JP5811957B2 - Sintering method - Google Patents

Sintering method Download PDF

Info

Publication number
JP5811957B2
JP5811957B2 JP2012133006A JP2012133006A JP5811957B2 JP 5811957 B2 JP5811957 B2 JP 5811957B2 JP 2012133006 A JP2012133006 A JP 2012133006A JP 2012133006 A JP2012133006 A JP 2012133006A JP 5811957 B2 JP5811957 B2 JP 5811957B2
Authority
JP
Japan
Prior art keywords
feo
sintered ore
amount
ore
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012133006A
Other languages
Japanese (ja)
Other versions
JP2013256690A (en
Inventor
小林 剛
剛 小林
裕直 松岡
裕直 松岡
貴司 篠原
貴司 篠原
勇輔 川崎
勇輔 川崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2012133006A priority Critical patent/JP5811957B2/en
Publication of JP2013256690A publication Critical patent/JP2013256690A/en
Application granted granted Critical
Publication of JP5811957B2 publication Critical patent/JP5811957B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

本発明は、高炉で使用する焼結鉱を製造する焼結操業方法に関する。   The present invention relates to a sintering operation method for producing sintered ore used in a blast furnace.

高炉を安定的に操業するために、焼結鉱には所要の強度が要求されるので、焼結鉱の製造においては、所定水準以上の強度を安定的に維持することが重要である。焼結鉱の強度を決定する重要な因子として、焼結反応に投入する熱量がある。この投入熱量と焼結鉱のFeO量の間には、図1に示すような関係がある。   In order to operate the blast furnace stably, the required strength is required for the sintered ore. Therefore, in the production of the sintered ore, it is important to stably maintain the strength above a predetermined level. An important factor that determines the strength of the sintered ore is the amount of heat input to the sintering reaction. There is a relationship as shown in FIG. 1 between the input heat amount and the FeO amount of the sintered ore.

また、焼結鉱のFeO量と冷間強度との間には、図2に示すような関係がある。したがって、焼結鉱の製造において、所定水準以上の強度を安定的に維持するためには、焼結鉱のFeO量を指標として操業する必要があり、これまで、焼結鉱のFeO量を指標として焼結鉱の製造方法が幾つか提案されている。   Further, there is a relationship as shown in FIG. 2 between the FeO amount of the sintered ore and the cold strength. Therefore, in order to stably maintain the strength above a predetermined level in the production of sintered ore, it is necessary to operate using the FeO amount of the sintered ore as an index. Several methods for producing sintered ore have been proposed.

例えば、特許文献1には、焼結機以後に設置された磁性体含有量測定装置で測定した焼結鉱FeOと、焼結原料単位重量当たりの投入熱量との関係をあらかじめ求め、所望水準の焼結鉱強度が得られる臨界投入熱量に近づくように、連続測定された焼結鉱FeOにより、焼結反応熱量を調整する焼結操業法が提案されている。   For example, in Patent Document 1, a relationship between sintered ore FeO measured with a magnetic substance content measuring device installed after a sintering machine and input heat per unit weight of a sintering raw material is obtained in advance, and a desired level is obtained. A sintering operation method has been proposed in which the calorific value of the sintering reaction is adjusted by the continuously measured sintered ore FeO so as to approach the critical input heat amount at which the sintered ore strength can be obtained.

特許文献2には、特許文献1で提案の焼結操業法には、(i)磁性体含有量測定装置によるFeOの測定は、FeO以外の磁性体(Fe、MgO、Fe23等)が存在すると測定精度が低下する、また、(ii)歩留の変動が大きい、との問題点があるとのことから、焼結機に投入する原料の出熱量と焼結製品中のFeO量の相関関係を予め求めておき、上記出熱量の実測値を上記相関関係に適用して、上記FeO量を予測し、予測FeO量と目標FeO量との偏差に基づいて、焼結機への投入熱量を制御する熱量制御方法が提案されている。 In Patent Document 2, the sintering method proposed in Patent Document 1 includes (i) the measurement of FeO using a magnetic material content measuring device is a magnetic material other than FeO (Fe, MgO, Fe 2 O 3, etc.). If there is a problem, the measurement accuracy decreases, and (ii) the yield fluctuation is large. Therefore, the amount of heat output from the raw material to be input to the sintering machine and the amount of FeO in the sintered product Is calculated in advance, and the measured value of the heat output is applied to the correlation to predict the FeO amount, and based on the deviation between the predicted FeO amount and the target FeO amount, A heat amount control method for controlling the input heat amount has been proposed.

また、特許文献3には、空気と混合した気体燃料を原料装入層に供給する気体燃料供給装置と、焼結鉱中のFeO割合を測定するFeO測定装置を備え、測定したFeO割合を所定の冷間強度を達成する管理指標とし、FeO割合の目標値を、気体燃料供給装置を装備しない場合より低い値に設定して冷間強度を制御する焼結機が提案されている。   Patent Document 3 includes a gaseous fuel supply device that supplies gaseous fuel mixed with air to the raw material charging layer, and a FeO measurement device that measures the FeO ratio in the sintered ore, and the measured FeO ratio is predetermined. As a management index for achieving the cold strength, a sintering machine has been proposed in which the target value of the FeO ratio is set to a lower value than that in the case where no gaseous fuel supply device is provided to control the cold strength.

特開昭60−043441号公報JP-A-60-043441 特開平08−013047号公報Japanese Patent Laid-Open No. 08-013047 特開2011−038735号公報JP 2011-038735 A

前述したように、焼結鉱中のFeO量は、所要の焼結鉱強度を確保する上で重要な指標である。特許文献1で提案の焼結操業法は、焼結鉱中のFeO(以下「焼結鉱FeO」ということがある。)を連続測定し、目標FeOと測定した焼結鉱FeOの偏差から焼結投入熱量を調整することを特徴としている。   As described above, the amount of FeO in the sinter is an important index for securing the required sinter strength. In the sintering method proposed in Patent Document 1, FeO in a sintered ore (hereinafter, sometimes referred to as “sintered ore FeO”) is continuously measured, and the sintering is calculated from the deviation of the target ore and the measured ore FeO. It is characterized by adjusting the amount of heat input.

しかし、焼結鉱FeOは、図3に示すように、配合原料から持ち込まれるFeOと、焼結過程で新たに生成するFeOからなり、焼結鉱単位重量当たりの投入熱量及び焼結鉱強度と相関があるのは、焼結過程で新たに生成するFeO量である。   However, as shown in FIG. 3, the sintered ore FeO is composed of FeO brought in from the blended raw material and FeO newly generated in the sintering process, and the input heat amount and sintered ore strength per unit weight of the sintered ore What is correlated is the amount of FeO newly generated during the sintering process.

従来方法においては、焼結鉱FeOを、配合原料から持ち込まれるFeOと、焼結過程で新たに生成するFeOに分けて考える点が欠如していた。図4に、従来の焼結鉱FeOの管理と課題を示す。   In the conventional method, there has been a lack of a point where the sintered ore FeO is divided into FeO brought in from the blended raw material and FeO newly generated in the sintering process. FIG. 4 shows the management and problems of conventional sintered ore FeO.

高炉の返鉱(以下、単に「返鉱」ということがある。)及びヤードで篩分けした焼結鉱の篩下粉(以下「篩下焼結粉」ということがある。)のようにFeOを多く含む原料の配合比率をある時点で変更すると(図4中の(a)、参照)、配合原料のFeO量は変化する(図4の(b)、参照)。   FeO, such as blast furnace return (hereinafter sometimes referred to simply as “return”) and sieving powder under sieving (hereinafter also referred to as “undersintered sintered powder”). When the blending ratio of the raw material containing a large amount is changed at a certain time (see (a) in FIG. 4), the amount of FeO in the blended raw material changes (see (b) in FIG. 4).

そのため、(返鉱+篩下焼結粉)の配合比率の変更の前後で、焼結反応に投入する熱量(投入熱量)を変えていないのに、焼結鉱FeOが変化する(図4中の(c)、参照)。その結果、目標焼結鉱FeOに合わせるように投入熱量を必要以上に調整して、例えば、粉コークスを、必要以上に減量して(図4の(d)、参照)、焼結鉱強度が変動(例えば、低下)する(図4の(e)、参照)。   Therefore, before and after the change of the blending ratio of (returned mineral + under-sintered powder), the amount of heat input to the sintering reaction (input heat amount) is not changed, but the sintered ore FeO changes (in FIG. 4). (See (c)). As a result, the input heat amount is adjusted more than necessary to match the target sinter FeO, for example, the powder coke is reduced more than necessary (see (d) in FIG. 4), and the sinter strength is increased. It fluctuates (for example, decreases) (see (e) in FIG. 4).

焼結鉱の強度が低下したことを検知したとき、粉コークスの量を元に戻し(図4の(f)、参照)、その後、目標焼結鉱FeOを引き上げる(図4の(g)、参照)が、焼結鉱の強度は変動する。   When it is detected that the strength of the sinter is reduced, the amount of the coke breeze is restored (see (f) in FIG. 4), and then the target sinter FeO is pulled up ((g) in FIG. 4). See), but the strength of the sinter varies.

以上のことから、焼結鉱の製造において、所定水準以上の強度を安定的に維持するためには、焼結反応に投入する熱量を精緻に制御する必要があり、そのためには、焼結鉱FeOを、配合原料から持ち込まれるFeOと、焼結過程で新たに生成するFeOに分けて考えることが必要である。   From the above, in the production of sintered ore, in order to stably maintain the strength above a predetermined level, it is necessary to precisely control the amount of heat input to the sintering reaction. It is necessary to consider FeO by dividing it into FeO brought in from blended raw materials and FeO newly generated in the sintering process.

そこで、本発明は、焼結鉱FeOを、配合原料が持ち込むFeOと、焼結過程で新たに生成するFeOに分けて、焼結反応に投入する熱量を精緻に制御することを課題とし、該課題を解決する焼結操業方法を提供することを目的とする。   Then, this invention makes it a subject to divide the sintered ore FeO into FeO which a mixing raw material brings in, and FeO newly produced | generated in a sintering process, and to control precisely the calorie | heat amount put into a sintering reaction, It aims at providing the sintering operation method which solves a subject.

本発明者らは、上記課題を解決する手法について鋭意検討した。その結果、本発明者らは、次の知見を見いだした。   The present inventors diligently studied a method for solving the above problems. As a result, the present inventors have found the following knowledge.

焼結配合原料中の返鉱及び/又は篩下焼結粉の配合比率を変えた際、配合比率を変える前の目標焼結鉱FeOに、配合比率を変えたことに伴い変化する配合原料の持ち込みFeO量の変化分を加算して、新たな目標焼結鉱FeOを設定すると、同一の投入熱量で焼結操業を継続することができ、その結果、焼結操業が安定化して、所定水準以上の強度を有する焼結鉱を安定的に製造することができる。   When changing the blending ratio of the return mineral and / or under-sieving sintered powder in the sintered blending raw material, the blending raw material changes as the blending ratio is changed to the target sintered ore FeO before changing the blending ratio. By adding the amount of change in the amount of FeO brought in and setting a new target sintered ore FeO, the sintering operation can be continued with the same input heat amount. As a result, the sintering operation is stabilized, and the predetermined level is reached. A sintered ore having the above strength can be stably produced.

本発明は、上記知見に基づいてなされたもので、その要旨は以下のとおりである。   This invention was made | formed based on the said knowledge, and the summary is as follows.

焼結鉱FeOと、焼結鉱単位重量当たりの投入熱量との関係をあらかじめ求め、所望水準の焼結鉱強度が得られるように目標焼結鉱FeOを定めて、投入熱量を調整する焼結操業方法において、高炉からの焼結返鉱及び/又はヤードで篩分けした焼結鉱の篩下粉の配合比率を変えた際、配合比率を変える前の目標焼結鉱FeOに、配合比率を変えたことに伴い変化する配合原料の持ち込みFeO量の変化分を加算して、新たな目標焼結鉱FeOを設定し、焼結を継続することを特徴とする焼結操業方法。   Sinter that obtains the relationship between sintered ore FeO and input heat per unit weight of sintered ore in advance, sets target sintered ore FeO to obtain desired level of sintered ore strength, and adjusts input heat In the operation method, when changing the blending ratio of the sinter ore from the blast furnace and / or the sinter ore sieving powder, the blending ratio is changed to the target sintered ore FeO before changing the blending ratio. A sintering operation method characterized in that a new target sintered ore FeO is set by adding a change in the amount of FeO brought into the blended raw material that changes with the change, and sintering is continued.

本発明によれば、高炉返鉱及び/又はヤードで篩分けした焼結鉱の篩下粉の配合比率の変更時に、熱レベル指標の焼結鉱FeOの管理目標値を変更するので、所定水準以上の強度を有する焼結鉱を安定的に製造することができ、焼結鉱の品質及び歩留を、所要水準以上に維持することができる。   According to the present invention, the control target value of the sintered ore FeO of the heat level index is changed at the time of changing the blending ratio of the sinter ore sieving powder sieved at the blast furnace return and / or yard, so that the predetermined level A sintered ore having the above strength can be stably produced, and the quality and yield of the sintered ore can be maintained at or above a required level.

焼結反応に投入する熱量(投入熱量)と焼結鉱のFeO量(焼結鉱FeO)の関係を示す図である。It is a figure which shows the relationship between the calorie | heat amount (input calorie | heat amount) thrown into a sintering reaction, and the amount of FeO of a sintered ore (sintered ore FeO). 焼結鉱のFeO量(焼結鉱FeO)と冷間強度(補正焼結鉱TI)との関係を示す図である。It is a figure which shows the relationship between the amount of FeO of sintered ore (sintered ore FeO), and cold strength (corrected sintered ore TI). 焼結鉱のFeO量(焼結鉱FeO)の源を示す図である。It is a figure which shows the source of the amount of FeO of sintered ore (sintered ore FeO). 従来の焼結鉱のFeO量(焼結鉱FeO)の管理と課題を示す図である。It is a figure which shows the management and subject of the amount of FeO of the conventional sintered ore (sintered ore FeO). 焼結反応に投入する熱量(投入熱量)と焼結鉱のFeO量(焼結鉱FeO)の関係を示す図である。It is a figure which shows the relationship between the calorie | heat amount (input calorie | heat amount) thrown into a sintering reaction, and the amount of FeO of a sintered ore (sintered ore FeO). 本発明における焼結鉱のFeO量(焼結鉱FeO)の管理を示す図である。It is a figure which shows management of the amount of FeO (sintered ore FeO) of the sintered ore in this invention.

本発明について説明する。図3に示すように、焼結鉱FeOは、配合原料が持ち込むFeOと、焼結過程で新たに生成するFeOからなる。焼結配合原料として使用する返鉱及び/又は篩下焼結粉は、FeOを5〜9質量%含有している。   The present invention will be described. As shown in FIG. 3, sintered ore FeO consists of FeO which a mixing raw material brings in and FeO newly produced | generated in a sintering process. The return mineral and / or under-sieving sintered powder used as the sintering compounding raw material contains 5 to 9% by mass of FeO.

図5に、焼結反応に投入する熱量(投入熱量)と焼結鉱のFeO量(焼結鉱FeO)の関係を示す。図5に示すように、投入熱量の増加に伴い、焼結鉱FeOは増加するが、FeOは、焼結反応中変化しないから、焼結反応に投入する熱量を一定として操業を行うと、返鉱及び/又は篩下焼結粉の配合比率の変化に伴い変化する配合原料中のFeO分のみ焼結鉱FeOが変化する。   FIG. 5 shows the relationship between the amount of heat input to the sintering reaction (input amount of heat) and the amount of FeO of the sintered ore (sintered ore FeO). As shown in FIG. 5, the sinter FeO increases as the input heat amount increases, but FeO does not change during the sintering reaction, so if the operation is performed with a constant amount of heat input to the sintering reaction, it returns. The sintered ore FeO changes only for the FeO content in the blended raw material that changes with the change in the blending ratio of the ore and / or under-sieving sintered powder.

なお、配合原料にスケールを配合した場合、スケールからの持ち込みFeOは酸化されてしまので、焼結鉱FeOには含まれない。   In addition, when a scale is mix | blended with a mixing | blending raw material, since the brought-in FeO from a scale is oxidized, it is not contained in sintered ore FeO.

本発明においては、配合原料中の返鉱及び/又は篩下焼結粉を増量又は減量しても、同一熱レベルで操業を継続するために、上記増量又は減量に伴う配合原料のFeOの変化分を、増量又は減量前の目標の焼結鉱FeOに加算し、新たな目標焼結鉱FeOを設定する。   In the present invention, in order to continue the operation at the same heat level even if the return ore and / or under-sieving sintered powder in the blended raw material is increased or decreased, the change in the FeO of the blended raw material accompanying the increase or decrease is described above. Minutes are added to the target sinter FeO before the increase or decrease, and a new target sinter FeO is set.

図6に、本発明における焼結鉱のFeO量(焼結鉱FeO)の管理を示す。返鉱及び篩下焼結粉の配合比率をある時点で変更すると(図6中の(a)、参照)、配合原料のFeO量は変化する(図6中の(b)、参照)。   In FIG. 6, management of the FeO amount (sintered ore FeO) of the sintered ore in this invention is shown. When the blending ratio of the return mineral and the sinter-sintered powder is changed at a certain point (see (a) in FIG. 6), the amount of FeO in the blended raw material changes (see (b) in FIG. 6).

本発明では、(返鉱+篩下焼結粉)の配合比率を変更したタイミングで(実際には、所定時間経過後)、目標とする焼結鉱FeOを変更する(図6中の(c’)、参照)。その結果、焼結反応に投入する熱量(投入熱量)を変えずに、具体的には、粉コークスの配合量を変えずに(図1中の(d)、参照)操業を継続する。その結果、必要以上の投入熱量の調整を行わなくてすみ、操業が安定化するので、焼結鉱強度が変動せず、焼結鉱強度及び歩留を、所定の水準以上に安定的に維持することができる(図1中の(e’)、参照)。   In the present invention, the target sintered ore FeO is changed at the timing when the blending ratio of (returned mineral + under-sintered sintered powder) is changed (in practice, after a predetermined time has elapsed) ((c in FIG. 6) '),reference). As a result, the operation is continued without changing the amount of heat input to the sintering reaction (input amount of heat), specifically, without changing the blending amount of the powder coke (see (d) in FIG. 1). As a result, it is not necessary to adjust the input heat amount more than necessary, and the operation is stabilized, so the strength of the sinter ore does not change and the sinter strength and yield are stably maintained at a predetermined level or higher. (See (e ′) in FIG. 1).

次に、本発明の実施例について説明するが、実施例での条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。   Next, examples of the present invention will be described. The conditions in the examples are one example of conditions used for confirming the feasibility and effects of the present invention, and the present invention is based on this one example of conditions. It is not limited. The present invention can adopt various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.

(実施例1)
表1に示す返鉱及び/又は篩下焼結粉の配合比率を変更し、その変更に伴い、タイミングを見計らって、目標焼結鉱FeOを変更して、焼結操業を継続した。結果を、表1に併せて示す。
(Example 1)
The blending ratio of the return ore and / or undersieving sintered powder shown in Table 1 was changed, and with the change, the target sintered ore FeO was changed at the timing, and the sintering operation was continued. The results are also shown in Table 1.

Figure 0005811957
Figure 0005811957

発明例では、当初、篩下焼結粉(FeO:6.29%)を配合せず、目標焼結鉱FeOを7.20%に設定して焼結し、途中で、篩下焼結粉(FeO:6.29%)を8.0%添加し始め、それとともに、目標焼結鉱FeOを7.20%から7.70%に変更して焼結を継続した。その結果、SI強度76.7%の焼結鉱を、歩留83.5%で得ることができた。   In the invention example, initially, the under-sintered powder (FeO: 6.29%) is not blended, the target sintered ore FeO is set to 7.20%, and sintering is performed. (FeO: 6.29%) began to be added at 8.0%, and at the same time, the target sintered ore FeO was changed from 7.20% to 7.70% and sintering was continued. As a result, a sintered ore with an SI strength of 76.7% could be obtained with a yield of 83.5%.

従来例では、当初、篩下焼結粉(FeO:6.29%)を5%配合し、目標焼結鉱FeOを7.70%に設定して焼結し、途中で、篩下焼結粉(FeO:6.29%)の配合率を8.0%に変更したが、目標焼結鉱FeOは変更せずに焼結を継続した。その結果、SI強度76.4%の焼結鉱を得ることができたが、歩留は77.6%である。   In the conventional example, 5% of sieving powder (FeO: 6.29%) is initially blended, and the target sinter FeO is set to 7.70% for sintering. The blending ratio of the powder (FeO: 6.29%) was changed to 8.0%, but the sintering was continued without changing the target sinter FeO. As a result, a sintered ore with an SI strength of 76.4% was obtained, but the yield was 77.6%.

表1から、発明例では、高強度の焼結鉱が、高歩留で得られていることが解る。   From Table 1, it can be seen that in the invention examples, high-strength sintered ore is obtained at a high yield.

前述したように、本発明によれば、高炉返鉱及び/又はヤードで篩分けした焼結鉱の篩下粉の配合比率の変更時に、熱レベル指標の焼結鉱FeOの管理目標値を変更するので、所定水準以上の強度を有する焼結鉱を安定的に製造することができ、焼結鉱の品質及び歩留を、所要水準以上に維持することができる。よって、本発明は、鉄鋼産業において利用可能性が高いものである。   As described above, according to the present invention, when changing the blending ratio of the sinter ore powder after blast furnace return and / or sieving at the yard, the management target value of the sintered ore FeO of the heat level index is changed. Therefore, a sintered ore having a strength of a predetermined level or higher can be stably produced, and the quality and yield of the sintered ore can be maintained at a required level or higher. Therefore, the present invention has high applicability in the steel industry.

Claims (1)

焼結鉱FeOと、焼結鉱単位重量当たりの投入熱量との関係をあらかじめ求め、所望水準の焼結鉱強度が得られるように目標焼結鉱FeOを定めて、投入熱量を調整する焼結操業方法において、高炉からの焼結返鉱及び/又はヤードで篩分けした焼結鉱の篩下粉の配合比率を変えた際、配合比率を変える前の目標焼結鉱FeOに、配合比率を変えたことに伴い変化する配合原料の持ち込みFeO量の変化分を加算して、新たな目標焼結鉱FeOを設定し、焼結を継続することを特徴とする焼結操業方法。   Sinter that obtains the relationship between sintered ore FeO and input heat per unit weight of sintered ore in advance, sets target sintered ore FeO to obtain desired level of sintered ore strength, and adjusts input heat In the operation method, when changing the blending ratio of the sinter ore from the blast furnace and / or the sinter ore sieving powder, the blending ratio is changed to the target sintered ore FeO before changing the blending ratio. A sintering operation method characterized in that a new target sintered ore FeO is set by adding a change in the amount of FeO brought into the blended raw material that changes with the change, and sintering is continued.
JP2012133006A 2012-06-12 2012-06-12 Sintering method Active JP5811957B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012133006A JP5811957B2 (en) 2012-06-12 2012-06-12 Sintering method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012133006A JP5811957B2 (en) 2012-06-12 2012-06-12 Sintering method

Publications (2)

Publication Number Publication Date
JP2013256690A JP2013256690A (en) 2013-12-26
JP5811957B2 true JP5811957B2 (en) 2015-11-11

Family

ID=49953362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012133006A Active JP5811957B2 (en) 2012-06-12 2012-06-12 Sintering method

Country Status (1)

Country Link
JP (1) JP5811957B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103759536B (en) * 2014-02-20 2015-12-30 莱芜钢铁集团有限公司 A kind of sintering system and sintering indice method thereof

Also Published As

Publication number Publication date
JP2013256690A (en) 2013-12-26

Similar Documents

Publication Publication Date Title
JP5006088B2 (en) Method for selecting granulated blast furnace slag for cement and method for producing cement composition
EP2930249A1 (en) Method for operating blast furnace and method for producing molten pig iron
JP6680369B2 (en) Sintered ore manufacturing method
JP5811957B2 (en) Sintering method
EP3517632B1 (en) Blast furnace operation method
JP4971662B2 (en) Blast furnace operation method
EP3670685B1 (en) Method for manufacturing sintered ore
JP2006291292A (en) Method for charging high crystallized water-containing ore into bell-less blast furnace
Agrawal et al. Improving the burdening practice by optimization of raw flux calculation in blast furnace burden
CN104480297A (en) Sintered ore gradient alkalinity control method
JP6866856B2 (en) Sintered ore manufacturing method and blast furnace operation method
JP5803839B2 (en) Blast furnace operation method
JP2021046675A (en) Construction method of ground improvement work
JP2004035986A (en) Converter operation guidance model
JP5971485B2 (en) Blast furnace operation method
KR20190064178A (en) Manufacturing apparatus of molten iron and manufacturing method of molten iron
CN102676795B (en) Method for calculating charge
JP2010196151A (en) Quantitative evaluation method of temperature of thermal reserve zone of blast furnace
KR102032613B1 (en) Methods of operating electric furnace
JP2011047011A (en) Method for evaluating reducibility of sintered ore
JP2015196901A (en) Method for controlling blowing in revolving furnace for steel making
JP2016074947A (en) Method for producing sintered ore
JP2010202713A (en) Method for manufacturing highly reactive molded ferrocoke
JP2019131848A (en) Manufacturing method of sintered ore
KR101505288B1 (en) Method for producing sintered ore

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140811

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150717

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150825

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150907

R150 Certificate of patent or registration of utility model

Ref document number: 5811957

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350