing control of the fuel injection valves 4a to 4d, discharge pressure control of the supply pump 10, drive amount control of the actuator 17 that opens and closes the intake throttle valve 16, EGR Various controls of the engine 1 such as opening control of the valve 15 and injection control of the fuel addition valve 5 are performed. The control device 25 constitutes the control unit that controls the exhaust gas recirculation amount based on the engine operating state. Various exhaust purification controls such as a regeneration process for a filter that burns the PM collected by the filter 32 are also performed by the controller 25.

フィルタ32の再生処理は周知であるため、以下では、その概要を説明する。この再生処理では、機関運転状態等に基づいてフィルタ32のPM堆積量が推定される。そして推定されたPM堆積量が所定の値を超えると、燃料添加弁5から添加剤として燃料が噴射される。この噴射された燃料は酸化触媒31で酸化され、この酸化熱によって排気が昇温される。酸化触媒31にて昇温された排気がフィルタ32に流れ込むと、同フィルタ32の温度上昇が促進されてPMの再生可能温度に達し、これによりフィルタ32に捕集されたPMは、酸化されたり燃焼されたりして減少していく。こうした昇温処理を通じてフィルタ32に捕集されたPMが減少していき、PM堆積量が所定の値にまで低下すると、燃料添加弁5からの燃料添加が終了されて、フィルタ32の再生処理は終了する。   Since the regeneration process of the filter 32 is well known, the outline thereof will be described below. In this regeneration process, the PM accumulation amount of the filter 32 is estimated based on the engine operating state and the like. When the estimated PM accumulation amount exceeds a predetermined value, fuel is injected from the fuel addition valve 5 as an additive. The injected fuel is oxidized by the oxidation catalyst 31, and the exhaust gas is heated by the oxidation heat. When the exhaust gas heated by the oxidation catalyst 31 flows into the filter 32, the temperature rise of the filter 32 is promoted to reach the PM reproducible temperature, whereby the PM collected by the filter 32 is oxidized. It will decrease as it is burned. When the PM collected in the filter 32 through the temperature increasing process decreases and the PM accumulation amount decreases to a predetermined value, the fuel addition from the fuel addition valve 5 is terminated, and the regeneration process of the filter 32 is performed. finish.

ところで、燃料添加弁5から噴射される添加剤は、酸化触媒31を通過する過程で酸化される。従って、酸化触媒31の前端面は比較的温度が低くなっている。そのため、一部の添加剤は燃焼や酸化反応等によって焼失されることなく、そのまま比較的温度の低い酸化触媒31の前端面に付着してしまうおそれがある。このように前端面に添加剤が付着すると、この添加剤がバインダとなってPM等を吸着し、酸化触媒31の前端面にPMによる詰まりを生じさせるおそれがある。   Incidentally, the additive injected from the fuel addition valve 5 is oxidized in the process of passing through the oxidation catalyst 31. Therefore, the temperature of the front end surface of the oxidation catalyst 31 is relatively low. For this reason, some additives may not be burned off by combustion, oxidation reaction, or the like, and may directly adhere to the front end surface of the oxidation catalyst 31 having a relatively low temperature. When the additive adheres to the front end face in this way, the additive becomes a binder and adsorbs PM or the like, and the front end face of the oxidation catalyst 31 may be clogged with PM.

このように酸化触媒31の前端面に詰まりが生じると、酸化触媒31における添加剤の通過領域が減少するため、酸化触媒31で酸化される添加剤の量が減少し、その結果酸化触媒31で酸化されることなくそのまま通過する添加剤の量が増加するようになる。このように酸化触媒31にて酸化されることなく通過する添加剤の量が増加すると、フィルタ32に流れ込む排気の昇温が不足するようになり、フィルタ32の再生処理が滞ってしまう。   When the front end face of the oxidation catalyst 31 is clogged in this way, the additive passage area in the oxidation catalyst 31 is reduced, so that the amount of additive oxidized by the oxidation catalyst 31 is reduced. The amount of additive that passes through without being oxidized increases. If the amount of the additive that passes without being oxidized in the oxidation catalyst 31 in this way increases, the temperature of the exhaust gas flowing into the filter 32 becomes insufficient, and the regeneration process of the filter 32 is delayed.

また、酸化触媒31の前端面に詰まりが生じると、酸化触媒31を通過する排気の流れに偏流が生じ易くなり、その結果、酸化触媒31の排気下流側に設けられる第1温度センサ33に排気が当たりにくくなるおそれもある。このように第1温度センサ33に排気が当たりにくくなると、同第1温度センサ33にて検出される排気の温度が不正確になるため、例えば、再生処理中に行われる排気温度制御に対して悪影響を与える可能性もある。   Further, when the front end face of the oxidation catalyst 31 is clogged, the flow of exhaust gas passing through the oxidation catalyst 31 tends to drift, and as a result, the exhaust gas is exhausted to the first temperature sensor 33 provided on the exhaust gas downstream side of the oxidation catalyst 31. May be difficult to hit. If the exhaust gas does not easily hit the first temperature sensor 33 in this way, the temperature of the exhaust gas detected by the first temperature sensor 33 becomes inaccurate. For example, for the exhaust gas temperature control performed during the regeneration process. There is also the possibility of adverse effects.

そこで、本実施形態では、以下に説明する詰まり量の算出処理及び低減処理の実行を通じて、酸化触媒31の前端面におけるPMの詰まりを低減するようにしている。
図2に、酸化触媒31の前端面における詰まり量Mの算出処理についてその手順を示す。この処理は制御装置25によって所定周期毎に繰り返し実行される。
Therefore, in the present embodiment, the clogging of PM on the front end face of the oxidation catalyst 31 is reduced through the execution of the clogging amount calculation process and the reduction process described below.
FIG. 2 shows a procedure for calculating the clogging amount M on the front end face of the oxidation catalyst 31. This process is repeatedly executed at predetermined intervals by the control device 25.

本処理が開始されるとまず、機関回転速度NE、燃料噴射量Q、及び大気圧Pに基づいて詰まり量Mの基本値である基本詰まり量Mbが算出される(S100)。ここでは、図3に示すように、機関回転速度NEが高いほど、あるいは燃料噴射量Qが多いほど、基本詰まり量Mbは大きい値となるように算出される。また、機関回転速度NE及び燃料噴射量Qが同一であっても、図4に示すように、大気圧Pが低いほど、基本詰まり量Mbは大きい値となるように算出される。   When this processing is started, first, a basic clogging amount Mb, which is a basic value of the clogging amount M, is calculated based on the engine speed NE, the fuel injection amount Q, and the atmospheric pressure P (S100). Here, as shown in FIG. 3, the basic clogging amount Mb is calculated to be larger as the engine rotational speed NE is higher or the fuel injection amount Q is larger. Further, even if the engine speed NE and the fuel injection amount Q are the same, the basic clogging amount Mb is calculated to be larger as the atmospheric pressure P is lower, as shown in FIG.

次に、空気量比GAHに基づいて空気量補正係数Kaが算出される(S110)。この空気量比GAHは、「吸入空気量GA/目標空気量GAp」で求められる値である。つまり、機関運転状態に基づいて設定される目標空気量GApに対する現状の吸入空気量GAの割合を示す値である。従って、機関定常時などのように吸入空気量GAと目標空気量GApとが一致しているときには空気量比GAHは「1」となる。また、機関過渡時などのように吸入空気量GAが目標空気量GApよりも少ないときには空気量比GAHは「1」よりも小さい値になる。そして図5に示すように、空気量比GAHが小さい、つまり目標空気量GApに対して吸入空気量GAが不足しているときほど、空気量補正係数Kaは大きい値に設定される。   Next, an air amount correction coefficient Ka is calculated based on the air amount ratio GAH (S110). This air amount ratio GAH is a value obtained by “intake air amount GA / target air amount GAp”. That is, it is a value indicating the ratio of the current intake air amount GA to the target air amount GAp set based on the engine operating state. Therefore, when the intake air amount GA and the target air amount GAp coincide with each other, such as when the engine is stationary, the air amount ratio GAH is “1”. Further, when the intake air amount GA is smaller than the target air amount GAp, such as during engine transition, the air amount ratio GAH becomes a value smaller than “1”. As shown in FIG. 5, the air amount correction coefficient Ka is set to a larger value as the air amount ratio GAH is smaller, that is, as the intake air amount GA is insufficient with respect to the target air amount GAp.

次に、基本詰まり量Mbに空気量補正係数Kaが乗算されることによって、詰まり増加量Miが算出される(S120)。この詰まり増加量Miは、前回の本処理実行周期から今回の本処理実行周期の間で増加した詰まり量Mとして算出される。   Next, the clogging increase amount Mi is calculated by multiplying the basic clogging amount Mb by the air amount correction coefficient Ka (S120). The clogging increase amount Mi is calculated as a clogging amount M increased from the previous main processing execution cycle to the current main processing execution cycle.

次に、吸入空気量GA及び前端面温度Thmに基づいて詰まり減少量Mdが算出される(S130)。前端面温度Thmは、酸化触媒31の前端面の温度であり、第1温度センサ33によって検出される第1排気温度Thiから推定される。なお、酸化触媒31の前端面近傍に温度センサを設けて前端面温度Thmを直接測定するようにしてもよい。また、詰まり減少量Mdは、前回の本処理実行周期から今回の本処理実行周期の間で減少した詰まり量Mとして算出される。そして、図6に示すように、吸入空気量GAが多いほど、あるいは前端面温度Thmが高いほど、詰まり減少量Mdは大きい値となるように算出される。   Next, a clogging reduction amount Md is calculated based on the intake air amount GA and the front end surface temperature Thm (S130). The front end surface temperature Thm is the temperature of the front end surface of the oxidation catalyst 31 and is estimated from the first exhaust temperature Thi detected by the first temperature sensor 33. Note that a temperature sensor may be provided in the vicinity of the front end face of the oxidation catalyst 31 to directly measure the front end face temperature Thm. The clogging reduction amount Md is calculated as a clogging amount M that has decreased from the previous main processing execution cycle to the current main processing execution cycle. As shown in FIG. 6, the clogging reduction amount Md is calculated to be larger as the intake air amount GA is larger or the front end surface temperature Thm is higher.

次に、今回の本処理実行周期における詰まり量Mが算出されて(S140)、本処理は一旦終了される。このステップS140では、前回の本処理実行周期において算出された詰まり量Mに対して、上記ステップS120で算出された詰まり増加量Miを加算すると共に上記ステップS130で算出された詰まり減少量Mdを減算することによって、今回の本処理実行周期における詰まり量Mが算出される。   Next, the clogging amount M in the current process execution cycle is calculated (S140), and the process is temporarily terminated. In step S140, the clogging increase amount Mi calculated in step S120 is added to the clogging amount M calculated in the previous main processing execution cycle, and the clogging reduction amount Md calculated in step S130 is subtracted. By doing so, the clogging amount M in the current processing execution cycle is calculated.

次に、図7を参照して、詰まり量の低減処理の手順を説明する。なお、この低減処理も制御装置25によって所定周期毎に繰り返し実行される。
本処理が開始されとまず、上述した算出処理で求められた詰まり量Mが閾値αを超えているか否かが判定される(S200)。この閾値αは、現在の詰まり量Mが上述したような不都合を起こす程度の値になっているか否かを判定するための値である。そして、詰まり量Mが閾値α以下のときには(S200:NO)、本処理は一旦終了される。このようにステップS200で否定判定されたときには、機関運転状態(例えば機関回転速度及び機関負荷)に基づいて基本EGR率Ebが設定され、この基本EGR率Ebに応じて目標EGR率Epが設定されることでEGR弁15の開度が制御される。なお、基本EGR率Ebは、機関運転状態が高負荷高回転になるほど小さい値に設定される。
Next, the procedure of the clogging amount reduction process will be described with reference to FIG. This reduction process is also repeatedly executed by the control device 25 at predetermined intervals.
When this process is started, it is first determined whether or not the clogging amount M obtained by the above-described calculation process exceeds the threshold value α (S200). This threshold value α is a value for determining whether or not the current clogging amount M is a value that causes the above-described inconvenience. When the clogging amount M is equal to or less than the threshold value α (S200: NO), this process is temporarily terminated. As described above, when a negative determination is made in step S200, the basic EGR rate Eb is set based on the engine operating state (for example, the engine rotation speed and the engine load), and the target EGR rate Ep is set according to the basic EGR rate Eb. Thus, the opening degree of the EGR valve 15 is controlled. The basic EGR rate Eb is set to a smaller value as the engine operating state becomes a higher load and higher speed.

一方、詰まり量Mが閾値αを超えているときには(S200:YES)、前端面の詰まりによる不都合が生じる可能性があるため、そうした詰まりを低減するためにステップS210以降の処理が行われる。   On the other hand, when the clogging amount M exceeds the threshold value α (S200: YES), there is a possibility that inconvenience due to clogging of the front end surface may occur.

ステップS210では、機関回転速度NEに基づいてEGR減少値Edが算出される。ここでは、図8に示すように、機関回転速度NEが高いほどEGR減少値Edは小さい値に設定される。 In step S210, an EGR decrease value Ed is calculated based on the engine speed NE. Here, as shown in FIG. 8, the EGR reduction value Ed is set to a smaller value as the engine speed NE is higher.

次に、詰まり量Mに基づいて詰まり補正係数Kcが算出される(S220)。ここでは、図9に示すように、詰まり量Mが所定の量M1に達するまでは、詰まり補正係数Kcは、詰まり量Mの増加に合わせて「1」に向けて増大されていく。そして、詰まり量Mが所定の量M1に達した以降は、詰まり補正係数Kcは「1」に固定される。   Next, a clogging correction coefficient Kc is calculated based on the clogging amount M (S220). Here, as shown in FIG. 9, the clogging correction coefficient Kc increases toward “1” as the clogging amount M increases until the clogging amount M reaches a predetermined amount M1. After the clogging amount M reaches the predetermined amount M1, the clogging correction coefficient Kc is fixed to “1”.

次に、EGR補正値Hが算出される(S230)。ここでは、上記ステップS210で算出されたEGR減少値Edに対して上記ステップS220で算出された詰まり補正係数Kcが乗算されることによってEGR補正値Hが算出される。従って、機関回転速度NEが高いほどEGR補正値Hは大きい値に設定される。また、詰まり量Mが上記所定の量M1に達するまでは、詰まり量Mの増加に合わせてEGR補正値Hは大きい値に設定される。そして、詰まり量Mが上記所定の量M1に達した以降は、EGR減少値EdがそのままEGR補正値Hとされる。   Next, an EGR correction value H is calculated (S230). Here, the EGR correction value H is calculated by multiplying the EGR decrease value Ed calculated in step S210 by the clogging correction coefficient Kc calculated in step S220. Therefore, the EGR correction value H is set to a larger value as the engine speed NE is higher. Further, the EGR correction value H is set to a large value as the clogging amount M increases until the clogging amount M reaches the predetermined amount M1. After the clogging amount M reaches the predetermined amount M1, the EGR reduction value Ed is set as the EGR correction value H as it is.

次に、上述した基本EGR率Eb、EGR補正値Hに基づいて目標EGR率Epが算出される(S240)。このステップS240では、基本EGR率EbからEGR補正値Hを減算した値が目標EGR率Epとされる。従って、EGR補正値Hが大きい値のときほど目標EGR率Epは小さい値となり、EGR量EKは少なくなる。このようにEGR量EKが少なくなくなると、吸気通路に戻される排気の量が少なくなるため、酸化触媒31に流入する排気の流量が増えるようになる。   Next, the target EGR rate Ep is calculated based on the basic EGR rate Eb and the EGR correction value H described above (S240). In step S240, a value obtained by subtracting the EGR correction value H from the basic EGR rate Eb is set as the target EGR rate Ep. Therefore, the target EGR rate Ep becomes smaller as the EGR correction value H becomes larger, and the EGR amount EK becomes smaller. When the EGR amount EK does not decrease in this way, the amount of exhaust gas returned to the intake passage decreases, and the flow rate of exhaust gas flowing into the oxidation catalyst 31 increases.

次に、本実施形態の作用を説明する。
図7のステップS200にて、詰まり量Mが閾値αを超えていないと判定される場合には、基本EGR率Ebに応じた目標EGR率Epが設定される。一方、ステップS200にて、詰まり量Mが閾値αを超えて多くなったと判定される場合には、ステップS240にて、基本EGR率EbからEGR補正値Hを減算した値が目標EGR率Epとされる。従って、詰まり量Mが閾値αを超えたときには、詰まり量Mが閾値αを超えていない場合と比較して、目標EGR率Epが小さくされる。このように目標EGR率Epが小さくされると、排気の還流量が減少することにより、酸化触媒31に流入する排気の流量が増大するようになる。このように排気の流量が増大すると、排気の流速が高まるため、酸化触媒31の前端面に詰まったPMは排気の動圧によって吹き飛ばされるようになる。従って、酸化触媒31の前端面におけるPMの詰まりが低減するようになる。
Next, the operation of this embodiment will be described.
When it is determined in step S200 of FIG. 7 that the clogging amount M does not exceed the threshold value α, the target EGR rate Ep corresponding to the basic EGR rate Eb is set. On the other hand, if it is determined in step S200 that the clogging amount M has increased beyond the threshold α, the value obtained by subtracting the EGR correction value H from the basic EGR rate Eb is the target EGR rate Ep in step S240. Is done. Therefore, when the clogging amount M exceeds the threshold value α, the target EGR rate Ep is made smaller than when the clogging amount M does not exceed the threshold value α. As described above, when the target EGR rate Ep is reduced, the flow rate of the exhaust gas flowing into the oxidation catalyst 31 is increased by reducing the recirculation amount of the exhaust gas. When the flow rate of the exhaust gas increases in this way, the flow rate of the exhaust gas increases, so that PM clogged in the front end surface of the oxidation catalyst 31 is blown away by the dynamic pressure of the exhaust gas. Therefore, clogging of PM on the front end surface of the oxidation catalyst 31 is reduced.

なお、排気を高温化することによって酸化触媒31の前端面における詰まりを低減させることも可能である。しかし、こうした排気の高温化は常に行えるものではなく、例えば排気温度が比較的低い機関の低負荷時などでは、排気の高温化が困難であるため、前端面の詰まりを低減させる処理についてその実行機会はある程度限定されてしまう。一方、本実施形態では、排気の流量を増大させるようにしており、こうした処理は機関の低負荷時などであっても実行可能である。従って、前端面の詰まりを低減させる処理についてその実行機会を増加させることも可能になる。   It is also possible to reduce clogging at the front end face of the oxidation catalyst 31 by increasing the temperature of the exhaust. However, it is not always possible to raise the exhaust temperature. For example, it is difficult to raise the exhaust temperature when the engine temperature is low and the engine is under a low load. Opportunities are limited to some extent. On the other hand, in this embodiment, the flow rate of the exhaust gas is increased, and such processing can be executed even when the engine is under a low load. Therefore, it is also possible to increase the execution opportunity for the process of reducing the clogging of the front end face.

また、EGR量EKを減少させることで、酸化触媒31に流れ込む排気の流量を増加させるようにしている。そのため、排気流量を増加させるためだけの機構を別途設けることなく、前端面の詰まりを低減させることができる。   Further, the flow rate of the exhaust gas flowing into the oxidation catalyst 31 is increased by decreasing the EGR amount EK. Therefore, it is possible to reduce the clogging of the front end face without separately providing a mechanism only for increasing the exhaust flow rate.

また、酸化触媒31の前端面に詰まりを生じさせるPMは、機関の燃料に由来するものであり、基本的には燃料噴射量Qが多いほど前端面の詰まり量は多くなる。また、機関回転速度NEが高いほど単位時間当たりの排気の排出量が多くなってPMの排出量も増大するため、基本的には機関回転速度が高いほど前端面の詰まり量は多くなる。他方、吸入空気量GAが多いほど排気通路26を流れる排気の流量は多くなるため、前端面からPMが吹き飛ばされやすくなる。従って、吸入空気量GAが多いほど前端面の詰まり量は少なくなる。そこで、本実施形態では、機関回転速度NE及び燃料噴射量Qに基づいて詰まり増加量Miを算出するとともに、吸入空気量GAに基づいて詰まり減少量Mdを算出し、これら詰まり増加量Miと詰まり減少量Mdとの差を求めることで前端面でのPMの詰まり量Mを算出するようにしている。従って、前端面の詰まり量Mを好適に推定することができる。   Further, the PM that causes clogging of the front end face of the oxidation catalyst 31 is derived from the engine fuel. Basically, the larger the fuel injection amount Q, the greater the clogging amount of the front end face. Further, as the engine rotational speed NE is higher, the exhaust amount per unit time is increased and the PM exhaust amount is also increased. Therefore, basically, the higher the engine rotational speed is, the larger the clogging amount of the front end face is. On the other hand, as the intake air amount GA increases, the flow rate of the exhaust gas flowing through the exhaust passage 26 increases, so that PM is easily blown off from the front end surface. Therefore, as the intake air amount GA increases, the amount of clogging of the front end surface decreases. Therefore, in the present embodiment, the clogging increase amount Mi is calculated based on the engine rotational speed NE and the fuel injection amount Q, and the clogging reduction amount Md is calculated based on the intake air amount GA, and the clogging increase amount Mi and clogging are calculated. The amount of PM clogging at the front end face is calculated by obtaining the difference from the decrease amount Md. Therefore, the amount M of clogging of the front end face can be estimated appropriately.

また、PMを構成する成分の1つである煤は、大気圧が低く酸素密度が低いほど機関から排出されやすい。そこで、大気圧Pが低いほど基本詰まり量MBが大きくなるようにすることで、詰まり増加量Miが多くなるようにしている。そのため、詰まり増加量Miに対して大気圧Pが与える影響を適切に補正することができる。   In addition, soot, which is one of the components constituting PM, is more easily discharged from the engine as the atmospheric pressure is lower and the oxygen density is lower. Thus, the basic clogging amount MB is increased as the atmospheric pressure P is lower, so that the clogging increase amount Mi is increased. Therefore, it is possible to appropriately correct the influence of the atmospheric pressure P on the clogging increase amount Mi.

また、上記空気量比GAHが小さい、つまり目標空気量GApに対して吸入空気量GAが不足しているときほど、煤が発生し易く、詰まり量Mは増加し易くなる。そこで、空気量比GAHが小さいときほど空気量補正係数Kaが大きくなるようにすることで、ステップS120にて算出される詰まり増加量Miが増大するようにしている。従って、目標空気量GApに対して吸入空気量GAが不足しやすい機関過渡時での詰まり増加量Miの推定精度が向上するようになる。   Further, as the air amount ratio GAH is smaller, that is, when the intake air amount GA is insufficient with respect to the target air amount GAp, soot is likely to be generated and the clogging amount M is likely to increase. Therefore, by increasing the air amount correction coefficient Ka as the air amount ratio GAH is smaller, the clogging increase amount Mi calculated in step S120 is increased. Therefore, the estimation accuracy of the clogging increase amount Mi at the time of engine transition in which the intake air amount GA is likely to be insufficient with respect to the target air amount GAp is improved.

また、前端面に付着したPMは、酸化触媒31の前端面の温度が高いほど酸化や焼失が促進されて量が減少していく。そこで、本実施形態では、酸化触媒31の前端面温度Thmが高いほど、算出される詰まり減少量Mdが大きくなるようにしている。そのため、詰まり減少量Mdに対して前端面温度Thmが与える影響を適切に補正することができる。   Further, as the temperature of the front end surface of the oxidation catalyst 31 increases, the amount of PM adhering to the front end surface is promoted to be oxidized and burned, and the amount thereof is reduced. Therefore, in the present embodiment, the calculated clogging reduction amount Md increases as the front end surface temperature Thm of the oxidation catalyst 31 increases. Therefore, it is possible to appropriately correct the influence of the front end face temperature Thm on the clogging reduction amount Md.

また、機関回転速度NEが低くなるにつれてエンジン1から排出される排気の量は減少するため、排気によって行われる前端面の詰まりを低減させる効果は小さくなってしまう。この点、本実施形態では、機関回転速度NEが低いほどEGR減少値Edが大きい値となるようにすることで、排気還流量の減少量が多くなるようにしており、これにより酸化触媒31に流れ込む排気の流量が多くなる。そのため、機関回転速度NEに依らず前端面の詰まりを適切に低減させることができる。   Further, since the amount of exhaust discharged from the engine 1 decreases as the engine speed NE decreases, the effect of reducing the clogging of the front end surface caused by exhaust becomes small. In this respect, in the present embodiment, the EGR reduction value Ed is increased as the engine rotational speed NE is decreased, so that the reduction amount of the exhaust gas recirculation amount is increased. The flow rate of exhaust gas flowing in increases. Therefore, it is possible to appropriately reduce clogging of the front end face regardless of the engine rotational speed NE.

また、詰まり量Mが多いときほど詰まり補正係数Kcを大きくすることで、EGR補正値Hがより大きい値となるようにしており、これにより目標EGR率Epが小さくなってEGR量EKが少なくなるようにしている。つまり、詰まり量Mが多いときほど排気還流量(EGR量EK)の減少量が多くなるようにしている。従って、詰まり量Mが多く、より多くのPMを吹き飛ばす必要があるときほど、酸化触媒31に流れ込む排気の流量は多くされる。このように排気還流量の減少量を詰まり量Mに応じて適切に設定することができる。   Further, as the clogging amount M is larger, the clogging correction coefficient Kc is increased so that the EGR correction value H becomes larger, thereby reducing the target EGR rate Ep and reducing the EGR amount EK. I am doing so. That is, the amount of reduction in the exhaust gas recirculation amount (EGR amount EK) increases as the clogging amount M increases. Therefore, the flow rate of the exhaust gas flowing into the oxidation catalyst 31 is increased as the clogging amount M is larger and more PM needs to be blown away. In this way, the reduction amount of the exhaust gas recirculation amount can be appropriately set according to the clogging amount M.

以上説明したように、本実施形態によれば以下の効果を得ることができる。
(1)酸化触媒31の前端面の詰まり量Mが閾値αを超えたときには、EGR量EKを減少させるようにしている。
As described above, according to the present embodiment, the following effects can be obtained.
(1) When the clogging amount M on the front end face of the oxidation catalyst 31 exceeds the threshold value α, the EGR amount EK is decreased.

従って、酸化触媒31の前端面におけるPMの詰まりを好適に低減することができるようになる。また、詰まりを低減させる処理の実行機会を増加させることも可能になる。そして、排気流量を増加させるためだけの機構を別途設けることなく、酸化触媒31の前端面の詰まりを低減させることができる。   Therefore, PM clogging on the front end face of the oxidation catalyst 31 can be suitably reduced. In addition, it is possible to increase the execution opportunity of processing for reducing clogging. Then, the clogging of the front end face of the oxidation catalyst 31 can be reduced without providing a separate mechanism for increasing the exhaust flow rate.

(2)機関回転速度NE及び燃料噴射量Qに基づいて算出される詰まり増加量Miと、吸入空気量GAに基づいて算出される詰まり減少量Mdとの差を求めることで詰まり量Mを算出するようにしている。そのため、前端面の詰まり量Mを好適に推定することができるようになる。   (2) The clogging amount M is calculated by calculating the difference between the clogging increase amount Mi calculated based on the engine speed NE and the fuel injection amount Q and the clogging reduction amount Md calculated based on the intake air amount GA. Like to do. Therefore, the amount M of clogging of the front end face can be estimated appropriately.

(3)大気圧Pが低いほど詰まり増加量Miが多くなるようにしている。そのため、詰まり量Mの増加量に対して大気圧Pが与える影響を好適に補正することができる。
(4)酸化触媒31の前端面温度Thmが高いほど詰まり減少量Mdが多くなるようにしている。そのため、詰まり量Mの減少量に対して酸化触媒31の前端面温度Thmが与える影響を好適に補正することができる。
(3) The clogging increase amount Mi increases as the atmospheric pressure P decreases. Therefore, the influence of the atmospheric pressure P on the increase amount of the clogging amount M can be suitably corrected.
(4) The clogging reduction amount Md increases as the front end face temperature Thm of the oxidation catalyst 31 increases. Therefore, it is possible to suitably correct the influence of the front end face temperature Thm of the oxidation catalyst 31 on the reduction amount of the clogging amount M.

(5)機関回転速度NEが低いほどEGR減少値Edが大きくなるようにしている。そのため、機関回転速度NEに依らず前端面の詰まりを好適に低減させることができる。
(6)詰まり量Mが多いときほど詰まり補正係数Kcが大きくなるようにすることで、詰まり量Mが多いときほどEGR量EKの減少量が多くなるようにしている。従って、EGR量EKの減少量を詰まり量Mに応じて適切に設定することができる。
(5) The EGR decrease value Ed increases as the engine speed NE decreases. Therefore, clogging of the front end face can be suitably reduced regardless of the engine speed NE.
(6) By increasing the clogging correction coefficient Kc as the clogging amount M increases, the reduction amount of the EGR amount EK increases as the clogging amount M increases. Therefore, the amount of decrease in the EGR amount EK can be set appropriately according to the clogging amount M.

なお、上記実施形態は以下のように変更して実施することもできる。
・上記ステップS210では、機関回転速度NEに基づいてEGR減少値Edを算出するようにした。ここで、一般的には燃料噴射量が少ないとき、すなわち機関負荷が低ときにはEGR量EKは多くされることが多い。そのため、EGR量EKを減少させるEGR減少値Edは、機関負荷が低いときほど大きくすることが可能である。そこで、EGR減少値Edを設定するときのパラメータとして、機関回転速度NEに加え、機関負荷を追加してもよい。この場合には、機関負荷が低いほど(例えば燃料噴射量Qが少ないときほど)EGR減少値Edが大きい値となるようにする。この変形例によれば、機関回転速度NEのみに基づいてEGR減少値Edを算出する場合と比較して、より多くの排気を酸化触媒31に導入することができる。
In addition, the said embodiment can also be changed and implemented as follows.
In step S210, the EGR reduction value Ed is calculated based on the engine speed NE. Here, when the generally small amount of fuel injection, i.e. the engine load is low have sometimes EGR amount EK is often more. Therefore, the EGR decrease value Ed that decreases the EGR amount EK can be increased as the engine load is lower. Therefore, an engine load may be added in addition to the engine speed NE as a parameter for setting the EGR decrease value Ed. In this case, the EGR reduction value Ed is set to a larger value as the engine load is lower (for example, as the fuel injection amount Q is smaller). According to this modification, it is possible to introduce more exhaust gas into the oxidation catalyst 31 as compared with the case where the EGR decrease value Ed is calculated based only on the engine rotational speed NE.

・詰まり量Mを別の態様で求めるようにしてもよい。例えば、酸化触媒31の排気上流側と排気下流側の圧力差を計測し、この圧力差が大きいほど詰まり量が多いと推定してもよい。   -The clogging amount M may be obtained in another manner. For example, the pressure difference between the exhaust upstream side and the exhaust downstream side of the oxidation catalyst 31 may be measured, and it may be estimated that the larger the pressure difference, the larger the clogging amount.

・詰まり増加量Miを、機関回転速度NE及び燃料噴射量Q及び大気圧Pで求めるようにしたが、大気圧Pを省略して機関回転速度NE及び燃料噴射量Qにて求めるようにしてもよい。   The clogging increase amount Mi is obtained from the engine rotational speed NE, the fuel injection amount Q, and the atmospheric pressure P. However, the atmospheric pressure P may be omitted and the engine rotational speed NE and the fuel injection amount Q may be obtained. Good.

・詰まり減少量Mdを、吸入空気量GA及び前端面温度Thmに基づいて求めるように下が、前端面温度Thmを省略して吸入空気量GAのみから求めるようにしてもよい。
・EGR減少値Edを機関回転速度NEに基づいて可変設定するようにしたが、適宜設定した一定値としてもよい。
The clogging reduction amount Md may be determined based on the intake air amount GA and the front end surface temperature Thm, but may be determined only from the intake air amount GA while omitting the front end surface temperature Thm.
Although the EGR decrease value Ed is variably set based on the engine rotational speed NE, it may be set to a fixed value set as appropriate.

・詰まり量Mが所定の量M1を超えた後は、詰まり補正係数Kcの値を固定するようにしたが、詰まり量Mの増加に合わせて詰まり補正係数Kcを増大させるようにしてもよい。   Although the value of the clogging correction coefficient Kc is fixed after the clogging amount M exceeds the predetermined amount M1, the clogging correction coefficient Kc may be increased as the clogging amount M increases.

・詰まり補正係数Kcの算出を省略してもよい。
・空気量補正係数Kaの算出を省略してもよい。
・フィルタ32の昇温を図るための燃料を燃料添加弁5から供給するようにした。この他、燃料噴射弁4a〜4dによるポスト噴射(メイン噴射の実行時期から遅れた時期に再度行われる燃料噴射)を実行することで、フィルタ32の昇温を図るようにしてもよい。また、燃料添加弁5による燃料供給とポスト噴射による燃料供給と併用するようにしてもよい。
-Calculation of the clogging correction coefficient Kc may be omitted.
The calculation of the air amount correction coefficient Ka may be omitted.
The fuel for raising the temperature of the filter 32 is supplied from the fuel addition valve 5. In addition, the temperature of the filter 32 may be increased by executing post-injection (fuel injection performed again at a timing delayed from the execution timing of the main injection) by the fuel injection valves 4a to 4d. Further, the fuel supply by the fuel addition valve 5 and the fuel supply by post injection may be used in combination.

・上記添加剤はエンジン1の燃料であったが、これと同様な作用が得られる添加剤であればどのようなものでもよい。
・触媒装置30内に配設される触媒やフィルタの数は任意にすることができる。例えば、フィルタ32のみを備えている場合でも、その前端面には添加剤添加による詰まりが生じるおそれがある。しかし、本発明を適用することによって、フィルタ32のみを備えている場合でも、その前端面の詰まりを低減させることができる。
-Although the said additive was the fuel of the engine 1, what kind of thing may be sufficient as long as the effect | action similar to this is acquired.
The number of catalysts and filters arranged in the catalyst device 30 can be arbitrarily set. For example, even when only the filter 32 is provided, the front end face may be clogged due to the additive addition. However, by applying the present invention, even when only the filter 32 is provided, clogging of the front end face can be reduced.

・酸化触媒31の代わりにNOx浄化触媒を備えるようにしてもよい。
・上記エンジン1は、直列4気筒の内燃機関であったが、その他の気筒数や気筒配列を備える内燃機関の排気浄化装置にも、本発明は同様に適用することができる。
A NOx purification catalyst may be provided instead of the oxidation catalyst 31.
Although the engine 1 is an in-line four-cylinder internal combustion engine, the present invention can be similarly applied to an exhaust gas purification apparatus for an internal combustion engine having other numbers of cylinders or cylinder arrangements.

1…エンジン、2…シリンダヘッド、3…吸気通路、4a〜4d…燃料噴射弁、5…噴射ノズル、6a〜6d…排気ポート、7…インテークマニホールド、8…エキゾーストマニホールド、9…コモンレール、10…サプライポンプ、11…ターボチャージャ、13…EGR通路、14…EGRクーラ、15…EGR弁、16…スロットル弁、17…アクチュエータ、18…インタークーラ、19…エアフロメータ、20…スロットル開度センサ、21…空燃比センサ、22…EGR弁開度センサ、23…機関回転速度センサ、24…アクセルセンサ、25…制御装置、26…排気通路、27…燃料供給管、30…触媒装置、31…酸化触媒、32…フィルタ、33…第1温度センサ、34…第2温度センサ。   DESCRIPTION OF SYMBOLS 1 ... Engine, 2 ... Cylinder head, 3 ... Intake passage, 4a-4d ... Fuel injection valve, 5 ... Injection nozzle, 6a-6d ... Exhaust port, 7 ... Intake manifold, 8 ... Exhaust manifold, 9 ... Common rail, 10 ... Supply pump, 11 ... turbocharger, 13 ... EGR passage, 14 ... EGR cooler, 15 ... EGR valve, 16 ... throttle valve, 17 ... actuator, 18 ... intercooler, 19 ... air flow meter, 20 ... throttle opening sensor, 21 DESCRIPTION OF SYMBOLS ... Air-fuel ratio sensor, 22 ... EGR valve opening sensor, 23 ... Engine rotational speed sensor, 24 ... Accelerator sensor, 25 ... Control device, 26 ... Exhaust passage, 27 ... Fuel supply pipe, 30 ... Catalyst device, 31 ... Oxidation catalyst 32 ... Filter, 33 ... First temperature sensor, 34 ... Second temperature sensor.

Claims (8)

排気通路に設けられた排気浄化部材と、同排気浄化部材に添加剤を供給する添加剤供給機構と、排気を吸気通路に還流させる排気還流機構と、同排気還流機構による排気の還流量を機関運転状態に基づいて制御する制御部とを備える内燃機関の排気浄化装置において、
前記排気浄化部材の前端面の詰まり量が予め定められた閾値を超えたときには、前記還流量を減少させる減少量に補正係数を乗じて、前記詰まり量が前記閾値を超えていないときに比して前記還流量を減少させ
前記補正係数は、前記詰まり量が多いときほど前記還流量の減少量を多くする
ことを特徴とする内燃機関の排気浄化装置。
An exhaust purification member provided in the exhaust passage, an additive supply mechanism for supplying an additive to the exhaust purification member, an exhaust recirculation mechanism for recirculating exhaust gas to the intake passage, and an exhaust recirculation amount by the exhaust recirculation mechanism In an exhaust gas purification apparatus for an internal combustion engine comprising a control unit that controls based on an operating state,
When the amount of clogging of the front end surface of the exhaust purification member exceeds a predetermined threshold, the amount of reduction that reduces the recirculation amount is multiplied by a correction coefficient, and compared with when the amount of clogging does not exceed the threshold. Reducing the reflux amount ,
The exhaust gas purifying apparatus for an internal combustion engine, wherein the correction coefficient increases the decrease amount of the recirculation amount as the clogging amount increases .
排気通路に設けられた排気浄化部材と、同排気浄化部材に添加剤を供給する添加剤供給機構と、排気を吸気通路に還流させる排気還流機構と、同排気還流機構による排気の還流量を機関運転状態に基づいて制御する制御部とを備える内燃機関の排気浄化装置において、
内燃機関の負荷状態であっても、前記排気浄化部材の前端面の詰まり量が予め定められた閾値を超えたときには、前記還流量を減少させる減少量に補正係数を乗じて、前記詰まり量が前記閾値を超えていないときに比して前記還流量を減少させ
前記詰まり量が所定の量に達するまで前記補正係数を増大させる
ことを特徴とする内燃機関の排気浄化装置。
An exhaust purification member provided in the exhaust passage, an additive supply mechanism for supplying an additive to the exhaust purification member, an exhaust recirculation mechanism for recirculating exhaust gas to the intake passage, and an exhaust recirculation amount by the exhaust recirculation mechanism In an exhaust gas purification apparatus for an internal combustion engine comprising a control unit that controls based on an operating state,
Even when the internal combustion engine is in a load state, when the amount of clogging of the front end face of the exhaust purification member exceeds a predetermined threshold, the amount of clogging is reduced by multiplying the amount of decrease by which the recirculation amount is decreased by a correction coefficient. Reducing the reflux compared to when the threshold is not exceeded ,
An exhaust gas purification apparatus for an internal combustion engine, wherein the correction coefficient is increased until the clogging amount reaches a predetermined amount .
前記詰まり量が所定の量に達した以降は、前記補正係数を固定するAfter the clogging amount reaches a predetermined amount, the correction coefficient is fixed.
請求項2に記載の内燃機関の排気浄化装置。  The exhaust emission control device for an internal combustion engine according to claim 2.
前記詰まり量は、機関回転速度及び燃料噴射量に基づいて算出される詰まり量の増加量と、吸入空気量に基づいて算出される詰まり量の減少量との差を求めることで算出される
請求項1〜3のいずれか一項に記載の内燃機関の排気浄化装置。
The clogging amount is calculated by obtaining a difference between an increase amount of the clogging amount calculated based on the engine speed and the fuel injection amount and a reduction amount of the clogging amount calculated based on the intake air amount. Item 6. The exhaust gas purification apparatus for an internal combustion engine according to any one of Items 1 to 3 .
前記詰まり量の増加量は、大気圧が低いほど多くされる
請求項に記載の内燃機関の排気浄化装置。
The exhaust purification device for an internal combustion engine according to claim 4 , wherein the increase amount of the clogging amount is increased as the atmospheric pressure is lower.
前記詰まり量の減少量は、前記排気浄化部材の前端面の温度が高いほど多くされる
請求項またはに記載の内燃機関の排気浄化装置。
The exhaust purification device for an internal combustion engine according to claim 4 or 5 , wherein the reduction amount of the clogging amount is increased as the temperature of the front end face of the exhaust purification member is higher.
機関回転速度が高いほど前記還流量の減少量は少なくされる
請求項1〜のいずれか1項に記載の内燃機関の排気浄化装置。
The exhaust gas purification apparatus for an internal combustion engine according to any one of claims 1 to 6 , wherein the amount of decrease in the recirculation amount is reduced as the engine speed increases.
機関回転速度が低いほど前記還流量の減少量は大きくされるThe lower the engine rotation speed, the greater the reduction amount of the recirculation amount.
請求項1〜7のいずれか1項に記載の内燃機関の排気浄化装置。  The exhaust emission control device for an internal combustion engine according to any one of claims 1 to 7.
JP2011135388A 2011-06-17 2011-06-17 Exhaust gas purification device for internal combustion engine Expired - Fee Related JP5815296B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011135388A JP5815296B2 (en) 2011-06-17 2011-06-17 Exhaust gas purification device for internal combustion engine
EP12733217.9A EP2721263B1 (en) 2011-06-17 2012-06-15 Exhaust gas control apparatus for internal combustion engine
AU2012270014A AU2012270014B2 (en) 2011-06-17 2012-06-15 Exhaust gas control apparatus for internal combustion engine
PCT/IB2012/001285 WO2012172423A1 (en) 2011-06-17 2012-06-15 Exhaust gas control apparatus for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011135388A JP5815296B2 (en) 2011-06-17 2011-06-17 Exhaust gas purification device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2013002388A JP2013002388A (en) 2013-01-07
JP5815296B2 true JP5815296B2 (en) 2015-11-17

Family

ID=46466602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011135388A Expired - Fee Related JP5815296B2 (en) 2011-06-17 2011-06-17 Exhaust gas purification device for internal combustion engine

Country Status (4)

Country Link
EP (1) EP2721263B1 (en)
JP (1) JP5815296B2 (en)
AU (1) AU2012270014B2 (en)
WO (1) WO2012172423A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6881222B2 (en) * 2017-10-19 2021-06-02 トヨタ自動車株式会社 Internal combustion engine control device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4254630B2 (en) * 2004-06-24 2009-04-15 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
JP2006161718A (en) * 2004-12-08 2006-06-22 Toyota Motor Corp Exhaust emission control system for internal combustion engine
JP4821112B2 (en) * 2004-12-22 2011-11-24 日産自動車株式会社 Control device for lean combustion internal combustion engine
JP2007023792A (en) 2005-07-12 2007-02-01 Toyota Industries Corp Exhaust emission control device
JP4857915B2 (en) * 2006-06-02 2012-01-18 マツダ株式会社 Diesel engine control device
JP2009013809A (en) * 2007-07-02 2009-01-22 Hino Motors Ltd Exhaust emission control device
JP2009287515A (en) * 2008-05-30 2009-12-10 Toyota Motor Corp Controller of internal combustion engine

Also Published As

Publication number Publication date
AU2012270014A1 (en) 2014-01-16
JP2013002388A (en) 2013-01-07
EP2721263A1 (en) 2014-04-23
AU2012270014B2 (en) 2015-07-23
EP2721263B1 (en) 2016-03-30
WO2012172423A1 (en) 2012-12-20

Similar Documents

Publication Publication Date Title
JP4453739B2 (en) Control method of addition valve
EP1555401A1 (en) Exhaust purifying apparatus for internal combustion engine
JP2006029239A (en) Exhaust emission control filter overheat prevention device
JP4544011B2 (en) Internal combustion engine exhaust purification system
JP5632223B2 (en) Exhaust gas recirculation system for engine equipment
JP2005325812A (en) Failure determining device for filter
JP5834906B2 (en) Exhaust gas purification device for internal combustion engine
US8387364B2 (en) Exhaust gas purifying apparatus for internal combustion engine
JP2013144938A (en) Exhaust emission control system of internal combustion engine
JP2012197681A (en) Exhaust gas recirculation system for engine device
JP5787083B2 (en) Exhaust gas purification device for internal combustion engine
JP2008144726A (en) Exhaust emission control device for internal combustion engine
JP7257759B2 (en) Control device, engine and engine control method
JP5815296B2 (en) Exhaust gas purification device for internal combustion engine
JP5699922B2 (en) Exhaust gas purification device for internal combustion engine
JP6011504B2 (en) Exhaust gas purification device for internal combustion engine
JP5136465B2 (en) Exhaust gas purification device for internal combustion engine
JP2009197718A (en) Exhaust emission control device of internal combustion engine
JP2004293428A (en) Control device of internal combustion engine
JP2020133401A (en) Exhaust emission control device of internal combustion engine
JP5287940B2 (en) Exhaust gas purification device for internal combustion engine
JP4356583B2 (en) Fuel injection control device for internal combustion engine
JP6988741B2 (en) Internal combustion engine control device
JP6426064B2 (en) engine
JP6962262B2 (en) Exhaust treatment system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140515

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150908

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150924

LAPS Cancellation because of no payment of annual fees