JP2004188421A - Immersion nozzle for continuous casting and continuous casting method - Google Patents

Immersion nozzle for continuous casting and continuous casting method Download PDF

Info

Publication number
JP2004188421A
JP2004188421A JP2002355516A JP2002355516A JP2004188421A JP 2004188421 A JP2004188421 A JP 2004188421A JP 2002355516 A JP2002355516 A JP 2002355516A JP 2002355516 A JP2002355516 A JP 2002355516A JP 2004188421 A JP2004188421 A JP 2004188421A
Authority
JP
Japan
Prior art keywords
nozzle
immersion nozzle
continuous casting
molten steel
refractory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002355516A
Other languages
Japanese (ja)
Other versions
JP3994868B2 (en
Inventor
Yuichi Tsukaguchi
友一 塚口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2002355516A priority Critical patent/JP3994868B2/en
Publication of JP2004188421A publication Critical patent/JP2004188421A/en
Application granted granted Critical
Publication of JP3994868B2 publication Critical patent/JP3994868B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)
  • Continuous Casting (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an immersion nozzle for continuous casting and a continuous casting method with which clogging of the nozzle can stably be prevented even under wide operating condition. <P>SOLUTION: An inner surface wall part in contact with molten steel, is constituted of a refractory having ≤ 0.05% sulfur content and preferably, the refractory having carbon containing ≤ 0.03% sulfur content in the carbon. A stable structure in this inner surface wall part is formed as a waterfall basin-like bottom part having 5 to 50 mm depth and two spouting holes facedly arranged to the just upper side wall part of the bottom part and 20 to 40 mm thickness at the side wall part arranging the spouting holes. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、鋼の連続鋳造の際に詰まりを防止しつつ安定して鋳型内へ溶湯を供給できる浸漬ノズルとそれを使用した連続鋳造方法に関する。
【0002】
【従来の技術】
従来、浸漬ノズルの内面壁部への介在物付着による詰まりを防止する技術としては、浸漬ノズル内にAr等の不活性ガスを吹き込む方法が広く採用されている。
【0003】
その他には、例えば特公平7−75763 号公報に開示されているような、固体電解質である酸化ジルコニウムと炭素とを組み合わせてノズル素材とした方法、特許第2554105 号公報や特許第3294940 号に開示されているような、還元性のガスをノズル内に吹き込む方法、特許第3219095 号公報や特許第2891757 号公報に開示されているような、耐火物中SiO濃度を低下させる方法、特許第2919043 号や特公平7−47197 号公報に開示されているような、ZrO−CaO 系耐火物を用いる方法、あるいは、特許第3265239 号公報や特許第3207793 号公報に開示されているような、ノズル内壁に段差を設け、ノズル内径を通湯量に対し適正化し、炭素を含まない耐火物を用いる方法など、多くの方法が開示されている。
【0004】
【特許文献1】特公平7−75763 号公報 (請求項1その他)
【特許文献2】特許第2554105 号公報 (請求項1その他)
【特許文献3】特許第3294940 号 (請求項1その他)
【特許文献4】特許第3219095 号公報 (請求項1その他)
【特許文献5】特許第2891757 号公報 (請求項1その他)
【特許文献6】特公平7−47197 号公報 (請求項1その他)
【0005】
【発明が解決しようとする課題】
しかしながら、これらの方法は一定の効果を発揮するものの、そのような効果を発揮する操業条件が限られたものであることが多く、幅広い操業条件において安定してノズル詰まりを低減する効果は見られなかった。
【0006】
ここに、本発明の課題は、ノズル詰まりを安定して防止できる連続鋳造用浸漬ノズルを提供することである。
さらに本発明の課題は、幅広い操業条件でも安定してノズル詰まりを防止できる連続鋳造方法を提供することである。
【0007】
【課題を解決するための手段】
従来より、浸漬ノズルの内面壁部 (以下、単に「ノズル内壁」または「ノズル内面」ともいうことがある) への介在物付着に影響する因子として、界面張力勾配の存在が指摘されている。例えば浸漬ノズルから溶け出したSiがノズル内面近傍の溶鋼中で濃度勾配を形成し、溶質濃度が高いノズル側では介在物と溶鋼間の界面張力が低下する結果、介在物が溶鋼側の強い界面張力に押されてノズル側へ移動しノズル内面に付着するというのである。
【0008】
本発明者は、ノズル閉塞機構について研究と考察を重ねた結果、浸漬ノズル耐火物中の硫黄濃度を低下させることがノズル詰まり防止に有効であることを見出した。ノズルの溶損に伴って溶鋼中に溶出するいくつかの元素の中でも、特に硫黄が、ノズル内壁の表面近傍に存在する介在物・溶鋼の界面の張力を低下させ、介在物をノズル内壁の表面に吸い寄せる作用が強い。
【0009】
特に、ヒートショックによる割れを防止する目的で浸漬ノズル耐火物に広く添加されているカーボンは優先的に溶鋼中へ溶け出すので、カーボン中の硫黄濃度低減がノズル詰まり抑制に特に効果的であることを見出して、本発明を完成した。
【0010】
加えて本発明者は、ノズル内下降流速を一定値以上に保つと、直胴部のノズル詰まり防止効果が安定することを見出した。
また、吐出孔周囲への介在物付着防止には、ノズル底部を滝壺形状にすること、吐出孔部の側壁肉厚を40mmよりも薄くすることが有効であるとの知見を得た。
【0011】
ここに、本発明の要旨とするところは次の通りである。
(1)連続鋳造においてタンディッシュから鋳型への溶湯供給に用いられる浸漬ノズルであって、溶鋼と接する内面壁部が、硫黄含有量が0.05 mass %以下である耐火物から構成されることを特徴とする、浸漬ノズル。
【0012】
(2)前記内面壁部が、カーボン中の硫黄含有量が0.03 mass %以下であるカーボンを含有する耐火物から構成される、上記(1) に記載の浸漬ノズル。
(3)一端が開いた筒体から成り、閉じた下端の側壁に吐出孔を設けた浸漬ノズルにおいて、深さ5〜50mmの滝壺状底部と、その直上側壁部に対向して設けられた2つの吐出孔とを有し、かつ該吐出孔を設けた側壁部の厚みが20〜40mmであることを特徴とする、上記(1) または(2) に記載の浸漬ノズル。
【0013】
(4) sol.Al 濃度0.003 mass%以上、Ca濃度0.0008mass%以下の溶鋼を連続鋳造するに際し、請求項1〜3のいずれかに記載の浸漬ノズルを用い、ノズル内に不活性ガスを吹込むことを特徴とする連続鋳造方法。
【0014】
(5)吹込ガスの影響を考慮せずに算出したノズル内溶鋼平均下降流速が1.5 〜 4.0m/sec の条件下で上記(3) 記載の浸漬ノズルを使用して行うことを特徴とする連続鋳造方法。
【0015】
【発明の実施の形態】
次に、本発明の実施の形態について添付図面を参照しながら説明する。本明細書において、耐火物組成を示す「%」は特にことわりがない限り、「質量%」である。
【0016】
現在広く採用されている浸漬ノズルは、全体が、上端が開いて下端が閉じた筒体から成り、閉じた下端の側壁に吐出孔を設けた構造を有するものである。より単純な形態のものとしては、両端が開放されている筒体から構成されるものもあるが、そのような構成のものは、小断面ビレットの連鋳等の場合にもっぱら用いられている。
【0017】
図1は、そのような下端が閉じられた公知の浸漬ノズルの底部の断面形状を模式的に示すもので、図1(a) は、底部断面が滝壺形状の場合、図1(b) は、同じく山形形状の場合、そして図1(c) は、同じく平底形状の場合の浸漬ノズル形状を示す。
【0018】
ここで、図1(a) の形態について説明すると、これは底部10が滝壺状となっており、その深さdは好ましくは5 〜50mmである。この滝壺の深さdは、縁部12と最大深さの部位との間の垂直距離の吐出孔全巾における平均値を云う。滝壺の底部10は図示例では平坦であるが、曲面あるいは傾斜面であってもよい。この滝壺の縁部12に対向して吐出孔14が設けられており、このように縁部12に対応した箇所に設けられた吐出孔14は下方向きに設けられている場合が多い。
【0019】
上述のような構造の浸漬ノズルは、通常、耐火物で構成されており、一般的に溶鋼流と接する内面壁部に、溶鋼に含有されるアルミナ等非金属介在物が付着し閉塞に到るまでに一般には浸漬ノズルを新しいものと取り替える。
【0020】
ここに、そのような浸漬ノズルを構成する耐火物としては、アルミナ・カーボン、ジルコニア・カーボン、アルミナ・マグネシア、アルミナ・シリカ等が例示される。ノズル本体にはアルミナ・カーボン質の耐火物が用いられるのが一般的である。
【0021】
すなわち、本発明は、溶鋼と接するノズル内面を構成する耐火物中の硫黄含有量を0.05%以下とし、あるいは溶鋼と接するノズル内面がカーボンを含有する耐火物から成る場合には、そのカーボン中の硫黄含有を0.03%以下に制限することによって、Al等の非金属介在物がノズル内に詰まることを抑制するのである。
【0022】
溶鋼と接する浸漬ノズルの内面の耐火物中の硫黄含有量は、0.03%以下であればさらに望ましい。また、溶鋼と接するノズル内面がカーボンを含有する耐火物から成る場合のカーボン中の硫黄含有量は、0.02%以下であればさらに安定してノズル詰まりが防止できる。
【0023】
そのようにS含有量を規定する耐火物は、その全体についてS低減を行ってもよいが、溶鋼と接するノズル内面に限り溶損量を考慮した厚みだけS低減材質とすることで、ノズル詰まりを効果的に防止することもできる。
【0024】
さらに、ノズル直胴部の詰まりを有効に防止するには、吹込ガス影響を考慮せずに算出したノズル内溶鋼平均下降流速が1.5m/sec以上あることが望ましく、2.0m/sec以上ならばさらに良い。これは、ノズル内溶鋼の下降流速増大に伴いノズルからの溶出元素を洗い流す作用が強まり濃度勾配層の形成を妨げる効果である。
【0025】
吹込ガスの影響を考慮せずに算出したノズル内溶鋼の下降流速の上限値は4.0m/secとした。これ以上の流速領域では、ノズル内の流動抵抗が過大となり安定して給湯することが難しくなるためである。
【0026】
ここに、「吹き込みガスの影響を考慮せずに算出した」とは、具体的には、吹込みガスが熱膨張するとノズル内断面を占めるその割合の増加に応じ一定流量の溶鋼の流速が高まるが、このことまでは考慮せず、吹込みガスの体積は無視することを意味する。
【0027】
本発明者らのさらなる検討結果によれば、吐出孔周辺の詰まり防止には、図1(a) に示すように、深さd=5〜50mmの滝壺状底部10とすることが有効であることが判明した。これは、滝壺形状の底部は山型の底部の場合などに比べ、底部での跳上り流が適度に吐出孔内を攪拌し介在物付着原因となる溶質濃度勾配層の形成を防止する作用を有するためである。滝壺の深さは5mm未満であると、滝壺に期待される跳上り流が十分に形成されない。また50mm超の深さは不要であるばかりか、いたずらにノズルが長くなり操業に支障を来しやすい。滝壺の深さは10mmから30mmの間であればさらに望ましい。
【0028】
滝壺状底部の直上側壁部に対向して設けられた2つの吐出孔の詰まり防止には、それらの吐出孔を設けた側壁の厚みtを40mm以下とするのが望ましい。吐出孔を設けた側壁の厚みtが40mmを超えると、吐出孔側壁が厚くなりすぎる結果、滝壺状底部で形成された跳上り流による攪拌効果が吐出孔先端部近傍で低下し、むしろ介在物付着が増える傾向にある。また、吐出孔を設けた側壁の厚みtが20mm未満であるとノズルの強度が低下し、操業に支障が生じる虞がある。
【0029】
一般に、sol.Al濃度0.003 %以上、Ca濃度0.0008%以下の溶鋼は、高融点のAl介在物を多く含むので、浸漬ノズルの詰まりが発生しやすい。このような介在物付着の多い溶鋼の連続鋳造には、前述の図1に示すような深さ5 〜50mmの滝壺状の底部をもった、吐出孔周辺の側壁厚さが20〜40mmの浸漬ノズルを用いるとともに、ノズル内に不活性ガスを吹込むと、ノズル詰まり防止効果がいかんなく発揮される。
【0030】
このように、本発明によれば、連続鋳造に際しても浸漬ノズルの詰まりが軽減され、特にAl介在物が多い、sol.Al:0.003%以上、Ca:0.0008 %以下の溶鋼の場合にあっても、ノズル詰まりによる操業阻害が減少し安定した操業が可能である。
【0031】
次に、実施例によって本発明の作用効果をさらに具体的に説明する。
【0032】
【実施例】
本例では、表1に示す耐火物によって浸漬ノズルを構成し、そのときのノズル形状は図1(a) ないし(c) および上下開放型のものである。それぞれ表1においては、「滝壺」、「山型」、「平底」そして「−」として示す。
【0033】
連続鋳造条件は同じく表1にまとめて示す。
表中、例A〜Fは、本発明による実施例であり、例G〜Iは比較例である。例AおよびBは、耐火物中 (耐火物に含まれるカーボン中を含む) の硫黄濃度が低く、ノズル内溶鋼平均下降流速が適切な範囲にあり、ノズル底部形状が本発明が規定する範囲内にある。
【0034】
いずれもsol.Al濃度が高くCa濃度が低い高融点Al介在物が多い溶鋼の連続鋳造に供されたが、ノズル詰まり評価は「良」と良好である。例Cは、本発明によるノズルを用いていることに加え、鋼中Ca濃度が高いので、アルミナ介在物が低融点化し、溶鋼の下降流速にかかわらずほとんど付着しなかった例である。
【0035】
例D〜Fは、例AあるいはBに比べると、ノズル内溶鋼平均下降流速あるいはノズル底部形状が本発明の範囲を外れるので、ややノズル詰まりが増えたものの、「良」判定範囲に入ったものである。
【0036】
比較例である例Gは、耐火物中(耐火物に含まれるカーボン中を含む)硫黄濃度が高いうえ、ノズル内溶鋼平均降下流速が適正範囲よりも小さいので、特にノズル直胴部への介在物付着が多く、ノズル詰まり指標が「可」にとどまったものである。
【0037】
同じく例Hは、耐火物中(耐火物に含まれるカーボン中を含む)硫黄濃度が高いうえ、ノズル底部形状が山型であり、吐出孔周辺の形状が不適切であるので、特に吐出孔周辺への介在物付着が多く、ノズル詰まり評価が「可」にとどまり、実施例に比較すると劣っている例である。
【0038】
例Iは、耐火物中(耐火物に含まれるカーボン中を含む)硫黄濃度が高いことから、ノズル詰まり評価が「可」にとどまった例である。例Iは、耐火物中硫黄濃度が高いことを除けば、ノズル形状は適正であるので、例GまたはHのように特定の部位に特に集中して介在物が付着することはなかった。
【0039】
【表1】

Figure 2004188421
【0040】
【発明の効果】
このように、本発明によると、ノズルヘのアルミナ等非金属介在物の付着が著しく減少し、ノズル詰まりが安定して防止されるのである。
【図面の簡単な説明】
【図1】図1(a) は、滝壺形状の場合、図1(b) は、同じく山形形状の場合、そして図1(c) は、平底形状の場合のそれぞれ浸漬ノズルの底部構造を示す断面図である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an immersion nozzle capable of stably supplying molten metal into a mold while preventing clogging during continuous casting of steel, and a continuous casting method using the same.
[0002]
[Prior art]
Conventionally, as a technique for preventing clogging due to inclusion of inclusions on the inner surface wall of an immersion nozzle, a method of blowing an inert gas such as Ar into the immersion nozzle has been widely adopted.
[0003]
Other examples include a method of combining zirconium oxide, which is a solid electrolyte, and carbon to form a nozzle material, as disclosed in Japanese Patent Publication No. 7-57663, Japanese Patent No. 2554105 and Japanese Patent No. 3294940. A method of blowing a reducing gas into a nozzle, a method of reducing the SiO 2 concentration in a refractory as disclosed in Japanese Patent No. 3219095 and Japanese Patent No. 2891757, Japanese Patent No. 2919043. as disclosed in JP and Kokoku 7-47197 discloses a method using a ZrO 2 -CaO-based refractory or, as disclosed in Japanese Patent No. 3265239 Patent Publication and Patent No. 3207793 publication, the nozzle Provide a step on the inner wall, optimize the inner diameter of the nozzle to the amount of hot water, and use refractories that do not contain carbon Many methods have been disclosed, including methods.
[0004]
[Patent Document 1] Japanese Patent Publication No. 7-57563 (Claim 1 and others)
[Patent Document 2] Japanese Patent No. 2554105 (Claim 1 and others)
[Patent Document 3] Japanese Patent No. 3294940 (Claim 1 and others)
[Patent Document 4] Japanese Patent No. 3219095 (Claim 1 and others)
[Patent Document 5] Japanese Patent No. 2891757 (Claim 1 and others)
[Patent Document 6] Japanese Patent Publication No. 7-47197 (Claim 1 and others)
[0005]
[Problems to be solved by the invention]
However, although these methods exhibit a certain effect, operating conditions under which such effects are exhibited are often limited, and the effect of stably reducing nozzle clogging under a wide range of operating conditions has been observed. Did not.
[0006]
Here, an object of the present invention is to provide a continuous casting immersion nozzle that can stably prevent nozzle clogging.
A further object of the present invention is to provide a continuous casting method capable of stably preventing nozzle clogging even under a wide range of operating conditions.
[0007]
[Means for Solving the Problems]
Conventionally, the existence of an interfacial tension gradient has been pointed out as a factor affecting the adhesion of inclusions to the inner wall portion of the immersion nozzle (hereinafter, also simply referred to as “nozzle inner wall” or “nozzle inner surface”). For example, Si melted from the immersion nozzle forms a concentration gradient in the molten steel near the inner surface of the nozzle, and the interfacial tension between the inclusion and the molten steel decreases on the nozzle side where the solute concentration is high. It is pushed by the tension and moves to the nozzle side and adheres to the inner surface of the nozzle.
[0008]
As a result of repeated studies and studies on the nozzle closing mechanism, the present inventors have found that reducing the sulfur concentration in the immersion nozzle refractory is effective in preventing nozzle clogging. Among the several elements that elute into molten steel due to nozzle erosion, sulfur in particular lowers the tension at the interface between inclusions and molten steel existing near the surface of the nozzle inner wall, causing the inclusions to move to the surface of the nozzle inner wall. It has a strong effect of attracting water.
[0009]
In particular, carbon that is widely added to refractory immersion nozzles to prevent cracking due to heat shock preferentially melts into molten steel, so reducing the sulfur concentration in carbon is particularly effective in suppressing nozzle clogging. And completed the present invention.
[0010]
In addition, the present inventor has found that when the downward flow velocity in the nozzle is maintained at a certain value or more, the effect of preventing nozzle clogging of the straight body portion is stabilized.
In addition, it has been found that it is effective to make the bottom of the nozzle into a waterhole shape and to reduce the thickness of the side wall of the discharge hole portion to less than 40 mm in order to prevent the inclusion of inclusions around the discharge hole.
[0011]
Here, the gist of the present invention is as follows.
(1) An immersion nozzle used for supplying molten metal from a tundish to a mold in continuous casting, wherein an inner wall portion in contact with molten steel is made of a refractory having a sulfur content of 0.05 mass% or less. A immersion nozzle.
[0012]
(2) The immersion nozzle according to (1), wherein the inner wall portion is made of a refractory material containing carbon whose sulfur content in carbon is 0.03 mass% or less.
(3) In the immersion nozzle which is formed of a cylindrical body having one open end and has a discharge hole in the closed lower side wall, the immersion nozzle is provided so as to face the waterhole-shaped bottom portion having a depth of 5 to 50 mm and the immediately above side wall portion. The immersion nozzle according to (1) or (2), wherein the immersion nozzle has two discharge holes, and a thickness of a side wall portion provided with the discharge holes is 20 to 40 mm.
[0013]
(4) sol. Injecting an inert gas into the nozzle using the immersion nozzle according to any one of claims 1 to 3 when continuously casting molten steel having an Al concentration of 0.003 mass% or more and a Ca concentration of 0.0008 mass% or less. A continuous casting method characterized by the following.
[0014]
(5) The immersion nozzle described in (3) above is used under the condition that the average descending flow velocity of the molten steel in the nozzle calculated without considering the influence of the blowing gas is 1.5 to 4.0 m / sec. And continuous casting method.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, embodiments of the present invention will be described with reference to the accompanying drawings. In this specification, “%” indicating the refractory composition is “% by mass” unless otherwise specified.
[0016]
An immersion nozzle widely used at present has a structure in which the whole is formed of a cylindrical body whose upper end is open and whose lower end is closed, and a discharge hole is provided in a side wall of the closed lower end. As a simpler type, there is a type formed of a cylindrical body whose both ends are open, but such a configuration is used exclusively for continuous casting of a small-section billet and the like.
[0017]
FIG. 1 schematically shows the cross-sectional shape of the bottom of a known immersion nozzle in which such a lower end is closed, and FIG. 1 (a) shows the case where the bottom has a waterhole shape when the bottom has a cross-section. 1 shows the shape of the immersion nozzle also in the case of a chevron shape, and FIG.
[0018]
Here, the configuration of FIG. 1A will be described. The bottom 10 has a waterhole shape, and the depth d is preferably 5 to 50 mm. The depth d of this waterhole refers to the average value of the vertical distance between the edge 12 and the portion of the maximum depth in the entire width of the discharge hole. The bottom 10 of the waterhole is flat in the illustrated example, but may be a curved surface or an inclined surface. A discharge hole 14 is provided facing the edge 12 of the waterhole, and the discharge hole 14 provided at a location corresponding to the edge 12 is often provided downward.
[0019]
The immersion nozzle having the above-mentioned structure is usually made of a refractory material, and non-metallic inclusions such as alumina contained in the molten steel adhere to the inner surface wall portion which is generally in contact with the molten steel flow, resulting in blockage. By then, the immersion nozzle is generally replaced with a new one.
[0020]
Here, examples of the refractory constituting such an immersion nozzle include alumina carbon, zirconia carbon, alumina magnesia, and alumina silica. In general, an alumina-carbon refractory is used for the nozzle body.
[0021]
That is, the present invention provides a method for reducing the sulfur content in the refractory constituting the inner surface of the nozzle in contact with the molten steel to 0.05% or less, or when the inner surface of the nozzle in contact with the molten steel is made of a refractory containing carbon, By limiting the sulfur content to 0.03% or less, non-metallic inclusions such as Al 2 O 3 are prevented from clogging the nozzle.
[0022]
More preferably, the sulfur content in the refractory on the inner surface of the immersion nozzle in contact with the molten steel is 0.03% or less. When the inner surface of the nozzle in contact with the molten steel is made of a refractory containing carbon, if the sulfur content in carbon is 0.02% or less, nozzle clogging can be more stably prevented.
[0023]
The refractory for which the S content is defined as described above may be subjected to S reduction for the entire refractory. However, only the inner surface of the nozzle in contact with the molten steel is made of an S reduction material having a thickness in consideration of the amount of erosion. Can be effectively prevented.
[0024]
Furthermore, in order to effectively prevent clogging of the nozzle body, it is desirable that the average descending flow velocity of molten steel in the nozzle calculated without considering the effect of the blowing gas is 1.5 m / sec or more, and 2.0 m / sec or more. Then even better. This is an effect that the action of washing out the eluting elements from the nozzle is increased with an increase in the descending flow velocity of the molten steel in the nozzle, thereby preventing the formation of a concentration gradient layer.
[0025]
The upper limit of the descending flow velocity of the molten steel in the nozzle calculated without considering the influence of the blowing gas was 4.0 m / sec. This is because in a flow velocity region higher than this, the flow resistance in the nozzle becomes excessive, and it becomes difficult to stably supply hot water.
[0026]
Here, "calculated without considering the influence of the blown gas" specifically means that when the blown gas thermally expands, the flow rate of the molten steel at a constant flow rate increases according to an increase in its ratio occupying the nozzle internal cross section. However, this is not taken into account, meaning that the volume of the blown gas is ignored.
[0027]
According to the results of further studies by the present inventors, as shown in FIG. 1A, it is effective to use a waterfall bottom 10 having a depth d = 5 to 50 mm to prevent clogging around the discharge hole. It turned out to be. This is because the bottom at the bottom of the waterfall is shaped like a mountain-shaped bottom, so that the upward flow at the bottom moderately stirs the inside of the discharge hole and prevents the formation of a solute concentration gradient layer that causes inclusions to adhere. It is because it has. If the depth of the basin is less than 5 mm, a jumping flow expected from the basin is not sufficiently formed. Further, a depth of more than 50 mm is not only unnecessary, but also the nozzle becomes unnecessarily long, which tends to hinder the operation. More preferably, the depth of the waterhole is between 10 mm and 30 mm.
[0028]
In order to prevent clogging of the two discharge holes provided opposite to the side wall portion immediately above the waterhole shape, it is desirable that the thickness t of the side wall provided with these discharge holes is 40 mm or less. When the thickness t of the side wall provided with the discharge hole exceeds 40 mm, the side wall of the discharge hole becomes too thick, so that the stirring effect due to the jumping flow formed at the bottom of the waterfall falls near the tip end of the discharge hole, and rather, the interposition occurs. There is a tendency for the adhesion of objects to increase. Further, when the thickness t of the side wall provided with the discharge hole is less than 20 mm, the strength of the nozzle is reduced, and there is a possibility that the operation may be hindered.
[0029]
Generally, sol. Since molten steel having an Al concentration of 0.003% or more and a Ca concentration of 0.0008% or less contains a large amount of high-melting Al 2 O 3 inclusions, clogging of the immersion nozzle is likely to occur. In such continuous casting of molten steel having a large amount of inclusions, a side wall thickness around a discharge hole having a bottom of a waterhole having a depth of 5 to 50 mm as shown in FIG. When an immersion nozzle is used and an inert gas is blown into the nozzle, the effect of preventing nozzle clogging is fully exhibited.
[0030]
Thus, according to the present invention, also it reduces clogging of the immersion nozzle during continuous casting, in particular Al 2 O 3 inclusions is large, sol. Even in the case of molten steel with Al: 0.003% or more and Ca: 0.0008% or less, operation hindrance due to nozzle clogging is reduced and stable operation is possible.
[0031]
Next, the operation and effect of the present invention will be described more specifically with reference to examples.
[0032]
【Example】
In this example, the immersion nozzle is constituted by the refractories shown in Table 1, and the nozzle shape at that time is shown in FIGS. In Table 1, they are shown as "waterfall pot", "mountain type", "flat bottom" and "-".
[0033]
Table 1 also shows the continuous casting conditions.
In the table, examples AF are examples according to the present invention, and examples GI are comparative examples. In Examples A and B, the sulfur concentration in the refractory (including the carbon contained in the refractory) was low, the average descending flow velocity of molten steel in the nozzle was in an appropriate range, and the nozzle bottom shape was in the range specified by the present invention. It is in.
[0034]
In each case, sol. The steel was subjected to continuous casting of molten steel having a high Al concentration and a low Ca concentration and a high content of high-melting Al 2 O 3 inclusions, but the nozzle clogging evaluation was “good” and good. Example C is an example in which, because the Ca concentration in the steel was high in addition to using the nozzle according to the present invention, the alumina inclusions had a low melting point and hardly adhered regardless of the descending flow velocity of the molten steel.
[0035]
In Examples DF, the average descent speed of molten steel in the nozzle or the bottom shape of the nozzle was out of the range of the present invention as compared with Examples A or B, but although the nozzle clogging was slightly increased, it was within the "good" judgment range. It is.
[0036]
Example G, which is a comparative example, has a high sulfur concentration in the refractory (including the carbon contained in the refractory) and has a lower average flow velocity of molten steel in the nozzle than the appropriate range. In this case, a large amount of material adhered, and the nozzle clogging index was limited to “OK”.
[0037]
Similarly, Example H has a high sulfur concentration in the refractory (including the carbon contained in the refractory), has a chevron shape at the bottom of the nozzle, and has an inappropriate shape around the discharge hole. In this example, the evaluation of the nozzle clogging was “OK” due to the large amount of inclusions included in the sample, which was inferior to the example.
[0038]
Example I is an example in which the evaluation of nozzle clogging was limited to "OK" because the sulfur concentration in the refractory (including the carbon contained in the refractory) was high. In Example I, except that the sulfur concentration in the refractory was high, the nozzle shape was appropriate, so that the inclusions were not particularly concentrated on a specific site as in Example G or H.
[0039]
[Table 1]
Figure 2004188421
[0040]
【The invention's effect】
As described above, according to the present invention, adhesion of nonmetallic inclusions such as alumina to the nozzle is remarkably reduced, and nozzle clogging is stably prevented.
[Brief description of the drawings]
FIG. 1 (a) shows the bottom structure of a submerged nozzle in the case of a waterhole shape, FIG. 1 (b) shows the same case of a mountain shape, and FIG. 1 (c) shows the case of a flat bottom shape. FIG.

Claims (5)

連続鋳造においてタンディッシュから鋳型への溶湯供給に用いられる浸漬ノズルであって、溶鋼と接する内面壁部が、硫黄含有量が0.05 mass %以下である耐火物から構成されることを特徴とする、浸漬ノズル。An immersion nozzle used for supplying molten metal from a tundish to a mold in continuous casting, wherein an inner wall portion in contact with molten steel is made of a refractory having a sulfur content of 0.05 mass% or less. Immersion nozzle. 前記内面壁部が、カーボン中の硫黄含有量が0.03 mass %以下であるカーボンを含有する耐火物から構成される、請求項1に記載の浸漬ノズル。2. The immersion nozzle according to claim 1, wherein the inner wall portion is made of a refractory material containing carbon whose sulfur content in carbon is 0.03 mass% or less. 3. 一端が開いた筒体から成り、閉じた下端の側壁に吐出孔を設けた浸漬ノズルにおいて、深さ5〜50mmの滝壺状底部と、その直上側壁部に対向して設けられた2つの吐出孔とを有し、かつ該吐出孔を設けた側壁部の厚みが20〜40mmであることを特徴とする、請求項1または2に記載の浸漬ノズル。In a submerged nozzle composed of a cylindrical body having one open end and having a discharge hole formed in a closed lower side wall, a waterhole-shaped bottom part having a depth of 5 to 50 mm and two discharge parts provided opposite to the immediately above side wall part 3. The immersion nozzle according to claim 1, wherein the immersion nozzle has a hole, and a thickness of a side wall portion provided with the discharge hole is 20 to 40 mm. 4. sol.Al濃度0.003 mass%以上、Ca濃度0.0008mass%以下の溶鋼を連続鋳造するに際し、請求項1〜3のいずれかに記載の浸漬ノズルを用い、ノズル内に不活性ガスを吹込むことを特徴とする連続鋳造方法。sol. Injecting an inert gas into the nozzle using the immersion nozzle according to any one of claims 1 to 3 when continuously casting molten steel having an Al concentration of 0.003 mass% or more and a Ca concentration of 0.0008 mass% or less. A continuous casting method characterized by the following. 吹込ガスの影響を考慮せずに算出したノズル内溶鋼平均下降流速が1.5 〜 4.0m/sec の条件下で請求項3記載の浸漬ノズルを使用して行うことを特徴とする連続鋳造方法。Continuous casting using the immersion nozzle according to claim 3, wherein the average descending flow velocity of the molten steel in the nozzle calculated without considering the influence of the blowing gas is 1.5 to 4.0 m / sec. Method.
JP2002355516A 2002-12-06 2002-12-06 Immersion nozzle for continuous casting and continuous casting method Expired - Fee Related JP3994868B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002355516A JP3994868B2 (en) 2002-12-06 2002-12-06 Immersion nozzle for continuous casting and continuous casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002355516A JP3994868B2 (en) 2002-12-06 2002-12-06 Immersion nozzle for continuous casting and continuous casting method

Publications (2)

Publication Number Publication Date
JP2004188421A true JP2004188421A (en) 2004-07-08
JP3994868B2 JP3994868B2 (en) 2007-10-24

Family

ID=32756190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002355516A Expired - Fee Related JP3994868B2 (en) 2002-12-06 2002-12-06 Immersion nozzle for continuous casting and continuous casting method

Country Status (1)

Country Link
JP (1) JP3994868B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007237255A (en) * 2006-03-09 2007-09-20 Nisshin Steel Co Ltd Continuous casting method for aluminum killed steel
CN101966567A (en) * 2010-10-19 2011-02-09 维苏威高级陶瓷(苏州)有限公司 Submersed nozzle for thin slab
CN102554208A (en) * 2012-01-18 2012-07-11 中冶南方工程技术有限公司 Submersed nozzle for bloom continuous casting crystallizer
CN107983942A (en) * 2018-01-03 2018-05-04 北京科技大学 Improve the long nozzle and method of molten steel flow under double-current tundish single current pouring condition

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007237255A (en) * 2006-03-09 2007-09-20 Nisshin Steel Co Ltd Continuous casting method for aluminum killed steel
JP4493612B2 (en) * 2006-03-09 2010-06-30 日新製鋼株式会社 Continuous casting method of aluminum killed steel
CN101966567A (en) * 2010-10-19 2011-02-09 维苏威高级陶瓷(苏州)有限公司 Submersed nozzle for thin slab
CN102554208A (en) * 2012-01-18 2012-07-11 中冶南方工程技术有限公司 Submersed nozzle for bloom continuous casting crystallizer
CN107983942A (en) * 2018-01-03 2018-05-04 北京科技大学 Improve the long nozzle and method of molten steel flow under double-current tundish single current pouring condition

Also Published As

Publication number Publication date
JP3994868B2 (en) 2007-10-24

Similar Documents

Publication Publication Date Title
JPH0314540B2 (en)
JP4343907B2 (en) Immersion nozzle for continuous casting of steel and method for continuous casting of steel using the same
JP2004188421A (en) Immersion nozzle for continuous casting and continuous casting method
JP4079415B2 (en) Submerged nozzle for continuous casting of thin slabs
JP4724606B2 (en) Continuous casting method for molten steel
JP4864423B2 (en) Immersion nozzle for continuous casting
JP4054318B2 (en) Continuous casting method for slabs with excellent quality characteristics
JPH1147897A (en) Immersion nozzle for continuously casting thin and wide cast slab
JP2000237852A (en) Immersion nozzle
JPS58151948A (en) Continuous casting method
JP6451466B2 (en) Capturing device and removal method for non-metallic inclusions in molten metal
JP4081453B2 (en) Immersion nozzle for continuous casting
JP4371871B2 (en) Immersion nozzle for continuous casting
JP4315847B2 (en) Dipping nozzle for continuous casting with good adhesion
JP5510476B2 (en) Injection tube
JP4102337B2 (en) Pouring method
JPH04220148A (en) Molten steel supplying nozzle
JP4638932B2 (en) Stopper
JPH0557410A (en) Immersion nozzle for continuous casting
JP3713182B2 (en) Continuous casting method for molten steel
JP4493612B2 (en) Continuous casting method of aluminum killed steel
JPS61150759A (en) Casting nozzle for steel making
JPH09220652A (en) Long nozzle for continuous casting
JP2004344935A (en) Dipping nozzle for continuous casting, and continuous casting method using the same
JPH10258342A (en) Device for controlling flow rate of molten steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070710

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070723

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 3994868

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110810

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110810

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130810

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130810

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130810

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees