JP5801240B2 - Resonant type wireless power transmission device - Google Patents

Resonant type wireless power transmission device Download PDF

Info

Publication number
JP5801240B2
JP5801240B2 JP2012084769A JP2012084769A JP5801240B2 JP 5801240 B2 JP5801240 B2 JP 5801240B2 JP 2012084769 A JP2012084769 A JP 2012084769A JP 2012084769 A JP2012084769 A JP 2012084769A JP 5801240 B2 JP5801240 B2 JP 5801240B2
Authority
JP
Japan
Prior art keywords
power
resonance coil
power transmission
coil
manhole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012084769A
Other languages
Japanese (ja)
Other versions
JP2013153635A (en
Inventor
秀幸 坪井
秀幸 坪井
守 秋元
守 秋元
後藤 弘明
弘明 後藤
篤也 安藤
篤也 安藤
秀哉 宗
秀哉 宗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2012084769A priority Critical patent/JP5801240B2/en
Publication of JP2013153635A publication Critical patent/JP2013153635A/en
Application granted granted Critical
Publication of JP5801240B2 publication Critical patent/JP5801240B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Landscapes

  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)

Description

本発明は、マンホール外の送電側装置からマンホール内の受電側装置へ電磁誘導方式により給電するとともに、送電側装置と受電側装置との間で電磁誘導方式により通信を行う共鳴型無線電力伝送装置に関する。   The present invention relates to a resonance type wireless power transmission apparatus that feeds power from a power transmission side device outside a manhole to a power reception side device in a manhole by an electromagnetic induction method and communicates between the power transmission side device and the power reception side device by an electromagnetic induction method. About.

携帯電話等の2次電池の充電や、非接触ICカード、RFIDタグ等への電力供給には、有線接続を要しない給電方法が採用されている。これは電磁誘導方式によるもので、送電側と受電側とにコイルを配置し、両者が近接して送電側コイルの磁束が受電側コイルを通過することで、受電側に電力が伝送される(非特許文献1)。電磁誘導方式は一般に、十分な伝送効率を得るために、送受信コイルは近接して漏れ磁束を少なくする方法がとられる。さらに、近年では、ある程度(例えば2〜3m)の伝送距離を有する場合でも高い給電効率が得られる共鳴型無線電力伝送装置が提案されている(非特許文献2)。   A power feeding method that does not require a wired connection is used for charging a secondary battery such as a mobile phone or supplying power to a non-contact IC card, an RFID tag, or the like. This is based on the electromagnetic induction method, and coils are arranged on the power transmission side and the power reception side, and the power is transmitted to the power reception side when they are close to each other and the magnetic flux of the power transmission side coil passes through the power reception side coil ( Non-patent document 1). In general, in order to obtain a sufficient transmission efficiency, the electromagnetic induction method is a method in which the transmitting and receiving coils are close to each other to reduce the leakage magnetic flux. Furthermore, in recent years, a resonance-type wireless power transmission apparatus has been proposed that can obtain high power supply efficiency even when a certain transmission distance (for example, 2 to 3 m) is provided (Non-Patent Document 2).

図9は、共鳴型無線電力伝送装置の構成例を示す。
図9において、送電側装置10の電源11に接続される送電側コイル13と受電側装置20の負荷23に接続される受電側コイル22が、それぞれ送電側共鳴コイル14および受電側共鳴コイル21を介して共鳴現象により電磁誘導で電気的に結合し、電源11から負荷23に電力が伝達される。共鳴は特定の周波数でのみ発生する。共鳴コイルのSパラメータ(S21) の例を図10に示す。図よりピークが得られる周波数は限定的であること、負荷に依存してピークの周波数が変動することがわかる。また、ピークの周波数は、送電側装置10と受電側装置20との間隔によっても変動する。
FIG. 9 shows a configuration example of a resonance type wireless power transmission apparatus.
In FIG. 9, a power transmission side coil 13 connected to the power source 11 of the power transmission side device 10 and a power reception side coil 22 connected to the load 23 of the power reception side device 20 are respectively connected to the power transmission side resonance coil 14 and the power reception side resonance coil 21. The electric power is transmitted from the power source 11 to the load 23 by being electrically coupled by electromagnetic induction through a resonance phenomenon. Resonance occurs only at specific frequencies. An example of the S parameter (S21) of the resonance coil is shown in FIG. From the figure, it can be seen that the frequency at which the peak is obtained is limited, and that the peak frequency varies depending on the load. Further, the peak frequency varies depending on the interval between the power transmission side device 10 and the power reception side device 20.

ところで、マンホール内で収集されるセンサ情報等をマンホールの出入り口の蓋を開けずに、例えば上記の共鳴型無線電力伝送装置で供給する電力を用いてそのセンサ情報等を送信させて収集できれば、マンホールを保守点検する作業が大幅に簡易になる。   By the way, if the sensor information collected in the manhole can be collected by transmitting the sensor information etc. using the power supplied by the above-mentioned resonance type wireless power transmission device without opening the lid of the entrance / exit of the manhole, Maintenance work is greatly simplified.

苅部浩、「非接触ICカード設計入門」、日刊工業新聞社.Hiroshi Isobe, “Introduction to contactless IC card design”, Nikkan Kogyo Shimbun. Aristeidis Karalis, J.D. Joannopoulos and Marin Soljacic, 'Efficient wireless non-radiative mid-range energy transfer,' Annals of Physics, Vol.323 Issue 1, pp.34-48, Apr 2007.Aristeidis Karalis, J.D.Joannopoulos and Marin Soljacic, 'Efficient wireless non-radiative mid-range energy transfer,' Annals of Physics, Vol.323 Issue 1, pp.34-48, Apr 2007.

マンホールの内外で電磁誘導方式により給電や通信を行う場合、マンホール内の電子機器の動作に十分な電力を安定して供給し、また伝送信号を復調するための十分な受信レベルの確保が必要になる。   When power supply or communication is performed inside or outside the manhole by electromagnetic induction, it is necessary to stably supply sufficient power for the operation of electronic devices in the manhole and to secure a sufficient reception level to demodulate the transmission signal. Become.

しかし、マンホールには鋳鉄製の厚い蓋があり、この蓋により磁力線が吸収されるために十分な給電電力や信号電力を得ることが困難であった。すなわち、マンホールの上から電磁誘導方式により給電しようとしても、マンホール内で十分な駆動電力が得られなかったり、無線信号の大幅な減衰により十分な受信レベルが得られず、所定の通信品質を確保することができなかった。   However, the manhole has a thick lid made of cast iron, and the magnetic field lines are absorbed by this lid, so that it is difficult to obtain sufficient power supply and signal power. In other words, even if it is attempted to supply power from the manhole by electromagnetic induction, sufficient drive power cannot be obtained in the manhole, or sufficient reception level cannot be obtained due to significant attenuation of the radio signal, ensuring a predetermined communication quality. I couldn't.

本発明は、マンホール外の送電側装置とマンホール内の受電側装置との間で、電磁誘導方式により給電および通信を安定して行うことができる共鳴型無線電力伝送装置を提供することを目的とする。   It is an object of the present invention to provide a resonance type wireless power transmission device capable of stably performing power feeding and communication by an electromagnetic induction method between a power transmission side device outside a manhole and a power reception side device inside a manhole. To do.

第1の発明は、マンホールの外部に送電側装置を配置し、マンホールの内部に受電側装置を配置し、送電側装置の送電側コイルと電磁誘導で電気的に結合される送電側共鳴コイルと、受電側装置の受電側コイルと電磁誘導で電気的に結合される受電側共鳴コイルとの間の共鳴現象を利用し、送電側装置の電源から受電側装置の負荷へ電力を伝送する共鳴型無線電力伝送装置において、マンホールの蓋の半径をR1、受電側共鳴コイルの半径をR2、マンホールの蓋のある平面と受電側共鳴コイルの中心との距離をD1、当該蓋の中心を鉛直方向に通る中心線と受電側共鳴コイルの中心を鉛直方向に通る直線との間の距離をD2、受電側共鳴コイルの鉛直方向に対する傾きをθ(0〜90度の範囲)としたときに、受電側共鳴コイルは、マンホールの蓋の下部の首部に納まる設置条件として
R1≧D2+R2・cosθ …(1)
D1≧R2・sinθ …(2)
を満たし、さらに受電側共鳴コイルと送電側共鳴コイルとを結ぶ仮想円筒とマンホールの蓋が重ならない条件として
D1・tanθ+D2≧R2/cosθ+R1 …(3)
となるマンホール内の位置D1,D2に傾きθ以上で設置され、送電側共鳴コイルは受電側共鳴コイルと対向して設置される。
1st invention arrange | positions the power transmission side apparatus outside a manhole, arrange | positions a power receiving side apparatus inside a manhole, and the power transmission side resonance coil electrically couple | bonded with the power transmission side coil of a power transmission side apparatus by electromagnetic induction, Resonance type that uses the resonance phenomenon between the power receiving side coil of the power receiving side device and the power receiving side resonance coil electrically coupled by electromagnetic induction to transmit power from the power source of the power transmitting side device to the load of the power receiving side device In the wireless power transmission device, the radius of the manhole cover is R1, the radius of the power receiving resonance coil is R2, the distance between the plane with the manhole cover and the center of the power receiving resonance coil is D1, and the center of the cover is in the vertical direction. When the distance between the passing center line and the straight line passing through the center of the power receiving resonance coil in the vertical direction is D2, and the inclination of the power receiving resonance coil with respect to the vertical direction is θ (0 to 90 degrees), the power receiving side Resonance coil is manhole As an installation condition that fits in the neck at the bottom of the lid, R1 ≧ D2 + R2 · cosθ (1)
D1 ≧ R2 · sinθ (2)
And a virtual cylinder connecting the power-receiving-side resonance coil and the power-transmitting-side resonance coil and the manhole cover do not overlap D1 · tanθ + D2 ≧ R2 / cosθ + R1 (3)
The power transmission side resonance coil is installed opposite to the power reception side resonance coil at positions D1 and D2 in the manhole.

第1の発明の共鳴型無線電力伝送装置において、送電側共鳴コイルと受電側共鳴コイルとの間で共鳴現象による給電または信号伝送が可能な間隔の上限値をDsrとしたときに、受電側共鳴コイルは、送電側共鳴コイルとの間隔が上限値Dsrを超えない条件として
Dsr≧D1/cosθ+R2・tanθ …(4)
となるマンホール内の位置D1,D2に傾きθ以下で設置され、送電側共鳴コイルは、受電側共鳴コイルとの間隔がDsr以下の位置に対向して設置される。
In the resonant wireless power transmission device according to the first aspect of the invention, when the upper limit value of the interval at which power supply or signal transmission is possible between the power transmission side resonance coil and the power reception side resonance coil is Dsr, As for the coil, the condition that the distance from the resonance coil on the power transmission side does not exceed the upper limit value Dsr is as follows: Dsr ≧ D1 / cosθ + R2 · tanθ (4)
The power transmission side resonance coil is installed at positions D1 and D2 in the manhole to be opposite to the position where the distance from the power reception side resonance coil is Dsr or less.

第2の発明は、マンホールの外部に送電側装置を配置し、マンホールの内部に受電側装置を配置し、送電側装置の送電側コイルと電磁誘導で電気的に結合される送電側共鳴コイルと、受電側装置の受電側コイルと電磁誘導で電気的に結合される受電側共鳴コイルとの間の共鳴現象を利用し、送電側装置の電源から受電側装置の負荷へ電力を伝送する共鳴型無線電力伝送装置において、マンホールの蓋の半径をR1、受電側共鳴コイルの半径をR2、マンホールの蓋のある平面と受電側共鳴コイルの中心との距離をD1、当該蓋の中心を鉛直方向に通る中心線と受電側共鳴コイルの中心を鉛直方向に通る直線との間の距離をD2、マンホールの蓋の厚さをδ、マンホールの蓋の枠の厚さをD3、受電側共鳴コイルの鉛直方向に対する傾きをθ(0〜90度の範囲)としたときに、受電側共鳴コイルは、マンホールの蓋の下部の首部に納まる設置条件として
R1≧D2+R2・cosθ …(1)
D1≧R2・sinθ+δ …(2')
を満たし、さらに受電側共鳴コイルと送電側共鳴コイルとを結ぶ仮想円筒とマンホールの蓋が重ならない条件として
D1・tanθ+D2≧R2/cosθ+D3・tanθ+R1 …(3')
となるマンホール内の位置D1,D2に傾きθ以上で設置され、送電側共鳴コイルは受電側共鳴コイルと対向して設置される。
According to a second aspect of the present invention, a power transmission side device is disposed outside the manhole, a power reception side device is disposed inside the manhole, and a power transmission side resonance coil electrically coupled to the power transmission side coil of the power transmission side device by electromagnetic induction Resonance type that uses the resonance phenomenon between the power receiving side coil of the power receiving side device and the power receiving side resonance coil electrically coupled by electromagnetic induction to transmit power from the power source of the power transmitting side device to the load of the power receiving side device In the wireless power transmission device, the radius of the manhole cover is R1, the radius of the power receiving resonance coil is R2, the distance between the plane with the manhole cover and the center of the power receiving resonance coil is D1, and the center of the cover is in the vertical direction. The distance between the center line passing through and the straight line passing through the center of the power-receiving resonance coil in the vertical direction is D2, the thickness of the manhole cover is δ, the thickness of the manhole cover frame is D3, and the vertical of the power-receiving resonance coil The inclination with respect to the direction is θ (0 (The range of ˜90 degrees), the installation condition that the power-receiving resonance coil fits in the lower neck of the manhole cover is R1 ≧ D2 + R2 · cosθ (1)
D1 ≧ R2 · sinθ + δ (2 ')
And the virtual cylinder connecting the power receiving resonance coil and the power transmitting resonance coil does not overlap with the manhole cover. D1 · tan θ + D2 ≧ R2 / cos θ + D3 · tan θ + R1 (3 ′)
The power transmission side resonance coil is installed opposite to the power reception side resonance coil at positions D1 and D2 in the manhole.

第2の発明の共鳴型無線電力伝送装置において、送電側共鳴コイルと受電側共鳴コイルとの間で共鳴現象による給電または信号伝送が可能な間隔の上限値をDsrとしたときに、受電側共鳴コイルは、送電側共鳴コイルとの間隔が上限値Dsrを超えない条件として
Dsr≧D1/cosθ+R2・tanθ …(4)
となるマンホール内の位置D1,D2に傾きθ以下で設置され、送電側共鳴コイルは、受電側共鳴コイルとの間隔がDsr以下の位置に対向して設置される。
In the resonance-type wireless power transmission device according to the second invention, when the upper limit value of the interval at which power supply or signal transmission is possible between the power transmission side resonance coil and the power reception side resonance coil by the resonance phenomenon is Dsr, the power reception side resonance As for the coil, the condition that the distance from the resonance coil on the power transmission side does not exceed the upper limit value Dsr is as follows: Dsr ≧ D1 / cosθ + R2 · tanθ (4)
The power transmission side resonance coil is installed at positions D1 and D2 in the manhole to be opposite to the position where the distance from the power reception side resonance coil is Dsr or less.

本発明は、マンホールの蓋の影響を回避するように受電側共鳴コイルの位置および傾きを設定するので、マンホール外の送電側装置とマンホール内の受電側装置との間で、電磁誘導方式により給電および通信を安定して行うことができる。   Since the present invention sets the position and inclination of the power receiving side resonance coil so as to avoid the influence of the manhole cover, power is fed between the power transmitting side device outside the manhole and the power receiving side device inside the manhole by electromagnetic induction. And communication can be performed stably.

本発明の共鳴型無線電力伝送装置の構成例を示す図である。It is a figure which shows the structural example of the resonance type wireless power transmission apparatus of this invention. 本発明の共鳴型無線電力伝送装置とマンホールの位置関係1を示す図である。It is a figure which shows the positional relationship 1 of the resonance type radio | wireless power transmission apparatus of this invention, and a manhole. 本発明の共鳴型無線電力伝送装置とマンホールの位置関係2を示す図である。It is a figure which shows the positional relationship 2 of the resonance type radio | wireless power transmission apparatus of this invention, and a manhole. 本発明の共鳴型無線電力伝送装置とマンホールの位置関係3を示す図である。It is a figure which shows the positional relationship 3 of the resonance type radio | wireless power transmission apparatus of this invention, and a manhole. 送信データと受信波形の例1を示す図である。It is a figure which shows the example 1 of transmission data and a received waveform. 送信データと受信波形の例2を示す図である。It is a figure which shows the example 2 of transmission data and a received waveform. 送信データと受信波形の例3を示す図である。It is a figure which shows the example 3 of transmission data and a received waveform. 復調部12の構成例を示す図である。3 is a diagram illustrating a configuration example of a demodulation unit 12. FIG. 共鳴型無線電力伝送装置の構成例を示す図である。It is a figure which shows the structural example of a resonance type wireless power transmission apparatus. 共鳴コイルのSパラメータ(S21)の例を示す図である。It is a figure which shows the example of S parameter (S21) of a resonance coil.

図1は、本発明の共鳴型無線電力伝送装置の構成例を示す。
図1において、共鳴型無線電力伝送装置は、電力の送電を担う送電側装置10と、送電された電力を受け取る受電側装置20とからなり、受電側装置20から送電側装置10に送信データを伝送するための構成を含む。送電側装置10から受電側装置20への電力、送信データの流れが下り、受電側装置20から送電側装置10への送信データの流れが上りである。
FIG. 1 shows a configuration example of a resonance type wireless power transmission apparatus of the present invention.
In FIG. 1, the resonance type wireless power transmission device includes a power transmission side device 10 that is responsible for power transmission and a power reception side device 20 that receives the transmitted power, and transmits transmission data from the power reception side device 20 to the power transmission side device 10. Includes a configuration for transmitting. The flow of power and transmission data from the power transmission side device 10 to the power reception side device 20 is downward, and the flow of transmission data from the power reception side device 20 to the power transmission side device 10 is upward.

送電側装置10は、電源11、受電側装置20から送られた上り送信データを復元する復調部12、送電側コイル13、送電側共鳴コイル14、電源11の電源周波数を調整する周波数調整部15を備える。受電側装置20は、受電側共鳴コイル21、受電側コイル22、負荷23、抵抗24、スイッチ25、制御部26を備える。送電側コイル13と送電側共鳴コイル14とは電磁誘導で電気的に結合している。送電側共鳴コイル14と受電側共鳴コイル21とは共鳴により電気的に結合している。受電側共鳴コイル21と受電側コイル22とは電磁誘導で電気的に結合している。これにより電源11から負荷23および制御部26に給電することができる。   The power transmission side device 10 includes a power source 11, a demodulation unit 12 that restores uplink transmission data sent from the power reception side device 20, a power transmission side coil 13, a power transmission side resonance coil 14, and a frequency adjustment unit 15 that adjusts the power frequency of the power source 11. Is provided. The power receiving side device 20 includes a power receiving side resonance coil 21, a power receiving side coil 22, a load 23, a resistor 24, a switch 25, and a control unit 26. The power transmission side coil 13 and the power transmission side resonance coil 14 are electrically coupled by electromagnetic induction. The power transmission resonance coil 14 and the power reception resonance coil 21 are electrically coupled by resonance. The power receiving side resonance coil 21 and the power receiving side coil 22 are electrically coupled by electromagnetic induction. As a result, power can be supplied from the power source 11 to the load 23 and the control unit 26.

ここで、簡単のため負荷23単体のインピーダンスは不変とし、図中のB−B’から右側をみたインピーダンスを負荷インピーダンスと呼ぶ。負荷インピーダンスは、スイッチ25のオンオフで抵抗24の通過の有無を選択することにより、2つの状態を取り得る。制御部26は、送信データに応じてスイッチ25をオンオフし、負荷インピーダンスを変化させる構成である。ただし、本実施例の構成では、スイッチ25がオンの場合もオフの場合も負荷23への接続は開放されないため、負荷23への電力供給は継続される。   Here, for the sake of simplicity, the impedance of the load 23 alone is not changed, and the impedance when the right side is viewed from B-B ′ in the figure is referred to as load impedance. The load impedance can take two states by selecting whether or not the resistor 24 is passed when the switch 25 is turned on / off. The control unit 26 is configured to turn on and off the switch 25 in accordance with transmission data and change the load impedance. However, in the configuration of the present embodiment, the power supply to the load 23 is continued because the connection to the load 23 is not released regardless of whether the switch 25 is on or off.

なお、図1の構成では、抵抗24とスイッチ25が並列に接続され、抵抗24と負荷23とが直列に接続されているが、抵抗24とスイッチ25を直列に接続し、抵抗24と負荷23とを並列に接続してもよい。さらに、抵抗と容量の可変構成により回路定数CRを調整する構成としてもよい。   In the configuration of FIG. 1, the resistor 24 and the switch 25 are connected in parallel, and the resistor 24 and the load 23 are connected in series. However, the resistor 24 and the switch 25 are connected in series, and the resistor 24 and the load 23 are connected. May be connected in parallel. Further, the circuit constant CR may be adjusted by a variable configuration of resistance and capacitance.

受電側装置20と送電側装置10とは電気的に結合しているため、負荷インピーダンスの変化は送電側装置10のA−A’から受電側装置20をみたインピーダンスの変化となり、電流または電圧の変化として現れる。復調部12はこの変化を検出し、受電側装置20から送信された送信データを復元する。送信データの伝送原理についての詳細は後述する。   Since the power receiving side device 20 and the power transmitting side device 10 are electrically coupled, the change in the load impedance is a change in impedance when the power receiving side device 20 is viewed from AA ′ of the power transmitting side device 10, and the current or voltage is changed. Appears as a change. The demodulator 12 detects this change and restores the transmission data transmitted from the power receiving side device 20. Details of the transmission data transmission principle will be described later.

図2は、本発明の共鳴型無線電力伝送装置とマンホールの位置関係1を示す。
図2において、ここでは簡単のために、共鳴型無線電力伝送装置として送電側装置10の送電側共鳴コイル14と受電側装置20の受電側共鳴コイル21のみを示す。マンホールは、人が出入りする首部31とマンホール本体32から構成され、首部31の上部に蓋33が設けられる。
FIG. 2 shows a positional relationship 1 between the resonance type wireless power transmission apparatus of the present invention and a manhole.
In FIG. 2, for the sake of simplicity, only the power transmission side resonance coil 14 of the power transmission side device 10 and the power reception side resonance coil 21 of the power reception side device 20 are shown here for the sake of simplicity. The manhole is composed of a neck portion 31 through which a person enters and exits and a manhole body 32, and a lid 33 is provided on the upper portion of the neck portion 31.

ここで、マンホールの蓋33の半径をR1、マンホール内に設置される受電側共鳴コイル21の半径をR2、蓋33のある平面L0と受電側共鳴コイル21の中心との距離をD1、蓋33の中心を鉛直方向に通る中心線L1と受電側共鳴コイル21の中心を鉛直方向に通る直線L2との間の距離をD2、受電側共鳴コイル21の鉛直方向に対する傾きをθ(0〜90度の範囲)とする。送電側共鳴コイル14は、受電側共鳴コイル21と正対する位置にあるものとし、その半径はR2である。また、送電側共鳴コイル14は必ず地面(平面L0)より上にあり、一端が地面に接した位置において受電側共鳴コイル21との間隔が最短になる。   Here, the radius of the lid 33 of the manhole is R1, the radius of the power receiving resonance coil 21 installed in the manhole is R2, the distance between the plane L0 with the lid 33 and the center of the power receiving resonance coil 21 is D1, and the lid 33 The distance between the center line L1 passing through the center of the coil in the vertical direction and the straight line L2 passing through the center of the power receiving resonance coil 21 in the vertical direction is D2, and the inclination of the power receiving resonance coil 21 with respect to the vertical direction is θ (0 to 90 degrees). Range). The power transmission side resonance coil 14 is assumed to be in a position facing the power reception side resonance coil 21 and has a radius R2. The power transmission resonance coil 14 is always above the ground (plane L0), and the distance from the power reception resonance coil 21 is the shortest at a position where one end is in contact with the ground.

まず、受電側共鳴コイル21がマンホールの首部31の大きさ(半径R1)に納まるための設置条件として、受電側共鳴コイル21の半径R2および傾きθと位置(D1,D2)の関係は、
R1≧D2+R2・cosθ …(1)
D1≧R2・sinθ …(2)
となる。ここで、R1,R2,D1,D2が与えられ、
R1<D2+R2
D1<R2
であるとき、 (1)式はθの下限値(受電側共鳴コイル21をこれ以上横にできない角度)を決め、 (2)式はθの上限値(受電側共鳴コイル21をこれ以上縦にできない角度)を決める。
First, as an installation condition for the power receiving side resonance coil 21 to fit within the size (radius R1) of the neck 31 of the manhole, the relationship between the radius R2 and inclination θ of the power receiving side resonance coil 21 and the position (D1, D2) is:
R1 ≧ D2 + R2 · cosθ (1)
D1 ≧ R2 · sinθ (2)
It becomes. Where R1, R2, D1, D2 are given,
R1 <D2 + R2
D1 <R2
(1) determines the lower limit of θ (the angle at which the power receiving resonance coil 21 cannot be further lateral), and (2) determines the upper limit of θ (the power receiving resonance coil 21 is further vertical). Determine the angle that cannot be done.

次に、送電側共鳴コイル14と受電側共鳴コイル21とを結ぶ仮想円筒Sとマンホールの蓋33が重ならない条件を示す。受電側共鳴コイル21の中心線と平面L0との交点をxとし、仮想円筒Sが平面L0と交わる楕円の長径の一端をyとすると、xとL2の間隔X、xとyの間隔Yは次式で表される。なお、2Yは、仮想円筒Sが平面L0と交わる楕円の長径である。
X=D1・tanθ
Y=R2/cosθ
Next, the conditions under which the virtual cylinder S connecting the power transmission side resonance coil 14 and the power reception side resonance coil 21 and the manhole cover 33 do not overlap will be described. Assuming that the intersection of the center line of the power receiving resonance coil 21 and the plane L0 is x and that one end of the major axis of the ellipse where the virtual cylinder S intersects the plane L0 is y, the interval X between x and L2, and the interval Y between x and y are It is expressed by the following formula. 2Y is the major axis of the ellipse where the virtual cylinder S intersects the plane L0.
X = D1 · tanθ
Y = R2 / cosθ

このとき、仮想円筒Sと蓋33が重ならない条件は、蓋33の厚さを無視すると、
X+D2≧Y+R1
であるので、
D1・tanθ+D2≧R2/cosθ+R1 …(3)
となる。
At this time, the condition that the virtual cylinder S and the lid 33 do not overlap is that if the thickness of the lid 33 is ignored,
X + D2 ≧ Y + R1
So
D1 · tanθ + D2 ≧ R2 / cosθ + R1 (3)
It becomes.

この (3)式は、R1,R2,D1,D2が与えられたときに、受電側共鳴コイル21の傾きθの下限値を決める。すなわち、 (1)式および (3)式により受電側共鳴コイル21の傾きθの下限値が決まり、 (2)式により傾きθの上限値が決まる。   This equation (3) determines the lower limit value of the inclination θ of the power receiving resonance coil 21 when R1, R2, D1, and D2 are given. That is, the lower limit value of the inclination θ of the power receiving resonance coil 21 is determined by the expressions (1) and (3), and the upper limit value of the inclination θ is determined by the expression (2).

ここで、受電側共鳴コイル21の傾きθを固定とすれば、蓋33の中心線L1から受電側共鳴コイル21のずれ(オフセット)を示すD2が大きい値ほど、あるいは受電側共鳴コイル21が配置される深さを示すD1が大きい値ほど、仮想円筒Sと蓋33が重なる割合が減る。また、D1,D2を固定とすれば、受電側共鳴コイル21の傾きθが大きい値ほど、仮想円筒Sと蓋33が重なる割合が減る。   Here, if the inclination θ of the power receiving resonance coil 21 is fixed, the larger the value D2 indicating the deviation (offset) of the power receiving resonance coil 21 from the center line L1 of the lid 33, or the power receiving resonance coil 21 is arranged. The greater the value of D1 indicating the depth to be processed, the lower the ratio of the virtual cylinder S and the lid 33 overlapping. Further, if D1 and D2 are fixed, the larger the inclination θ of the power receiving resonance coil 21 is, the smaller the ratio of overlapping the virtual cylinder S and the lid 33 decreases.

一方、D1が大きい値ほどθを小さい値にできるが、マンホールの首部31の長さにもよるのでD1には限界がある。また、D2が大きい値ほどθを小さい値にできるが、蓋33(≒首部31の内径)と受電側共鳴コイル21の直径の差にもよるのでD2には限界がある。また、θが大きい値になれば、送電側共鳴コイル14が平面L0(地面)より上になるために送電側共鳴コイル14と受電側共鳴コイル21との間隔が広がり、給電または信号伝送が可能な距離を超えることもあるので、θにも限界がある。   On the other hand, the larger the value of D1, the smaller θ can be. However, D1 has a limit because it depends on the length of the neck 31 of the manhole. Further, θ can be made smaller as D2 is larger, but D2 has a limit because it depends on the difference between the diameter of the lid 33 (≈the inner diameter of the neck 31) and the diameter of the power receiving resonance coil 21. Further, if θ becomes a large value, the power transmission resonance coil 14 is above the plane L0 (ground), so that the interval between the power transmission resonance coil 14 and the power reception resonance coil 21 is widened, and power feeding or signal transmission is possible. Since there is a possibility that the distance exceeds a certain distance, there is a limit to θ.

送電側共鳴コイル14と受電側共鳴コイル21との間で給電または信号伝送が可能な最大距離(給電可能距離)をDsrとしたとき、上記のように、受電側共鳴コイル21の傾きθが大きい値になれば、地上にある送電側共鳴コイル14と受電側共鳴コイル21との間隔が広がり、給電可能距離Dsrを超えることになる。ここでは、受電側/送電側のコイル間隔が給電可能距離Dsrを超えない条件について説明する。   Assuming that the maximum distance (feedable distance) at which power supply or signal transmission is possible between the power transmission resonance coil 14 and the power reception resonance coil 21 is Dsr, the inclination θ of the power reception resonance coil 21 is large as described above. If it becomes a value, the space | interval of the power transmission side resonance coil 14 and the power reception side resonance coil 21 on the ground will spread, and it will exceed the power supply possible distance Dsr. Here, the condition where the coil interval on the power receiving side / power transmission side does not exceed the power supply possible distance Dsr will be described.

図3は、本発明の共鳴型無線電力伝送装置とマンホールの位置関係2を示す。
図3において、各パラメータR1,R2,D1,D2,θ,X,Yは、図2に示すものと同じとする。ここで、送電側共鳴コイル14の一端を平面L0に接触させて送電側共鳴コイル14と受電側共鳴コイル21を最接近させたときに、受電側共鳴コイル21の中心線と平面L0との交点xと受電側共鳴コイル21との距離V、交点xと送電側共鳴コイル14との距離Wは、それぞれ次式で表される。なお、送電側共鳴コイル14と受電側共鳴コイル21の厚さは無視する。
V=D1/cosθ
W=R2・tanθ
FIG. 3 shows a positional relationship 2 between the resonance type wireless power transmission apparatus of the present invention and a manhole.
In FIG. 3, parameters R1, R2, D1, D2, θ, X, and Y are the same as those shown in FIG. Here, when one end of the power transmission side resonance coil 14 is brought into contact with the plane L0 to bring the power transmission side resonance coil 14 and the power reception side resonance coil 21 closest to each other, the intersection of the center line of the power reception side resonance coil 21 and the plane L0. The distance V between x and the power receiving resonance coil 21 and the distance W between the intersection x and the power transmission resonance coil 14 are expressed by the following equations, respectively. Note that the thicknesses of the power transmission side resonance coil 14 and the power reception side resonance coil 21 are ignored.
V = D1 / cosθ
W = R2 · tanθ

このとき、受電側/送電側のコイル間隔が給電可能距離Dsrを超えない条件は、
Dsr≧V+W
であるので、
Dsr≧D1/cosθ+R2・tanθ …(4)
となる。
At this time, the condition that the coil interval on the power reception side / power transmission side does not exceed the power supply possible distance Dsr is:
Dsr ≧ V + W
So
Dsr ≧ D1 / cosθ + R2 / tanθ (4)
It becomes.

この (4)式は、R2,D1,Dsrが与えられたときに、受電側共鳴コイル21の傾きθの上限値を決める。すなわち、 (2)式および (4)式により受電側共鳴コイル21の傾きθの上限値が決まる。   This equation (4) determines the upper limit value of the inclination θ of the power receiving resonance coil 21 when R2, D1, and Dsr are given. That is, the upper limit value of the inclination θ of the power receiving resonance coil 21 is determined by the equations (2) and (4).

以上において、蓋33の半径R1が固定値であり、受電側共鳴コイル21と送電側共鳴コイル14の半径R2および給電可能距離Dsrが所要の利得に対応する固定値としたとき、受電側共鳴コイル21の位置(D1,D2)および傾きθを変数として、それぞれ許容される範囲内で (1)式〜 (4)式を満足する値を算出することになる。たとえば、R1=40cm、R2=30cm、Dsr= 300cmとしたときに、D1=55cm、D2=10cm、θ=60°とすれば、
(1)式:40>25
(2)式:55>26
(3)式:105.2 >100
(4)式:300 >162
となり、すべての条件を満たすことができる。
In the above, when the radius R1 of the lid 33 is a fixed value, and the radius R2 of the power receiving side resonance coil 21 and the power transmission side resonance coil 14 and the feedable distance Dsr are fixed values corresponding to a required gain, the power receiving side resonance coil Using the position (D1, D2) of 21 and the inclination θ as variables, values satisfying the expressions (1) to (4) within the allowable ranges are calculated. For example, when R1 = 40 cm, R2 = 30 cm, and Dsr = 300 cm, if D1 = 55 cm, D2 = 10 cm, and θ = 60 °,
(1) Formula: 40> 25
(2) Formula: 55> 26
(3) Formula: 105.2> 100
(4) Formula: 300> 162
And all the conditions can be satisfied.

以上の説明では、マンホールの蓋33の厚さを無視したが、マンホールの蓋33の厚さをδとし、マンホールの蓋33の枠の厚さをD3とした場合について説明する。   In the above description, the thickness of the manhole cover 33 is ignored, but the case where the thickness of the manhole cover 33 is δ and the thickness of the frame of the manhole cover 33 is D3 will be described.

図4は、本発明の共鳴型無線電力伝送装置とマンホールの位置関係3を示す。
図4において、各パラメータR1,R2,D1,D2,θ,X,Y,V,Wは、図2および図3に示すものと同じとする。ここで、X、Y、およびマンホールの蓋33の枠が受電側共鳴コイル21の傾きθで平面L0に射影する長さZは、次式で表される。
X=D1・tanθ
Y=R2/cosθ
Z=D3・tanθ
FIG. 4 shows a positional relationship 3 between the resonance type wireless power transmission apparatus of the present invention and a manhole.
In FIG. 4, parameters R1, R2, D1, D2, θ, X, Y, V, and W are the same as those shown in FIGS. Here, X, Y, and the length Z that the frame of the manhole cover 33 projects onto the plane L0 with the inclination θ of the power reception resonance coil 21 are expressed by the following equations.
X = D1 · tanθ
Y = R2 / cosθ
Z = D3 · tanθ

このとき、送電側共鳴コイル14と受電側共鳴コイル21とを結ぶ仮想円筒Sがマンホールの蓋33の枠に重ならない条件は、
X+D2>Y+Z+R1
であるので、
D1・tanθ+D2≧R2/cosθ+D3・tanθ+R1 …(3')
となる。
At this time, the condition that the virtual cylinder S connecting the power transmission side resonance coil 14 and the power reception side resonance coil 21 does not overlap the frame of the manhole cover 33 is as follows:
X + D2> Y + Z + R1
So
D1 · tanθ + D2 ≧ R2 / cosθ + D3 · tanθ + R1 (3 ')
It becomes.

この(3')式は、R1,R2,D1,D2,D3が与えられたときに、受電側共鳴コイル21の傾きθの下限値を決める。すなわち、マンホールの蓋33の枠の厚さD3を考慮する場合、 (1)式および(3')式により受電側共鳴コイル21の傾きθの下限値が決まる。   This expression (3 ′) determines the lower limit value of the inclination θ of the power receiving resonance coil 21 when R1, R2, D1, D2, and D3 are given. That is, when considering the thickness D3 of the frame of the manhole cover 33, the lower limit value of the inclination θ of the power receiving resonance coil 21 is determined by the equations (1) and (3 ′).

一方、受電側/送電側のコイル間隔が給電可能距離Dsrを超えない条件は、マンホールの蓋33の厚さδおよび枠の厚さD3は関与しないので、 (4)式で表される。ただし、受電側共鳴コイル21がマンホールの首部31に納まる設置条件には、蓋33の厚さδが関与し、
D1≧R2・sinθ+δ …(2')
となる。すなわち、蓋33の厚さδを考慮する場合、R1,R2,D1,D2,D3,Dsr,δが与えられたときに、(2')式および(4) 式により受電側共鳴コイル21の傾きθの上限値が決まる。
On the other hand, the condition that the coil interval on the power receiving side / power transmitting side does not exceed the power supply possible distance Dsr is not expressed by the thickness δ of the manhole cover 33 and the thickness D3 of the frame, and is expressed by the following equation (4). However, the thickness δ of the lid 33 is involved in the installation conditions in which the power receiving resonance coil 21 is placed in the neck 31 of the manhole.
D1 ≧ R2 · sinθ + δ (2 ')
It becomes. That is, when the thickness δ of the lid 33 is taken into consideration, when R1, R2, D1, D2, D3, Dsr, δ are given, the power-receiving-side resonance coil 21 is expressed by the equations (2 ′) and (4). The upper limit value of the inclination θ is determined.

ところで、マンホール内に受電側装置20の受電側共鳴コイル21を設置するとき、D1,D2,θで決まる位置と傾きに調整することになる。ただし、受電側共鳴コイル21はマンホールの首部31の内径に対して相当の大きさを有しているので、蓋33を開けるときには受電側共鳴コイル21を含む受電側装置20を取り外し、人の出入りを可能にする必要がある。   By the way, when the power receiving resonance coil 21 of the power receiving device 20 is installed in the manhole, the position and inclination determined by D1, D2, and θ are adjusted. However, since the power receiving side resonance coil 21 has a considerable size with respect to the inner diameter of the neck portion 31 of the manhole, when the cover 33 is opened, the power receiving side device 20 including the power receiving side resonance coil 21 is removed and a person enters and exits. Need to be possible.

ここで、図2〜図4に示すような関係でマンホール内に設置した受電側装置20に対して、マンホール外の送電側装置10から給電し、その受電電力で動作する受電側装置20から送信データとして例えば受電電力値を送信し、送電側装置10で復元した受電電力値が大きくなるように電源周波数が共鳴周波数に近づくように調整する制御形態が考えられる。以下、送電側装置10で受電側装置20から送信された送信データを復元する方法について図1の構成に基づいて説明する。   Here, power is supplied from the power transmission side device 10 outside the manhole to the power reception side device 20 installed in the manhole in the relationship shown in FIGS. 2 to 4, and transmitted from the power reception side device 20 operating with the received power. For example, a control form is conceivable in which the received power value is transmitted as data, and the power supply frequency is adjusted to approach the resonance frequency so that the received power value restored by the power transmission side device 10 increases. Hereinafter, a method for restoring transmission data transmitted from the power receiving side device 20 by the power transmitting side device 10 will be described based on the configuration of FIG. 1.

図5は、送電側装置10の復調部12における電流または電圧を包絡線検波した波形を表しており、送信データの変化に連動して電流または電圧が変化するのがわかる。復調部12はこの変化を適当なタイミングでサンプリングすることにより、受電側装置20から送信された送信データを復元することができる。   FIG. 5 shows a waveform obtained by envelope detection of the current or voltage in the demodulator 12 of the power transmission side device 10, and it can be seen that the current or voltage changes in conjunction with the change in the transmission data. The demodulation unit 12 can restore the transmission data transmitted from the power receiving side device 20 by sampling this change at an appropriate timing.

ただし、送電側装置10の電源周波数が共鳴周波数と異なる場合には、図6に示すような受信波形になる。平均受信レベル(受信電力)は、図5の場合と比較して低下するだけでなく、信号波形の振幅の変化も小さくなる。さらに、送電側装置10の電源周波数が共鳴周波数と大きく異なる場合には、信号波形の振幅の変化が非常に小さくなり、送信データの復元が困難になる。   However, when the power supply frequency of the power transmission side device 10 is different from the resonance frequency, a reception waveform as shown in FIG. 6 is obtained. The average reception level (reception power) not only decreases compared to the case of FIG. 5, but also changes in the amplitude of the signal waveform are reduced. Furthermore, when the power supply frequency of the power transmission side device 10 is greatly different from the resonance frequency, the change in the amplitude of the signal waveform becomes very small, and it is difficult to restore the transmission data.

一方、送電側装置10の復調部12では、図7に示すように送信データの変化に応じた電流または電圧の過渡応答を観測することができる。ここで、送電側装置10で観測される電流または電圧の過渡応答とは、送信データに応じてスイッチ25がオンオフし、それに伴う負荷インピーダンスの変化に応じて電流または電圧の立ち上がりおよび立ち下がりの部分で波形が大きく変化する現象である。受電側装置20の制御部26は、送信データと過渡応答の発生の有無が対応するようにスイッチ25を操作し、送電側装置10の復調部12は過渡応答の発生の有無から送信データを復元する。   On the other hand, the demodulator 12 of the power transmission side device 10 can observe a transient response of current or voltage corresponding to a change in transmission data as shown in FIG. Here, the transient response of the current or voltage observed in the power transmission side device 10 is a part where the switch 25 is turned on / off according to transmission data and the current or voltage rises and falls according to the change in the load impedance accompanying it. This is a phenomenon in which the waveform changes greatly. The control unit 26 of the power receiving side device 20 operates the switch 25 so that the transmission data corresponds to the occurrence of the transient response, and the demodulation unit 12 of the power transmission side device 10 restores the transmission data from the presence of the occurrence of the transient response. To do.

図8は、復調部12の構成例を示す。
図8において、復調部12は、検波部121、A/D変換部122、符号判定部123により構成される。検波部121は、受信波形、すなわち送電側装置10における電流または電圧を検波する。この検波出力をA/D変換部122でデジタル化し、符号判定部123でビット判定して出力する。
FIG. 8 shows a configuration example of the demodulator 12.
In FIG. 8, the demodulation unit 12 includes a detection unit 121, an A / D conversion unit 122, and a code determination unit 123. The detector 121 detects the received waveform, that is, the current or voltage in the power transmission side device 10. The detection output is digitized by the A / D converter 122, and the bit is determined by the code determination unit 123 and output.

符号判定部123は2つの符号判定論理をもつ。符号判定論理1では、受信波形から正の過渡応答を判定した場合に「1」を出力し、負の過渡応答を判定した場合に「0」を出力し、定常状態(過渡応答なし)を判定した場合に直前の判定結果を出力する。なお、定常状態に対する符号判定は、符号判定部123に接続される記憶部に直前の判定結果を記憶しておき、定常状態を判定したときに記憶部から読み出す構成でもよいし、符号判定部123で正または負の過渡応答を判定するまで直前の判定結果を出力する構成でもよい。   The code determination unit 123 has two code determination logics. The sign determination logic 1 outputs “1” when a positive transient response is determined from the received waveform, and outputs “0” when a negative transient response is determined, and determines a steady state (no transient response). If it does, the previous determination result is output. The code determination for the steady state may be configured such that the previous determination result is stored in a storage unit connected to the code determination unit 123 and read from the storage unit when the steady state is determined. The configuration may be such that the previous determination result is output until a positive or negative transient response is determined.

この符号判定部123に対応する受電側装置20の制御部26は、送信データにそのまま対応するようにスイッチ25を操作する。すなわち、送信データが1であればスイッチ25をオンとし、送信データが0であればスイッチ25をオフとする。符号判定部123は、送信データが反転して過渡応答が生じるタイミングでビットを判定し、過渡応答が生じなかったタイミングでは過渡応答が生じた直前のビットと同じビットを出力し、送信データを復元する。   The control unit 26 of the power receiving device 20 corresponding to the code determination unit 123 operates the switch 25 so as to correspond to the transmission data as it is. That is, if the transmission data is 1, the switch 25 is turned on, and if the transmission data is 0, the switch 25 is turned off. The sign determination unit 123 determines the bit at the timing when the transmission data is inverted and a transient response occurs, and outputs the same bit as the bit immediately before the transient response occurs at the timing when the transient response does not occur, thereby restoring the transmission data. To do.

このような過渡応答の有無を検出することにより、送電側装置10の電源周波数が共鳴周波数から多少ずれていても、送電側装置10で受電側装置20から送信された送信データを復元できる。   By detecting the presence or absence of such a transient response, even if the power supply frequency of the power transmission side device 10 is slightly deviated from the resonance frequency, the transmission data transmitted from the power reception side device 20 by the power transmission side device 10 can be restored.

したがって、受電側装置20において、受電電力の低下から共鳴周波数に対する送電側装置10の電源周波数のずれを検知した場合には、制御部26で対応する制御信号を生成してスイッチ25を上記のパターンで操作することにより、送電側装置10の復調部12でその制御信号を復元し、共鳴周波数に対する送電側装置10の電源周波数のずれを通知することができる。ただし、受電側装置20では、共鳴周波数に対する送電側装置10の電源周波数のずれの方向や量までわからないので、制御信号として例えば受電電力値を送信する。送電側装置10の復調部12は制御信号から受電電力値を読み取り、それが規定の受電電力値に満たない場合に、周波数調整部15を介して電源11の電源周波数を調整する。このとき、電源周波数のシフトに対する受電電力値の変化から、電源周波数のシフト方向およびシフト量をフィードバック制御することにより、電源周波数が共鳴周波数に近づくように調整することができる。   Therefore, when the power receiving side device 20 detects a shift in power source frequency of the power transmitting side device 10 with respect to the resonance frequency due to a decrease in received power, the control unit 26 generates a corresponding control signal and switches the switch 25 to the above pattern. , The control signal is restored by the demodulator 12 of the power transmission side device 10, and the deviation of the power supply frequency of the power transmission side device 10 with respect to the resonance frequency can be notified. However, since the power receiving side device 20 does not know the direction or amount of deviation of the power source frequency of the power transmitting side device 10 with respect to the resonance frequency, for example, a power receiving power value is transmitted as a control signal. The demodulator 12 of the power transmission side device 10 reads the received power value from the control signal, and adjusts the power frequency of the power source 11 via the frequency adjuster 15 when it is less than the specified received power value. At this time, the power supply frequency can be adjusted so as to approach the resonance frequency by feedback control of the shift direction and shift amount of the power supply frequency from the change in the received power value with respect to the shift of the power supply frequency.

10 送電側装置
11 電源
12 復調部
121 検波部
122 A/D変換部
123 符号判定部
13 送電側コイル
14 送電側共鳴コイル
15 周波数調整部
20 受電側装置
21 受電側共鳴コイル
22 受電側コイル
23 負荷
24 抵抗
25 スイッチ
26 制御部
31 マンホールの首部
32 マンホール本体
33 蓋
DESCRIPTION OF SYMBOLS 10 Power transmission side apparatus 11 Power supply 12 Demodulation part 121 Detection part 122 A / D conversion part 123 Code | symbol determination part 13 Power transmission side coil 14 Power transmission side resonance coil 15 Frequency adjustment part 20 Power reception side apparatus 21 Power reception side resonance coil 22 Power reception side coil 23 Load 24 Resistance 25 Switch 26 Control unit 31 Manhole neck 32 Manhole body 33 Lid

Claims (4)

マンホールの外部に送電側装置を配置し、マンホールの内部に受電側装置を配置し、送電側装置の送電側コイルと電磁誘導で電気的に結合される送電側共鳴コイルと、受電側装置の受電側コイルと電磁誘導で電気的に結合される受電側共鳴コイルとの間の共鳴現象を利用し、送電側装置の電源から受電側装置の負荷へ電力を伝送する共鳴型無線電力伝送装置において、
前記マンホールの蓋の半径をR1、前記受電側共鳴コイルの半径をR2、前記マンホールの蓋のある平面と前記受電側共鳴コイルの中心との距離をD1、当該蓋の中心を鉛直方向に通る中心線と前記受電側共鳴コイルの中心を鉛直方向に通る直線との間の距離をD2、前記受電側共鳴コイルの鉛直方向に対する傾きをθ(0〜90度の範囲)としたときに、
前記受電側共鳴コイルは、前記マンホールの蓋の下部の首部に納まる設置条件として
R1≧D2+R2・cosθ …(1)
D1≧R2・sinθ …(2)
を満たし、さらに前記受電側共鳴コイルと前記送電側共鳴コイルとを結ぶ仮想円筒と前記マンホールの蓋が重ならない条件として
D1・tanθ+D2≧R2/cosθ+R1 …(3)
となるマンホール内の位置D1,D2に傾きθ以上で設置され、
前記送電側共鳴コイルは前記受電側共鳴コイルと対向して設置される
ことを特徴とする共鳴型無線電力伝送装置。
A power transmission side device is disposed outside the manhole, a power reception side device is disposed inside the manhole, a power transmission side resonance coil electrically coupled to a power transmission side coil of the power transmission side device by electromagnetic induction, and power reception by the power reception side device In the resonance type wireless power transmission device that transmits power from the power source of the power transmission side device to the load of the power reception side device using the resonance phenomenon between the side coil and the power reception side resonance coil that is electrically coupled by electromagnetic induction,
The radius of the manhole cover is R1, the radius of the power receiving resonance coil is R2, the distance between the flat surface of the manhole cover and the center of the power receiving resonance coil is D1, and the center passes through the center of the cover in the vertical direction. When the distance between the line and the straight line passing through the center of the power reception resonance coil in the vertical direction is D2, and the inclination of the power reception resonance coil with respect to the vertical direction is θ (range of 0 to 90 degrees),
R1 ≧ D2 + R2 · cosθ (1) As an installation condition in which the power-reception-side resonance coil is placed in the lower neck of the manhole cover
D1 ≧ R2 · sinθ (2)
And a virtual cylinder connecting the power receiving side resonance coil and the power transmission side resonance coil does not overlap with the manhole cover as follows: D1 · tan θ + D2 ≧ R2 / cos θ + R1 (3)
Is installed at a position D1, D2 in the manhole with an inclination θ or more,
The power transmission-side resonance coil is installed to face the power-receiving-side resonance coil.
請求項1に記載の共鳴型無線電力伝送装置において、
前記送電側共鳴コイルと前記受電側共鳴コイルとの間で共鳴現象による給電または信号伝送が可能な間隔の上限値をDsrとしたときに、
前記受電側共鳴コイルは、前記送電側共鳴コイルとの間隔が前記上限値Dsrを超えない条件として
Dsr≧D1/cosθ+R2・tanθ …(4)
となるマンホール内の位置D1,D2に傾きθ以下で設置され、
前記送電側共鳴コイルは、前記受電側共鳴コイルとの間隔がDsr以下の位置に対向して設置される
ことを特徴とする共鳴型無線電力伝送装置。
In the resonance type wireless power transmission device according to claim 1,
When the upper limit value of the interval at which power supply or signal transmission is possible between the power transmission side resonance coil and the power reception side resonance coil by resonance phenomenon is Dsr,
The power receiving resonance coil has a condition that the distance from the power transmission resonance coil does not exceed the upper limit value Dsr. Dsr ≧ D1 / cosθ + R2 · tanθ (4)
Are installed at the inclinations of θ or less at positions D1 and D2 in the manhole.
The resonance type wireless power transmission device, wherein the power transmission side resonance coil is disposed opposite to a position where the distance from the power reception side resonance coil is equal to or less than Dsr.
マンホールの外部に送電側装置を配置し、マンホールの内部に受電側装置を配置し、送電側装置の送電側コイルと電磁誘導で電気的に結合される送電側共鳴コイルと、受電側装置の受電側コイルと電磁誘導で電気的に結合される受電側共鳴コイルとの間の共鳴現象を利用し、送電側装置の電源から受電側装置の負荷へ電力を伝送する共鳴型無線電力伝送装置において、
前記マンホールの蓋の半径をR1、前記受電側共鳴コイルの半径をR2、前記マンホールの蓋のある平面と前記受電側共鳴コイルの中心との距離をD1、当該蓋の中心を鉛直方向に通る中心線と前記受電側共鳴コイルの中心を鉛直方向に通る直線との間の距離をD2、前記マンホールの蓋の厚さをδ、前記マンホールの蓋の枠の厚さをD3、前記受電側共鳴コイルの鉛直方向に対する傾きをθ(0〜90度の範囲)としたときに、
前記受電側共鳴コイルは、前記マンホールの蓋の下部の首部に納まる設置条件として
R1≧D2+R2・cosθ …(1)
D1≧R2・sinθ+δ …(2')
を満たし、さらに前記受電側共鳴コイルと前記送電側共鳴コイルとを結ぶ仮想円筒と前記マンホールの蓋が重ならない条件として
D1・tanθ+D2≧R2/cosθ+D3・tanθ+R1 …(3')
となるマンホール内の位置D1,D2に傾きθ以上で設置され、
前記送電側共鳴コイルは前記受電側共鳴コイルと対向して設置される
ことを特徴とする共鳴型無線電力伝送装置。
A power transmission side device is disposed outside the manhole, a power reception side device is disposed inside the manhole, a power transmission side resonance coil electrically coupled to a power transmission side coil of the power transmission side device by electromagnetic induction, and power reception by the power reception side device In the resonance type wireless power transmission device that transmits power from the power source of the power transmission side device to the load of the power reception side device using the resonance phenomenon between the side coil and the power reception side resonance coil that is electrically coupled by electromagnetic induction,
The radius of the manhole cover is R1, the radius of the power receiving resonance coil is R2, the distance between the flat surface of the manhole cover and the center of the power receiving resonance coil is D1, and the center passes through the center of the cover in the vertical direction. D2 is the distance between the line and a straight line passing through the center of the power-receiving resonance coil in the vertical direction, δ is the thickness of the manhole cover, D3 is the thickness of the manhole cover frame, and the power-receiving resonance coil When the inclination relative to the vertical direction is θ (range of 0 to 90 degrees),
R1 ≧ D2 + R2 · cosθ (1) As an installation condition in which the power-reception-side resonance coil is placed in the lower neck of the manhole cover
D1 ≧ R2 · sinθ + δ (2 ')
And a virtual cylinder connecting the power-receiving-side resonance coil and the power-transmitting-side resonance coil and the manhole cover are not overlapped as follows: D1 · tanθ + D2 ≧ R2 / cosθ + D3 · tanθ + R1 (3 ′)
Is installed at a position D1, D2 in the manhole with an inclination θ or more,
The power transmission-side resonance coil is installed to face the power-receiving-side resonance coil.
請求項3に記載の共鳴型無線電力伝送装置において、
前記送電側共鳴コイルと前記受電側共鳴コイルとの間で共鳴現象による給電または信号伝送が可能な間隔の上限値をDsrとしたときに、
前記受電側共鳴コイルは、前記送電側共鳴コイルとの間隔が前記上限値Dsrを超えない条件として
Dsr≧D1/cosθ+R2・tanθ …(4)
となるマンホール内の位置D1,D2に傾きθ以下で設置され、
前記送電側共鳴コイルは、前記受電側共鳴コイルとの間隔がDsr以下の位置に対向して設置される
ことを特徴とする共鳴型無線電力伝送装置。
In the resonance type wireless power transmission device according to claim 3,
When the upper limit value of the interval at which power supply or signal transmission is possible between the power transmission side resonance coil and the power reception side resonance coil by resonance phenomenon is Dsr,
The power receiving resonance coil has a condition that the distance from the power transmission resonance coil does not exceed the upper limit value Dsr. Dsr ≧ D1 / cosθ + R2 · tanθ (4)
Are installed at the inclinations of θ or less at positions D1 and D2 in the manhole.
The resonance type wireless power transmission device, wherein the power transmission side resonance coil is disposed opposite to a position where the distance from the power reception side resonance coil is equal to or less than Dsr.
JP2012084769A 2011-12-28 2012-04-03 Resonant type wireless power transmission device Active JP5801240B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012084769A JP5801240B2 (en) 2011-12-28 2012-04-03 Resonant type wireless power transmission device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011288144 2011-12-28
JP2011288144 2011-12-28
JP2012084769A JP5801240B2 (en) 2011-12-28 2012-04-03 Resonant type wireless power transmission device

Publications (2)

Publication Number Publication Date
JP2013153635A JP2013153635A (en) 2013-08-08
JP5801240B2 true JP5801240B2 (en) 2015-10-28

Family

ID=49049520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012084769A Active JP5801240B2 (en) 2011-12-28 2012-04-03 Resonant type wireless power transmission device

Country Status (1)

Country Link
JP (1) JP5801240B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6854968B1 (en) * 2019-09-11 2021-04-07 三菱電機株式会社 Lid for vertical hole and measurement system in pipe

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10317410A (en) * 1997-05-20 1998-12-02 Haneda Hume Pipe Co Ltd Information system of object embedded in underground
JPH1183421A (en) * 1997-09-05 1999-03-26 Dainippon Ink & Chem Inc Measuring method for depth of underground buried object
JP4275115B2 (en) * 2005-08-01 2009-06-10 エネジン株式会社 Embedded radio equipment
JP4943391B2 (en) * 2008-08-25 2012-05-30 日本電信電話株式会社 Wireless relay device
JP2010216955A (en) * 2009-03-16 2010-09-30 Nippon Telegr & Teleph Corp <Ntt> Vehicle position presentation method and car navigation system
JP5526795B2 (en) * 2010-01-15 2014-06-18 ソニー株式会社 Wireless power supply system

Also Published As

Publication number Publication date
JP2013153635A (en) 2013-08-08

Similar Documents

Publication Publication Date Title
JP5456625B2 (en) Resonant type wireless power transmission device
KR101667725B1 (en) Wireless power transmitter and method for controlling the same
EP2937719B1 (en) Foreign-object detecting device, wireless electric-power transmitting device, and wireless electric-power transmission system
EP2761723B1 (en) Wireless power transmitter, wirless power repeater and wireless power transmission method
US10256666B2 (en) Wireless power transfer method, apparatus and system
KR101882273B1 (en) Method and apparatus for wireless power reception and method and apparatus for wireless power transmission
US20160241086A1 (en) Wireless power transmission device and control method therefor
KR102212032B1 (en) Wireless power transfer apparatus and system
JP5804052B2 (en) Wireless power receiving and receiving device and wireless power transmission system
US20130288595A1 (en) Method for deciding communication protocol between wireless power transmitter and wireless power receiver
KR20140139348A (en) Wireless power transmitter and method of wireless power transmittion
KR101750870B1 (en) Wireless power transfer method, apparatus and system
KR101688158B1 (en) Wireless power transfer apparatus and system
JP5395018B2 (en) Resonant type wireless power transmission device
KR20130028446A (en) A wireless power transmission apparatus and method thereof
KR20150050076A (en) Wireless power transmitter and method for controlling the same
KR101649655B1 (en) Wireless power transmitter and method for controlling the same
KR20140121200A (en) Wireless power receiving apparatus and wireless power transmitting/receiving apparatus
US12132331B2 (en) Wireless power transmission apparatus, wireless power reception apparatus, and wireless charging system
KR20130064840A (en) Wireless power transmission apparatus and method converging wireless power to a specific device
JP2013153636A (en) Resonance type wireless power transmission device
KR20140060186A (en) Wireless power transfer apparatus having a plurality of power transmitter
JP2010284066A (en) Communication device, communication terminal and communication system
JP5801240B2 (en) Resonant type wireless power transmission device
KR101731447B1 (en) Wireless power transmitter and method for controlling the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140814

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150609

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150825

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150826

R150 Certificate of patent or registration of utility model

Ref document number: 5801240

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150