JP4356583B2 - Fuel injection control device for internal combustion engine - Google Patents

Fuel injection control device for internal combustion engine Download PDF

Info

Publication number
JP4356583B2
JP4356583B2 JP2004302406A JP2004302406A JP4356583B2 JP 4356583 B2 JP4356583 B2 JP 4356583B2 JP 2004302406 A JP2004302406 A JP 2004302406A JP 2004302406 A JP2004302406 A JP 2004302406A JP 4356583 B2 JP4356583 B2 JP 4356583B2
Authority
JP
Japan
Prior art keywords
fuel injection
internal combustion
combustion engine
dpf
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004302406A
Other languages
Japanese (ja)
Other versions
JP2006112370A (en
Inventor
道博 畠
▲徳▼幸 古賀
雅俊 谷口
一憲 江口
裕樹 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2004302406A priority Critical patent/JP4356583B2/en
Priority to CN200510114127.7A priority patent/CN100577994C/en
Priority to EP20050022621 priority patent/EP1647688B1/en
Priority to DE200560022392 priority patent/DE602005022392D1/en
Publication of JP2006112370A publication Critical patent/JP2006112370A/en
Application granted granted Critical
Publication of JP4356583B2 publication Critical patent/JP4356583B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/029Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a particulate filter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

本発明は、内燃機関の燃料噴射制御装置に関し、特に、ディーゼル・パティキュレートフィルタ(DPF)を有する内燃機関を適切に制御する技術に関する。   The present invention relates to a fuel injection control device for an internal combustion engine, and more particularly to a technique for appropriately controlling an internal combustion engine having a diesel particulate filter (DPF).

一般的に内燃機関の出力制御は、近年の環境問題を踏まえて、排気ガス中のスモーク濃度(主としてパティキュレートマター(PMと略す)の濃度)を基準として行われている。すなわち、出力増加と共にスモーク濃度が増加するため、スモーク濃度が規定値以下の範囲で出力の制御を行っている。   In general, output control of an internal combustion engine is performed on the basis of smoke concentration (mainly concentration of particulate matter (abbreviated as PM)) in exhaust gas in consideration of recent environmental problems. That is, since the smoke density increases as the output increases, the output is controlled in a range where the smoke density is not more than a specified value.

スモーク濃度を考慮した出力の制御方法としては、テールパイプでのスモーク濃度が内燃機関の吸入空気量に依存しているため、例えば、過給圧(インマニ圧力)に対する最大噴射量をマップなどで与えたり、過給圧で基本噴射量を補正したりする方法が一般的である。   As a method for controlling the output in consideration of the smoke concentration, the smoke concentration in the tail pipe depends on the intake air amount of the internal combustion engine. For example, the maximum injection amount with respect to the boost pressure (intake manifold pressure) is given by a map or the like. Or, a method of correcting the basic injection amount with the supercharging pressure is common.

一方、ディーゼルエンジンから排出される排気ガスには、HC、CO、NOx等のほか、PMが多く含まれている。そこで、近年、ディーゼルエンジンの排気浄化装置として、PMを捕捉し燃焼除去するディーゼル・パティキュレートフィルタ(DPFと略す)が実用化されている。   On the other hand, exhaust gas discharged from a diesel engine contains a large amount of PM in addition to HC, CO, NOx and the like. Therefore, in recent years, a diesel particulate filter (abbreviated as DPF) that captures PM and burns and removes it has been put to practical use as an exhaust gas purification device for a diesel engine.

特公平5−34499号公報Japanese Patent Publication No. 5-34499

しかしながら、上述するようにDPFはPMなどを捕捉するフィルタであるため、このようなDPFを搭載した車両では、テールパイプからスモークが排出されることはほとんどない。したがって、DPFを搭載した内燃機関では、テールパイプからのスモーク濃度を反映した出力制限の必要性がなくなり、所定の吸入空気量に対して最大トルクを発生する燃料噴射量を設定することができてしまう。   However, since the DPF is a filter that captures PM and the like as described above, smoke is hardly discharged from the tail pipe in a vehicle equipped with such a DPF. Therefore, in an internal combustion engine equipped with a DPF, there is no need to limit the output reflecting the smoke concentration from the tail pipe, and it is possible to set a fuel injection amount that generates a maximum torque for a predetermined intake air amount. End up.

ところが、実際には内燃機関の出口(エンジンアウト)からはスモークが排出されており、最大トルクを発生するような燃料噴射量の設定が可能であっても、過剰のスモークを排出した状態で内燃機関の運転を続けると、DPF内のPM堆積量が増加し続け、DPFのフィルタ圧損の増大により排気圧が上昇してポンピングロス等を招き、燃費悪化や排ガス悪化等を起こすという問題がある。また、DPFにPMが過剰に堆積した状態では、高負荷運転等でPMが自己着火した場合、DPFが破損するおそれがある。   However, in reality, smoke is discharged from the outlet of the internal combustion engine (engine out), and even if it is possible to set the fuel injection amount so as to generate the maximum torque, the internal combustion engine is discharged with excessive smoke. If the engine is continuously operated, the amount of accumulated PM in the DPF continues to increase, and the exhaust pressure increases due to an increase in the filter pressure loss of the DPF, resulting in a pumping loss and the like. Further, in a state where PM is excessively accumulated on the DPF, the DPF may be damaged when the PM self-ignites during high load operation or the like.

これに対して、DPF内のPM堆積量が増加した場合であっても、DPFの自然再生によりPMを燃焼除去したり、ポスト噴射等によりPMを強制的に燃焼除去(強制再生)したりするなどの対策があるが、排気ガス温度が比較的低温のディーゼルエンジンでは自然再生はあまり期待できず、また、強制再生の頻度を増加させると燃費悪化を招くなどの問題がある。   On the other hand, even when the amount of accumulated PM in the DPF increases, the PM is burned and removed by natural regeneration of the DPF, or the PM is forcibly burned and removed (forced regeneration) by post injection or the like. However, natural regeneration cannot be expected with a diesel engine with a relatively low exhaust gas temperature, and increasing the frequency of forced regeneration causes problems such as worsening fuel consumption.

一方、DPFを搭載した内燃機関に対して、エンジンアウトの排出スモーク濃度を基準として出力制御を行った場合には、過剰のスモーク排出による上述するような問題を解消することはできるが、出力トルクが抑制されてしまうという問題がある。   On the other hand, when the output control is performed on the internal combustion engine equipped with the DPF based on the exhaust smoke concentration at the engine out, the above-mentioned problem due to excessive smoke discharge can be solved, but the output torque There is a problem that is suppressed.

ところで、上記引用文献1には、DPFの温度がPMの通常の燃焼時の温度よりも高い場合には、比較的多量の燃料を燃焼室に供給し、DPF上流側に設けた酸化触媒の反応熱を低下させて、DPFの異常昇温を防止する技術が記載されている。   By the way, in the above cited reference 1, when the temperature of the DPF is higher than the temperature during normal combustion of PM, a relatively large amount of fuel is supplied to the combustion chamber, and the reaction of the oxidation catalyst provided on the upstream side of the DPF. A technique for reducing heat and preventing an abnormal temperature rise of the DPF is described.

しかしながら、当該技術は、DPF異常高温時の対策を示しているに過ぎず、通常使用状況下での内燃機関の出力トルクの向上とDPFへのPMの過剰堆積の抑制とをより高次元で両立するという観点からは改善の余地がある。   However, this technology only shows countermeasures when the DPF is abnormally hot, and achieves higher levels of both improving the output torque of the internal combustion engine under normal use conditions and suppressing excessive PM accumulation on the DPF. There is room for improvement from the point of view.

本発明は上記状況に鑑みてなされたもので、内燃機関の燃料噴射制御装置に関し、DPFへのPMの過剰堆積を抑制しつつ、内燃機関の出力を向上させることができる技術を提供することを目的とする。   The present invention has been made in view of the above situation, and relates to a fuel injection control device for an internal combustion engine, and provides a technique capable of improving the output of the internal combustion engine while suppressing excessive PM accumulation on the DPF. Objective.

上記課題を解決する本発明に係る内燃機関の燃料噴射制御装置は、
内燃機関に燃料を供給する燃料噴射手段と、
上記内燃機関の排気通路に設けられて排気ガス中のパティキュレートマターを捕集するフィルタと、
上記フィルタの上流側の排気温度と上記フィルタの下流側の排気温度とを検出するフィルタ状態検出手段と、
上記内燃機関の運転状態を検出する運転状態検出手段と、
上記運転状態検出手段の検出出力から求めた目標燃料噴射量相当値に応じて上記燃料噴射手段を制御する噴射制御手段とを備え、
上記噴射制御手段は、上記下流側の排気温度が第1の温度以上であり、かつ上記上流側の排気温度が第2の温度以上であることを条件に、上記目標燃料噴射量相当値を増量補正する
ことを特徴とする内燃機関の燃料噴射制御装置である。
A fuel injection control device for an internal combustion engine according to the present invention that solves the above problems is as follows.
Fuel injection means for supplying fuel to the internal combustion engine;
A filter provided in an exhaust passage of the internal combustion engine for collecting particulate matter in exhaust gas;
Filter state detecting means for detecting an exhaust temperature upstream of the filter and an exhaust temperature downstream of the filter;
Operating state detecting means for detecting the operating state of the internal combustion engine;
Injection control means for controlling the fuel injection means according to a target fuel injection amount equivalent value obtained from the detection output of the operating state detection means,
The injection control means increases the target fuel injection amount equivalent value on condition that the downstream exhaust temperature is equal to or higher than the first temperature and the upstream exhaust temperature is equal to or higher than the second temperature. A fuel injection control device for an internal combustion engine characterized by correcting.

パティキュレートをフィルタが燃焼除去する能力に相関する指標とは、例えば、DPFがPMを燃焼除去する能力を決定するDPF温度(排気ガスの温度)や排気ガス中の酸素濃度などをいう。これらの指標に基づいて、DPFが余剰のPM除去能力を有している場合には、燃料噴射量を目標燃料噴射量にとどめるのではなく、増量補正して、出力向上を図る。   The index that correlates with the ability of the filter to burn and remove particulates is, for example, the DPF temperature (exhaust gas temperature) that determines the ability of the DPF to burn and remove PM, the oxygen concentration in the exhaust gas, and the like. Based on these indices, when the DPF has an excess PM removal capability, the fuel injection amount is not limited to the target fuel injection amount, but is increased and corrected to improve the output.

フィルタ状態をDPFを通過する排気ガス温度から把握して、増量補正の的確な判断を行う。   The filter state is grasped from the exhaust gas temperature passing through the DPF, and an accurate determination of the increase correction is made.

また、上記内燃機関の燃料噴射制御装置において、
記噴射制御手段は、上記下流側の排気温度と上記上流側の排気温度とに応じた増量補正を行う
ことを特徴とする内燃機関の燃料噴射制御装置である。
In the fuel injection control device for an internal combustion engine,
Upper Symbol injection control means is a fuel injection control device for an internal combustion engine and performs increase correction in accordance with the exhaust temperature of the exhaust gas temperature and the upstream side of the downstream side.

排気ガスの流れ方向に所定の長さを有するDPFは、その内部において温度が不均一である場合がある。また、DPFのPM除去能力はDPF温度に依存する。したがって、下流側の排気温度と上流側の排気温度とに応じた増量補正を行うことにより、フィルタ状態を的確に把握して的確な増量補正を行う。   A DPF having a predetermined length in the exhaust gas flow direction may have a non-uniform temperature inside. Further, the PM removal capability of the DPF depends on the DPF temperature. Therefore, by performing an increase correction in accordance with the downstream exhaust temperature and the upstream exhaust temperature, the filter state is accurately grasped, and an accurate increase correction is performed.

また、上記内燃機関の燃料噴射制御装置において、
上記目標燃料噴射量相当値は、上記内燃機関から排出されるスモーク濃度が所定濃度以下となるように制限されていることを特徴とする内燃機関の燃料噴射制御装置である。
In the fuel injection control device for an internal combustion engine,
The target fuel injection amount equivalent value is a fuel injection control device for an internal combustion engine, wherein the smoke concentration discharged from the internal combustion engine is limited to a predetermined concentration or less.

法規制や車両走行中の排ガスの見た目などの問題から、排気ガス中のスモーク濃度は所定の規制値が設けられることがある。すべての運転状態において、この規制値どおりに燃料噴射制御を行うと、十分なエンジン出力を得られない問題が発生する。そこで、DPFの余剰のPM除去能力を有効的に活用して、エンジン出力の向上を図る。   Due to problems such as legal restrictions and the appearance of exhaust gas during vehicle travel, the smoke concentration in the exhaust gas may be provided with a predetermined regulation value. If the fuel injection control is performed according to this regulation value in all operating states, there is a problem that sufficient engine output cannot be obtained. Therefore, the engine output is improved by effectively utilizing the excess PM removal capability of the DPF.

また、上記内燃機関の燃料噴射制御装置において、
上記噴射制御手段は、上記内燃機関のブースト圧に応じた制限の範囲内で、上記目標燃料噴射量相当値を設定し、上記フィルタ状態検出手段の検出出力に基づき上記制限を越えて上記目標燃料噴射量相当値を増量補正することを特徴とする内燃機関の燃料噴射制御装置である。
In the fuel injection control device for an internal combustion engine,
The injection control means sets the target fuel injection amount equivalent value within a limit range corresponding to the boost pressure of the internal combustion engine, and exceeds the limit based on the detection output of the filter state detection means. A fuel injection control device for an internal combustion engine, wherein an injection amount equivalent value is corrected by increasing.

内燃機関から排出されるスモークを適度に抑制しながらDPFのPM浄化能力を活用してエンジン出力を向上させることができる。   The engine output can be improved by utilizing the PM purification ability of the DPF while appropriately suppressing smoke discharged from the internal combustion engine.

本発明に係る内燃機関の燃料噴射制御装置によれば、内燃機関に燃料を供給する燃料噴射手段と、上記内燃機関の排気通路に設けられて排気ガス中のパティキュレートマターを捕集するフィルタと、上記フィルタの上流側の排気温度と上記フィルタの下流側の排気温度とを検出するフィルタ状態検出手段と、上記内燃機関の運転状態を検出する運転状態検出手段と、上記運転状態検出手段の検出出力から求めた目標燃料噴射量相当値に応じて上記燃料噴射手段を制御する噴射制御手段とを備え、上記噴射制御手段は、上記下流側の排気温度が第1の温度以上であり、かつ上記上流側の排気温度が第2の温度以上であることを条件に、上記目標燃料噴射量相当値を増量補正することにしたので、フィルタでのPMの除去能力に応じて燃料噴射量を増量することができ、フィルタへのPMの過剰堆積を抑制しながら内燃機関の出力トルクを向上させることができる。また、フィルタでPMが安定して燃焼除去される状況を的確に検出することができ、燃焼除去が不確実な状況下で燃料噴射量が増量されてフィルタにPMが過剰堆積することを防止できる。 According to the fuel injection control device for an internal combustion engine according to the present invention, a fuel injection means for supplying fuel to the internal combustion engine, a filter provided in the exhaust passage of the internal combustion engine for collecting particulate matter in the exhaust gas, A filter state detecting means for detecting an exhaust temperature upstream of the filter and an exhaust temperature downstream of the filter; an operating state detecting means for detecting an operating state of the internal combustion engine; and a detection by the operating state detecting means Injection control means for controlling the fuel injection means in accordance with a target fuel injection amount equivalent value obtained from the output, wherein the injection control means has the downstream exhaust gas temperature equal to or higher than a first temperature, and it on condition exhaust gas temperature on the upstream side is a second temperature above, since it was decided to increase correction of the target fuel injection amount corresponding value, the fuel injection amount in accordance with the PM removal capability of the filter It can be increased, thereby improving the output torque of the internal combustion engine while suppressing excessive accumulation of PM on the filter. Further, it is possible to accurately detect the situation where PM is stably burned and removed by the filter, and it is possible to prevent the PM from being excessively deposited on the filter due to an increase in the fuel injection amount in a situation where combustion removal is uncertain. .

また、上記内燃機関の燃料噴射制御装置において、記噴射制御手段は、上記下流側の排気温度と上記上流側の排気温度とに応じた増量補正を行うようにしたので、フィルタでのPM除去能力に的確に対応した燃料増量補正を実現することができ、内燃機関の出力トルクを効率よく向上させることができる。 Further, in the fuel injection control apparatus for an internal combustion engine, the upper Symbol injection control means, since to carry out the increment correction in accordance with the exhaust temperature of the exhaust gas temperature and the upstream side of the downstream, PM removal filter It is possible to achieve fuel increase correction that accurately corresponds to the capacity, and to efficiently improve the output torque of the internal combustion engine.

また、上記内燃機関の燃料噴射制御装置において、
上記目標燃料噴射量相当値は、上記内燃機関から排出されるスモーク濃度が所定濃度以下となるように制限されているので、
すべての運転状態において従来のスモーク濃度を考慮した燃料噴射制御を行うことにより発生する出力不足をなくし、DPFの余剰のPM除去能力を有効的に活用して、エンジン出力の向上を図ることができる。
In the fuel injection control device for an internal combustion engine,
The target fuel injection amount equivalent value is limited so that the smoke concentration discharged from the internal combustion engine is not more than a predetermined concentration.
It is possible to improve the engine output by effectively utilizing the excess PM removal ability of the DPF by eliminating the output shortage caused by performing the fuel injection control in consideration of the smoke concentration in all operating states. .

また、上記内燃機関の燃料噴射制御装置において、
上記噴射制御手段は、上記内燃機関のブースト圧に応じた制限の範囲内で、上記目標燃料噴射量相当値を設定し、上記フィルタ状態検出手段の検出出力に基づき上記制限を越えて上記目標燃料噴射量相当値を増量補正することにしたので、
内燃機関から排出されるスモークを適度に抑制しながらエンジン出力を効率よく向上させることができる。
In the fuel injection control device for an internal combustion engine,
The injection control means sets the target fuel injection amount equivalent value within a limit range corresponding to the boost pressure of the internal combustion engine, and exceeds the limit based on the detection output of the filter state detection means. Since we decided to correct the injection amount equivalent value,
The engine output can be improved efficiently while appropriately suppressing the smoke discharged from the internal combustion engine.

以下、図面に基づいて本発明の実施形態を具体的に説明するが、以下の実施形態は本発明を限定するものではない。図1は、本発明の実施形態に係る内燃機関の燃料噴射制御装置を示す概略構成図である。   Hereinafter, embodiments of the present invention will be specifically described with reference to the drawings. However, the following embodiments do not limit the present invention. FIG. 1 is a schematic configuration diagram showing a fuel injection control device for an internal combustion engine according to an embodiment of the present invention.

図1に示すように、内燃機関であるエンジン1は例えばコモンレール式直列4気筒のディーゼルエンジンである。コモンレール式のエンジン1では、燃焼室2に臨んで電磁式の燃料噴射ノズル3(燃料噴射手段)が各気筒に設けられており、各燃料噴射ノズル3は高圧パイプ4によりコモンレール5に接続されている。そして、コモンレール5は、高圧ポンプ7の介装された高圧パイプ6を介して燃料タンク8に接続されている。なお、エンジン1がディーゼルエンジンであるため、燃料としては軽油が使用される。   As shown in FIG. 1, an engine 1 that is an internal combustion engine is, for example, a common rail in-line four-cylinder diesel engine. In the common rail type engine 1, an electromagnetic fuel injection nozzle 3 (fuel injection means) is provided in each cylinder facing the combustion chamber 2, and each fuel injection nozzle 3 is connected to a common rail 5 by a high-pressure pipe 4. Yes. The common rail 5 is connected to the fuel tank 8 via a high-pressure pipe 6 in which a high-pressure pump 7 is interposed. Since engine 1 is a diesel engine, light oil is used as the fuel.

エンジン1の吸気通路9には電磁式の吸気絞り弁10が設けられている。排気通路12の上流部分からはEGR通路13が延びており、該EGR通路13の終端は吸気通路9の吸気絞り弁10よりも下流部分に接続されている。そして、EGR通路13には、電磁式のEGR弁14が介装されている。   An electromagnetic intake throttle valve 10 is provided in the intake passage 9 of the engine 1. An EGR passage 13 extends from the upstream portion of the exhaust passage 12, and the end of the EGR passage 13 is connected to a portion of the intake passage 9 downstream of the intake throttle valve 10. An electromagnetic EGR valve 14 is interposed in the EGR passage 13.

また、排気通路12の下流部分には、排気浄化装置が介装されている。排気浄化装置は、ディーゼル・パティキュレートフィルタ(DPF)21の上流に酸化触媒(DOC)20を設けて構成されている。排気浄化装置は、酸化触媒20において酸化剤(NO2)を生成し、該生成された酸化剤によって下流のDPF21に堆積したパティキュレートマター(PM)を常時連続的に酸化除去するように構成されている。 Further, an exhaust purification device is interposed in the downstream portion of the exhaust passage 12. The exhaust emission control device is configured by providing an oxidation catalyst (DOC) 20 upstream of a diesel particulate filter (DPF) 21. The exhaust purification device is configured to generate an oxidant (NO 2 ) in the oxidation catalyst 20 and continuously oxidize and remove particulate matter (PM) deposited on the downstream DPF 21 by the generated oxidant. ing.

電子コントローラ(ECU)15の入力側(運転状態検出手段)には、吸入空気量Qaを検出するエアフローセンサ11、DPF21の上流側及び下流側の排気ガスの温度を検出するDPF前温度センサ23aとDPF後温度センサ23b(フィルタ状態検出手段)、アクセルペダル16の踏込量、即ちアクセル開度APsを検出するアクセル開度センサ17、エンジン1の回転数Neを検出するセンサ、インテークマニホールドの圧力PBを検出するセンサ等の各種センサ類が接続され、出力側には、上記燃料噴射ノズル3、高圧ポンプ7、吸気絞り弁10、EGR弁14等の各種デバイス類が接続されている。 On the input side (operating state detection means) of the electronic controller (ECU) 15 are an airflow sensor 11 for detecting the intake air amount Qa, a pre-DFF temperature sensor 23a for detecting the temperature of the exhaust gas upstream and downstream of the DPF 21, and DPF post-temperature sensor 23b (filter state detecting means), accelerator pedal 16 depression amount, that is, accelerator opening sensor 17 for detecting accelerator opening APs, sensor for detecting engine 1 rotational speed Ne, intake manifold pressure P B And various devices such as the fuel injection nozzle 3, the high pressure pump 7, the intake throttle valve 10, and the EGR valve 14 are connected to the output side.

これにより、各種入力情報に基づき各種デバイス類が制御され、エンジン1が適正に運転制御される。また、本実施形態に係る内燃機関の燃料噴射制御装置は、エンジン1の運転状態などに基づいて燃料噴射ノズル3の目標燃料噴射量を制御する機能を有し、DPF21の温度が所定温度未満の場合にはエンジン1から排出されるスモーク濃度が所定濃度以下となるように目標燃料噴射量を制限的に制御すると共に、DPF21の温度が所定温度以上の場合にはDPF21の温度に応じて前記目標燃料噴射量を増量補正するように構成されている。   Thereby, various devices are controlled based on various input information, and the engine 1 is appropriately controlled. The fuel injection control device for an internal combustion engine according to the present embodiment has a function of controlling the target fuel injection amount of the fuel injection nozzle 3 based on the operating state of the engine 1, and the temperature of the DPF 21 is less than a predetermined temperature. In this case, the target fuel injection amount is limitedly controlled so that the smoke concentration discharged from the engine 1 is equal to or lower than the predetermined concentration. When the temperature of the DPF 21 is equal to or higher than the predetermined temperature, the target fuel injection amount is determined according to the temperature of the DPF 21. The fuel injection amount is corrected to increase.

DPF21が所定温度未満であるか所定温度以上であるかにより目標燃料噴射量の制御を分けているが、ここで設定される所定温度は、DPF21が堆積したPMを燃焼除去する能力に相当する指標の一例である。すなわち、DPF21のPM除去能力はDPF21の温度に依存するが、例えば、エンジン1の運転に伴って堆積するPMをDPF21が完全に除去し続けること(連続再生)が可能なフィルタ状態となる温度の下限値を、所定温度として設定する。   The control of the target fuel injection amount is divided depending on whether the DPF 21 is lower than the predetermined temperature or higher than the predetermined temperature. The predetermined temperature set here is an index corresponding to the ability of the DPF 21 to burn and remove the PM deposited thereon. It is an example. That is, although the PM removal capability of the DPF 21 depends on the temperature of the DPF 21, for example, the temperature at which the DPF 21 is in a filter state that allows the DPF 21 to continue to completely remove the PM accumulated with the operation of the engine 1 (continuous regeneration). The lower limit value is set as the predetermined temperature.

この場合には、DPF21が所定温度未満であり、PMを完全には除去しきれずにDPF21内にPMが堆積していく条件において、スモーク濃度が所定濃度以下となるように目標燃料噴射量を制限的に制御することにより、スモーク排出を抑制すると共にDPF21内にPMが堆積して発生する問題を解消する。   In this case, the target fuel injection amount is limited so that the smoke concentration is equal to or lower than the predetermined concentration under the condition that the DPF 21 is lower than the predetermined temperature and PM is not completely removed and PM accumulates in the DPF 21. By controlling the control, smoke emission is suppressed and the problem of PM accumulation in the DPF 21 is solved.

一方、DPF21が所定温度以上であり、DPF21の連続再生が可能な条件において、前記目標燃料噴射量を増量補正することにより、DPF21の余剰のPM除去能力を生かしてエンジン1の出力を向上させることができる。所定温度以上のとき、DPF21は目標燃料噴射量により決定される排出PM量を更に上回るPM量を除去する能力を有しており、噴射量を増量してスモーク濃度を高めても、DPF21内で処理されてスモーク規制を破ることはない。したがって、このように制御することにより、スモーク排出を抑制しつつ、エンジン1の出力を向上させることができる。   On the other hand, when the DPF 21 is at a predetermined temperature or higher and the DPF 21 can be continuously regenerated, the output of the engine 1 is improved by making use of the excess PM removal capability of the DPF 21 by increasing the target fuel injection amount. Can do. When the temperature is equal to or higher than the predetermined temperature, the DPF 21 has the ability to remove the PM amount further exceeding the exhausted PM amount determined by the target fuel injection amount. Even if the injection amount is increased to increase the smoke concentration, the DPF 21 Processed and will not break smoke regulations. Therefore, by controlling in this way, the output of the engine 1 can be improved while suppressing smoke discharge.

図2は、試験から得られた、DPFの温度と、DPF前後差圧の経時変化との関係を示すグラフである。同図には、縦軸をDPFの上流側の排気ガス圧力と下流側の排気ガス圧力との差圧(単位は、KPa)とし、横軸を時間(単位は秒)として、エンジンからスモーク濃度20%の排気ガスを排出した場合におけるDPFの前後差圧の経時変化を、DPFの温度が426℃、556℃、647℃の場合について示してある。   FIG. 2 is a graph showing the relationship between the DPF temperature and the change with time in the differential pressure across the DPF, obtained from the test. In the figure, the vertical axis represents the differential pressure between the exhaust gas pressure upstream of the DPF and the downstream exhaust gas pressure (unit: KPa), and the horizontal axis represents time (unit: seconds). The time-dependent change in the differential pressure across the DPF when 20% exhaust gas is discharged is shown for DPF temperatures of 426 ° C., 556 ° C., and 647 ° C.

なお、DPFは排気ガス流れ方向に所定の長さを有するフィルタであり、DPF入口側の温度と、DPF出口側の温度とが異なる場合が考えられるが、運転状態を定常状態とすることによりDPFの入口温度及び出口温度を同じにして試験を行った。   Note that the DPF is a filter having a predetermined length in the exhaust gas flow direction, and there are cases where the temperature on the DPF inlet side and the temperature on the DPF outlet side are different. The test was conducted with the same inlet temperature and outlet temperature.

同図に示すように、DPFの温度が426℃のときは、DPFの前後差圧が時間と共に上昇していくことが分かる。これは、DPFの温度が比較的低温であるため、排気ガスに含まれる濃度20%のPMを完全に燃焼除去することができなく、DPF内にPMが堆積し続けるからである。このPM堆積度合が顕著であるため、差圧が顕著に上昇するものと考えられる。   As shown in the figure, it can be seen that when the temperature of the DPF is 426 ° C., the differential pressure across the DPF increases with time. This is because since the temperature of the DPF is relatively low, PM having a concentration of 20% contained in the exhaust gas cannot be completely removed by combustion, and PM continues to accumulate in the DPF. Since this PM deposition degree is remarkable, it is thought that a differential pressure rises notably.

これに対して、DPFの温度が556℃、647℃のときは、DPFの前後差圧が安定していることが分かる。これは、DPFの温度が比較的高温であるため、排気ガスに含まれる濃度20%のPMを完全に燃焼除去することができ、DPF内にPMが流入すると同時に燃焼除去されているから、またはDPF内にPMが堆積する場合であっても過剰堆積ではなくDPFの前後差圧に影響を与えない程度であるからである。   On the other hand, when the temperature of the DPF is 556 ° C. and 647 ° C., it can be seen that the differential pressure across the DPF is stable. This is because the temperature of the DPF is relatively high, so that the 20% concentration PM contained in the exhaust gas can be completely burned and removed, and at the same time the PM flows into the DPF, it is burned off or This is because even when PM is deposited in the DPF, it is not excessively deposited and does not affect the differential pressure across the DPF.

図3は、DPF内のPM堆積量について、エンジンから排出されるスモーク濃度とDPFの温度との関係から示したグラフである。同図には、縦軸をエンジンから排出される排気ガス中のスモーク濃度(単位は%)とし、横軸をDPFの温度(単位は℃)としたマップ上に、DPF内に時間あたりに堆積するPM量(単位はg/h)をプロットしてある。なお、図2と同様に、運転状態を定常状態とすることにより、DPFの入口温度及び出口温度を同じにして試験を行った。   FIG. 3 is a graph showing the PM accumulation amount in the DPF from the relationship between the smoke concentration discharged from the engine and the temperature of the DPF. In the figure, the vertical axis represents smoke concentration in exhaust gas exhausted from the engine (unit:%), and the horizontal axis represents DPF temperature (unit: ° C). The amount of PM (unit: g / h) is plotted. Similarly to FIG. 2, the test was performed with the DPF inlet temperature and outlet temperature being the same by setting the operation state to a steady state.

図3の見方の一例を示すと、例えばDPFの温度が650℃のときには、スモーク濃度20%の排気ガスを流入させるとPMの流入量とDPFにおける燃焼除去量とが等しいため、堆積速度が0g/hであり、スモーク濃度35%の排気ガスを流入させるとPMの流入量の方がDPFにおける燃焼除去量よりも多く、堆積速度が10g/hであり、スモーク濃度20%未満の排気ガスを流入させるとPMの流入量の方がDPFにおける燃焼除去量よりも少なく、堆積速度が0g/hであり、余剰のPM除去能力を有する(連続再生領域)ことが分かる。   An example of how to view FIG. 3 shows that when the temperature of the DPF is 650 ° C., for example, when exhaust gas having a smoke concentration of 20% is introduced, the inflow amount of PM is equal to the combustion removal amount in the DPF, so the deposition rate is 0 g. When exhaust gas having a smoke concentration of 35% is introduced, the inflow amount of PM is larger than the combustion removal amount in the DPF, the deposition rate is 10 g / h, and the exhaust gas having a smoke concentration of less than 20% When it is made to flow, it can be seen that the inflow amount of PM is smaller than the combustion removal amount in the DPF, the deposition rate is 0 g / h, and it has an excess PM removal capability (continuous regeneration region).

また、スモーク濃度20%の排気ガスをDPFに流入させたときには、DPFの温度が650℃であるとPMの流入量とDPFにおける燃焼除去量とが等しいため、堆積速度が0g/hであり、DPFの温度が575℃であるとPMの流入量の方がDPFにおける燃焼除去量よりも多く、堆積速度が10g/hであり、DPFの温度が650℃より高いとPMの流入量の方がDPFにおける燃焼除去量よりも少なく、堆積速度が0g/hであり、余剰のPM除去能力を有する(連続再生領域)ことが分かる。   Further, when exhaust gas having a smoke concentration of 20% is caused to flow into the DPF, if the temperature of the DPF is 650 ° C., the inflow amount of PM is equal to the combustion removal amount in the DPF, so the deposition rate is 0 g / h. When the temperature of the DPF is 575 ° C., the amount of inflow of PM is larger than the amount of combustion removal in the DPF, the deposition rate is 10 g / h, and when the temperature of the DPF is higher than 650 ° C., the amount of inflow of PM is It can be seen that it is less than the amount of combustion removal in the DPF, the deposition rate is 0 g / h, and has an excess PM removal capability (continuous regeneration region).

特に、図3から分かる有益なことは、PMの流入量とDPFにおける燃焼除去量とが等しくPMの堆積速度が0g/hとなる条件よりも下側の領域(連続再生領域)、すなわち、DPFが余剰のPM除去能力を有し、更にエンジンの出力を高めてスモーク濃度を上昇させても、DPF内のPM堆積による問題を解消しつつスモーク規制をクリアすることができる領域が存在することである。   Particularly useful from FIG. 3 is that the inflow of PM and the amount of combustion removal in the DPF are equal and the region below the condition where the PM deposition rate is 0 g / h (continuous regeneration region), that is, the DPF. Has a PM removal capability, and even if the engine output is increased to increase the smoke concentration, there is an area where the smoke regulation can be cleared while solving the problem caused by PM accumulation in the DPF. is there.

また、PMの流入量の方がDPFにおける燃焼除去量よりも多く、PMの堆積速度が数g/hとなる条件であっても、DPFの前後差圧に影響を与えない程度の堆積速度であれば、同様に、更にエンジンの出力を高めてスモーク濃度を上昇させても、DPF内のPM堆積による問題を解消しつつスモーク規制をクリアすることができる領域が存在する。   In addition, the PM inflow rate is larger than the combustion removal amount in the DPF, and the deposition rate is such that it does not affect the differential pressure across the DPF even under conditions where the PM deposition rate is several g / h. If so, there is an area where smoke regulation can be cleared while solving the problem caused by PM accumulation in the DPF even if the engine output is further increased to increase the smoke concentration.

本実施形態では、この有益な領域を利用して、DPFへのPMの過剰堆積を抑制しつつ、内燃機関の出力を向上させる制御を行っている。図4は、本実施形態に係る内燃機関の燃料噴射制御装置における制御方法を示す図である。   In this embodiment, this beneficial region is used to perform control for improving the output of the internal combustion engine while suppressing excessive accumulation of PM on the DPF. FIG. 4 is a diagram illustrating a control method in the fuel injection control device for the internal combustion engine according to the present embodiment.

同図に示すように、アクセル開度APs及びエンジン1の回転数Neから基本燃料噴射量QBを求める(符号31)と共に、インテークマニホールドのブースト圧力PB及びエンジン1の回転数Neからスモーク濃度規制による燃料噴射量QSMOKEを求め(符号32)、これらの噴射量のうち最小値を選択して噴射量Q0とする(符号33)。 As shown in the figure, the basic fuel injection amount Q B is obtained from the accelerator opening APs and the engine speed Ne (reference number 31), and the intake manifold boost pressure P B and the engine speed Ne are used to determine the smoke concentration. The fuel injection amount Q SMOKE by regulation is obtained (reference numeral 32), and the minimum value is selected from these injection quantities to be the injection quantity Q 0 (reference numeral 33).

すなわち、基本燃料噴射量QBでエンジン1を運転するとエンジン1から排出されるスモーク濃度が所定濃度よりも高い場合があるので、過給圧PBと回転数Neとのマップから求められる燃料噴射量QSMOKEにより規制をしている。このようにして求められた噴射量Q0に基づく内燃機関の制御方法が、従来のスモーク濃度を考慮した出力の制御方法である。 That is, when the engine 1 is operated with the basic fuel injection amount Q B , the smoke concentration discharged from the engine 1 may be higher than a predetermined concentration, so the fuel injection obtained from the map of the supercharging pressure P B and the rotational speed Ne. Volume Q Regulated by SMOKE . The control method for the internal combustion engine based on the injection amount Q 0 obtained in this way is a conventional output control method considering the smoke concentration.

本実施形態では、DPF21の温度が所定温度未満である場合には、噴射量Q0に基づいてエンジン1を制御する一方、DPF21の温度が所定温度以上である場合には、噴射量Q0に対してDPF温度に応じた増量補正(符号34)を行い、エンジン1を制御している。 In the present embodiment, when the temperature of the DPF 21 is lower than the predetermined temperature, the engine 1 is controlled based on the injection amount Q 0 , while when the temperature of the DPF 21 is equal to or higher than the predetermined temperature, the injection amount Q 0 is set. On the other hand, the engine 1 is controlled by performing an increase correction (reference numeral 34) according to the DPF temperature.

DPF21の温度に応じた噴射量Q0の増量補正は以下のようにして行う。基本的には、センサ23bで検出されるDPF21の出口側温度(符号35)に基づいて増量補正する(符号34)。すなわち、DPF出口温度がPMを燃焼除去することができる温度になった場合には、噴射量Q0に対して当該温度に応じた増量補正を行い噴射量QFとする。 The increase correction of the injection amount Q 0 corresponding to the temperature of the DPF 21 is performed as follows. Basically, the increase correction is performed based on the outlet side temperature (reference numeral 35) of the DPF 21 detected by the sensor 23b (reference numeral 34). That is, when the DPF outlet temperature reaches a temperature at which PM can be burned and removed, the injection amount Q 0 is corrected to increase according to the temperature to obtain the injection amount Q F.

これは、DPF出口温度が高温となっている場合には、DPF入口温度もおおむね高温となっており、DPF21全体がPMを燃焼除去するのに適したフィルタ状態となっているためである。一方、入口温度が高温であっても、出口温度が低温である場合があり、この場合にはDPF21の低温部分でPM除去できないおそれがある。   This is because when the DPF outlet temperature is high, the DPF inlet temperature is also generally high, and the entire DPF 21 is in a filter state suitable for burning and removing PM. On the other hand, even if the inlet temperature is high, the outlet temperature may be low. In this case, PM may not be removed at the low temperature portion of the DPF 21.

また、補助的な制御として、センサ23aで検出されるDPF21の入口側温度(符号36)に基づいて補正する(符号34)。これは、DPF出口温度が高温であっても、入口温度が低温である場合があるためである。このようなフィルタ状態は、DPF21全体がPMを燃焼除去するのに適したフィルタ状態とはいえないので、出口温度に応じて行った増量補正を取り消して、補正後の噴射量QFとして噴射量Q0を与える。 As an auxiliary control, correction is performed based on the inlet side temperature (reference numeral 36) of the DPF 21 detected by the sensor 23a (reference numeral 34). This is because even if the DPF outlet temperature is high, the inlet temperature may be low. Such a filter state is not a filter state suitable for the entire DPF 21 to burn and remove PM. Therefore, the increase correction performed according to the outlet temperature is canceled, and the injection amount as the corrected injection amount Q F is cancelled. Q 0 is given.

具体的な増量補正について説明する。例えば、DPF21の温度が680℃(出口温度及び入口温度共に)であった場合には、許容スモーク濃度30%(PM堆積速度が0g/h)に対して、従来のスモーク濃度を考慮した制御では許容スモーク濃度以下、例えばスモーク濃度15%で制御していた。したがって、スモーク濃度が15%から30%となるように燃料噴射量を増量補正して、エンジン出力を高める。   A specific increase correction will be described. For example, when the temperature of the DPF 21 is 680 ° C. (both the outlet temperature and the inlet temperature), the conventional smoke concentration is controlled with respect to the allowable smoke concentration of 30% (PM deposition rate is 0 g / h). Control was performed at an allowable smoke concentration or less, for example, a smoke concentration of 15%. Accordingly, the engine output is increased by correcting the fuel injection amount to increase from 15% to 30%.

また、上述した場合では、DPF21の前後差圧に影響を与えない程度の堆積速度の範囲において、許容スモーク濃度を30%以上としてもよい。この場合には、更にエンジン出力を向上させることができる。   In the case described above, the allowable smoke concentration may be 30% or more within a range of the deposition rate that does not affect the differential pressure across the DPF 21. In this case, the engine output can be further improved.

上述した本実施形態では、スモーク制限処理された噴射量Q0に対して、DPF21の温度による補正を行って得られた噴射量QFに基づいて燃料制御するようにしたが、このほかに、スモーク濃度規制噴射量QSMOKEに対して直接に温度による補正を行った噴射量と基本燃料噴射量QBとの最小値に基づいて燃料制御するようにしてもよい。 In the above-described embodiment, the fuel control is performed based on the injection amount Q F obtained by performing the correction by the temperature of the DPF 21 with respect to the injection amount Q 0 subjected to the smoke restriction process. it may be a fuel control directly based on the minimum value of the injection quantity and the basic fuel injection amount Q B which was corrected by the temperature with respect to smoke concentration regulation injection amount Q sMOKE.

本発明の実施形態に係る内燃機関の燃料噴射制御装置を示す概略構成図である。1 is a schematic configuration diagram showing a fuel injection control device for an internal combustion engine according to an embodiment of the present invention. 試験から得られた、DPFの温度と、DPF前後差圧の経時変化との関係を示すグラフである。It is a graph which shows the relationship between the temperature of DPF obtained with the test, and the time-dependent change of DPF front-back differential pressure. DPF内のPM堆積量について、エンジンから排出されるスモーク濃度とDPFの温度との関係から示したグラフである。It is the graph shown from the relationship between the smoke density | concentration discharged | emitted from an engine, and the temperature of DPF about PM deposition amount in DPF. 本発明の実施形態に係る内燃機関の燃料噴射制御装置における制御方法を示す図である。It is a figure which shows the control method in the fuel-injection control apparatus of the internal combustion engine which concerns on embodiment of this invention.

符号の説明Explanation of symbols

1 ディーゼルエンジン
2 燃焼室
3 燃料噴射ノズル
4 高圧パイプ
5 コモンレール
6 高圧パイプ
7 高圧ポンプ
8 燃料タンク
9 吸気通路
10 吸気絞り弁
11 エアフローセンサ
12 排気通路
13 EGR通路
14 EGR弁
15 電子コントローラ(ECU)
16 アクセルペダル
17 アクセル開度センサ
20 酸化触媒(DOC)
21 ディーゼル・パティキュレートフィルタ(DPF)
23a DPF前温度センサ
23b DPF後温度センサ
31 基本燃料噴射量QB
32 スモーク濃度規制による燃料噴射量QSMOKE
33 噴射量Q0の決定
34 噴射量Q0のDPF温度による補正
35 DPF出口温度による補正
36 DPF入口温度による補正
DESCRIPTION OF SYMBOLS 1 Diesel engine 2 Combustion chamber 3 Fuel injection nozzle 4 High pressure pipe 5 Common rail 6 High pressure pipe 7 High pressure pump 8 Fuel tank 9 Intake passage 10 Intake throttle valve 11 Air flow sensor 12 Exhaust passage 13 EGR passage 14 EGR valve 15 Electronic controller (ECU)
16 Accelerator pedal 17 Accelerator opening sensor 20 Oxidation catalyst (DOC)
21 Diesel particulate filter (DPF)
23a Temperature sensor before DPF 23b Temperature sensor after DPF 31 Basic fuel injection amount Q B
32 Fuel injection quantity due to smoke concentration regulation Q SMOKE
33 correction by the correction 36 DPF inlet temperature due to the correction 35 DPF outlet temperature by DPF temperature determination 34 injection amount Q 0 of the injection quantity Q 0

Claims (4)

内燃機関に燃料を供給する燃料噴射手段と、
上記内燃機関の排気通路に設けられて排気ガス中のパティキュレートマターを捕集するフィルタと、
上記フィルタの上流側の排気温度と上記フィルタの下流側の排気温度とを検出するフィルタ状態検出手段と、
上記内燃機関の運転状態を検出する運転状態検出手段と、
上記運転状態検出手段の検出出力から求めた目標燃料噴射量相当値に応じて上記燃料噴射手段を制御する噴射制御手段とを備え、
上記噴射制御手段は、上記下流側の排気温度が第1の温度以上であり、かつ上記上流側の排気温度が第2の温度以上であることを条件に、上記目標燃料噴射量相当値を増量補正する
ことを特徴とする内燃機関の燃料噴射制御装置。
Fuel injection means for supplying fuel to the internal combustion engine;
A filter provided in an exhaust passage of the internal combustion engine for collecting particulate matter in exhaust gas;
Filter state detecting means for detecting an exhaust temperature upstream of the filter and an exhaust temperature downstream of the filter;
Operating state detecting means for detecting the operating state of the internal combustion engine;
Injection control means for controlling the fuel injection means according to a target fuel injection amount equivalent value obtained from the detection output of the operating state detection means,
The injection control means increases the target fuel injection amount equivalent value on condition that the downstream exhaust temperature is equal to or higher than the first temperature and the upstream exhaust temperature is equal to or higher than the second temperature. A fuel injection control device for an internal combustion engine characterized by correcting.
請求項1に記載する内燃機関の燃料噴射制御装置において、
記噴射制御手段は、上記下流側の排気温度と上記上流側の排気温度とに応じた増量補正を行う
ことを特徴とする内燃機関の燃料噴射制御装置。
The fuel injection control device for an internal combustion engine according to claim 1,
Upper Symbol injection control means, fuel injection control device for an internal combustion engine and performs increase correction in accordance with the exhaust temperature of the exhaust gas temperature and the upstream side of the downstream side.
請求項1または2に記載する内燃機関の燃料噴射制御装置において、
上記目標燃料噴射量相当値は、上記内燃機関から排出されるスモーク濃度が所定濃度以下となるように制限されている
ことを特徴とする内燃機関の燃料噴射制御装置。
The fuel injection control device for an internal combustion engine according to claim 1 or 2 ,
The fuel injection control device for an internal combustion engine, wherein the target fuel injection amount equivalent value is limited so that a smoke concentration discharged from the internal combustion engine is a predetermined concentration or less.
請求項1に記載する内燃機関の燃料噴射制御装置において、
上記噴射制御手段は、上記内燃機関のブースト圧に応じた制限の範囲内で、上記目標燃料噴射量相当値を設定し、上記フィルタ状態検出手段の検出出力に基づき上記制限を越えて上記目標燃料噴射量相当値を増量補正する
ことを特徴とする内燃機関の燃料噴射制御装置。
The fuel injection control device for an internal combustion engine according to claim 1,
The injection control means sets the target fuel injection amount equivalent value within a limit range corresponding to the boost pressure of the internal combustion engine, and exceeds the limit based on the detection output of the filter state detection means. A fuel injection control device for an internal combustion engine, wherein an injection amount equivalent value is corrected to increase.
JP2004302406A 2004-10-18 2004-10-18 Fuel injection control device for internal combustion engine Expired - Fee Related JP4356583B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2004302406A JP4356583B2 (en) 2004-10-18 2004-10-18 Fuel injection control device for internal combustion engine
CN200510114127.7A CN100577994C (en) 2004-10-18 2005-10-16 Fuel injection controller for IC engine
EP20050022621 EP1647688B1 (en) 2004-10-18 2005-10-17 Fuel injection control device for internal combustion engine
DE200560022392 DE602005022392D1 (en) 2004-10-18 2005-10-17 Fuel injection control device for an internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004302406A JP4356583B2 (en) 2004-10-18 2004-10-18 Fuel injection control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2006112370A JP2006112370A (en) 2006-04-27
JP4356583B2 true JP4356583B2 (en) 2009-11-04

Family

ID=35511279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004302406A Expired - Fee Related JP4356583B2 (en) 2004-10-18 2004-10-18 Fuel injection control device for internal combustion engine

Country Status (4)

Country Link
EP (1) EP1647688B1 (en)
JP (1) JP4356583B2 (en)
CN (1) CN100577994C (en)
DE (1) DE602005022392D1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5556388B2 (en) * 2010-06-01 2014-07-23 トヨタ自動車株式会社 Particulate filter diagnostic device
CN110770425B (en) 2017-06-29 2022-04-26 沃尔沃卡车集团 Method for controlling a vehicle propulsion system
DE102018218695A1 (en) * 2018-10-31 2020-04-30 Robert Bosch Gmbh Method and control device for monitoring the function of a particle filter

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2774427B1 (en) * 1998-02-02 2000-04-21 Peugeot SYSTEM FOR AIDING THE REGENERATION OF A PARTICLE FILTER INTEGRATED IN A DIESEL ENGINE EXHAUST SYSTEM IN PARTICULAR FOR A MOTOR VEHICLE
FR2799508B1 (en) * 1999-10-08 2002-09-13 Renault FUEL INJECTION METHOD FOR A COMBUSTION ENGINE
DE10056035A1 (en) * 2000-11-11 2002-05-16 Bosch Gmbh Robert Method of control of motor vehicle exhaust emissions involves controlling filter regeneration dependent on oxygen levels in exhaust upstream or downstream of filter
FR2833310B1 (en) * 2001-12-07 2006-09-22 Renault EXHAUST GAS POST-PROCESSING DEVICE AND DEVICE REGENERATING METHOD

Also Published As

Publication number Publication date
CN100577994C (en) 2010-01-06
CN1948724A (en) 2007-04-18
EP1647688B1 (en) 2010-07-21
EP1647688A1 (en) 2006-04-19
DE602005022392D1 (en) 2010-09-02
JP2006112370A (en) 2006-04-27

Similar Documents

Publication Publication Date Title
US7275365B2 (en) Method for controlling temperature in a diesel particulate filter during regeneration
KR100674248B1 (en) Exhaust purifying apparatus and exhaust purifying method for internal combustion engine
JP4022714B2 (en) Exhaust gas purification device for internal combustion engine
JP4544011B2 (en) Internal combustion engine exhaust purification system
JP4211611B2 (en) Exhaust gas purification device for internal combustion engine
JP5332575B2 (en) Exhaust gas purification device for internal combustion engine
JP2006316744A (en) Exhaust gas processing system of internal combustion engine
JP2006242098A (en) Exhaust emission control device for internal combustion engine
JP2008150966A (en) Exhaust emission control device of internal combustion engine
JP4613787B2 (en) Exhaust gas purification device for internal combustion engine
JP2006274906A (en) Exhaust emission control device
JP2008144726A (en) Exhaust emission control device for internal combustion engine
JP2006274907A (en) Exhaust emission control device
EP1647688B1 (en) Fuel injection control device for internal combustion engine
JP4185882B2 (en) Exhaust purification device
JP2010169032A (en) Engine control device
JP4357241B2 (en) Exhaust purification equipment
JP2009197718A (en) Exhaust emission control device of internal combustion engine
JP2009002192A (en) Exhaust emission control device for internal combustion engine
JP2008064067A (en) Exhaust emission control device of internal combustion engine
JP2005163652A (en) Emission control device
JP2006274983A (en) Exhaust emission control device
JP4070681B2 (en) Exhaust purification device
JP5815296B2 (en) Exhaust gas purification device for internal combustion engine
JP2023159546A (en) Exhaust purification device of internal combustion engine and method for controlling exhaust purification device of internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060626

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090714

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090727

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4356583

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130814

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130814

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140814

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees