JP5803851B2 - Continuous casting method of steel containing rare earth metal - Google Patents

Continuous casting method of steel containing rare earth metal Download PDF

Info

Publication number
JP5803851B2
JP5803851B2 JP2012188934A JP2012188934A JP5803851B2 JP 5803851 B2 JP5803851 B2 JP 5803851B2 JP 2012188934 A JP2012188934 A JP 2012188934A JP 2012188934 A JP2012188934 A JP 2012188934A JP 5803851 B2 JP5803851 B2 JP 5803851B2
Authority
JP
Japan
Prior art keywords
molten steel
immersion nozzle
mass
rem
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012188934A
Other languages
Japanese (ja)
Other versions
JP2014046315A (en
Inventor
謙治 田口
謙治 田口
塚口 友一
友一 塚口
直嗣 吉田
直嗣 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2012188934A priority Critical patent/JP5803851B2/en
Publication of JP2014046315A publication Critical patent/JP2014046315A/en
Application granted granted Critical
Publication of JP5803851B2 publication Critical patent/JP5803851B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Continuous Casting (AREA)
  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)

Description

本発明は、希土類金属(以降、REMと称す。)を含有した溶鋼を連続鋳造する際に、高融点かつ比重の大きなREM系介在物が、浸漬ノズルの溶鋼流路稼動面に付着して閉塞することを防止する方法に関するものである。   In the present invention, when continuously casting a molten steel containing a rare earth metal (hereinafter referred to as REM), a REM inclusion having a high melting point and a large specific gravity adheres to the molten steel passage working surface of the immersion nozzle and is blocked. It is related with the method of preventing doing.

鋼の連続鋳造において、タンディッシュ内の溶鋼は、その下部に設けられた浸漬ノズルを介して、鋳型内に供給される。   In the continuous casting of steel, the molten steel in the tundish is supplied into the mold via an immersion nozzle provided in the lower part thereof.

ところで、REMを含む高融点介在物の比重は溶鋼の比重とそれほど大きな差がなく、取鍋やタンディッシュ内で介在物が浮上し難いため、一般鋼中に多く観察されるアルミナと比べて、浸漬ノズルの溶鋼流路内へ流入し易い。   By the way, the specific gravity of the high melting point inclusions including REM is not so different from the specific gravity of the molten steel, and it is difficult for the inclusions to float in the ladle or tundish. It tends to flow into the molten steel flow path of the immersion nozzle.

従って、高融点かつ高比重のREM系介在物が溶鋼中に浮遊して存在しているREMを含む溶鋼を連続鋳造する場合、浸漬ノズルの溶鋼流路稼動面に前記REM系介在物が徐々に付着・堆積する。従って、アルミキルド鋼等の汎用的な炭素鋼の連続鋳造と比べて、著しく浸漬ノズルが閉塞しやすくなる。   Therefore, when continuously casting REM-containing inclusions with high melting point and high specific gravity REM inclusions floating in the molten steel, the REM inclusions gradually move on the surface of the immersion nozzle where the molten steel flows. Adhere and deposit. Therefore, compared with continuous casting of general-purpose carbon steel such as aluminum killed steel, the immersion nozzle is remarkably easily blocked.

つまり、REMを含む溶鋼を連続鋳造する場合は、連々鋳の過程で閉塞に至るというより、むしろ鋳造の極々初期から付着が進行して浸漬ノズルの溶鋼流路内の溶鋼流れが阻害され、鋳型内の湯面に変動が生じて鋳片品質の悪化を招く。なお、連々鋳とは、複数チャージの溶鋼を連続して連続鋳造することを言う。   In other words, when continuously casting molten steel containing REM, rather than being blocked during continuous casting, adhesion progresses from the very beginning of casting and the molten steel flow in the molten steel flow path of the immersion nozzle is obstructed, and the mold is cast. Fluctuation occurs in the inner surface of the hot metal, causing deterioration of slab quality. Continuous casting refers to continuous casting of molten steel with a plurality of charges.

また、浸漬ノズルの溶鋼流路稼動面に付着したREM系付着物が時折剥離し、それが鋳片内に巻き込まれ、製品欠陥の原因にも繋がりうる。さらに、最悪の事態では、浸漬ノズルが完全に閉塞し、タンディッシュ内の溶鋼を完全に鋳型に供給できないまま、操業を停止せざる得なくなり、生産効率の低下も招いてしまう。   Also, REM deposits adhering to the molten steel flow path working surface of the immersion nozzle are occasionally peeled off and caught in the slab, which may lead to product defects. Further, in the worst case, the immersion nozzle is completely blocked, and the operation cannot be stopped without completely supplying the molten steel in the tundish to the mold, resulting in a decrease in production efficiency.

現在、広く使用されている浸漬ノズルは、多くがアルミナと炭素を主成分としたアルミナグラファイト質で構成されている。   Currently, most of the immersion nozzles that are widely used are composed of alumina graphite having alumina and carbon as main components.

しかしながら、アルミナグラファイト質で構成された浸漬ノズルの溶鋼流路稼動面には、アルミナやREM系介在物(特に、酸化物、硫化物、酸硫化物)など、溶鋼中に存在する種々の介在物が付着しやすく、ノズル閉塞を招きやすい。   However, there are various inclusions present in the molten steel such as alumina and REM inclusions (especially oxides, sulfides, oxysulfides) on the working surface of the molten steel flow path of the immersion nozzle made of alumina graphite. Is likely to adhere to the nozzle, and the nozzle is likely to be blocked.

そこで、従来から、ノズル詰まりの防止策として、多くの発明が提案されている。   Therefore, many inventions have been proposed as measures for preventing nozzle clogging.

例えば、特許文献1には、鋳造中の高温下における化学反応によって緻密な内面を形成する、スピネル‐ペリクレース‐黒鉛系耐火物が提案されている。また、特許文献2には、低融点の緑柱石を含有し、内面に低融点層を形成する、黒鉛とマグネシア及び/又はスピネルからなる耐火物が提案されている。   For example, Patent Document 1 proposes a spinel-periclase-graphite refractory that forms a dense inner surface by a chemical reaction at a high temperature during casting. Patent Document 2 proposes a refractory made of graphite and magnesia and / or spinel that contains a low melting point beryl and forms a low melting point layer on the inner surface.

しかしながら、これら特許文献1,2で提案された耐火物は、REMを含有した鋼における効果は不明であり、また示唆もされていない。   However, these refractories proposed in Patent Documents 1 and 2 are unclear and have no suggestion of effects in steel containing REM.

一方、発明者らは、マグネシアグラファイト質からなる浸漬ノズルを用いることにより、REMを含有した鋼の連続鋳造でも浸漬ノズルの閉塞を防止できる方法を特許文献3で提案している。   On the other hand, the inventors have proposed, in Patent Document 3, a method that can prevent the clogging of the immersion nozzle even in continuous casting of steel containing REM by using an immersion nozzle made of magnesia graphite.

特許文献3で提案した方法は、優れた閉塞防止効果が得られる。しかしながら、マグネシアグラファイト質耐火物は、汎用的に使用されるアルミナグラファイト質と比べて熱衝撃性が非常に劣り、鋳造前の予熱条件によっては鋳造中に浸漬ノズルが折損するなどの問題が発生する懸念がある。   The method proposed in Patent Document 3 provides an excellent blocking prevention effect. However, magnesia graphite refractories are very inferior in thermal shock compared to alumina graphite used for general purposes, and depending on the preheating conditions before casting, problems such as breakage of the immersion nozzle may occur during casting. There are concerns.

また、発明者らの一部は、アルミナグラファイト質に微量のCaO等を含有させることによってアルミナ介在物の付着を抑制し、さらに通電を併用してその効果を促進する方法を特許文献4で提案している。   In addition, some of the inventors proposed in Patent Document 4 a method for suppressing the adhesion of alumina inclusions by adding a trace amount of CaO or the like to the alumina graphite, and further promoting the effect by using energization together. doing.

しかしながら、特許文献4で提案した方法は、REMを含有した鋼における効果は不明である上、溶鋼中の溶質REMは、Al2O3とも容易に反応してしまうため、耐火物表面に高融点のREM酸化物がそのまま堆積するおそれがあり、REM添加鋼への適用は不向きである。 However, in the method proposed in Patent Document 4, the effect in steel containing REM is unknown, and the solute REM in the molten steel easily reacts with Al 2 O 3 , so that the refractory surface has a high melting point. The REM oxide may be deposited as it is, and is not suitable for application to REM-added steel.

他方、アルゴン等の不活性ガスを浸漬ノズルの溶鋼流路内に吹き込む方法は、介在物の付着防止に有効であると一般に言われている。しかしながら、吹き込まれた不活性ガスが溶鋼中に捕獲され、製品においてピンホール欠陥となる場合もあり、必ずしも有効な方法ではない。   On the other hand, it is generally said that the method of blowing an inert gas such as argon into the molten steel flow path of the immersion nozzle is effective for preventing the adhesion of inclusions. However, the blown inert gas may be trapped in the molten steel, resulting in pinhole defects in the product, which is not always an effective method.

特許第3358989号公報Japanese Patent No. 3358899 特開2002‐035904号公報JP 2002-035904 A 特開2011−218431号公報JP 2011-218431 A 特開2010‐201504号公報JP 2010-201504 A

本発明が解決しようとする問題点は、特許文献1,2,4で提案された発明は、REMを含有した鋼における効果は不明であるという点である。また、特許文献3で提案された発明は、鋳造前の予熱条件によっては鋳造中に浸漬ノズルが折損するなどの問題が発生する懸念があるという点である。   The problem to be solved by the present invention is that the inventions proposed in Patent Documents 1, 2, and 4 have unclear effects in steel containing REM. Moreover, the invention proposed in Patent Document 3 is that there is a concern that problems such as breakage of the immersion nozzle may occur during casting depending on preheating conditions before casting.

本発明は、
連続鋳造において、高融点かつ高比重のREM系介在物が浸漬ノズルの溶鋼流路稼動面に付着することを抑制して、浸漬ノズルの閉塞を防止するために、
C濃度11〜45質量%スピネルグラファイトを溶鋼流路稼働面に配置した連続鋳造用浸漬ノズルを用いて、Ce,La,PrまたはNdの1種類以上の希土類金属が0.001〜0.10質量%の範囲内で含有された希土類金属含有鋼を連続鋳造する際、
前記スピネルグラファイトを、溶鋼との接触角が120度以下で、かつ、MgO濃度:6〜25質量%、Al 2 O 3 濃度:40〜80質量%、CaO濃度:1〜7質量%を含有したものとすることを主要な特徴とするものである。
The present invention
In continuous casting, in order to prevent the REM inclusions with a high melting point and high specific gravity from adhering to the molten steel flow path working surface of the immersion nozzle,
Using a continuous casting immersion nozzle in which spinel graphite having a C concentration of 11 to 45% by mass is disposed on the working surface of the molten steel, one or more rare earth metals of Ce, La, Pr, or Nd are 0.001 to 0.00. When continuously casting the rare earth metal-containing steel contained in the range of 10% by mass ,
The spinel graphite had a contact angle with molten steel of 120 ° or less, and contained MgO concentration: 6 to 25% by mass, Al 2 O 3 concentration: 40 to 80% by mass, and CaO concentration: 1 to 7% by mass. The main characteristic is to be.

上記本発明では、C濃度:11〜45質量%、MgO濃度:6〜25質量%、Al2O3濃度:40〜80質量%、CaO濃度:1〜7質量%を含有するスピネルグラファイトを浸漬ノズルの溶鋼流路稼働面に配置することで、溶鋼との間の濡れ性が改善される。 The present invention, C Concentration: 11 to 45 wt%, MgO concentration: 6 to 25 wt%, Al 2 O 3 concentration: 40 to 80 wt%, CaO concentration: immersing a spinel graphite containing 1-7 wt% By arranging the nozzle on the working surface of the molten steel flow path, the wettability with the molten steel is improved.

本発明によれば、溶鋼と浸漬ノズルの溶鋼流路稼動面間の濡れ性を改善できるので、REM含有鋼の連続鋳造時に生じる溶鋼中のREM系介在物が浸漬ノズルの溶鋼流路稼動面に付着するのを効果的に抑制して浸漬ノズルの閉塞を防止することができる。従って、製造する鋳片の品質および生産効率の向上を図ることができる。   According to the present invention, the wettability between the molten steel and the molten steel channel operating surface of the immersion nozzle can be improved. Adhesion can be effectively suppressed to prevent the immersion nozzle from being blocked. Therefore, the quality and production efficiency of the slab to be manufactured can be improved.

本発明の連続鋳造方法を実施する連続鋳造設備の概略構成図である。It is a schematic block diagram of the continuous casting installation which enforces the continuous casting method of this invention. 本発明の連続鋳造方法において、パルス状に電位を付与する場合の電位波形一例を示した図である。In the continuous casting method of this invention, it is the figure which showed an example of the electric potential waveform in the case of providing an electric potential in a pulse form.

浸漬ノズルの形成に汎用的に使用される耐火物はAl2O3を主体としたアルミナグラファイト質が主流である。そもそもAl2O3は溶鋼中の溶質REMと容易に反応し、それによって生成したREM酸化物が閉塞物の一因となる。さらに、溶鋼とAl2O3の間の濡れ性は非常に悪いので、浸漬ノズルの溶鋼流路稼動面に溶鋼流路内を浮遊・通過する介在物がそもそも付着し易く、閉塞が生じ易い物質である。 The refractory material generally used for forming the immersion nozzle is mainly composed of alumina graphite based on Al 2 O 3 . In the first place, Al 2 O 3 easily reacts with the solute REM in the molten steel, and the REM oxide generated thereby contributes to the blockage. Furthermore, since the wettability between molten steel and Al 2 O 3 is very poor, inclusions that float and pass through the molten steel flow path are likely to adhere to the surface of the molten steel flow path of the immersion nozzle in the first place, and are prone to clogging. It is.

発明者らは、上記点に着目し、さらに、溶鋼との濡れ性を支配する因子の一つとして、耐火物を構成する基礎原料の結晶構造が重要であることに着目した。   The inventors focused on the above points, and further focused on the importance of the crystal structure of the basic raw material constituting the refractory as one of the factors governing the wettability with molten steel.

上記着目により、発明者らは、REMを含有した鋼でも浸漬ノズルの溶鋼流路を閉塞させることなく、安定した連続鋳造を実現するため、浸漬ノズルとの溶鋼中溶質REMの反応を抑制し、溶鋼と耐火物間の濡れ性を最大限に改善することを追求した。   With the above attention, the inventors suppressed the reaction of the solute REM in the molten steel with the immersion nozzle in order to achieve stable continuous casting without blocking the molten steel flow path of the immersion nozzle even in the steel containing REM, We sought to maximize the wettability between molten steel and refractory.

発明者らは、浸漬ノズルの溶鋼流路稼動面へのREM系介在物の付着が、溶鋼と溶鋼流路稼動面間の濡れ性の影響を強く受けることに着目した浸漬ノズルの基礎原料を選定し、以下の5点に着目した。   The inventors selected the basic material of the immersion nozzle, focusing on the fact that the adhesion of REM inclusions to the molten steel channel operating surface of the immersion nozzle is strongly affected by the wettability between the molten steel and the molten steel channel operating surface. Attention was paid to the following five points.

(1)耐火物で形成された浸漬ノズルの閉塞性に及ぼす溶鋼と浸漬ノズル間の濡れ性の影響
溶鋼と浸漬ノズルの溶鋼流路稼動面間の濡れ性が良好なほど、溶鋼流路稼動面へのREM系介在物の付着が軽減される。
(1) Effect of wettability between molten steel and immersion nozzle on blockage of immersion nozzle formed of refractory material The better the wettability between the molten steel and the immersion nozzle operating surface of the immersion nozzle, the better the molten steel channel operating surface Adhesion of REM inclusions to the surface is reduced.

すなわち、浸漬ノズルの溶鋼流路稼動面と溶鋼間の濡れ性が悪いと、溶鋼中を浮遊するREM系介在物には、浸漬ノズルの溶鋼流路稼動面へ排斥されようとする力が作用し、溶鋼中のREM系介在物が溶鋼流路稼動面に付着しやすくなる。   In other words, if the wettability between the molten steel flow path working surface of the immersion nozzle and the molten steel is poor, the REM inclusions floating in the molten steel will be subjected to a force to be discharged to the molten steel flow path working surface of the immersion nozzle. , REM inclusions in the molten steel are likely to adhere to the molten steel flow path operating surface.

しかしながら、溶鋼と浸漬ノズルの溶鋼流路稼動面間の濡れ性が向上し、互いによく濡れ合えば、浸漬ノズルの溶鋼流路稼動面側へ排斥されようとする力が溶鋼中のREM系介在物に作用しないため、溶鋼中のREM系介在物が溶鋼流路稼動面に付着し難くなる。   However, when the wettability between the molten steel flow surface working surface of the molten steel and the submerged nozzle is improved and they wet well with each other, the force to be exhausted to the molten steel flow channel operating surface side of the submerged nozzle is affected by the REM inclusions in the molten steel. Therefore, the REM inclusions in the molten steel are difficult to adhere to the molten steel flow path operating surface.

(2)汎用的な浸漬ノズル材質であるアルミナグラファイトの欠点
溶鋼と浸漬ノズルの溶鋼流路稼動面が濡れる上では、少なくとも、溶鋼と浸漬ノズルの溶鋼流路稼動面の異相界面において、溶鋼側のFeと浸漬ノズル側の陽イオン元素との置換が必要であり、この置換反応が生じるには、浸漬ノズルの溶鋼流路稼動面を構成する耐火物の結晶構造の影響が重要である。
(2) Disadvantages of Alumina Graphite, a General-purpose Immersion Nozzle Material In order to wet the molten steel channel working surface of the molten steel and the immersion nozzle, at least at the heterogeneous interface between the molten steel and the molten steel channel operating surface of the immersion nozzle, It is necessary to replace Fe with a cation element on the immersion nozzle side, and in order for this substitution reaction to occur, the influence of the crystal structure of the refractory constituting the molten steel flow path working surface of the immersion nozzle is important.

すなわち、FeOの結晶構造がNaCl型であるため、少なくともNaCl型と同様の立方晶系(等軸晶系ともいう)の結晶構造を有する耐火物を使用すれば、Feと耐火物側の陽イオンの置換が生じやすく、溶鋼と浸漬ノズルは濡れやすくなる。   That is, since the crystal structure of FeO is NaCl type, if a refractory having at least a cubic crystal structure (also referred to as equiaxed crystal) is used, the cation on Fe and the refractory side is used. Therefore, the molten steel and the immersion nozzle are easily wetted.

一方、汎用的に使用される浸漬ノズル耐火物は、Al2O3を主体としたアルミナグラファイトであるが、Al2O3の結晶構造はコランダム構造であり、立方晶系でないため、溶鋼との濡れ性が悪く、REM系介在物の付着防止の観点からは、不向きな耐火物である。 On the other hand, the immersion nozzle refractory used for general purposes is alumina graphite mainly composed of Al 2 O 3 , but the crystal structure of Al 2 O 3 is a corundum structure and not a cubic system. It has poor wettability and is a refractory that is unsuitable from the viewpoint of preventing adhesion of REM inclusions.

(3)反応性および濡れ性を考慮した閉塞防止型の浸漬ノズル材質の選定
溶鋼と濡れやすい立方晶系の結晶構造を有する耐火物として、CaO,MgO,スピネル等が挙げられる。しかしながら、耐スポーリング性や吸湿性など工業的な実用観点から見た場合、耐火物の基礎原料としてはスピネルが有望であり、また、溶鋼中の溶質REMとの反応もAl2O3と比べて大幅に抑制できる。
(3) Selection of plugging prevention type immersion nozzle material considering reactivity and wettability CaO, MgO, spinel, etc. are examples of refractories having a cubic crystal structure that easily wets molten steel. However, from the industrial practical point of view, such as spalling resistance and moisture absorption, spinel is promising as a basic raw material for refractories, and the reaction with solute REM in molten steel is also higher than that of Al 2 O 3 Can be greatly reduced.

(4)微量CaO配合型の浸漬ノズル耐火物
鋳造中の溶鋼と浸漬ノズルの溶鋼流路稼動面間の安定した濡れ性を維持するために、浸漬ノズルの溶鋼流路稼動面を形成する耐火物中に微量のCaOを配合し、溶鋼と接する溶鋼流路稼働面に限定して、スピネル中のAl2O3とCaOの反応に伴う液相を生成させる。これによって、溶鋼と浸漬ノズルの溶鋼流路稼動面間の濡れ性の良好性を確実にし、安定したREM系介在物の付着防止効果を発揮させる。
(4) Submersible nozzle refractories with a trace amount of CaO In order to maintain stable wettability between the molten steel being cast and the molten steel channel operating surface of the immersion nozzle, the refractory that forms the molten steel channel operating surface of the immersion nozzle A small amount of CaO is blended into the liquid steel, and the liquid phase accompanying the reaction of Al 2 O 3 and CaO in the spinel is generated only on the surface of the molten steel flow path in contact with the molten steel. As a result, the wettability between the molten steel and the molten steel flow path working surface of the immersion nozzle is ensured, and the effect of preventing the adhesion of REM inclusions stably is exhibited.

(5)溶鋼と浸漬ノズル間の電位差付与による閉塞防止効果の安定性
浸漬ノズルと溶鋼間に電流を印加した場合、溶鋼と浸漬ノズルの溶鋼流路稼動面間の濡れ性を促進することが可能となるので、REM系介在物の付着防止効果をより一層促進できる。
(5) Stability of blockage prevention effect due to potential difference between molten steel and immersion nozzle When current is applied between immersion nozzle and molten steel, it is possible to promote the wettability between the molten steel flow path working surface of molten steel and immersion nozzle Therefore, the effect of preventing the attachment of REM inclusions can be further promoted.

本発明は、上記5点に着目し、REM含有鋼の連続鋳造時に、浸漬ノズルの溶鋼流路稼動面との溶鋼中溶質REMの反応を抑制して、溶鋼と浸漬ノズルの溶鋼流路稼動面間の濡れ性を改善し、浸漬ノズルの溶鋼流路稼動面への溶鋼中のREM系介在物の付着を効果的に抑制して浸漬ノズルの閉塞を防止するために、以下の構成を主要な特徴としている。   The present invention pays attention to the above five points, and suppresses the reaction of the solute REM in the molten steel with the molten steel channel operating surface of the immersion nozzle during continuous casting of the REM-containing steel, so that the molten steel channel operating surface of the molten steel and the immersion nozzle is controlled. In order to improve the wettability during the process and effectively prevent REM inclusions from adhering to the working surface of the immersion nozzle, the main components of the following configuration are as follows. It is a feature.

・第1の発明
第1の発明は、
C濃度:11〜45質量%、MgO濃度:6〜25質量%、Al2O3濃度:40〜80質量%、CaO濃度:1〜7質量%を含有するスピネルグラファイトを溶鋼流路稼働面に配置した連続鋳造用浸漬ノズルを用いて、Ce,La,PrまたはNdの1種類以上のREMが0.001〜0.10質量%の範囲内で含有されたREM含有鋼を連続鋳造することを特徴とするものである。
First invention The first invention is
Spinel graphite containing C concentration: 11 to 45% by mass, MgO concentration: 6 to 25% by mass, Al 2 O 3 concentration: 40 to 80% by mass, CaO concentration: 1 to 7% by mass on the working surface of the molten steel channel Continuous casting of REM-containing steel containing one or more types of REM of Ce, La, Pr or Nd within a range of 0.001 to 0.10% by mass using the arranged continuous casting immersion nozzle it is an feature.

浸漬ノズルの溶鋼流路稼動面に配する前記スピネルグラファイトは、化学組成として、C濃度:11〜45質量%、MgO濃度:6〜25質量%、Al2O3濃度:40〜80質量%、CaO濃度:1〜7質量%を含有するものであれば、浸漬ノズルの溶鋼流路稼動面に配しただけの複層構造型でも、一体型の浸漬ノズルでも良い。 The spinel graphite arranged on the surface of the molten steel flow path of the immersion nozzle has a chemical composition of C concentration: 11 to 45% by mass, MgO concentration: 6 to 25% by mass, Al 2 O 3 concentration: 40 to 80% by mass, As long as it contains a CaO concentration of 1 to 7% by mass, it may be a multilayer structure type simply disposed on the surface of the molten steel flow path of the immersion nozzle or an integral immersion nozzle.

本発明において、スピネルグラファイトに含有するC濃度を11〜45質量%としたのは、11質量%未満になると耐火物の熱衝撃性に劣り、逆に45質量%を超えると酸化や浸食に弱くなるためである。C濃度のより適正な範囲は、15〜40質量%である。   In the present invention, the concentration of C contained in the spinel graphite is set to 11 to 45% by mass. When the content is less than 11% by mass, the thermal shock resistance of the refractory is inferior. It is to become. A more appropriate range of the C concentration is 15 to 40% by mass.

また、MgO濃度を6〜25質量%としたのは、6質量%未満になると溶鋼との濡れを悪化させるコランダム構造を有するAl2O3の影響が顕在化してしまうおそれがあるからである。一方、25質量%を超えると耐火物の熱衝撃性が劣ってしまい、スポーリング割れの懸念が避けられないからである。MgO濃度のより望ましい範囲は、8〜20質量%である。 The reason why the MgO concentration is set to 6 to 25% by mass is that if it is less than 6% by mass, the influence of Al 2 O 3 having a corundum structure that deteriorates the wettability with molten steel may become obvious. On the other hand, if it exceeds 25 mass%, the thermal shock resistance of the refractory is inferior, and the fear of spalling cracks cannot be avoided. A more desirable range of the MgO concentration is 8 to 20% by mass.

また、CaO濃度を1〜7質量%としたのは、1質量%未満になるとCaOによって溶鋼との稼働面に、濡れ性を向上させる半溶融状態の層を形成させる作用が損なわれてしまうからである。一方、7質量%を超えると耐食性の悪化が著しくなってしまうからである。CaO濃度のより望ましい範囲は、2〜5質量%である。   Moreover, the CaO concentration is set to 1 to 7% by mass because when it is less than 1% by mass, the action of forming a semi-molten layer that improves wettability on the working surface of the molten steel with CaO is impaired. It is. On the other hand, if it exceeds 7% by mass, the corrosion resistance is remarkably deteriorated. A more desirable range of the CaO concentration is 2 to 5% by mass.

また、Al2O3濃度を40〜80質量%としたのは以下の理由による。すなわち、Al2O3はMgOと同様に、スピネルの構成要素であり、本耐火物の主成分である。Al2O3濃度が40質量%未満になると、相対的にもう一方のスピネル構成要素であるMgO濃度が高くなりすぎて、MgO相領域との境界に近づくので安定したスピネルを維持することが難しくなるからである。逆に、Al2O3濃度が80質量%を超えると、相対的なMgO濃度が低くなりすぎて、同様に安定したスピネル構造を維持することが難しくなるからである。安定したスピネル構造を維持するという観点からは、Al2O3とMgOが、質量%比で、MgO/Al2O3=0.10〜0.65であることが望ましい。 The reason why the Al 2 O 3 concentration is 40 to 80% by mass is as follows. That is, Al 2 O 3 is a component of spinel and is the main component of the refractory, like MgO. When the Al 2 O 3 concentration is less than 40% by mass, the MgO concentration, which is the other spinel component, becomes too high and approaches the boundary with the MgO phase region, so it is difficult to maintain a stable spinel. Because it becomes. On the other hand, if the Al 2 O 3 concentration exceeds 80% by mass, the relative MgO concentration becomes too low and it is difficult to maintain a stable spinel structure. From the viewpoint of maintaining a stable spinel structure, it is desirable that Al 2 O 3 and MgO are MgO / Al 2 O 3 = 0.10 to 0.65 in mass% ratio.

REMとは、周期表の3族に属するSc、Y、ランタノイド(La,Ce等の原子番号が57〜71の15元素)から選ばれた1種以上の金属元素を意味し、特に、Ce,La,PrまたはNdのうちの1種以上の元素が該当する。   REM means one or more metal elements selected from Sc, Y, and lanthanoids belonging to Group 3 of the periodic table (15 elements having atomic numbers of 57 to 71 such as La and Ce). One or more elements of La, Pr, or Nd are applicable.

鋼に希土類元素を添加する目的は、一般に、鋼中に存在する硫化物や酸化物の形態制御あるいは鋼の高温耐食性の向上にある。このような目的に対して、希土類元素は少なくとも0.001質量%含有させる必要がある。一方、希土類元素は高価であり、0.10質量%を超えて過剰に含有させてもその効果が飽和してコスト的に不利になる。従って、本発明では、希土類元素を0.001〜0.10質量%含有する鋼を製造する場合に適用することとしている。   The purpose of adding rare earth elements to steel is generally to control the form of sulfides and oxides present in the steel or to improve the high temperature corrosion resistance of the steel. For such purposes, it is necessary to contain at least 0.001% by mass of the rare earth element. On the other hand, rare earth elements are expensive, and even if they are contained in excess of 0.10% by mass, the effect is saturated and disadvantageous in cost. Therefore, in this invention, it shall be applied when manufacturing the steel which contains rare earth elements 0.001-0.10 mass%.

・第2の発明
溶鋼過熱度が50℃における条件下における、溶鋼と耐火物間の接触角が120度より大きくなると、溶鋼中に浮遊するREM系介在物が、浸漬ノズルの溶鋼流路稼動面に衝突した際、そのまま溶鋼流路稼動面に固着する状況が維持されやすい。従って、上記本発明においては、溶鋼と浸漬ノズルの溶鋼流路稼動面に配置するスピネルグラファイトは、溶鋼との接触角を120度以下にすることが望ましい。これが第2の発明である。
-2nd invention When the contact angle between molten steel and a refractory becomes larger than 120 degree | times on the conditions in which molten steel superheat degree is 50 degreeC, the REM inclusion which floats in molten steel is the molten steel flow path working surface of an immersion nozzle. It is easy to maintain the situation of adhering to the molten steel flow path working surface as it is. Therefore, in the said invention, it is desirable for the spinel graphite arrange | positioned on the molten steel flow path working surface of molten steel and an immersion nozzle to make a contact angle with molten steel 120 degrees or less. This is the second invention.

浸漬ノズルの溶鋼流路閉塞を抑制しつつ、同一の浸漬ノズルを使用して、連続して鋳造するチャージ数(連々数)を増加させるには、前記接触角を110度以下にすることが望ましい。   In order to increase the number of charges (continuous number) continuously cast using the same immersion nozzle while suppressing the molten steel flow path blockage of the immersion nozzle, the contact angle is desirably set to 110 degrees or less. .

・第3の発明
また、上記本発明において、スピネルグラファイトの溶損を抑制し、さらに溶鋼と浸漬ノズルの溶鋼流路稼動面間の濡れ性を向上させるには、少なくとも浸漬ノズルにおける平均電流密度を1.1mA/cm2以上確保することが望ましい。
-3rd invention Moreover, in the said invention, in order to suppress the melt loss of spinel graphite and to improve the wettability between the molten steel flow-path working surfaces of molten steel and an immersion nozzle, at least the average current density in an immersion nozzle is set. It is desirable to secure 1.1 mA / cm 2 or more.

ここで、「浸漬ノズルにおける平均電流密度」とは、電圧を印加したときに浸漬ノズルと溶鋼との間に流れる平均電流値を、溶鋼と接する浸漬ノズルの溶鋼流路稼動面の総面積で除して得られる電流密度を意味する。   Here, the “average current density in the immersion nozzle” refers to the average current value that flows between the immersion nozzle and the molten steel when a voltage is applied, divided by the total area of the molten steel flow path operating surface of the immersion nozzle in contact with the molten steel. It means the current density obtained.

この浸漬ノズルにおける平均電流密度は、図1に示すように、浸漬ノズル6に一方の電極10を接続する一方、タンディッシュ3内の溶鋼1に他方の電極11を浸漬し、これら両電極10,11間を繋ぐ配線12の途中に電源装置13を設けて、浸漬ノズル6とこの溶鋼流路内を通過する溶鋼1との間に通電回路を構成することによって得ることができる。   As shown in FIG. 1, the average current density in the immersion nozzle is such that one electrode 10 is connected to the immersion nozzle 6 while the other electrode 11 is immersed in the molten steel 1 in the tundish 3. It can be obtained by providing a power supply device 13 in the middle of the wiring 12 connecting the 11 and configuring an energizing circuit between the immersion nozzle 6 and the molten steel 1 passing through the molten steel flow path.

なお、図1は本発明の連続鋳造法に使用する連続鋳造装置の概略構成を示した図で、取鍋2からタンディッシュ3に供給された溶鋼1は、上ノズル4、スライディングゲート5、浸漬ノズル6を介して鋳型7に注入されて一次冷却され、外周に凝固殻8が形成される。この凝固殻8は鋳型7の出側に引き抜かれるに伴ってその厚さが厚くなり、鋳型7から引き抜かれた後は二次冷却されて完全に凝固して鋳片となる。図1中の9は鋳型7内の溶鋼上面に供給されたモールドパウダー、14は浸漬ノズル6とスライディングゲート5の間に設けた絶縁用耐火物、15はタンディッシュ3と他方の電極11の間に設けた絶縁用耐火物である。   FIG. 1 is a diagram showing a schematic configuration of a continuous casting apparatus used in the continuous casting method of the present invention. A molten steel 1 supplied from a ladle 2 to a tundish 3 is composed of an upper nozzle 4, a sliding gate 5, an immersion. It is injected into the mold 7 through the nozzle 6 and is primarily cooled, and a solidified shell 8 is formed on the outer periphery. The solidified shell 8 increases in thickness as it is pulled out from the mold 7, and after being pulled out from the mold 7, it is secondarily cooled and completely solidified into a slab. In FIG. 1, 9 is the mold powder supplied to the upper surface of the molten steel in the mold 7, 14 is an insulating refractory provided between the immersion nozzle 6 and the sliding gate 5, and 15 is between the tundish 3 and the other electrode 11. It is a refractory for insulation provided in

前記平均電流密度が増加するにつれて電子やイオンの電荷キャリアの移動量が増大する。特に、電荷キャリアの一つであるO2-(酸素イオン)が浸漬ノズルとの界面に移動すると、溶鋼中REMと反応して浸漬ノズルの溶鋼流路稼動面でREM酸化物が生成し、溶鋼流路の閉塞を助長する一因となってしまう。 As the average current density increases, the amount of movement of charge carriers of electrons and ions increases. In particular, when O 2- (oxygen ions), which is one of the charge carriers, moves to the interface with the immersion nozzle, it reacts with REM in the molten steel and generates REM oxide on the surface of the immersion nozzle where the molten steel flows. This contributes to promoting blockage of the flow path.

従って、電荷キャリアの一つであるO2-の移動に起因したREM酸化物の付着が顕在化してしまうことを抑制する観点から、前記平均電流密度を16mA/cm2未満にすることが望ましい。これが第3の発明である。 Therefore, it is desirable that the average current density is less than 16 mA / cm 2 from the viewpoint of suppressing the attachment of REM oxide due to the movement of O 2− which is one of the charge carriers. . It is the invention of this Regadai 3.

・第4の発明
ところで、前記平均電流密度を得るに際し、浸漬ノズルを正極として溶鋼との間に通電した場合、電気化学反応を通じて、スピネルグラファイト中のCが下記式の反応によりCO(gas)を発生させることになり、浸漬ノズルが溶損する方向に進行して生産効率の改善を目的とした連々数の増加が見込めなくなってしまう。
-4th invention By the way, when obtaining the said average current density, when it supplies with electricity to molten steel by using an immersion nozzle as a positive electrode, C in spinel graphite changes CO (gas) by reaction of the following formula through an electrochemical reaction. As a result, the immersion nozzle proceeds in the direction of erosion, and it is impossible to expect an increase in number for the purpose of improving production efficiency.

C+O2- → CO(gas)+e- C + O 2- → CO (gas) + e

そのため、浸漬ノズルの溶損の抑制とREM系酸化物の付着防止を両立させる観点から、浸漬ノズルを負極にすることが望ましい。   Therefore, it is desirable that the immersion nozzle be a negative electrode from the viewpoint of achieving both suppression of melting damage of the immersion nozzle and prevention of adhesion of the REM oxide.

一方、浸漬ノズルを溶鋼中に長時間浸漬した場合、持続的なREM系介在物の付着抑制効果を得るには、実効電流が大きい方が望ましい。そこで、発明者らは、適正な平均電流密度に保ったまま実効電流値を高める以下の方法を考案した。   On the other hand, when the immersion nozzle is immersed in the molten steel for a long time, it is desirable that the effective current is large in order to obtain a continuous effect of suppressing the adhesion of REM inclusions. Therefore, the inventors have devised the following method for increasing the effective current value while maintaining an appropriate average current density.

周期的に極性が正と負に切り替わるパルス状の電位差を、浸漬ノズルと溶鋼間に印加し、浸漬ノズル側が負極となるパルス周期の時間、もしくは電位の絶対値を大きく、浸漬ノズルが正極となるパルス周期の時間、もしくは電位の絶対値を小さくするのである。このようにすることによっても、浸漬ノズルの平均電位を負極とし、その平均電流密度の絶対値を1.116mA/cm2の適正範囲に制御することができる。 Apply a pulse-like potential difference that periodically switches between positive and negative polarity between the immersion nozzle and molten steel, increase the pulse period time when the immersion nozzle side becomes the negative electrode, or the absolute value of the potential, and the immersion nozzle becomes the positive electrode The pulse period time or the absolute value of the potential is reduced. This also makes it possible to control the absolute value of the average current density within an appropriate range of 1.1 to 16 mA / cm 2 with the average potential of the immersion nozzle as the negative electrode.

その際、前記パルス状電位の周期はmsec〜50msecの範囲とする。msec未満の場合、安定して電流を流すことが難しいからである。一方、50msecを超えると、酸素イオンの移動に起因したREM酸化物の付着が生じ、さらに浸漬ノズルが正極に偏倚した側では、浸漬ノズルの溶損が進行してしまうからである At that time, the period of the pulse potential is set in the range of 9 msec to 50 msec. This is because if it is less than 9 msec, it is difficult to flow a current stably. On the other hand, if it exceeds 50 msec, adhesion of REM oxide due to the movement of oxygen ions occurs, and further, on the side where the immersion nozzle is biased to the positive electrode, erosion of the immersion nozzle proceeds .

また、パルス状電位を印加した際の浸漬ノズルが負極となる時間における電流密度の絶対値は10〜120mA/cm2の範囲とする。10mA/cm2未満では、浸漬ノズルと溶鋼間の濡れ性を十分に高めることが難しいからである。また、120mA/cm2を超える非常に大きな電流密度では、大容量の電源装置が必要になり、コスト増が見込まれたり、また、配線ケーブルが発熱しやすく、通電中に断線するリスクが増してしまったりと、種々の弊害によって、安定した通電を確保することは難しくなるからである。これが第4の発明である。 Further, the absolute value of the current density during the time when the immersion nozzle becomes the negative electrode when the pulsed potential is applied is in the range of 10 to 120 mA / cm 2 . This is because if it is less than 10 mA / cm 2 , it is difficult to sufficiently improve the wettability between the immersion nozzle and the molten steel. In addition, a very large current density exceeding 120 mA / cm 2 requires a large-capacity power supply device, which is expected to increase costs, and the wiring cable tends to generate heat, increasing the risk of disconnection during energization. This is because it is difficult to ensure stable energization due to various adverse effects . It is the invention of this Regadai 4.

以下の実施例および比較例は、C:0.03〜0.08質量%、Si:0.20〜0.40質量%、Mn:0.70〜0.80質量%、P:0.035質量%以下、S:0.0010質量%以下、Cr:20〜25質量%、Ni:10〜12質量%、sol.Al:0.005〜0.08質量%、REM:0.004〜0.07質量%、残部:Feと不純物の溶鋼組成を有する鋼を図1に示した構成の連続鋳造装置を用いて連続鋳造した場合の結果である。   In the following examples and comparative examples, C: 0.03 to 0.08 mass%, Si: 0.20 to 0.40 mass%, Mn: 0.70 to 0.80 mass%, P: 0.035 % By mass or less, S: 0.0010% by mass or less, Cr: 20-25% by mass, Ni: 10-12% by mass, sol.Al: 0.005-0.08% by mass, REM: 0.004-0 0.07% by mass, balance: Results obtained by continuously casting steel having a molten steel composition of Fe and impurities using the continuous casting apparatus having the configuration shown in FIG.

連続鋳造時のタンディッシュ内溶鋼の過熱度は20〜50°Cの範囲、溶鋼のスループット(単位時間あたりの鋳造溶鋼量)は0.6〜0.9ton/minの範囲であった。また、連続鋳造時、上ノズルから5リットル/minの流量でアルゴンガスを吹き込んだ。   The degree of superheat of the molten steel in the tundish during continuous casting was in the range of 20 to 50 ° C., and the throughput of the molten steel (the amount of cast molten steel per unit time) was in the range of 0.6 to 0.9 ton / min. In continuous casting, argon gas was blown from the upper nozzle at a flow rate of 5 liters / min.

なお、使用に供した浸漬ノズルは、通常のスラブの連続鋳造に用いる、円筒状の本体の底部近傍に、対向する1対の吐出孔を穿たれた形状のものである。   The submerged nozzle used for use has a shape in which a pair of opposing discharge holes are formed in the vicinity of the bottom of a cylindrical main body used for normal continuous slab casting.

本発明の請求項1,2で規定する連続鋳造方法の実施例1〜3、および本発明の請求項1,2で規定する要件を満たさない比較例1,2を下記表1に示す。   Tables 1 to 3 below show Examples 1 to 3 of the continuous casting method defined in Claims 1 and 2 of the present invention and Comparative Examples 1 and 2 not satisfying the requirements defined in Claims 1 and 2 of the present invention.

実施例1〜3は、浸漬ノズルを形成する耐火物がスピネルグラファイト質からなり、かつ、当該スピネルグラファイト質耐火物の溶鋼との接触角が120度以下で、請求項1,2の規定を満足する例である。   In Examples 1 to 3, the refractory forming the immersion nozzle is made of spinel graphite, and the contact angle of the spinel graphite refractory with the molten steel is 120 degrees or less, satisfying the provisions of claims 1 and 2. This is an example.

一方、比較例1は浸漬ノズルを形成する耐火物がアルミナグラファイト質からなるもの、比較例2は同じくマグネシアグラファイト質からなるもので、何れも請求項1の規定を満足しない例である。加えて、比較例1は、浸漬ノズルを形成するアルミナグラファイト質耐火物の溶鋼との接触角が120度を超え、請求項2の規定も満足しない。   On the other hand, Comparative Example 1 is one in which the refractory forming the immersion nozzle is made of alumina graphite, and Comparative Example 2 is also made of magnesia graphite, both of which do not satisfy the provisions of claim 1. In addition, in Comparative Example 1, the contact angle of the alumina graphite refractory forming the immersion nozzle with the molten steel exceeds 120 degrees, and the provision of claim 2 is not satisfied.

Figure 0005803851
Figure 0005803851

表1における浸漬ノズル内の介在物付着速度指数は、鋳造後の浸漬ノズル内の平均介在物付着厚を鋳造時間で除して求めた介在物付着速度を、比較例1に示すアルミナグラファイト系ノズルを使用した場合を10として指数化したものである。なお、浸漬ノズル内の平均介在物付着厚とは、浸漬ノズルの上端から吐出口上端までの溶鋼流れ方向の介在物付着厚の平均値に相当する。   The inclusion adhesion rate index in the immersion nozzle in Table 1 is the alumina graphite nozzle shown in Comparative Example 1 as the inclusion adhesion rate obtained by dividing the average inclusion adhesion thickness in the immersion nozzle after casting by the casting time. When using is indexed as 10. The average inclusion adhesion thickness in the immersion nozzle corresponds to the average value of the inclusion adhesion thickness in the molten steel flow direction from the upper end of the immersion nozzle to the upper end of the discharge port.

実施例1〜3は、鋳造中、浸漬ノズルの溶鋼流路稼動面と溶鋼の濡れが良好で、浸漬ノズル内の介在物付着速度指数が5〜3となって、REM系介在物を含むすべての付着が抑制された。 In Examples 1 to 3, during the casting, the molten steel flow path working surface of the immersion nozzle and the wetness of the molten steel are good, and the inclusion adhesion rate index in the immersion nozzle is 5 to 3, including all REM inclusions. Adhesion was suppressed.

一方、比較例1は溶鋼と濡れないアルミナグラファイト質であるために、REM系介在物を含むすべての非金属物の付着を避けられない上、溶鋼中の溶質REMとの反応も避けられず、閉塞が顕著であった。   On the other hand, since Comparative Example 1 is an alumina graphite that does not get wet with the molten steel, it is inevitable that all non-metallic substances including REM inclusions are adhered, and a reaction with the solute REM in the molten steel is also unavoidable. Obstruction was significant.

また、比較例2は溶鋼との濡れ性が良好なマグネシアグラファイト質であり、浸漬ノズル内の介在物付着速度指数は4で、付着防止効果が十分に得られてはいるものの、予熱不良に伴うスポーリング割れが発生した。 Further, Comparative Example 2 is magnesia graphite having good wettability with molten steel, and the inclusion adhesion rate index in the immersion nozzle is 4, and although the adhesion prevention effect is sufficiently obtained, it is accompanied by poor preheating. Spalling cracks occurred.

次に、本発明の請求項又はで規定する連続鋳造方法の実施例4〜8を下記表2に、および本発明の請求項又はで規定する要件を満たさない比較例3〜5を下記表3に示す。 Next, Examples 4 to 8 of the continuous casting method defined in claim 2 or 3 of the present invention are shown in Table 2 below, and Comparative Examples 3 to 5 not satisfying the requirements defined in claim 2 or 3 of the present invention. Is shown in Table 3 below.

実施例4〜8及び比較例3〜5は、実施例1の条件下において、さらに浸漬ノズルと溶鋼との間に電位差を与えて、連続鋳造を実施した例である。   Examples 4 to 8 and Comparative Examples 3 to 5 are examples in which continuous casting was performed by applying a potential difference between the immersion nozzle and the molten steel under the conditions of Example 1.

Figure 0005803851
Figure 0005803851

Figure 0005803851
Figure 0005803851

実施例4,5は、表2に記載の直流電流を、浸漬ノズルが負極となるように流したものであり、本発明の請求項に規定する平均電流密度を満たすので、浸漬ノズル内の介在物付着指数は5から4となって、通電を行わない実施例1に比べて、REM系介在物を主体としたすべての付着が抑制された。 In Examples 4 and 5, the direct current described in Table 2 was passed so that the immersion nozzle became a negative electrode, and the average current density defined in claim 2 of the present invention was satisfied. Inclusion adhesion index was changed from 5 to 4, and all adhesion mainly composed of REM type inclusions was suppressed as compared with Example 1 in which no energization was performed.

一方、請求項で規定する範囲を満たさない比較例3は、平均電流密度の絶対値が請求項で規定する上限値より大きいため、酸素イオンの移動に起因してREM酸化物の付着量が増え(浸漬ノズル内の介在物付着指数は6)、実施例4,5に比べて、浸漬ノズルの閉塞が生じやすい。 On the other hand, in Comparative Example 3, which does not satisfy the range specified in claim 2 , the absolute value of the average current density is larger than the upper limit value specified in claim 2 , so that the amount of REM oxide deposited due to the migration of oxygen ions (Inclusion adhesion index in the immersion nozzle is 6), and the immersion nozzle is more likely to be clogged than in Examples 4 and 5.

実施例6〜8は、図2に示すパルス状に浸漬ノズルと溶鋼間に電位差を付与したものであり、浸漬ノズルが負極となる時間が正極となる時間よりも長いので、1周期での時間平均電流は、浸漬ノズルが負極となる方向へ流れる。これら実施例6〜8は本発明の請求項に記載するパルス周期を満たし、さらに浸漬ノズルが負極となるパルス期間の電流密度の絶対値も満たすので、浸漬ノズルの溶鋼流路稼動面におけるREMを含む介在物の付着抑制効果が大きい(浸漬ノズル内の介在物付着指数は1〜3)。 In Examples 6 to 8, a potential difference is imparted between the immersion nozzle and the molten steel in the form of pulses shown in FIG. 2, and the time during which the immersion nozzle becomes the negative electrode is longer than the time during which the positive electrode becomes positive. The average current flows in the direction in which the immersion nozzle becomes the negative electrode. These Examples 6-8 satisfies the pulse period according to claim 3 of the present invention, since the immersed nozzle plus the absolute value is also full of the current density pulse duration serving as the negative electrode, the molten steel flow path running surface of the immersion nozzle The effect of suppressing inclusions including inclusions in the REM is large (inclusion adhesion index in the immersion nozzle is 1 to 3).

一方、請求項を満たさない比較例4は、パルス周期が請求項で規定する上限値よりも長いので、酸素イオンの移動に起因してREM酸化物の付着量が増え(浸漬ノズル内の介在物付着指数は5)、実施例6〜8に比べて浸漬ノズルの閉塞が生じやすい。 On the other hand, in Comparative Example 4 that does not satisfy Claim 3 , the pulse period is longer than the upper limit value defined in Claim 3 , so that the amount of REM oxide deposited increases due to the movement of oxygen ions (in the immersion nozzle). The inclusion adhesion index is 5), and the immersion nozzle is more likely to be clogged than in Examples 6-8.

また、請求項を満たさない比較例5は、浸漬ノズルが負極となるパルス期間の電流密度の絶対値が請求項で規定する下限値よりも小さいため、浸漬ノズルの溶鋼流路稼動面での濡れ性を十分に高めることができず、実施例6〜8に比べて浸漬ノズルの閉塞が生じやすい(浸漬ノズル内の介在物付着指数は5)。 Moreover, since the absolute value of the current density of the pulse period in which the immersion nozzle becomes a negative electrode is smaller than the lower limit value specified in claim 3 , the comparative example 5 that does not satisfy the claim 3 is the surface where the molten steel flow path of the immersion nozzle operates. The wettability of the immersion nozzle cannot be sufficiently increased, and the immersion nozzle is more easily clogged than in Examples 6 to 8 (inclusion adhesion index in the immersion nozzle is 5).

本発明は上記した例に限らないことは勿論であり、請求項に記載の技術的思想の範疇であれば、適宜実施の形態を変更しても良いことは言うまでもない。   Needless to say, the present invention is not limited to the above-described examples, and the embodiments may be appropriately changed within the scope of the technical idea described in the claims.

例えば、第4の発明におけるパルス状の電位は図2に示すものに限らない。   For example, the pulsed potential in the fourth invention is not limited to that shown in FIG.

1 溶鋼
3 タンディッシュ
6 浸漬ノズル
10 一方の電極
11 他方の電極
12 配線
13 電源装置
DESCRIPTION OF SYMBOLS 1 Molten steel 3 Tundish 6 Immersion nozzle 10 One electrode 11 The other electrode 12 Wiring 13 Power supply device

Claims (3)

C濃度11〜45質量%スピネルグラファイトを溶鋼流路稼働面に配置した連続鋳造用浸漬ノズルを用いて、Ce,La,PrまたはNdの1種類以上の希土類金属が0.001〜0.10質量%の範囲内で含有された希土類金属含有鋼を連続鋳造する際、
前記スピネルグラファイトを、溶鋼との接触角が120度以下で、かつ、MgO濃度:6〜25質量%、Al 2 O 3 濃度:40〜80質量%、CaO濃度:1〜7質量%を含有したものとすることを特徴とする希土類金属含有鋼の連続鋳造方法。
Using a continuous casting immersion nozzle in which spinel graphite having a C concentration of 11 to 45% by mass is disposed on the working surface of the molten steel, one or more rare earth metals of Ce, La, Pr, or Nd are 0.001 to 0.00. When continuously casting the rare earth metal-containing steel contained in the range of 10% by mass ,
The spinel graphite had a contact angle with molten steel of 120 ° or less, and contained MgO concentration: 6 to 25% by mass, Al 2 O 3 concentration: 40 to 80% by mass, and CaO concentration: 1 to 7% by mass. A method for continuously casting rare earth metal-containing steel.
浸漬ノズルが負極、溶鋼が正極となる電圧を付加して、O 2- の移動を抑制する平均電流密度の絶対値が3〜12mA/cm 2 となるよう通電することを特徴とする請求項1に記載の希土類金属含有鋼の連続鋳造方法。 A voltage is applied so that the immersion nozzle is a negative electrode and the molten steel is a positive electrode, and energization is performed so that the absolute value of the average current density for suppressing the movement of O 2− is 3 to 12 mA / cm 2. A method for continuously casting a rare earth metal-containing steel as described in 1. 浸漬ノズルが負極、溶鋼が正極となる電圧を付加して、O 2- の移動を抑制する平均電流密度の絶対値が1.1〜16mA/cm 2 となり、かつ、極性が周期的に切り替わるパルス状の電位をパルス周期9〜50msecの範囲で印加し、浸漬ノズルが負極となるパルス周期の時間もしくは電位の絶対値を大きく、浸漬ノズルが正極となるパルス期間の時間もしくは電位の絶対値を小さくすることによって、浸漬ノズルの正極側電位と負極側電位を平均した電位が負極側になるようにし、浸漬ノズルが負極となるパルス周期の時間における電流密度の絶対値が10〜120mA/cm 2 となる通電を行うことを特徴とする請求項に記載の希土類金属含有鋼の連続鋳造方法。 Applying voltage so that the immersion nozzle is the negative electrode and the molten steel is the positive electrode, the absolute value of the average current density that suppresses the movement of O 2− becomes 1.1-16 mA / cm 2 , and the polarity is periodically switched. Is applied in the range of pulse period 9 to 50 msec, and the absolute value of the pulse period or potential in which the immersion nozzle becomes the negative electrode is increased, and the absolute value of the pulse period or potential in which the immersion nozzle is the positive electrode is decreased. by, as the positive electrode side potential and the potential obtained by averaging the negative electrode side potential of the immersion nozzle becomes negative side, the absolute value of the current density at the time of the pulse period immersion nozzle becomes negative electrode and the 10~120mA / cm 2 The continuous casting method for rare earth metal-containing steel according to claim 1 , wherein energization is performed .
JP2012188934A 2012-08-29 2012-08-29 Continuous casting method of steel containing rare earth metal Active JP5803851B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012188934A JP5803851B2 (en) 2012-08-29 2012-08-29 Continuous casting method of steel containing rare earth metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012188934A JP5803851B2 (en) 2012-08-29 2012-08-29 Continuous casting method of steel containing rare earth metal

Publications (2)

Publication Number Publication Date
JP2014046315A JP2014046315A (en) 2014-03-17
JP5803851B2 true JP5803851B2 (en) 2015-11-04

Family

ID=50606538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012188934A Active JP5803851B2 (en) 2012-08-29 2012-08-29 Continuous casting method of steel containing rare earth metal

Country Status (1)

Country Link
JP (1) JP5803851B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7393638B2 (en) 2020-01-17 2023-12-07 日本製鉄株式会社 Continuous steel casting method
CN112658241B (en) * 2020-12-10 2022-11-08 东北大学 Method for preventing decarburization and reaction behavior of rare earth steel nozzle by applying interface electric field
CN113828749A (en) * 2021-08-13 2021-12-24 包头钢铁(集团)有限责任公司 Method for realizing continuous casting castability of rare earth steel by adjusting superheat degree
CN117696877B (en) * 2024-02-06 2024-04-23 内蒙古科技大学 Nozzle with surface provided with low-wettability amorphous protective film, and preparation method and application thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3722405B2 (en) * 1999-10-19 2005-11-30 品川白煉瓦株式会社 Steel continuous casting method
JP5304716B2 (en) * 2010-04-13 2013-10-02 新日鐵住金株式会社 Continuous casting method of steel containing rare earth metal

Also Published As

Publication number Publication date
JP2014046315A (en) 2014-03-17

Similar Documents

Publication Publication Date Title
JP5316327B2 (en) Steel continuous casting method
JP5768919B2 (en) Continuous casting method of Al killed steel
CN111906266B (en) Method for inhibiting rare earth molten steel pouring nozzle from being blocked by pulse current
JP5024296B2 (en) Steel continuous casting method
JP5803851B2 (en) Continuous casting method of steel containing rare earth metal
JP5360024B2 (en) Manufacturing method of continuous cast slab
JP4207785B2 (en) Steel continuous casting method
JP5768773B2 (en) Continuous casting method using immersion nozzle
JP5869748B2 (en) Continuous casting method of Al killed steel
JP6572658B2 (en) Bubble generating device and bubble generating method in molten metal
JP5370171B2 (en) Steel continuous casting method
JP5088400B2 (en) Steel continuous casting method
JP2024014995A (en) Method for continuously casting steel
JP5316328B2 (en) Steel continuous casting method
JP5304716B2 (en) Continuous casting method of steel containing rare earth metal
JP5757275B2 (en) Continuous casting method using immersion nozzle
JP6167778B2 (en) Steel continuous casting method
WO2013190594A1 (en) Submerged entry nozzle for continuous casting and continous casting method using same
JP5707945B2 (en) Continuous casting method of zirconium-containing steel
JP5637087B2 (en) Continuous casting method
JP7393638B2 (en) Continuous steel casting method
JP4054318B2 (en) Continuous casting method for slabs with excellent quality characteristics
JP5708163B2 (en) Steel continuous casting method
JP4462052B2 (en) Continuous casting mold and steel continuous casting method
JP2004188421A (en) Immersion nozzle for continuous casting and continuous casting method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140811

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150817

R151 Written notification of patent or utility model registration

Ref document number: 5803851

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350