JP5795551B2 - Method for manufacturing field effect transistor - Google Patents

Method for manufacturing field effect transistor Download PDF

Info

Publication number
JP5795551B2
JP5795551B2 JP2012110605A JP2012110605A JP5795551B2 JP 5795551 B2 JP5795551 B2 JP 5795551B2 JP 2012110605 A JP2012110605 A JP 2012110605A JP 2012110605 A JP2012110605 A JP 2012110605A JP 5795551 B2 JP5795551 B2 JP 5795551B2
Authority
JP
Japan
Prior art keywords
region
film
film formation
field effect
effect transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012110605A
Other languages
Japanese (ja)
Other versions
JP2013239521A (en
Inventor
文彦 望月
文彦 望月
真宏 高田
真宏 高田
雅司 小野
雅司 小野
田中 淳
淳 田中
鈴木 真之
真之 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2012110605A priority Critical patent/JP5795551B2/en
Priority to PCT/JP2013/062959 priority patent/WO2013172236A1/en
Priority to KR1020147031859A priority patent/KR101661834B1/en
Priority to TW102116623A priority patent/TWI580048B/en
Publication of JP2013239521A publication Critical patent/JP2013239521A/en
Application granted granted Critical
Publication of JP5795551B2 publication Critical patent/JP5795551B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02551Group 12/16 materials
    • H01L21/02554Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02565Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76202Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using a local oxidation of silicon, e.g. LOCOS, SWAMI, SILO
    • H01L21/76205Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using a local oxidation of silicon, e.g. LOCOS, SWAMI, SILO in a region being recessed from the surface, e.g. in a recess, groove, tub or trench region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14665Imagers using a photoconductor layer
    • H01L27/14676X-ray, gamma-ray or corpuscular radiation imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/14692Thin film technologies, e.g. amorphous, poly, micro- or nanocrystalline silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/66325Bipolar junction transistors [BJT] controlled by field-effect, e.g. insulated gate bipolar transistors [IGBT]
    • H01L29/66333Vertical insulated gate bipolar transistors
    • H01L29/66348Vertical insulated gate bipolar transistors with a recessed gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thin Film Transistor (AREA)
  • Liquid Crystal (AREA)
  • Electroluminescent Light Sources (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Description

本発明は、電界効果型トランジスタの製造方法   The present invention relates to a method for manufacturing a field effect transistor.

近年、In−Ga−Zn−O系(以下、IGZOと称す)の酸化物半導体薄膜を酸化物半導体層(チャネル層)に用いた電界効果型トランジスタ、特に薄膜トランジスタ(Thin Film Transistor:TFT)の研究開発が盛んである。酸化物半導体薄膜は低温成膜が可能であり、且つアモルファスシリコンよりも高移動度を示し、更に可視光に透明であることから、プラスチック板やフィルム等の基板上にフレキシブルなTFTを形成することが可能である(例えば非特許文献1)。   2. Description of the Related Art In recent years, field-effect transistors using an In—Ga—Zn—O-based (hereinafter referred to as IGZO) oxide semiconductor thin film as an oxide semiconductor layer (channel layer), particularly thin film transistors (TFTs), have been researched. Development is thriving. An oxide semiconductor thin film can be formed at a low temperature, exhibits higher mobility than amorphous silicon, and is transparent to visible light. Therefore, a flexible TFT should be formed on a substrate such as a plastic plate or film. Is possible (for example, Non-Patent Document 1).

このようなIGZOを酸化物半導体層に用いたTFTの変形例として、特許文献1には、ゲート電極に近い側にIZOやITOを含む第1の領域が配置され、ゲート電極から遠い側にIGZOを含む第2の領域が配置された二層構造の酸化物半導体層を用いたTFTが開示されている。   As a modification of the TFT using such an IGZO as an oxide semiconductor layer, Patent Document 1 discloses that a first region containing IZO or ITO is disposed on the side closer to the gate electrode, and IGZO is disposed on the side far from the gate electrode. There is disclosed a TFT using an oxide semiconductor layer having a two-layer structure in which a second region including the semiconductor layer is disposed.

また、特許文献2には、上記二層構造の酸化物半導体層の形成工程として、IGZOを含む第1の領域の表面上に、当該第1の領域のIGZOとは組成比が異なるIGZOを含む第2の領域をスパッタリング法により成膜圧力0.4Paで成膜するボトムゲート型のTFTの製造方法が開示されている。   In addition, Patent Document 2 includes IGZO having a composition ratio different from that of IGZO in the first region on the surface of the first region including IGZO as the step of forming the oxide semiconductor layer having the two-layer structure. A method of manufacturing a bottom gate type TFT in which the second region is formed by sputtering at a film forming pressure of 0.4 Pa is disclosed.

C.S. Chuang et al., SID 08 DIGEST, P-13C.S.Chuang et al., SID 08 DIGEST, P-13

特開2010−21555号公報JP 2010-21555 A 特開2010−73881号公報JP 2010-73881 A

ところで、TFTを含む有機EL(Electro Luminescence)や液晶に用いられる青色発光層は波長450nm程度のピークを持つブロードな発光を示すが、有機EL素子の青色光の発光スペクトルの裾は波長420nmまで続いていること、青色カラーフィルタは波長400nmの光を70%程度は通すこと、を考慮すると、波長450nmよりも小さい波長域での光照射に対する特性劣化が低いことが要求される。仮にIGZO膜の光学バンドギャップが比較的狭く、その領域に光学吸収を持つ場合には、トランジスタの閾値シフトが起こってしまう。   By the way, a blue light emitting layer used for an organic EL (Electro Luminescence) including TFT and a liquid crystal shows broad light emission having a peak of about 450 nm, but the tail of the emission spectrum of blue light of the organic EL element continues to a wavelength of 420 nm. In consideration of the fact that the blue color filter allows light having a wavelength of 400 nm to pass through about 70%, it is required that the characteristic deterioration with respect to light irradiation in a wavelength region smaller than the wavelength 450 nm is low. If the optical band gap of the IGZO film is relatively narrow and the region has optical absorption, a threshold shift of the transistor occurs.

ここで、例えば、光照射に対する安定性の指標として、420nmの光照射に対する閾値シフト量の絶対値|ΔVth|が2V以下という基準を設けると、420nmの光照射に対して|ΔVth|≦2Vを満たすようなTFTを実現する事は困難である。   Here, for example, as a measure of stability against light irradiation, if a criterion that the absolute value | ΔVth | of the threshold shift amount for 420 nm light irradiation is 2 V or less is provided, | ΔVth | ≦ 2 V is set for 420 nm light irradiation. It is difficult to realize a TFT that satisfies the requirements.

具体的に、非特許文献1では、従来のIGZOを酸化物半導体層に用いたTFTに対して光照射に対する特性劣化を評価しているが、波長420nmの光照射に対する閾値シフト量の絶対値|ΔVth|が2Vを超えてしまう。   Specifically, Non-Patent Document 1 evaluates deterioration in characteristics of a TFT using conventional IGZO as an oxide semiconductor layer with respect to light irradiation, but the absolute value of the threshold shift amount with respect to light irradiation with a wavelength of 420 nm | ΔVth | exceeds 2V.

一方で、ディスプレイの大型化、高精細化に伴い、ディスプレイ駆動用のTFTの更なる高移動度化(例えば20cm/Vs超)が求められており、非特許文献1のような従来のTFT(移動度10cmA/Vs程度)ではカバーできないような高機能ディスプレイも提案されつつある。 On the other hand, with an increase in display size and definition, there has been a demand for higher mobility of display driving TFTs (for example, more than 20 cm 2 / Vs). High-functional displays that cannot be covered with (mobility of about 10 cmA 2 / Vs) are also being proposed.

特許文献1では、電流パス層(キャリア走行層)としての第1の領域がIZOやITOを含んでおり高移動度のTFTは実現可能であるが、光照射特性について言及されていない。   In Patent Document 1, the first region as the current path layer (carrier traveling layer) contains IZO and ITO, and a high mobility TFT can be realized, but the light irradiation characteristic is not mentioned.

また、特許文献2では、電流パス層としての第1の領域がIGZOを含んでいるものの移動度は20cmA/Vsよりも低く、光照射特性については言及されていない。 Moreover, in patent document 2, although the 1st area | region as a current path layer contains IGZO, the mobility is lower than 20 cmA < 2 > / Vs, and the light irradiation characteristic is not mentioned.

本発明は上記事情に鑑みてなされたものであり、20cm/Vs超の高い移動度と、波長420nmの光照射に対して閾値シフト量の絶対値|ΔVth|が2V以下となる高い光安定性と、を両立する電界効果型トランジスタの製造方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and has a high mobility exceeding 20 cm 2 / Vs and a high light stability in which the absolute value | ΔVth | of the threshold shift amount is 2 V or less with respect to light irradiation with a wavelength of 420 nm. An object of the present invention is to provide a method for manufacturing a field-effect transistor that achieves both compatibility.

本発明の上記課題は下記の手段によって解決された。
<1>ゲート電極と、ゲート絶縁膜と、酸化物半導体層と、ソース電極と、ドレイン電極と、を形成するボトムゲート型の電界効果型トランジスタの製造方法であって、前記酸化物半導体層の形成工程として、In、Ga、Zn、Mg、Al、Sn、Sb、Cd、及びGeからなる群より選ばれる少なくとも一種を含む第1の領域を成膜する第1成膜工程と、In、Ga、Zn、Mg、Al、Sn、Sb、Cd、及びGeからなる群より選ばれる少なくとも一種を含み前記第1の領域よりも電気伝導度が小さい第2の領域を、前記第1の領域の表面にスパッタリング法により成膜し、且つ、前記第2の領域の少なくとも成膜開始時の成膜圧力を2.0Pa以上13.0Pa以下に調整する第2成膜工程と、を順に行う電界効果型トランジスタの製造方法。
<2>前記第2成膜工程では、前記成膜開始時の成膜圧力を5.0Pa以上12.0Pa未満に調整する、前記<1>に記載の電界効果型トランジスタの製造方法。
<3>前記第2成膜工程では、前記成膜開始時の成膜圧力を10.0Pa以下に調整する、前記<1>又は前記<2>に記載の電界効果型トランジスタの製造方法。
<4>前記第2成膜工程では、前記成膜開始時の成膜圧力を8.0Pa以下に調整する、前記<3>に記載の電界効果型トランジスタの製造方法。
<5>前記第2成膜工程では、成膜途中で成膜圧力を前記成膜開始時の成膜圧力よりも低い圧力に切り替える、前記<1>〜前記<4>の何れか1つに記載の電界効果型トランジスタの製造方法。
<6>前記第2の領域を最初の5nmの膜厚まで前記成膜開始時の成膜圧力で成膜し、前記第2の領域の残りを1.0Pa未満の成膜圧力で成膜する、前記<5>に記載の電界効果型トランジスタの製造方法。
<7>前記第1の領域の膜厚を、10nm以下とし、前記第2の領域の膜厚を、前記第1の領域の膜厚以上とする、前記<1>〜前記<6>の何れか1つに記載の電界効果型トランジスタの製造方法。
<8>前記第1成膜工程では、前記第1の領域にInとZnとが含まれるように成膜する、前記<1>〜前記<7>の何れか1つに記載の電界効果型トランジスタの製造方法。
<9>前記第1成膜工程及び前記第2成膜工程では、前記第1の領域及び前記第2の領域にInが含まれるように成膜し、且つ、前記第1の領域のIn原子組成比率を、前記第2の領域のIn原子組成比率よりも高くする、前記<1>〜前記<8>の何れか1つに記載の電界効果型トランジスタの製造方法。
<10>前記第1成膜工程及び前記第2成膜工程は、前記第1の領域及び前記第2の領域にGaが含まれるように成膜し、且つ、前記第1の領域のGa原子組成比率を、第2の領域のGa原子組成比率よりも低くする、前記<1>〜前記<9>の何れか1つに記載の電界効果型トランジスタの製造方法。
<11>前記第1成膜工程及び前記第2成膜工程では、スパッタリング法を用いて成膜室内に酸素ガスを含むガスを流しながら前記第1の領域及び前記第2の領域を成膜し、且つ、前記第1成膜工程では、前記第2成膜工程時に流す酸素ガスの流量よりも少ない量の酸素ガスを流す、前記<1>〜前記<10>の何れか1つに記載の電界効果型トランジスタの製造方法。
<12>前記酸化物半導体層の形成工程中、又は前記第2成膜工程の後に、300℃以上600℃以下で熱処理する熱処理工程を有する、前記<8>に記載の電界効果型トランジスタの製造方法。
<13>前記酸化物半導体層の形成工程中、又は前記第2成膜工程の後に、300℃以上450℃未満で熱処理する熱処理工程を有する、<1>〜<11>の何れか1つに記載の電界効果型トランジスタの製造方法。
The above-described problems of the present invention have been solved by the following means.
<1> A method for manufacturing a bottom-gate field effect transistor for forming a gate electrode, a gate insulating film, an oxide semiconductor layer, a source electrode, and a drain electrode, wherein the oxide semiconductor layer includes: As a formation process, a first film formation process for forming a first region including at least one selected from the group consisting of In, Ga, Zn, Mg, Al, Sn, Sb, Cd, and Ge; and In, Ga A second region containing at least one selected from the group consisting of Zn, Mg, Al, Sn, Sb, Cd, and Ge and having a lower electrical conductivity than the first region is a surface of the first region. And a second film forming step of sequentially adjusting a film forming pressure in the second region at least at the start of film formation to 2.0 Pa or more and 13.0 Pa or less. Transistor Manufacturing method.
<2> The method for producing a field effect transistor according to <1>, wherein in the second film formation step, a film formation pressure at the start of the film formation is adjusted to 5.0 Pa or more and less than 12.0 Pa.
<3> The method for manufacturing a field effect transistor according to <1> or <2>, wherein in the second film formation step, a film formation pressure at the start of the film formation is adjusted to 10.0 Pa or less.
<4> The method for producing a field effect transistor according to <3>, wherein in the second film formation step, a film formation pressure at the start of the film formation is adjusted to 8.0 Pa or less.
<5> In the second film-forming step, the film-forming pressure is switched to a pressure lower than the film-forming pressure at the start of film-forming during the film-forming, and any one of <1> to <4> The manufacturing method of the field effect transistor of description.
<6> Forming the second region up to the first film thickness of 5 nm at the film formation pressure at the start of film formation, and depositing the rest of the second region at a film formation pressure of less than 1.0 Pa. The method for producing a field effect transistor according to <5>.
<7> Any one of <1> to <6>, wherein the film thickness of the first region is 10 nm or less, and the film thickness of the second region is greater than or equal to the film thickness of the first region. A method for producing the field effect transistor according to claim 1.
<8> The field effect type according to any one of <1> to <7>, wherein the first film forming step forms the film so that In and Zn are included in the first region. A method for manufacturing a transistor.
<9> In the first film formation step and the second film formation step, the first region and the second region are formed so as to contain In, and the In atoms in the first region The method for producing a field effect transistor according to any one of <1> to <8>, wherein the composition ratio is higher than the In atom composition ratio of the second region.
<10> In the first film formation step and the second film formation step, the first region and the second region are formed such that Ga is contained, and Ga atoms in the first region are formed. The method for producing a field effect transistor according to any one of <1> to <9>, wherein the composition ratio is lower than the Ga atom composition ratio of the second region.
<11> In the first film formation step and the second film formation step, the first region and the second region are formed using a sputtering method while flowing a gas containing oxygen gas into the film formation chamber. And in said 1st film-forming process, oxygen gas of the quantity smaller than the flow volume of the oxygen gas sent at the time of said 2nd film-forming process is flowed, It is any one of said <1>-<10> A method of manufacturing a field effect transistor.
<12> Manufacturing of the field effect transistor according to <8>, including a heat treatment step of performing heat treatment at 300 ° C. to 600 ° C. during the oxide semiconductor layer formation step or after the second film formation step. Method.
<13> Any one of <1> to <11>, including a heat treatment step of performing heat treatment at 300 ° C. or higher and lower than 450 ° C. during the oxide semiconductor layer forming step or after the second film forming step. The manufacturing method of the field effect transistor of description.

本発明によれば、20cm/Vs超の高い移動度と、波長420nmの光照射に対して閾値シフト量の絶対値|ΔVth|が2V以下となる高い光安定性と、を両立する電界効果型トランジスタの製造方法を提供することができる。 According to the present invention, a field effect that achieves both high mobility exceeding 20 cm 2 / Vs and high light stability in which the absolute value | ΔVth | of the threshold shift amount is 2 V or less with respect to light irradiation with a wavelength of 420 nm. A method for manufacturing a type transistor can be provided.

図1(A)は、本発明の実施形態に係るTFTであって、ボトムゲート構造でトップコンタクト型のTFTの一例を示す模式図である。図1(B)は、本発明の実施形態に係るTFTであって、ボトムゲート構造でボトムコンタクト型のTFTの一例を示す模式図である。FIG. 1A is a schematic diagram showing an example of a top contact type TFT having a bottom gate structure, which is a TFT according to an embodiment of the present invention. FIG. 1B is a schematic diagram showing an example of a bottom contact type TFT with a bottom gate structure, which is a TFT according to an embodiment of the present invention. 図2は、本発明の電気光学装置の一実施形態の液晶表示装置について、その一部分の概略断面図である。FIG. 2 is a schematic sectional view of a part of a liquid crystal display device according to an embodiment of the electro-optical device of the invention. 図3は、図2に示す液晶表示装置の電気配線の概略構成図である。FIG. 3 is a schematic configuration diagram of electrical wiring of the liquid crystal display device shown in FIG. 図4は、本発明の電気光学装置の一実施形態のアクティブマトリックス方式の有機EL表示装置について、その一部分の概略断面図である。FIG. 4 is a schematic sectional view of a part of an active matrix organic EL display device according to an embodiment of the electro-optical device of the invention. 図5は、図4に示す電気光学装置の電気配線の概略構成図である。FIG. 5 is a schematic configuration diagram of the electrical wiring of the electro-optical device shown in FIG. 図6は、本発明のセンサの一実施形態であるX線センサについて、その一部分の概略断面図である。FIG. 6 is a schematic sectional view of a part of an X-ray sensor which is an embodiment of the sensor of the present invention. 図7は、図6に示すセンサの電気配線の概略構成図である。FIG. 7 is a schematic configuration diagram of electrical wiring of the sensor shown in FIG. 図8(A)は実施例及び比較例のTFTの平面図であり、図8(B)は図8(A)に示すTFTのA−A線矢視断面図である。FIG. 8A is a plan view of the TFT of the example and the comparative example, and FIG. 8B is a cross-sectional view of the TFT shown in FIG. 図9は、比較例1に係るTFTのモノクロ光照射時のVg−Id特性を示す図である。FIG. 9 is a diagram illustrating the Vg-Id characteristics of the TFT according to the comparative example 1 when irradiated with monochrome light. 図10は、実施例3に係るTFTのモノクロ光照射時のVg−Id特性を示す図である。FIG. 10 is a diagram illustrating the Vg-Id characteristics when the TFT according to Example 3 is irradiated with monochrome light. 図11は、代表的な比較例1に係るTFTと実施例3に係るTFTにおける、光照射波長とΔVthとの関係を示すグラフ図である。FIG. 11 is a graph showing the relationship between the light irradiation wavelength and ΔVth in the TFT according to the representative comparative example 1 and the TFT according to the example 3. 図12は、表1に基づき成膜圧力と閾値シフト量ΔVth(波長420nm時)との関係をプロットしたグラフ図である。FIG. 12 is a graph plotting the relationship between the deposition pressure and the threshold shift amount ΔVth (at a wavelength of 420 nm) based on Table 1.

以下、添付の図面を参照しながら、本発明の実施形態に係る電界効果型トランジスタの製造方法について具体的に説明する。なお、図中、同一又は対応する機能を有する部材(構成要素)には同じ符号を付して適宜説明を省略する。また、以下で説明する場合に位置関係について用いる「上」及び「下」という用語は、便宜的に用いるものであって、方向に拘束されるべきでない。   Hereinafter, a method for manufacturing a field effect transistor according to an embodiment of the present invention will be specifically described with reference to the accompanying drawings. In the drawings, members (components) having the same or corresponding functions are denoted by the same reference numerals and description thereof is omitted as appropriate. In addition, the terms “upper” and “lower” used for the positional relationship in the following description are used for convenience and should not be constrained in the direction.

1.電界効果型トランジスタの構成
まず、本発明の実施形態に係る電界効果型トランジスタの製造方法を説明する前に、当該製造方法によって作製される電界効果型トランジスタの構成について概略を説明する。なお、本発明の実施形態に係る電界効果型トランジスタとして、TFTを一例に挙げる。
本発明の実施形態に係るTFTは、ゲート電極、ゲート絶縁膜、酸化物半導体層(活性層)、ソース電極及びドレイン電極を有し、ゲート電極に電圧を印加して、酸化物半導体層に流れる電流を制御し、ソース電極とドレイン電極間の電流をスイッチングする機能を有するアクテイブ素子である。そして、本発明の実施形態に係るTFTではさらに、酸化物半導体層が、膜厚方向に第1の領域と、当該第1の領域よりもゲート電極から遠い側に配置された第2の領域を備えている。なお、本実施形態のTFTにおいては、第1の領域と第2の領域間に電極層等の酸化物半導体層以外の層は挿入されない。
1. Configuration of Field Effect Transistor Before describing a method for manufacturing a field effect transistor according to an embodiment of the present invention, an outline of a configuration of a field effect transistor manufactured by the manufacturing method will be described. An example of a field effect transistor according to an embodiment of the present invention is a TFT.
A TFT according to an embodiment of the present invention includes a gate electrode, a gate insulating film, an oxide semiconductor layer (active layer), a source electrode, and a drain electrode, and applies a voltage to the gate electrode to flow through the oxide semiconductor layer. It is an active element having a function of controlling current and switching current between a source electrode and a drain electrode. In the TFT according to the embodiment of the present invention, the oxide semiconductor layer further includes a first region in the film thickness direction and a second region disposed on the side farther from the gate electrode than the first region. I have. In the TFT of this embodiment, no layer other than the oxide semiconductor layer such as an electrode layer is inserted between the first region and the second region.

TFTの素子構造としては、ゲート電極の位置に基づいた、いわゆる逆スタガ構造(ボトムゲート型とも呼ばれる)及びスタガ構造(トップゲート型とも呼ばれる)の態様があるが、本実施形態では、ボトムゲート型のTFTを用いる。
ただしボトムゲート型のTFTにも、酸化物半導体層とソース電極及びドレイン電極(適宜、「ソース・ドレイン電極」という。)との接触部分に基づき、いわゆるトップコンタクト型、ボトムコンタクト型の2つの態様があるが、いずれの態様であってもよい。
なお、トップゲート構造とは、ゲート絶縁膜の上側にゲート電極が配置され、ゲート絶縁膜の下側に酸化物半導体層が形成された形態であり、ボトムゲート構造とは、ゲート絶縁膜の下側にゲート電極が配置され、ゲート絶縁膜の上側に酸化物半導体層が形成された形態である。また、ボトムコンタクト型とは、ソース・ドレイン電極が酸化物半導体層よりも先に形成されて酸化物半導体層の下面がソース・ドレイン電極に接触する形態であり、トップコンタクト型とは、酸化物半導体層がソース・ドレイン電極よりも先に形成されて酸化物半導体層の上面がソース・ドレイン電極に接触する形態である。
The TFT element structure includes a so-called reverse stagger structure (also referred to as a bottom gate type) and a stagger structure (also referred to as a top gate type) based on the position of the gate electrode. In this embodiment, the bottom gate type is used. TFT is used.
However, a bottom-gate TFT also has two modes, a so-called top contact type and a bottom contact type, based on contact portions between the oxide semiconductor layer and the source and drain electrodes (referred to as “source / drain electrodes” as appropriate). However, any embodiment may be used.
Note that the top gate structure is a form in which a gate electrode is disposed on the upper side of the gate insulating film and an oxide semiconductor layer is formed on the lower side of the gate insulating film. The gate electrode is disposed on the side, and the oxide semiconductor layer is formed on the upper side of the gate insulating film. The bottom contact type is a form in which the source / drain electrodes are formed before the oxide semiconductor layer and the lower surface of the oxide semiconductor layer is in contact with the source / drain electrodes. The top contact type is an oxide In this embodiment, the semiconductor layer is formed before the source / drain electrodes, and the upper surface of the oxide semiconductor layer is in contact with the source / drain electrodes.

図1(A)は、本発明の実施形態に係るTFTであって、ボトムゲート型でトップコンタクト型のTFTの一例を示す模式図である。図1(A)に示すTFT10では、基板12の厚み方向の一面にゲート電極14と、ゲート絶縁膜16と、酸化物半導体層18の第1の領域18Aと、酸化物半導体層18の第2の領域18Bと、が順に積層されている。そして、この第2の領域18B上(の表面)にソース電極20及びドレイン電極22が互いに離間して設置されている。   FIG. 1A is a schematic diagram showing an example of a bottom gate type top contact type TFT according to an embodiment of the present invention. In the TFT 10 illustrated in FIG. 1A, the gate electrode 14, the gate insulating film 16, the first region 18 </ b> A of the oxide semiconductor layer 18, and the second region of the oxide semiconductor layer 18 are formed on one surface in the thickness direction of the substrate 12. The regions 18B are sequentially stacked. The source electrode 20 and the drain electrode 22 are spaced apart from each other on (on the surface of) the second region 18B.

図1(B)は、本発明の実施形態に係るTFTであって、ボトムゲート型でボトムコンタクト型のTFTの一例を示す模式図である。図1(B)に示すTFT30では、基板12の厚み方向の一面にゲート電極14と、ゲート絶縁膜16と、が順に積層されている。そして、このゲート絶縁膜16の表面にソース電極20及びドレイン電極22が互いに離間して設置され、更にこれらの上(表面)に、酸化物半導体層18の第1の領域18Aと、酸化物半導体層18の第2の領域18Bと、が順に積層されている。   FIG. 1B is a schematic diagram illustrating an example of a bottom-gate and bottom-contact TFT according to an embodiment of the present invention. In the TFT 30 illustrated in FIG. 1B, the gate electrode 14 and the gate insulating film 16 are sequentially stacked on one surface of the substrate 12 in the thickness direction. Further, the source electrode 20 and the drain electrode 22 are disposed on the surface of the gate insulating film 16 so as to be separated from each other, and further on the (surface) thereof, the first region 18A of the oxide semiconductor layer 18 and the oxide semiconductor The second region 18B of the layer 18 is sequentially stacked.

なお、本実施形態に係るTFTは、上記以外にも、様々な構成をとることが可能であり、適宜、酸化物半導体層上に保護層や基板上に絶縁層等を備える構成であってもよい。
また、第1の領域18Aと第2の領域18Bとの区別は、酸化物半導体層18の断面TEM(Transmission Electron Microscope)分析によるコントラストの違いで区別したりICP(Inductively Coupled Plasma)発光分析装置や蛍光X線分析装置による組成や組成比の違いで区別したりすることができる。
Note that the TFT according to this embodiment can have various configurations other than the above, and may have a configuration including a protective layer over an oxide semiconductor layer, an insulating layer over a substrate, and the like as appropriate. Good.
Further, the first region 18A and the second region 18B are distinguished from each other by a difference in contrast by a cross-sectional TEM (Transmission Electron Microscope) analysis of the oxide semiconductor layer 18, an ICP (Inductively Coupled Plasma) emission analyzer, It can be distinguished by the difference in composition and composition ratio by the fluorescent X-ray analyzer.

2.電界効果型トランジスタの製造方法
以上説明したボトムゲート型の電界効果型トランジスタ(TFT10やTFT30)の製造方法は、酸化物半導体層18の形成工程として、In、Ga、Zn、Mg、Al、Sn、Sb、Cd、及びGeからなる群より選ばれる少なくとも一種を含む第1の領域18Aを成膜する第1成膜工程と、In、Ga、Zn、Mg、Al、Sn、Sb、Cd、及びGeからなる群より選ばれる少なくとも一種を含み第1の領域18Aよりも電気伝導度が小さい第2の領域18Bを、第1の領域18Aの表面にスパッタリング法により成膜し、且つ、第2の領域18Bの少なくとも成膜開始時の成膜圧力を2.0Pa以上13.0Pa以下に調整する第2成膜工程と、を順に行う製造方法である。
このような製造方法によれば、第1の領域18Aと当該第1の領域よりも電気伝導度が小さい第2の領域18Bの積層構造を用いることで、第1の領域18Aが所謂「キャリア走行層」となり、第2の領域18Bは、所謂「抵抗層」となる。
そして、「キャリア走行層」となる第1の領域18Aは、「抵抗層」となる第2の領域18Bよりも、成膜時に受けるダメージ(例えばプラズマダメージ)により生じた欠陥がTFT特性、特に光照射特性に与える影響が大きいものと考えられる。
本実施形態では、第2成膜工程の少なくとも成膜開始時において、第1成膜工程により成膜した第1の領域18Aの表面に、2.0Pa以上13.0Pa以下に調整した成膜圧力で第2の領域18Bを成膜するため、第1の領域18Aの表面に成膜ダメージ(例えばプラズマダメージ)を与えることを低減することができる。この結果、20cm/Vs超の高い移動度と、波長420nmの光照射に対して閾値シフト量の絶対値|ΔVth|が2V以下となる高い光安定性と、を両立することができる。
高い移動度で且つ高い光安定性を有しているということは、本実施形態のTFT10や30は、大面積、高精細な透明ディスプレイの駆動用TFTに好適に用いることが出来ることを意味する。又、有機ELやLCD駆動用TFTにおいて光を遮断する層を設ける必要がなく、製造コストを大幅に低減させることが可能となる。
2. Manufacturing Method of Field Effect Transistor The manufacturing method of the bottom gate type field effect transistor (TFT 10 or TFT 30) described above includes the steps of forming the oxide semiconductor layer 18 as In, Ga, Zn, Mg, Al, Sn, A first film forming step of forming a first region 18A including at least one selected from the group consisting of Sb, Cd, and Ge; and In, Ga, Zn, Mg, Al, Sn, Sb, Cd, and Ge A second region 18B that includes at least one selected from the group consisting of and having a lower electrical conductivity than the first region 18A is formed on the surface of the first region 18A by sputtering, and the second region In this manufacturing method, at least a second film forming step of adjusting a film forming pressure at the start of film formation of 18B to 2.0 Pa or more and 13.0 Pa or less is performed.
According to such a manufacturing method, by using a stacked structure of the first region 18A and the second region 18B having electric conductivity smaller than that of the first region, the first region 18A is so-called “carrier traveling”. The second region 18B becomes a so-called “resistance layer”.
The first region 18A serving as the “carrier traveling layer” has TFT characteristics, in particular, light defects caused by damage (for example, plasma damage) received during film formation, as compared with the second region 18B serving as the “resistance layer”. The effect on the irradiation characteristics is considered to be large.
In the present embodiment, at least at the start of film formation in the second film formation process, the film formation pressure adjusted to 2.0 Pa or more and 13.0 Pa or less on the surface of the first region 18A formed by the first film formation process. Thus, since the second region 18B is formed, it is possible to reduce film formation damage (for example, plasma damage) on the surface of the first region 18A. As a result, it is possible to achieve both high mobility exceeding 20 cm 2 / Vs and high light stability in which the absolute value | ΔVth | of the threshold shift amount is 2 V or less with respect to light irradiation with a wavelength of 420 nm.
The high mobility and high light stability means that the TFTs 10 and 30 of this embodiment can be suitably used for driving TFTs for large-area, high-definition transparent displays. . Further, it is not necessary to provide a light blocking layer in the organic EL or LCD driving TFT, and the manufacturing cost can be greatly reduced.

なお、「電気伝導度」とは、物質の電気伝導のしやすさを表す物性値であり、物質のキャリア濃度n、電気素量をe、キャリア移動度μとするとdrudeモデルを仮定した場合、物質の電気伝導度σは以下の式で表される。
σ=neμ
第1の領域18A、又は第2の領域18Bがn型半導体である時キャリアは電子であり、キャリア濃度とは電子キャリア濃度を、キャリア移動度とは電子移動度を示す。同様に第1の領域18A、又は第2の領域18Bがp型半導体ではキャリアは正孔であり、キャリア濃度とは、正孔キャリア濃度を、キャリア移動度とは正孔移動度を示す。尚、物質のキャリア濃度とキャリア移動度は、ホール測定により求めることができる。
電気伝導度の求め方は、厚みが分かっている膜のシート抵抗を測定することにより、膜の電気伝導度を求めることができる。半導体の電気伝導度は温度より変化するが、本文記載の電気伝導度は、室温(20℃)での電気伝導度を示す。
また、「成膜圧力」とはスパッタ装置成膜室の成膜時圧力を指す。
また、「プラズマダメージ」とは、成膜時に導入されたアルゴンガス、酸素ガス(電界印加によるイオン化)イオンによる物理的ダメージであり、アルゴンイオンの方が酸素イオンより質量が大きいため、影響が大きい。
“Electrical conductivity” is a physical property value that represents the ease of electrical conduction of a substance. When a drug model is assumed where the carrier concentration n of the substance is e, the elementary charge is e, and the carrier mobility is μ, The electrical conductivity σ of the substance is expressed by the following formula.
σ = neμ
When the first region 18A or the second region 18B is an n-type semiconductor, the carriers are electrons, the carrier concentration indicates the electron carrier concentration, and the carrier mobility indicates the electron mobility. Similarly, in the case where the first region 18A or the second region 18B is a p-type semiconductor, the carriers are holes, the carrier concentration indicates the hole carrier concentration, and the carrier mobility indicates the hole mobility. The carrier concentration and carrier mobility of the substance can be obtained by Hall measurement.
The electrical conductivity can be determined by measuring the sheet resistance of the film whose thickness is known. Although the electrical conductivity of a semiconductor varies with temperature, the electrical conductivity described in the text indicates the electrical conductivity at room temperature (20 ° C.).
The “film formation pressure” refers to the pressure during film formation in the film formation chamber of the sputtering apparatus.
“Plasma damage” is physical damage caused by argon gas and oxygen gas (ionization by applying an electric field) ions introduced during film formation, and the influence of argon ions is greater because they have a larger mass than oxygen ions. .

以上のような電界効果型トランジスタの製造方法について、代表例として図1(A)に示すボトムゲート型でトップコンタクト型のTFT10の製造方法について具体的に説明するが、ボトムゲート型でボトムコンタクト型のTFT30の製造方法についても同様の方法を適用することができる。   As a representative example of the manufacturing method of the field effect transistor as described above, a manufacturing method of the bottom gate type top contact type TFT 10 shown in FIG. 1A will be specifically described. The same method can be applied to the manufacturing method of the TFT 30.

−ゲート電極14の形成工程−
まず、図1(A)に示すように、TFT10を形成するための基板12を用意した後、基板12の厚み方向の一方の主面上に、ゲート電極14を形成する、ゲート電極14の形成工程を行う。
用意する基板12の形状、構造、大きさ等については特に制限はなく、目的に応じて適宜選択することができる。基板12の構造は単層構造であってもよいし、積層構造であってもよい。基板12としては、例えば、ガラスやYSZ(イットリウム安定化ジルコニウム)、Si等の無機材料、ポリエチレンテレフタレートやポリエチレンナフタレート、ポリイミド等の樹脂、或いは粘土鉱物や雲母派生結晶構造を有する粒子との複合プラスチック材料等の樹脂複合材料等からなる基板を用いることができる。中でも軽量である点、可撓性を有する点から樹脂あるいは樹脂複合材料からなる基板が好ましい。なお、樹脂基板は、水分や酸素の透過を防止するためのガスバリア層や、樹脂基板の平坦性や下部電極との密着性を向上するためのアンダーコート層等を備えていてもよい。
-Step of forming gate electrode 14-
First, as shown in FIG. 1A, after preparing a substrate 12 for forming the TFT 10, the gate electrode 14 is formed on one main surface in the thickness direction of the substrate 12. Perform the process.
There is no restriction | limiting in particular about the shape of the board | substrate 12 to prepare, a structure, a magnitude | size, etc., It can select suitably according to the objective. The structure of the substrate 12 may be a single layer structure or a laminated structure. As the substrate 12, for example, glass, YSZ (yttrium stabilized zirconium), inorganic materials such as Si, resin such as polyethylene terephthalate, polyethylene naphthalate, polyimide, or composite plastic with clay mineral or particles having a mica-derived crystal structure A substrate made of a resin composite material such as a material can be used. Among these, a substrate made of a resin or a resin composite material is preferable in terms of light weight and flexibility. Note that the resin substrate may include a gas barrier layer for preventing permeation of moisture and oxygen, an undercoat layer for improving the flatness of the resin substrate and adhesion to the lower electrode, and the like.

そして、ゲート電極14の形成では、まず例えば印刷方式、コーティング方式等の湿式方式、真空蒸着法、スパッタリング法、イオンプレーティング法等の物理的方式、CVD、プラズマCVD法等の化学的方式等の中から使用する材料との適性を考慮して適宜選択した方法に従って導電膜を成膜する。成膜後、導電膜をフォトリソグラフィー及びエッチング法又はリフトオフ法等により所定の形状にパターンニングすることにより、導電膜からゲート電極14を形成する。この際、ゲート電極14及びゲート配線を同時にパターンニングすることが好ましい。
ゲート電極14を構成する導電膜は、高い導電性を有するものを用いることが好ましく、例えばAl、Mo、Cr、Ta、Ti、Au、Au等の金属、Al−Nd、Ag合金、酸化錫、酸化亜鉛、酸化インジウム、酸化インジウム錫(ITO)、酸化亜鉛インジウム(IZO)等の金属酸化物導電膜等を単層または2層以上の積層構造として用いることができる。
In forming the gate electrode 14, first, for example, a wet method such as a printing method or a coating method, a physical method such as a vacuum deposition method, a sputtering method, or an ion plating method, a chemical method such as a CVD method or a plasma CVD method, or the like. A conductive film is formed according to a method appropriately selected in consideration of suitability with the material to be used. After film formation, the gate electrode 14 is formed from the conductive film by patterning the conductive film into a predetermined shape by photolithography, an etching method, a lift-off method, or the like. At this time, it is preferable to pattern the gate electrode 14 and the gate wiring simultaneously.
The conductive film constituting the gate electrode 14 is preferably a conductive film having high conductivity, for example, a metal such as Al, Mo, Cr, Ta, Ti, Au, Au, Al—Nd, Ag alloy, tin oxide, A metal oxide conductive film such as zinc oxide, indium oxide, indium tin oxide (ITO), or indium zinc oxide (IZO) can be used as a single layer or a stacked structure of two or more layers.

−ゲート絶縁膜16の形成工程−
ゲート電極14を形成した後は、当該ゲート電極14上及び基板12の露出面上にゲート絶縁膜16を形成する、ゲート絶縁膜16の形成工程を行う。
ゲート絶縁膜16の形成では、ゲート電極14の形成方法と同一の形成方法を用いることができる。
ゲート絶縁膜16を構成する絶縁膜は、高い絶縁性を有するものが好ましく、例えばSiO、SiNx、SiON、Al、Y、Ta、HfO等の絶縁膜、又はこれらの化合物を少なくとも二つ以上含む絶縁膜としてもよい。
—Process for Forming Gate Insulating Film 16—
After the gate electrode 14 is formed, a step of forming the gate insulating film 16 is performed in which the gate insulating film 16 is formed on the gate electrode 14 and the exposed surface of the substrate 12.
In forming the gate insulating film 16, the same formation method as the formation method of the gate electrode 14 can be used.
The insulating film constituting the gate insulating film 16 is preferably highly insulating, for example, an insulating film such as SiO 2 , SiNx, SiON, Al 2 O 3 , Y 2 O 3 , Ta 2 O 5 , HfO 2 , Alternatively, an insulating film including at least two of these compounds may be used.

−酸化物半導体層18の形成工程−
ゲート絶縁膜16を形成した後は、当該ゲート絶縁膜16の表面に酸化物半導体層18を形成する、酸化物半導体層18の形成工程を行う。
Oxide Semiconductor Layer 18 Formation Step—
After the gate insulating film 16 is formed, an oxide semiconductor layer 18 forming step is performed in which the oxide semiconductor layer 18 is formed on the surface of the gate insulating film 16.

この形成工程において、酸化物半導体層18は、非晶質膜又は結晶質膜のいずれに形成してもよい。ただし、非晶質膜の場合には、低温で成膜可能であるために、可撓性のある基板12上に好適に形成される。また、非晶質膜の場合には、結晶粒界が存在せず、均一性の高い膜が得られる。なお、酸化物半導体層18が非晶質膜であるかどうかは、X線回折測定により確認することができる。即ち、X線回折測定により、結晶構造を示す明確なピークが検出されなかった場合は、その酸化物半導体層18は非晶質膜であると判断することができる。   In this formation step, the oxide semiconductor layer 18 may be formed of either an amorphous film or a crystalline film. However, in the case of an amorphous film, since it can be formed at a low temperature, it is preferably formed on the flexible substrate 12. In the case of an amorphous film, a crystal grain boundary does not exist and a highly uniform film can be obtained. Note that whether or not the oxide semiconductor layer 18 is an amorphous film can be confirmed by X-ray diffraction measurement. That is, when a clear peak indicating a crystal structure is not detected by X-ray diffraction measurement, the oxide semiconductor layer 18 can be determined to be an amorphous film.

酸化物半導体層18における第1の領域18Aと第2の領域18Bを含めた膜厚(総膜厚)は、特に限定されないが、膜の均一性の実現、及び酸化物半導体層18中のトータルのキャリア濃度を調整し易いという観点から10nm以上200nm以下とすることが好ましい。   The film thickness (total film thickness) including the first region 18A and the second region 18B in the oxide semiconductor layer 18 is not particularly limited, but it is possible to realize film uniformity and the total in the oxide semiconductor layer 18. From the viewpoint of easy adjustment of the carrier concentration, it is preferable that the carrier concentration is 10 nm or more and 200 nm or less.

この酸化物半導体層18の形成工程では、第1成膜工程と第2成膜工程とを順に行う。なお、第1成膜工程と第2成膜工程との間に、パターニング処理や熱処理等の中間処理工程を行ってもよい。   In the formation process of the oxide semiconductor layer 18, the first film formation process and the second film formation process are sequentially performed. In addition, you may perform intermediate processing processes, such as a patterning process and heat processing, between a 1st film-forming process and a 2nd film-forming process.

−第1成膜工程−
第1成膜工程では、In、Ga、Zn、Mg、Al、Sn、Sb、Cd、及びGeからなる群より選ばれる少なくとも一種を含む(例えばIn−Ga−Zn−O、In−Zn−O、In−Ga−O、In−Sn−O、In−Sn−Zn−O、In−Ga−Sn−OやIn−O等)第1の領域18Aを成膜する。
-First film formation process-
The first film formation step includes at least one selected from the group consisting of In, Ga, Zn, Mg, Al, Sn, Sb, Cd, and Ge (for example, In—Ga—Zn—O, In—Zn—O). In-Ga-O, In-Sn-O, In-Sn-Zn-O, In-Ga-Sn-O, In-O, etc.) a first region 18A is formed.

第1の領域18Aの成膜方法としては、例えば印刷方式やコーティング方式等の湿式方式、真空蒸着法やスパッタリング法、イオンプレーティング法等の物理的方式、CVDやプラズマCVD法等の化学的方式が挙げられる。これらの中でも、膜厚の制御がし易いという観点から、真空蒸着法、スパッタリング法、イオンプレーティング法、CVD又はプラズマCVD法等の気相成膜法を用いるのが好ましい。気相成膜法の中でも、スパッタリング法、パルスレーザー蒸着法(PLD法)がより好ましい。さらに、量産性の観点から、スパッタリング法がさらに好ましい。
スパッタリング法の場合、特に投入電力としてはDC/RFに特に限定されない。またスパッタリング法においては組成調整したシングルターゲットでの成膜や複数ターゲットを用いた共スパッタでの成膜も可能で有るが、好ましくはシングルターゲットがよい。共スパッタの場合にはDC/RF双方を使用する。例えばIGZO系の場合にはInとZnOはDCスパッタとし、GaはRFスパッタとする。また、得られる膜の導電率を制御するために、成膜時の成膜室内の酸素分圧は任意に制御する。成膜室内の酸素分圧を制御する手法としては、成膜室内に導入するOガス量を変化させる方法であってもよく、酸素ラジカルやオゾンガスの導入量を変化させる方法であってもよい。酸素ガス導入を停止させた場合でも抵抗が高い場合には、HやN等の還元性ガスを導入してもよい。酸素ラジカルを用いる場合には、成膜圧力と平均自由工程の関係にて、成膜基板に直接噴射する方が効果大である。
As a film formation method for the first region 18A, for example, a wet method such as a printing method or a coating method, a physical method such as a vacuum deposition method, a sputtering method, or an ion plating method, or a chemical method such as CVD or plasma CVD method. Is mentioned. Among these, it is preferable to use a vapor deposition method such as a vacuum deposition method, a sputtering method, an ion plating method, a CVD method or a plasma CVD method from the viewpoint of easy control of the film thickness. Among vapor phase film forming methods, sputtering method and pulsed laser deposition method (PLD method) are more preferable. Furthermore, the sputtering method is more preferable from the viewpoint of mass productivity.
In the case of the sputtering method, the input power is not particularly limited to DC / RF. In the sputtering method, film formation with a single target whose composition is adjusted and film formation by co-sputtering using a plurality of targets are possible, but a single target is preferable. In the case of co-sputtering, both DC / RF are used. For example, in the case of the IGZO system, In 2 O 3 and ZnO are DC sputtering, and Ga 2 O 3 is RF sputtering. Further, in order to control the conductivity of the obtained film, the oxygen partial pressure in the film formation chamber at the time of film formation is arbitrarily controlled. As a method for controlling the oxygen partial pressure in the film formation chamber, a method of changing the amount of O 2 gas introduced into the film formation chamber may be used, or a method of changing the introduction amount of oxygen radicals or ozone gas may be used. . If resistance is high even when the introduction of oxygen gas is stopped, a reducing gas such as H 2 or N 2 may be introduced. In the case where oxygen radicals are used, it is more effective to inject directly onto the film formation substrate in relation to the film formation pressure and the mean free process.

また、この第1成膜工程では、In、Ga、Sn、Zn、及びCdのうち少なくとも一種が含まれるように成膜することが好ましく、In、Sn、Zn及びGaのうち少なくとも一種が含まれるように成膜することが好ましく、In、Ga及びZnのうちの少なくとも1種が含まれるように成膜(例えばIn−O系)することが好ましい。さらに、少なくともInが含まれるように成膜することが好ましい。   In the first film formation step, it is preferable to form a film so that at least one of In, Ga, Sn, Zn, and Cd is included, and at least one of In, Sn, Zn, and Ga is included. It is preferable to form a film so that at least one of In, Ga, and Zn is included (for example, an In—O system). Further, it is preferable to form a film so that at least In is contained.

特に、第1成膜工程及び後述の第2成膜工程では、第1の領域18A及び第2の領域18BにInが含まれるように成膜し、且つ、第1の領域18AのIn原子組成比率を、第2の領域18BのIn原子組成比率よりも高くすることが好ましい。第1の領域18AのIn組成比率を高くすることで相対的に電子親和力が増大する傾向が得られ、第1の領域18Aに伝導キャリアが集中しやすくなるからである。また、In含有率を増大させた方が伝導キャリア濃度を増大させることが容易になるため、高いキャリア移動度を得やすくなるからである。
上記同一の観点から、第1成膜工程及び後述の第2成膜工程は、第1の領域18A及び第2の領域18BにGaが含まれるように成膜し、且つ、第1の領域18AのGa原子組成比率を、第2の領域18BのGa原子組成比率よりも低くすることが好ましい。
上記同一の観点から、第1成膜工程及び後述の第2成膜工程では、スパッタリング法を用いて成膜室内に酸素を含むガスを流しながら第1の領域18A及び第2の領域18Bを成膜し、且つ、第1成膜工程では、第2成膜工程時に流す酸素ガスの流量よりも少ない量の酸素ガスを流すことが好ましい。
なお、上記組成や組成比、膜厚については、蛍光X線分析装置で確認することができる。
In particular, in the first film formation step and the second film formation step described later, the first region 18A and the second region 18B are formed so as to contain In, and the In atom composition in the first region 18A. The ratio is preferably higher than the In atom composition ratio of the second region 18B. This is because by increasing the In composition ratio of the first region 18A, a tendency that the electron affinity is relatively increased is obtained, and the conduction carriers are easily concentrated in the first region 18A. In addition, it is easier to obtain a high carrier mobility because increasing the In content makes it easier to increase the conductive carrier concentration.
From the same point of view, in the first film formation step and the second film formation step described later, the first region 18A and the second region 18B are formed so as to contain Ga, and the first region 18A is formed. It is preferable that the Ga atom composition ratio is lower than the Ga atom composition ratio of the second region 18B.
From the same point of view, in the first film formation step and the second film formation step described later, the first region 18A and the second region 18B are formed while flowing a gas containing oxygen into the film formation chamber using a sputtering method. In the first film formation step, it is preferable to flow an oxygen gas in an amount smaller than the flow rate of the oxygen gas that flows during the second film formation step.
In addition, about the said composition, a composition ratio, and a film thickness, it can confirm with a fluorescent X ray analyzer.

また、第1成膜工程では、第1の領域18AにIn、Ga、Zn、Mg、Al、Sn、Sb、Cd、及びGeからなる群より選ばれる少なくとも二種が含まれるように成膜することが好ましく(例えばIn−Zn−O系、In−Ga−O系、Ga−Zn−O系)、特に波長420nmの光照射に対して閾値シフト量を顕著に抑制できるという観点から、第1の領域18AにInとZnとが含まれるように成膜することが好ましい。   In the first film formation step, the first region 18A is formed so as to include at least two selected from the group consisting of In, Ga, Zn, Mg, Al, Sn, Sb, Cd, and Ge. It is preferable (for example, In—Zn—O system, In—Ga—O system, Ga—Zn—O system), and in particular, from the viewpoint that the threshold shift amount can be remarkably suppressed with respect to light irradiation with a wavelength of 420 nm. It is preferable to form a film so that In and Zn are contained in the region 18A.

さらにまた、第1成膜工程では、第1の領域18AにIn、Ga(又はSn)及びZnが全て含まれるように成膜することが好ましい。すなわち、第1の領域18Aの組成は、In(a)Ga(b)Zn(c)(d)(a,b,c,d>0)が含まれることが好ましい。
特に、第1の領域18Aは、InとGa(又はSn)とZnとOとを主たる構成元素としていることが好ましい。なお、「主たる構成元素」とは、第1の領域18Aの全構成元素に対するInとGa(又はSn)とZnとOとの組成割合が全体の98%以上であることを意味するものとする。したがって、第1の領域18Aには後述するようなMg等の他の元素も含んでいてもよい。
Furthermore, in the first film formation step, it is preferable to form a film so that the first region 18A contains all of In, Ga (or Sn), and Zn. That is, the composition of the first region 18A preferably includes In (a) Ga (b) Zn (c) O (d) (a, b, c, d> 0).
In particular, the first region 18A preferably includes In, Ga (or Sn), Zn, and O as main constituent elements. The “main constituent element” means that the composition ratio of In, Ga (or Sn), Zn, and O with respect to all the constituent elements in the first region 18A is 98% or more of the whole. . Accordingly, the first region 18A may also contain other elements such as Mg as described later.

また、第1成膜工程では、第1の領域18Aの膜厚が10nm以下となるように成膜することが好ましい。第1の領域18Aは、上述したように高移動度化を実現しやすいIZOや極めてIn−richなIGZO膜を用いることが好ましいが、このような高移動度膜はキャリア濃度が高いためにピンチオフが比較的難しく、閾値が大きくマイナス側にシフトする可能性がある。したがって、第1の領域18Aの膜厚を10nm以下とすることで、酸化物半導体層18におけるトータルのキャリア濃度が過剰な状態となってピンチオフが困難となることを回避することができる。   In the first film formation step, it is preferable to form the film so that the film thickness of the first region 18A is 10 nm or less. As described above, the first region 18A is preferably made of IZO or an extremely in-rich IGZO film that can easily achieve high mobility as described above. However, since such a high mobility film has a high carrier concentration, it is pinched off. Is relatively difficult, and the threshold value may be greatly shifted to the negative side. Therefore, by setting the film thickness of the first region 18A to 10 nm or less, it is possible to avoid that the total carrier concentration in the oxide semiconductor layer 18 becomes excessive and pinch-off is difficult.

第1の領域18Aの電気伝導度は、好ましくは、10−6Scm−1以上10Scm−1未満とする。より好ましくは10−4Scm−1以上10Scm−1未満とし、さらに好ましくは10−1Scm−1以上10Scm−1未満とする。 The electrical conductivity of the first region 18A is preferably 10 −6 Scm −1 or more and less than 10 2 Scm −1 . More preferably, it is 10 −4 Scm −1 or more and less than 10 2 Scm −1 , and further preferably 10 −1 Scm −1 or more and less than 10 2 Scm −1 .

−第2成膜工程−
第2成膜工程では、In、Ga、Zn、Mg、Al、Sn、Sb、Cd、及びGeからなる群より選ばれる少なくとも一種を含み第1の領域18Aよりも電気伝導度が小さい第2の領域18Bを、第1の領域18Aの表面にスパッタリング法により成膜し、且つ、第2の領域18Bの少なくとも成膜開始時の成膜圧力を2.0Pa以上13.0Pa以下に調整する。
-Second film formation process-
In the second film formation step, the second film having at least one selected from the group consisting of In, Ga, Zn, Mg, Al, Sn, Sb, Cd, and Ge and having lower electrical conductivity than the first region 18A. The region 18B is formed on the surface of the first region 18A by a sputtering method, and the film formation pressure at least at the start of film formation in the second region 18B is adjusted to 2.0 Pa or more and 13.0 Pa or less.

第2成膜工程における第2の領域18Bの成膜方法は、第1成膜工程とは異なり、スパッタリング法を用いることを前提とする。スパッタリング法の好ましい条件などは、第1成膜工程で詳述した条件と同一である。生産性の向上の観点や不純物の混入抑制、第1成膜工程と第2成膜工程の成膜を連続してスパッタリング成膜することが好ましい。   Unlike the first film forming process, the film forming method of the second region 18B in the second film forming process is premised on using a sputtering method. The preferable conditions for the sputtering method are the same as those described in detail in the first film formation step. It is preferable to perform sputtering film formation in succession from the viewpoint of improving productivity, suppression of impurity contamination, and film formation in the first film formation process and the second film formation process.

第2成膜工程における成膜開始時の成膜圧力は、5.0Pa以上12.0Pa未満であることが好ましい。波長420nmの光照射に対して閾値シフト量の絶対値|ΔVth|が1V以下となるからである。また、成膜開始時の成膜圧力を5.0Pa以上に調整すると、波長420nmの光照射に対する閾値シフト量の成膜圧力依存性を緩和することができるからである。すなわち、成膜圧力が5.0Pa以上であれば、成膜圧力が仮に変動したとしても、閾値シフト量の変動を抑制することができるからである。
また、第2成膜工程における成膜開始時の成膜圧力は、10.0Pa以下に調整することが好ましい。成膜圧力が10.0Pa以下の範囲内で成膜圧力が仮に変動したとしても、閾値シフト量の変動を抑制することができるからである。
The film formation pressure at the start of film formation in the second film formation step is preferably 5.0 Pa or more and less than 12.0 Pa. This is because the absolute value | ΔVth | of the threshold shift amount is 1 V or less with respect to light irradiation with a wavelength of 420 nm. In addition, when the film formation pressure at the start of film formation is adjusted to 5.0 Pa or more, the dependency of the threshold shift amount on the light irradiation with a wavelength of 420 nm can be relaxed. That is, if the film forming pressure is 5.0 Pa or more, even if the film forming pressure fluctuates, fluctuations in the threshold shift amount can be suppressed.
Moreover, it is preferable to adjust the film formation pressure at the start of film formation in the second film formation step to 10.0 Pa or less. This is because even if the deposition pressure fluctuates within the range of 10.0 Pa or less, fluctuations in the threshold shift amount can be suppressed.

さらに、第2成膜工程における成膜開始時の成膜圧力を8.0Pa以下に調整することが好ましい。成膜速度が極端に落ちることを抑制できるからである。なお、成膜圧力と成膜速度との関係は、成膜圧力が概1Pa以上から高くなるにつれて成膜速度が落ちるという関係がある。   Furthermore, it is preferable to adjust the film formation pressure at the start of film formation in the second film formation step to 8.0 Pa or less. It is because it can suppress that the film-forming speed falls extremely. The relationship between the deposition pressure and the deposition rate is such that the deposition rate decreases as the deposition pressure increases from approximately 1 Pa or higher.

また、第2成膜工程では、成膜時間を短縮するという観点から、成膜途中で成膜圧力を成膜開始時の成膜圧力よりも低い圧力に切り替えることが好ましい。具体的に、第2の領域18Bを最初の5nmまで成膜開始時の成膜圧力で成膜し、第2の領域18Bの残りを1.0Pa未満の成膜圧力で成膜する。
これにより、成膜開始時では、成膜圧力を2.0Pa以上13.0Pa以下に調整して第1の領域18Aへのプラズマダメージを抑えながらゆっくりと第2の領域18Bを成膜し、成膜途中からは、第1の領域18Aの表面に既に第2の領域18Bの一部があることにより第1の領域18Aへプラズマダメージが寄与し難いことから、成膜圧力を1.0Pa未満に調整し残りの第2の領域18Bを速く成膜して、成膜時間を短縮することができる。
In the second film formation step, it is preferable to switch the film formation pressure to a pressure lower than the film formation pressure at the start of film formation during the film formation from the viewpoint of shortening the film formation time. Specifically, the second region 18B is deposited up to the first 5 nm at the deposition pressure at the start of deposition, and the remaining second region 18B is deposited at a deposition pressure of less than 1.0 Pa.
Thus, at the start of film formation, the film formation pressure is adjusted to 2.0 Pa or more and 13.0 Pa or less to slowly form the second region 18B while suppressing plasma damage to the first region 18A. From the middle of the film, since the plasma damage is unlikely to contribute to the first region 18A due to the presence of a part of the second region 18B on the surface of the first region 18A, the film forming pressure is reduced to less than 1.0 Pa. The remaining second region 18B can be formed quickly and the film formation time can be shortened.

また、第2の領域18Bの膜厚は、第1の領域18A(例えば10nm以下とする)の膜厚以上とすることが好ましい。特に、10nm超とすると、オフ電流の低減やS値の劣化抑制が期待できるからである。また、第2の領域18Bの膜厚は、120nm以下、特に70nm未満とすることが好ましい。ソース・ドレイン電極20,22と第1の領域18Aの抵抗が増大して結果的に移動度の低下を招くことを抑制できるからである。   The film thickness of the second region 18B is preferably greater than or equal to the film thickness of the first region 18A (eg, 10 nm or less). In particular, if it exceeds 10 nm, reduction of off-current and suppression of deterioration of S value can be expected. The film thickness of the second region 18B is preferably 120 nm or less, particularly less than 70 nm. This is because the resistance of the source / drain electrodes 20 and 22 and the first region 18A can be prevented from increasing, resulting in a decrease in mobility.

第2の領域18Bの組成の好ましい条件については、第1成膜工程で詳述した条件と同一である。例えば、第2成膜工程では、第2の領域18BにIn、Ga(又はSn)及びZnが全て含まれるように成膜することが好ましい。   The preferable conditions for the composition of the second region 18B are the same as those described in detail in the first film formation step. For example, in the second film formation step, it is preferable to form the film so that the second region 18B contains all of In, Ga (or Sn), and Zn.

第1の領域18A及び第2の領域18Bをスパッタ成膜する際の到達真空度は、特に限定されないが、2.0×10−5Pa以下が好ましく、1.0×10−6Pa程度がより好ましい。真空度に対応したHO成分が薄膜内に取り込まれてしまい、真空度に依存してキャリア密度が変化するため、本実施形態の効果をより高くするには前記真空度が好ましい。
また、第1の領域18A及び第2の領域18Bをスパッタ成膜する際の基板12とターゲットとの距離は、磁力線が基板、サンプルフォルダを横切りプラズマが不安定化(密度低下の要因)することを抑制するという観点から、50mm以上が好ましい。また、上記距離は、成膜レートが低下することを抑制して製造に適した成膜レートにするという観点から、150mm以下であることが好ましい。
The ultimate vacuum when the first region 18A and the second region 18B are formed by sputtering is not particularly limited, but is preferably 2.0 × 10 −5 Pa or less, and about 1.0 × 10 −6 Pa. More preferred. Since the H 2 O component corresponding to the degree of vacuum is taken into the thin film and the carrier density changes depending on the degree of vacuum, the degree of vacuum is preferable in order to further enhance the effect of this embodiment.
In addition, the distance between the substrate 12 and the target when the first region 18A and the second region 18B are formed by sputtering is such that the lines of magnetic force cross the substrate and the sample folder, and the plasma becomes unstable (causes the density to decrease). From the viewpoint of suppressing the thickness, it is preferably 50 mm or more. In addition, the distance is preferably 150 mm or less from the viewpoint of suppressing a decrease in the film formation rate to a film formation rate suitable for manufacturing.

第2の領域18Bの電気伝導度は、第1の領域18Aより低いことを前提として、第1の領域18Aと同様の範囲を取り得るが、好ましくは、10−7Scm−1以上10Scm−1未満とする。より好ましくは10−7Scm−1以上10−1Scm−1未満とする。 The electric conductivity of the second region 18B can assume the same range as that of the first region 18A on the assumption that the electric conductivity of the second region 18B is lower than that of the first region 18A, but is preferably 10 −7 Scm −1 or more and 10 1 Scm. Less than -1 . More preferably, it is 10 −7 Scm −1 or more and less than 10 −1 Scm −1 .

また、酸化物半導体層18の各領域のキャリア濃度(言い換えれば電気伝導度)の制御は、組成変調によって行う他、成膜時の酸素分圧制御によっても行うことができる。
酸素濃度の制御は、具体的には第1の領域18A及び第2の領域18Bにおける成膜時の酸素分圧をそれぞれ制御することによって行うことが出来る。成膜時の酸素分圧を高めれば、キャリア濃度を低減させることが出来、それに伴ってオフ電流の低減が期待できる。一方、成膜時の酸素分圧を低くすれば、キャリア濃度を増大させることが出来、それに伴って電界効果移動度の増大が期待できる。また、例えば第2の領域18Bの成膜後に酸素ラジカルやオゾンを照射する処理を施すことによっても膜の酸化を促進し、第2の領域18B中の酸素欠損量を低減させる事が可能である。
また、酸化物半導体層18に含まれる例えばZnの一部を、よりバンドギャップの広がる元素イオンをドーピングすることによって、光学バンドギャップ増大に伴う光照射安定性を付与することが出来る。具体的には、Mgをドーピングすることにより膜のバンドギャップを大きくすることが可能である。例えば、酸化物半導体層18の各領域にMgをドープすることで、In、Ga、Zn等の組成比を制御した系に比べて、積層膜のバンドプロファイルを保ったままバンドギャップの増大が可能である。
In addition, the carrier concentration (in other words, electric conductivity) of each region of the oxide semiconductor layer 18 can be controlled not only by composition modulation but also by oxygen partial pressure control during film formation.
Specifically, the oxygen concentration can be controlled by controlling the oxygen partial pressure during film formation in the first region 18A and the second region 18B, respectively. If the oxygen partial pressure at the time of film formation is increased, the carrier concentration can be reduced, and a reduction in off-current can be expected accordingly. On the other hand, if the oxygen partial pressure during film formation is lowered, the carrier concentration can be increased, and an increase in field effect mobility can be expected accordingly. Further, for example, by performing a treatment of irradiating oxygen radicals or ozone after forming the second region 18B, it is possible to promote the oxidation of the film and reduce the amount of oxygen vacancies in the second region 18B. .
Further, for example, by doping a part of Zn contained in the oxide semiconductor layer 18 with element ions having a wider band gap, light irradiation stability accompanying an increase in the optical band gap can be imparted. Specifically, the band gap of the film can be increased by doping Mg. For example, by doping Mg in each region of the oxide semiconductor layer 18, the band gap can be increased while maintaining the band profile of the laminated film, compared to a system in which the composition ratio of In, Ga, Zn, etc. is controlled. It is.

そして、有機ELに用いられる青色発光層は波長450nm程度にピークを持つブロードな発光を示すことから、仮に酸化物半導体層18の光学バンドギャップが比較的狭く、その領域に光学吸収を持つ場合には、トランジスタの閾値シフトが起こってしまうという問題が生じる。従って、特に有機EL駆動用に用いられるTFTとしては、酸化物半導体層18に用いる材料のバンドギャップが、より大きいことが好ましい。
また、第1の領域18A等のキャリア濃度はカチオンドーピングによっても任意に制御することができる。キャリア濃度を増やしたい際には、相対的に価数の大きなカチオンになりやすい材料(例えばTi、Zr、Hf、Ta等)をドーピングすればよい。但し、価数の大きいカチオンをドーピングする場合は、酸化物半導体膜の構成元素数が増えるため、成膜プロセスの単純化、低コスト化の面で不利であることから、酸素濃度(酸素欠損量)により、キャリア濃度を制御することが好ましい。
And since the blue light emitting layer used for organic EL shows broad light emission having a peak at a wavelength of about 450 nm, the optical band gap of the oxide semiconductor layer 18 is relatively narrow, and the region has optical absorption. This causes a problem that a threshold shift of the transistor occurs. Accordingly, it is preferable that the material used for the oxide semiconductor layer 18 has a larger band gap, particularly for a TFT used for driving an organic EL.
Further, the carrier concentration in the first region 18A and the like can be arbitrarily controlled by cation doping. In order to increase the carrier concentration, a material (eg, Ti, Zr, Hf, Ta, etc.) that tends to be a cation having a relatively large valence may be doped. However, when doping a cation having a large valence, the number of constituent elements of the oxide semiconductor film increases, which is disadvantageous in terms of simplifying the film formation process and reducing the cost. ) To control the carrier concentration.

−パターニング工程−
次に、酸化物半導体層18をパターンニングするパターニング工程を行う。パターンニングはフォトリソグラフィー及びエッチングにより行うことができる。具体的には、残存させる部分にフォトリソグラフィーによりレジストパターンを形成し、塩酸、硝酸、希硫酸、又は燐酸、硝酸及び酢酸の混合液等の酸溶液によりウエットエッチングすることによりパターンを形成する。またドライエッチングを用いてパターニングしても良く特に限定するものではない。なお、酸化物半導体層18のパターンニングは、第1成膜工程後に第1の領域18Aに対して、第2成膜工程後に第2の領域18Bに対して随時行ってもよいが、第1の領域にエッチングダメージ等を与えることを抑制するという観点から、第2成膜工程後に第1の領域18A及び第2の領域18Bをパターニングすることが好ましい。
なお、フォトリソグラフィー及びエッチングのパターニング方法を用いずに、用途(解像度)にあわせて、上記第1成膜工程及び第2成膜工程において、スパッタ成膜と同時にパターニングができるメタルマスクを用いたパターニング方法を用いることもできる。
-Patterning process-
Next, a patterning process for patterning the oxide semiconductor layer 18 is performed. Patterning can be performed by photolithography and etching. Specifically, a resist pattern is formed on the remaining portion by photolithography, and the pattern is formed by wet etching with an acid solution such as hydrochloric acid, nitric acid, dilute sulfuric acid, or a mixed solution of phosphoric acid, nitric acid and acetic acid. Further, patterning may be performed using dry etching, and there is no particular limitation. Note that the patterning of the oxide semiconductor layer 18 may be performed at any time with respect to the first region 18A after the first film formation step and with respect to the second region 18B after the second film formation step. From the viewpoint of suppressing etching damage and the like in the region, it is preferable to pattern the first region 18A and the second region 18B after the second film formation step.
In addition, without using photolithography and etching patterning methods, patterning using a metal mask that can be patterned simultaneously with sputter film formation in the first film formation process and the second film formation process in accordance with the application (resolution). A method can also be used.

−熱処理工程−
酸化物半導体層18の形成工程中、又は第2成膜工程の後に、(基板12を)熱処理する熱処理工程を行うことが好ましい。なお、「酸化物半導体層18の形成工程中の熱処理」とは、成膜時の基板加熱を指す。また、「第2成膜工程の後の熱処理」は、酸化物半導体層18の成膜直後でもよければ後述するソース・ドレイン電極20,22の形成等が全て終わった後に行ってもよい。
熱処理温度は電気特性のバラツキを抑えるために300℃以上600℃以下であることが好ましい。又、ポストアニール中の雰囲気は酸素含有雰囲気にすることが好ましく、酸化性雰囲気では酸化性雰囲気や不活性雰囲気にすることができる。酸化性雰囲気中でポストアニールを施すと酸化物半導体層中の酸素が抜け難く、余剰キャリアが発生することを抑制し、電気特性バラツキが起こり難くなる。熱処理は基板毎で有ってもクリーンオーブンなどで複数投入して行っても良い。また、600℃以下であると、第1の領域18Aと第2の領域18Bの間でカチオンの相互拡散が起こり、2つの領域が交じりあうことを抑制できる。
なお、第1の領域18Aと第2の領域18Bでのカチオンの相互拡散が起こっていないかどうかは、例えば断面TEMによる分析を行うことで確認できる。また、熱処理工程は省略することも可能である。
-Heat treatment process-
It is preferable to perform a heat treatment step of heat-treating the substrate 12 during the formation step of the oxide semiconductor layer 18 or after the second film formation step. Note that “heat treatment during the formation process of the oxide semiconductor layer 18” refers to heating of the substrate during film formation. Further, the “heat treatment after the second film formation step” may be performed immediately after the formation of the oxide semiconductor layer 18 or after the formation of the source / drain electrodes 20 and 22 to be described later is completed.
The heat treatment temperature is preferably 300 ° C. or higher and 600 ° C. or lower in order to suppress variation in electrical characteristics. The atmosphere during post-annealing is preferably an oxygen-containing atmosphere, and an oxidizing atmosphere or an inert atmosphere can be used in an oxidizing atmosphere. When post-annealing is performed in an oxidizing atmosphere, oxygen in the oxide semiconductor layer is difficult to escape, generation of excess carriers is suppressed, and variations in electrical characteristics are less likely to occur. The heat treatment may be performed for each substrate, or a plurality of heat treatments may be performed using a clean oven or the like. Further, when the temperature is 600 ° C. or lower, cation mutual diffusion occurs between the first region 18A and the second region 18B, and the two regions can be prevented from crossing each other.
Whether or not cation mutual diffusion occurs in the first region 18A and the second region 18B can be confirmed, for example, by performing analysis by a cross-sectional TEM. In addition, the heat treatment step can be omitted.

特に、熱処理温度を300℃以上450℃未満とすることが好ましい。第1の領域の組成によらず、TFTがより確実に動作するからである。   In particular, the heat treatment temperature is preferably 300 ° C. or higher and lower than 450 ° C. This is because the TFT operates more reliably regardless of the composition of the first region.

また、熱処理雰囲気の湿度が極めて高い場合には膜中に水分が取り込まれ易く、電気特性のバラツキが起こり易くなるため、室温での相対湿度は50%以下で行うことが好ましい。さらにまた、熱処理時間に特に限定はないが、膜温度が均一になるのに要する時間等を考慮し、少なくとも10分以上保持することが好ましい。   Further, when the humidity of the heat treatment atmosphere is extremely high, moisture is easily taken into the film, and variations in electrical characteristics are likely to occur. Therefore, the relative humidity at room temperature is preferably 50% or less. Furthermore, although there is no particular limitation on the heat treatment time, it is preferable to hold at least 10 minutes in consideration of the time required for the film temperature to become uniform.

−電極形成工程−
酸化物半導体層18の形成工程後は、或いは熱処理工程後は、第2の領域18B上に、ソース電極20及びドレイン電極22を形成する電極形成工程を行う。ただし、オーミックコンタクト形成の観点から、電極形成工程後に熱処理工程を行うことが好ましい。電極形成工程では、上記ゲート電極の形成方法と同一の形成方法を用いることができる。
ソース・ドレイン電極20,22を構成する導電膜は、高い導電性を有するものを用い、例えばAl、Mo、Cr、Ta、Ti、Au、Au等の金属、Al−Nd、Ag合金、酸化錫、酸化亜鉛、酸化インジウム、酸化インジウム錫(ITO)、酸化亜鉛インジウム(IZO)等の金属酸化物導電膜等を用いて形成することが出来る。ソース・ドレイン電極20,22としてはこれらの導電膜を単層構造又は2層以上の積層構造として用いることが出来る。
-Electrode formation process-
After the formation process of the oxide semiconductor layer 18 or after the heat treatment process, an electrode formation process is performed in which the source electrode 20 and the drain electrode 22 are formed over the second region 18B. However, from the viewpoint of ohmic contact formation, it is preferable to perform a heat treatment step after the electrode formation step. In the electrode formation step, the same formation method as that for the gate electrode can be used.
The conductive film constituting the source / drain electrodes 20 and 22 is made of a highly conductive material, for example, Al, Mo, Cr, Ta, Ti, Au, Au or other metals, Al—Nd, Ag alloy, tin oxide. , Zinc oxide, indium oxide, indium tin oxide (ITO), metal oxide conductive film such as zinc indium oxide (IZO), or the like can be used. As the source / drain electrodes 20 and 22, these conductive films can be used as a single layer structure or a laminated structure of two or more layers.

電極形成工程のエッチングの際には、酸化物半導体層18上にエッチング保護のための保護膜があってもよい。保護膜は酸化物半導体層18と連続で成膜してもよいし、酸化物半導体層18のパターンニング後に形成してもよい。
なお、本実施形態のTFT10を用いることで、光照射に対する特性劣化を低減するための保護膜等を酸化物半導体層18上に用いることなく、高い移動度と、高い光照射安定性が得られるが、もちろん酸化物半導体層18に上記の様な保護膜を設けてもよい。例えば紫外領域(波長400nm以下)の光を吸収、反射するような保護膜を設けることで、更に光照射に対する安定性を向上させることも可能である。
In the etching in the electrode forming step, a protective film for etching protection may be provided on the oxide semiconductor layer 18. The protective film may be formed continuously with the oxide semiconductor layer 18 or may be formed after the patterning of the oxide semiconductor layer 18.
Note that by using the TFT 10 of this embodiment, high mobility and high light irradiation stability can be obtained without using a protective film or the like on the oxide semiconductor layer 18 for reducing deterioration in characteristics due to light irradiation. Needless to say, the oxide semiconductor layer 18 may be provided with a protective film as described above. For example, it is possible to further improve the stability against light irradiation by providing a protective film that absorbs and reflects light in the ultraviolet region (wavelength 400 nm or less).

以上の手順により、図1(A)に示すようなボトムゲート型でトップコンタクト型のTFT10を作製することができる。また、本実施形態のTFTの製造方法によれば、第1の領域18Aや第2の領域18Bはその構成材料により低温(例えば400℃以下)で成膜が可能なため、基板12も樹脂基板等を用いればTFT10全体として低温作製が可能となる。   Through the above procedure, a bottom gate type top contact type TFT 10 as shown in FIG. 1A can be manufactured. Further, according to the TFT manufacturing method of the present embodiment, the first region 18A and the second region 18B can be formed at a low temperature (for example, 400 ° C. or less) by using the constituent materials, and therefore the substrate 12 is also a resin substrate. Etc., the TFT 10 as a whole can be manufactured at a low temperature.

なお、本発明を特定の実施形態について詳細に説明したが、本発明はかかる実施形態に限定されるものではなく、本発明の範囲内にて他の種々の実施形態が可能であることは当業者にとって明らかであり、例えば上述の複数の実施形態は、適宜、組み合わせて実施可能である。   Although the present invention has been described in detail with respect to specific embodiments, the present invention is not limited to such embodiments, and various other embodiments are possible within the scope of the present invention. It will be apparent to those skilled in the art, and for example, the plurality of embodiments described above can be implemented in combination as appropriate.

3.応用
以上で説明した本実施形態にて製造される電界効果型トランジスタの用途には特に限定はないが、例えば電気光学装置(例えば液晶表示装置、有機EL(Electro Luminescence)表示装置、無機EL表示装置等の表示装置、等)における駆動素子、特に大面積デバイスに用いる場合に好適である。
更に実施形態の電界効果型トランジスタは、樹脂基板を用いた低温プロセスで作製可能なデバイスに特に好適であり(例えばフレキシブルディスプレイ等)、X線センサなどの各種センサ、MEMS(Micro Electro Mechanical System)等、種々の電子デバイスにおける駆動素子(駆動回路)として、好適に用いられるものである。
3. Applications There are no particular limitations on the use of the field effect transistor manufactured in the present embodiment described above. For example, electro-optical devices (for example, liquid crystal display devices, organic EL (Electro Luminescence) display devices, inorganic EL display devices) It is suitable for use in a driving element, particularly a large area device.
Furthermore, the field effect transistor of the embodiment is particularly suitable for a device that can be manufactured by a low-temperature process using a resin substrate (for example, a flexible display), various sensors such as an X-ray sensor, MEMS (Micro Electro Mechanical System), and the like. The present invention is suitably used as a drive element (drive circuit) in various electronic devices.

4.電気光学装置及びセンサ
本実施形態の電気光学装置又はセンサは、前述の電界効果型トランジスタ(TFT10)を備えて構成される。
電気光学装置の例としては、表示装置(例えば液晶表示装置、有機EL表示装置、無機EL表示装置、等)がある。
センサの例としては、CCD(Charge Coupled Device)又はCMOS(Complementary Metal Oxide Semiconductor)等のイメージセンサや、X線センサ等が好適である。
本実施形態のTFTを用いた電気光学装置およびセンサは、いずれも特性の面内均一性が高い。なお、ここで言う「特性」とは、電気光学装置(表示装置)の場合には表示特性、センサの場合には感度特性である。
以下、本実施形態によって製造される電界効果型トランジスタを備えた電気光学装置又はセンサの代表例として、液晶表示装置、有機EL表示装置、X線センサについて説明する。
4). Electro-optical device and sensor The electro-optical device or sensor according to the present embodiment includes the above-described field-effect transistor (TFT 10).
Examples of electro-optical devices include display devices (eg, liquid crystal display devices, organic EL display devices, inorganic EL display devices, etc.).
As an example of the sensor, an image sensor such as a CCD (Charge Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor), an X-ray sensor, or the like is suitable.
Both the electro-optical device and the sensor using the TFT of this embodiment have high in-plane uniformity of characteristics. The “characteristic” referred to here is a display characteristic in the case of an electro-optical device (display device), and a sensitivity characteristic in the case of a sensor.
Hereinafter, a liquid crystal display device, an organic EL display device, and an X-ray sensor will be described as representative examples of the electro-optical device or sensor including the field effect transistor manufactured according to the present embodiment.

5.液晶表示装置
図2に、本発明の電気光学装置の一実施形態の液晶表示装置について、その一部分の概略断面図を示し、図3にその電気配線の概略構成図を示す。
5. 2. Liquid Crystal Display Device FIG. 2 is a schematic sectional view of a part of a liquid crystal display device according to an embodiment of the electro-optical device of the present invention, and FIG. 3 is a schematic configuration diagram of the electric wiring.

図2に示すように、本実施形態の液晶表示装置100は、図1(A)に示したボトムゲート型でトップコンタクト型のTFT10と、TFT10のパッシベーション層102で保護された酸化物半導体層18上に画素下部電極104およびその対向上部電極106で挟まれた液晶層108と、各画素に対応させて異なる色を発色させるためのRGBカラーフィルタ110とを備え、TFT10の基板12側およびRGBカラーフィルタ110上にそれぞれ偏光板112a、112bを備えた構成である。   As shown in FIG. 2, the liquid crystal display device 100 of this embodiment includes the bottom gate type top contact type TFT 10 and the oxide semiconductor layer 18 protected by the passivation layer 102 of the TFT 10 shown in FIG. A liquid crystal layer 108 sandwiched between the pixel lower electrode 104 and the opposed upper electrode 106 and an RGB color filter 110 for developing different colors corresponding to each pixel are provided, and the substrate 10 side of the TFT 10 and the RGB color are provided. The filter 110 includes polarizing plates 112a and 112b, respectively.

また、図3に示すように、本実施形態の液晶表示装置100は、互いに平行な複数のゲート配線112と、該ゲート配線112と交差する、互いに平行なデータ配線114とを備えている。ここでゲート配線112とデータ配線114は電気的に絶縁されている。ゲート配線112とデータ配線114との交差部付近に、TFT10が備えられている。   As shown in FIG. 3, the liquid crystal display device 100 according to the present embodiment includes a plurality of gate lines 112 that are parallel to each other and data lines 114 that are parallel to each other and intersect the gate lines 112. Here, the gate wiring 112 and the data wiring 114 are electrically insulated. The TFT 10 is provided in the vicinity of the intersection between the gate wiring 112 and the data wiring 114.

TFT10のゲート電極14は、ゲート配線112に接続されており、TFT10のソース電極20はデータ配線114に接続されている。また、TFT10のドレイン電極22はゲート絶縁膜16に設けられたコンタクトホール116を介して(コンタクトホール116に導電体が埋め込まれて)画素下部電極104に接続されている。この画素下部電極104は、接地された対向上部電極106とともにキャパシタ118を構成している。   The gate electrode 14 of the TFT 10 is connected to the gate wiring 112, and the source electrode 20 of the TFT 10 is connected to the data wiring 114. Further, the drain electrode 22 of the TFT 10 is connected to the pixel lower electrode 104 via a contact hole 116 provided in the gate insulating film 16 (a conductor is embedded in the contact hole 116). The pixel lower electrode 104 forms a capacitor 118 together with the grounded counter upper electrode 106.

本実施形態のTFTは光照射時の安定性が非常に高いことから、液晶表示装置の信頼性が増す。   Since the TFT of this embodiment has a very high stability during light irradiation, the reliability of the liquid crystal display device is increased.

6.有機EL表示装置
図4に、本発明の電気光学装置の一実施形態のアクティブマトリックス方式の有機EL表示装置について、その一部分の概略断面図を示し、図5に電気配線の概略構成図を示す。
6). Organic EL Display Device FIG. 4 is a schematic sectional view of a part of an active matrix type organic EL display device according to an embodiment of the electro-optical device of the present invention, and FIG. 5 is a schematic configuration diagram of electric wiring.

有機EL表示装置の駆動方式には、単純マトリックス方式とアクティブマトリックス方式の2種類がある。単純マトリックス方式は低コストで作製できるメリットがあるが、走査線を1本ずつ選択して画素を発光させることから、走査線数と走査線あたりの発光時間は反比例する。そのため高精細化、大画面化が困難となっている。アクティブマトリックス方式は画素ごとにトランジスタやキャパシタを形成するため製造コストが高くなるが、単純マトリックス方式のように走査線数を増やせないという問題はないため高精細化、大画面化に適している。   There are two types of driving methods for organic EL display devices: a simple matrix method and an active matrix method. The simple matrix method has an advantage that it can be manufactured at low cost. However, since the pixels are emitted by selecting one scanning line at a time, the number of scanning lines and the light emission time per scanning line are inversely proportional. Therefore, it is difficult to increase the definition and increase the screen size. The active matrix method has a high manufacturing cost because a transistor and a capacitor are formed for each pixel. However, since there is no problem that the number of scanning lines cannot be increased unlike the simple matrix method, it is suitable for high definition and large screen.

本実施形態のアクティブマトリックス方式の有機EL表示装置200は、図1(A)に示したボトムゲート型でトップコンタクト型のTFT10が、基板12上に設けられている。この基板12は例えば可撓性支持体であって、PENなどのプラスチックフィルムであり、絶縁性とするために表面に基板絶縁層202を有する。その上にパターニングされたカラーフィルタ層204が設置される。駆動TFT部にゲート電極14を有し、さらにゲート絶縁膜110がゲート電極14上に設けられる。ゲート絶縁膜16の一部には電気的接続のためにコネクションホールが開けられる。駆動TFT部に酸化物半導体層18が設けられ、その上にソース電極20及びドレイン電極22が設けられる。ドレイン電極22と有機EL素子の画素電極(陽極)206とは、連続した一体であって、同一材料・同一工程で形成される。スイッチングTFTのドレイン電極22と駆動TFTは、コネクション電極208によってコネクションホールで電気的に接続される。さらに、画素電極部の有機EL素子が形成される部分を除いて、全体が絶縁膜210で覆われる。画素電極部の上に、発光層を含む有機層212および陰極214が設けられ有機EL素子部が形成される。   In the active matrix organic EL display device 200 of this embodiment, a bottom gate type top contact type TFT 10 shown in FIG. 1A is provided on a substrate 12. The substrate 12 is, for example, a flexible support, and is a plastic film such as PEN, and has a substrate insulating layer 202 on the surface in order to be insulating. A patterned color filter layer 204 is disposed thereon. The driving TFT portion has a gate electrode 14, and a gate insulating film 110 is provided on the gate electrode 14. A connection hole is opened in part of the gate insulating film 16 for electrical connection. An oxide semiconductor layer 18 is provided in the driving TFT portion, and a source electrode 20 and a drain electrode 22 are provided thereon. The drain electrode 22 and the pixel electrode (anode) 206 of the organic EL element are continuous and integrated, and are formed by the same material and the same process. The drain electrode 22 of the switching TFT and the driving TFT are electrically connected through a connection hole by a connection electrode 208. Further, the whole is covered with the insulating film 210 except for the portion where the organic EL element of the pixel electrode portion is formed. On the pixel electrode portion, an organic layer 212 including a light emitting layer and a cathode 214 are provided to form an organic EL element portion.

また、図5に示すように、本実施形態の有機EL表示装置200は、互いに平行な複数のゲート配線220と、該ゲート配線220と交差する、互いに平行なデータ配線222および駆動配線224とを備えている。ここで、ゲート配線220とデータ配線222、駆動配線224とは電気的に絶縁されている。スイッチング用TFT10bのゲート電極14は、ゲート配線220に接続されており、スイッチング用TFT10bのソース電極20はデータ配線222に接続されている。また、スイッチング用TFT10bのドレイン電極22は駆動用TFT10のゲート電極14に接続されるとともに、キャパシタ226を用いることで駆動用TFT10aをオン状態に保つ。駆動用TFT10aのソース電極20は駆動配線224に接続され、ドレイン電極22は有機層212に接続される。   Further, as shown in FIG. 5, the organic EL display device 200 according to the present embodiment includes a plurality of gate wirings 220 that are parallel to each other, and a data wiring 222 and a driving wiring 224 that are parallel to each other and intersect the gate wiring 220. I have. Here, the gate wiring 220, the data wiring 222, and the drive wiring 224 are electrically insulated. The gate electrode 14 of the switching TFT 10 b is connected to the gate wiring 220, and the source electrode 20 of the switching TFT 10 b is connected to the data wiring 222. Further, the drain electrode 22 of the switching TFT 10b is connected to the gate electrode 14 of the driving TFT 10, and the driving TFT 10a is kept on by using the capacitor 226. The source electrode 20 of the driving TFT 10 a is connected to the driving wiring 224, and the drain electrode 22 is connected to the organic layer 212.

本発明により製造されるTFTは光照射時における安定性が非常に高いことから、信頼性の高い有機EL表示装置の製造に適している。   Since the TFT manufactured according to the present invention has very high stability during light irradiation, it is suitable for manufacturing a highly reliable organic EL display device.

なお、図4に示した有機EL表示装置において、有機層212の上部電極を透明電極としてトップエミッション型としてもよいし、有機層212の下部電極およびTFTの各電極を透明電極とすることによりボトムエミッション型としてもよい。   In the organic EL display device shown in FIG. 4, the top electrode of the organic layer 212 may be a top emission type with a transparent electrode, or the bottom electrode of the organic layer 212 and each electrode of the TFT may be transparent electrodes. It may be an emission type.

7.X線センサ
図6に、本発明のセンサの一実施形態であるX線センサについて、その一部分の概略断面図を示し、図7にその電気配線の概略構成図を示す。
7). X-ray sensor FIG. 6 shows a schematic sectional view of a part of an X-ray sensor which is an embodiment of the sensor of the present invention, and FIG. 7 shows a schematic configuration diagram of its electric wiring.

図6は、より具体的にはX線センサアレイの一部を拡大した概略断面図である。本実施形態のX線センサ300は基板12上に形成されたTFT10およびキャパシタ310と、キャパシタ310上に形成された電荷収集用電極302と、X線変換層304と、上部電極306とを備えて構成される。TFT10上にはパッシベーション膜308が設けられている。   More specifically, FIG. 6 is a schematic cross-sectional view in which a part of the X-ray sensor array is enlarged. The X-ray sensor 300 of this embodiment includes the TFT 10 and the capacitor 310 formed on the substrate 12, the charge collection electrode 302 formed on the capacitor 310, the X-ray conversion layer 304, and the upper electrode 306. Composed. A passivation film 308 is provided on the TFT 10.

キャパシタ310は、キャパシタ用下部電極312とキャパシタ用上部電極314とで絶縁膜316を挟んだ構造となっている。キャパシタ用上部電極314は絶縁膜316に設けられたコンタクトホール318を介し、TFT10のソース電極20およびドレイン電極22のいずれか一方(図6においてはドレイン電極22)と接続されている。   The capacitor 310 has a structure in which an insulating film 316 is sandwiched between a capacitor lower electrode 312 and a capacitor upper electrode 314. The capacitor upper electrode 314 is connected to one of the source electrode 20 and the drain electrode 22 (the drain electrode 22 in FIG. 6) of the TFT 10 through a contact hole 318 provided in the insulating film 316.

電荷収集用電極302は、キャパシタ310におけるキャパシタ用上部電極314上に設けられており、キャパシタ用上部電極314に接している。
X線変換層304はアモルファスセレンからなる層であり、TFT10およびキャパシタ310を覆うように設けられている。
上部電極306はX線変換層304上に設けられており、X線変換層304に接している。
The charge collection electrode 302 is provided on the capacitor upper electrode 314 in the capacitor 310 and is in contact with the capacitor upper electrode 314.
The X-ray conversion layer 304 is a layer made of amorphous selenium, and is provided so as to cover the TFT 10 and the capacitor 310.
The upper electrode 306 is provided on the X-ray conversion layer 304 and is in contact with the X-ray conversion layer 304.

図7に示すように、本実施形態のX線センサ300は、互いに平行な複数のゲート配線320と、ゲート配線320と交差する、互いに平行な複数のデータ配線322とを備えている。ここでゲート配線320とデータ配線322は電気的に絶縁されている。ゲート配線320とデータ配線322との交差部付近に、TFT10が備えられている。   As shown in FIG. 7, the X-ray sensor 300 of this embodiment includes a plurality of gate wirings 320 that are parallel to each other and a plurality of data wirings 322 that are parallel to each other and intersect the gate wiring 320. Here, the gate wiring 320 and the data wiring 322 are electrically insulated. The TFT 10 is provided in the vicinity of the intersection between the gate wiring 320 and the data wiring 322.

TFT10のゲート電極14は、ゲート配線320に接続されており、TFT10のソース電極20はデータ配線322に接続されている。また、TFT10のドレイン電極22は電荷収集用電極302に接続されており、さらにこの電荷収集用電極302は、キャパシタ310に接続されている。   The gate electrode 14 of the TFT 10 is connected to the gate wiring 320, and the source electrode 20 of the TFT 10 is connected to the data wiring 322. The drain electrode 22 of the TFT 10 is connected to the charge collecting electrode 302, and the charge collecting electrode 302 is connected to the capacitor 310.

本実施形態のX線センサ300において、X線は図6中、上部(上部電極306側)から照射され、X線変換層304で電子−正孔対を生成する。このX線変換層304に上部電極306によって高電界を印加しておくことにより、生成した電荷はキャパシタ310に蓄積され、TFT10を順次走査することによって読み出される。   In the X-ray sensor 300 of this embodiment, X-rays are irradiated from the upper part (upper electrode 306 side) in FIG. 6, and electron-hole pairs are generated in the X-ray conversion layer 304. By applying a high electric field to the X-ray conversion layer 304 by the upper electrode 306, the generated charge is accumulated in the capacitor 310 and read out by sequentially scanning the TFT 10.

本実施形態のX線センサ300は、光照射時の安定性が高いTFT10を備えるため、均一性に優れた画像を得ることができる。   Since the X-ray sensor 300 of the present embodiment includes the TFT 10 having high stability during light irradiation, an image having excellent uniformity can be obtained.

以下に実施例を説明するが、本発明はこれら実施例により何ら限定されるものではない。   Examples will be described below, but the present invention is not limited to these examples.

<TFT特性に対する第2の領域の成膜圧力依存性>
−実施例1〜10及び比較例1〜4に係るTFTの作製−
まず、TFT特性に対する第2の領域の成膜圧力依存性について以下のような実施例1〜5及び比較例1〜3に係るボトムゲート型でトップコンタクト型のTFTを作製することで検証した。
<Depending on TFT characteristics of film formation pressure in second region>
-Production of TFTs according to Examples 1 to 10 and Comparative Examples 1 to 4-
First, the film formation pressure dependence of the second region with respect to the TFT characteristics was verified by fabricating bottom gate type top contact type TFTs according to Examples 1 to 5 and Comparative Examples 1 to 3 described below.

図8(A)は実施例及び比較例のTFTの平面図であり、図8(B)は図8(A)に示すTFTのA−A線矢視断面図である。   FIG. 8A is a plan view of the TFT of the example and the comparative example, and FIG. 8B is a cross-sectional view of the TFT shown in FIG.

まず、実施例1〜5及び比較例1〜3では、図8(A)及び図8(B)に示すように、基板として熱酸化膜504付p型Si基板502(1inch角×1mm、厚み:525μmt、熱酸化膜(SiO):100nm)を用い、熱酸化膜504をゲート絶縁膜として用いる簡易型のTFT500を作製した。
具体的には、熱酸化膜付p型Si基板502上に、酸化物半導体層の第1の領域506と第2の領域508を、In、Ga、ZnOの3種ターゲットを用いて各領域の成膜箇所以外をメタルマスクで覆いながら共スパッタで成膜した(第1成膜工程及び第2成膜工程)。各領域の成膜条件は以下の通りである。
First, in Examples 1 to 5 and Comparative Examples 1 to 3, as shown in FIGS. 8A and 8B, a p-type Si substrate 502 with a thermal oxide film 504 (1 inch angle × 1 mm, thickness) as a substrate. : 525 μmt, thermal oxide film (SiO 2 ): 100 nm), and a simple TFT 500 using the thermal oxide film 504 as a gate insulating film was manufactured.
Specifically, the first region 506 and the second region 508 of the oxide semiconductor layer are formed on a p-type Si substrate 502 with a thermal oxide film by using three types of targets of In 2 O 3 , Ga 2 O 3 , and ZnO. A film was formed by co-sputtering while covering a portion other than the film formation portion of each region with a metal mask (first film formation process and second film formation process). The film forming conditions in each region are as follows.

−第1成膜工程(第1の領域506)の成膜条件−
In;Ga:Zn組成比=1.0:1.0:1.0、
膜厚;10nm
平面サイズ;3mm×4mm
成膜圧力;0.4Pa、
到達真空度;8.0×10−6Pa、
成膜温度;室温(25℃)、
Ar流量;5.07×10−2Pa・m/s、
流量;3.38×10−4Pa・m/s
基板とターゲットとの距離;120mm
-Film formation conditions in the first film formation step (first region 506)-
In; Ga: Zn composition ratio = 1.0: 1.0: 1.0,
Film thickness: 10nm
Plane size: 3mm x 4mm
Deposition pressure: 0.4 Pa
Ultimate vacuum: 8.0 × 10 −6 Pa,
Deposition temperature: room temperature (25 ° C.)
Ar flow rate; 5.07 × 10 −2 Pa · m 3 / s,
O 2 flow rate; 3.38 × 10 −4 Pa · m 3 / s
Distance between substrate and target; 120mm

−第2成膜工程(第2の領域508)の成膜条件−
In:Ga:Zn組成比=0.5:1.5:1.0、
膜厚;50nm
平面サイズ;3mm×4mm
成膜圧力;可変
(比較例1;0.4Pa,比較例2;1.0Pa,実施例1;2.0Pa,実施例2;5.0Pa,実施例3;10.0Pa,実施例4;12.0Pa,実施例5;13.0Pa,比較例3;15.0Paの8つの値に可変)
到達真空度;8.0×10−6Pa、
成膜温度;室温(25℃)、
Ar流量;5.07×10−2Pa・m/s、
流量;3.38×10−4Pa・m/s
基板とターゲットとの距離;120mm
-Film-forming conditions of the second film-forming step (second region 508)-
In: Ga: Zn composition ratio = 0.5: 1.5: 1.0,
Film thickness: 50nm
Plane size: 3mm x 4mm
Deposition pressure: variable (Comparative Example 1; 0.4 Pa, Comparative Example 2; 1.0 Pa, Example 1; 2.0 Pa, Example 2; 5.0 Pa, Example 3; 10.0 Pa, Example 4; 12.0 Pa, Example 5; 13.0 Pa, Comparative Example 3; variable to 8 values of 15.0 Pa)
Ultimate vacuum: 8.0 × 10 −6 Pa,
Deposition temperature: room temperature (25 ° C.)
Ar flow rate; 5.07 × 10 −2 Pa · m 3 / s,
O 2 flow rate; 3.38 × 10 −4 Pa · m 3 / s
Distance between substrate and target; 120mm

なお、上記成膜圧力は、成膜チャンバーの真空度を読み取り、ダイヤフラムバルブにて圧力を制御した。このダイヤフラムバルブへの信号は圧力制御器にて設定圧力になるように制御を施すため、真空度の精度には成膜チャンバーの真空計とダイヤフラムバルブ圧
力制御器の精度の2つが求められる。
ここで、真空計は測定誤差1%のキャノンアネルバ社製デジタルキャパシタンスゲージM-340DG-QA/C70を用い、ダイヤフラムバルブ用圧力制御器は測定誤差0.028PaのVAT株式会社製バルブコントローラPM−5を用いた。
したがって、目的の成膜圧力をx[Pa]とすると、成膜圧力の誤差は、x×0.01+0.028[Pa]である。
The film formation pressure was controlled by a diaphragm valve by reading the degree of vacuum in the film formation chamber. Since the signal to the diaphragm valve is controlled so as to become a set pressure by the pressure controller, two kinds of accuracy are required for the degree of vacuum, that is, the accuracy of the vacuum gauge of the film forming chamber and the diaphragm valve pressure controller.
Here, the vacuum gauge uses a digital capacitance gauge M-340DG-QA / C70 manufactured by Canon Anelva with a measurement error of 1%, and the pressure controller for the diaphragm valve uses a valve controller PM-5 manufactured by VAT Corporation with a measurement error of 0.028 Pa. Was used.
Therefore, when the target film forming pressure is x [Pa], the error in the film forming pressure is x × 0.01 + 0.028 [Pa].

また、組成比の調整については、各ターゲットに投入する電力を制御して行った。また、組成比の値は、蛍光X線分析装置にて求めたものを使用した。
また、実施例1〜5及び比較例1〜3に係る第1の領域506及び第2の領域508と同じ条件で成膜を施し作製した成膜試料について、広がり抵抗測定を実施し、全てにおいて第1の領域506の電気抵抗率が、第2の領域508の電気抵抗率よりも低いことを確認した。すなわち、第2の領域508の電気伝導度が、第1の領域506の電気伝導度よりも小さいことを確認した。また、全ての第1の領域506及び第2の領域508が、非晶質膜であることをX線回折測定により確認した。
The composition ratio was adjusted by controlling the power input to each target. Moreover, the value of the composition ratio used was obtained by a fluorescent X-ray analyzer.
In addition, the spread resistance measurement was performed on the film formation samples prepared by performing film formation under the same conditions as those of the first region 506 and the second region 508 according to Examples 1 to 5 and Comparative Examples 1 to 3. It was confirmed that the electrical resistivity of the first region 506 was lower than the electrical resistivity of the second region 508. That is, it was confirmed that the electrical conductivity of the second region 508 is smaller than the electrical conductivity of the first region 506. Further, it was confirmed by X-ray diffraction measurement that all the first regions 506 and the second regions 508 were amorphous films.

その後、第2の領域508の表面に、各サイズ:1mm×1mm、電極間距離;0.2mmのソース・ドレイン電極510,512をスパッタにより成膜した。ソース・ドレイン電極510,512の成膜はメタルマスクを用いたパターン成膜にて作製し、Tiを10nm成膜後、Auを50nm成膜した。   Thereafter, source / drain electrodes 510 and 512 each having a size of 1 mm × 1 mm and a distance between electrodes of 0.2 mm were formed on the surface of the second region 508 by sputtering. The source / drain electrodes 510 and 512 were formed by pattern film formation using a metal mask. After depositing 10 nm of Ti, 50 nm of Au was deposited.

電極層形成後、雰囲気を制御可能な電気炉にて、1時間350℃を保ちつつ、大気圧(Ar:O=4:1)雰囲気下で熱処理工程を行った。 After the electrode layer was formed, a heat treatment step was performed in an electric furnace capable of controlling the atmosphere while maintaining 350 ° C. for 1 hour under an atmospheric pressure (Ar: O 2 = 4: 1) atmosphere.

以上により、実施例1〜5及び比較例1〜3に係るボトムゲート型でトップコンタクト型のTFT500を得た。 Thus, the bottom gate type top contact type TFT 500 according to Examples 1 to 5 and Comparative Examples 1 to 3 was obtained.

−評価−
作製した各TFT500について、半導体パラメータ・アナライザー4156C(アジレントテクノロジー社製)を用い、トランジスタ特性(Vg−Id特性)および移動度μの測定を行った。Vg−Id特性の測定は、ドレイン電圧(Vd)を10Vに固定し、ゲート電圧(Vg)を−30V〜+30Vの範囲内で掃引し、各ゲート電圧(Vg)におけるドレイン電流(Id)を測定することにて行った。また、移動度は、ドレイン電圧(Vd)を1Vに固定した状態でゲート電圧(Vg)を−30V〜+30Vの範囲内で掃引して得た、線形領域でのVg−Id特性から線形移動度を算出して記している。
-Evaluation-
About each produced TFT500, the semiconductor characteristic analyzer 4156C (made by Agilent Technologies) was used, and the transistor characteristic (Vg-Id characteristic) and the mobility (micro | micron | mu) were measured. Vg-Id characteristics are measured by fixing the drain voltage (Vd) to 10 V, sweeping the gate voltage (Vg) within the range of -30 V to +30 V, and measuring the drain current (Id) at each gate voltage (Vg). I went to do it. The mobility is linear mobility from the Vg-Id characteristic in the linear region obtained by sweeping the gate voltage (Vg) in the range of -30V to + 30V with the drain voltage (Vd) fixed at 1V. Is calculated and written.

また、作製した各TFT500に波長可変のモノクロ光を照射することで、光照射に対するTFT特性の安定性を評価した。   Moreover, the stability of the TFT characteristic with respect to light irradiation was evaluated by irradiating each TFT 500 produced with monochromatic light with variable wavelength.

この安定性の評価では、プローブステージ台に各TFT500を置き、乾燥大気を2時間以上流した後、当該乾燥大気雰囲気下にてTFT特性を測定した。モノクロ光源の照射強度は10μW/cm、波長λの範囲を360〜700nmとし、モノクロ光非照射時のVg−Id特性と、モノクロ光照射時のVg−Id特性を比較することで、光照射安定性(ΔVth)を評価した。モノクロ光照射下におけるTFT特性の測定条件は、Vds=10Vに固定し、Vg=−15〜15Vの範囲でゲート電圧を掃引して測定した。なお、以下で特に言及している場合を除き、全ての測定は、モノクロ光を10分照射した後に行っている。420nmの光照射に対する閾値シフト量ΔVthをTFT500の光安定性の指標とした。 In this stability evaluation, each TFT 500 was placed on a probe stage stage and dried air was allowed to flow for 2 hours or more, and then TFT characteristics were measured in the dried air atmosphere. The irradiation intensity of the monochrome light source is 10 μW / cm 2 , the wavelength λ is in the range of 360 to 700 nm, and the light irradiation is performed by comparing the Vg-Id characteristics when the monochrome light is not irradiated and the Vg-Id characteristics when the monochrome light is irradiated. Stability (ΔVth) was evaluated. The measurement conditions for TFT characteristics under monochrome light irradiation were fixed at Vds = 10 V and measured by sweeping the gate voltage in the range of Vg = -15 to 15V. Unless otherwise specified below, all measurements are performed after irradiating with monochromatic light for 10 minutes. The threshold shift amount ΔVth for light irradiation of 420 nm was used as an index of light stability of the TFT 500.

モノクロ光照射時のVg−Id特性の測定結果のうち代表的なVg−Id特性を図9及び図10に示す。図9のVg−Id特性は比較例1に係るTFTのものであり、図10のVg−Id特性は、実施例3に係るTFTのものである。また、図11は、代表的な比較例1に係るTFTと実施例3に係るTFTにおける、光照射波長とΔVthとの関係を示すグラフ図である。   Typical Vg-Id characteristics among the measurement results of the Vg-Id characteristics during monochrome light irradiation are shown in FIGS. The Vg-Id characteristics of FIG. 9 are those of the TFT according to Comparative Example 1, and the Vg-Id characteristics of FIG. 10 are those of the TFT according to Example 3. FIG. 11 is a graph showing the relationship between the light irradiation wavelength and ΔVth in the TFT according to the representative comparative example 1 and the TFT according to the example 3.

図9及び図10に示すように、照射波長が短波になるほど、Vg−Id特性はマイナス側にシフトしていることが分かる。そして、図11に示すように、照射波長が短波になるほど、閾値シフトが増大していることが分かる。   As shown in FIGS. 9 and 10, it can be seen that the Vg-Id characteristic shifts to the minus side as the irradiation wavelength becomes shorter. As shown in FIG. 11, it can be seen that the threshold shift increases as the irradiation wavelength becomes shorter.

また、以下の表1に、第2成膜工程時の成膜圧力を変調したときの、移動度と、モノクロ光照射前後のI−V特性から求めた閾値シフト量ΔVth(波長420nm時)の測定結果をまとめた。また、図12に、表1に基づき成膜圧力と閾値シフト量ΔVth(波長420nm時)との関係をプロットしたグラフ図を示す。   Table 1 below shows the threshold shift amount ΔVth (at a wavelength of 420 nm) obtained from the mobility and the IV characteristics before and after the monochrome light irradiation when the film forming pressure in the second film forming process is modulated. The measurement results are summarized. FIG. 12 is a graph plotting the relationship between the deposition pressure and the threshold shift amount ΔVth (at a wavelength of 420 nm) based on Table 1.

Figure 0005795551
Figure 0005795551

表1及び図12に示す通り、第2成膜工程における第2の領域508の成膜圧力が2.0Pa未満か13.0Pa超である比較例1〜3のTFTでは波長420nmの光照射に対する閾値シフト量の絶対値|ΔVth|が2Vを超えているが、第2の領域508の成膜圧力が2.0Pa以上13.0Pa以下である実施例1〜5のTFTでは、光照射に対する閾値シフト量の絶対値|ΔVth|が2V以下となっていた。   As shown in Table 1 and FIG. 12, in the TFTs of Comparative Examples 1 to 3 in which the film formation pressure in the second region 508 in the second film formation step is less than 2.0 Pa or more than 13.0 Pa, with respect to light irradiation with a wavelength of 420 nm. In the TFTs of Examples 1 to 5 in which the absolute value | ΔVth | of the threshold shift amount exceeds 2 V but the film formation pressure in the second region 508 is 2.0 Pa or more and 13.0 Pa or less, the threshold for light irradiation The absolute value | ΔVth | of the shift amount was 2 V or less.

また、実施例1〜5のTFT及び比較例1〜3のTFT共に、移動度が20cm/Vs超の高い値であった。 In addition, the mobility of both the TFTs of Examples 1 to 5 and the TFTs of Comparative Examples 1 to 3 was a high value exceeding 20 cm 2 / Vs.

したがって、20cm/Vs超の高い移動度と、波長420nmの光照射に対して閾値シフト量の絶対値|ΔVth|が2V以下となる高い光安定性と、を両立することができるため、第2成膜工程における第2の領域508の成膜(少なくとも成膜開始時の)圧力が2.0Pa以上13.0Pa以下であることが好ましいのが分かった。
なお、2.0Pa以上で閾値シフト量が良好なのは、第1の領域18Aへのプラズマダメージを抑えながらゆっくりと第2の領域18Bを成膜していることに起因するものと考えられる。一方で、13.0Pa超で閾値シフト量が不良なのは、成膜レートが著しく低下したことによる各元素の結合状態の変化に起因するものと考えられる。
Therefore, it is possible to achieve both high mobility exceeding 20 cm 2 / Vs and high light stability in which the absolute value | ΔVth | of the threshold shift amount is 2 V or less with respect to light irradiation with a wavelength of 420 nm. 2 It was found that the film formation pressure (at least at the start of film formation) in the second region 508 in the film formation process is preferably 2.0 Pa or more and 13.0 Pa or less.
The reason why the threshold shift amount is good at 2.0 Pa or more is considered to be due to the slow deposition of the second region 18B while suppressing plasma damage to the first region 18A. On the other hand, the reason why the threshold shift amount is poor at over 13.0 Pa is considered to be due to a change in the bonding state of each element due to a significant decrease in the film formation rate.

また、図12に示すように、第2成膜工程における第2の領域508の成膜圧力が5.0Pa以上12.0Pa未満であると、波長420nmの光照射に対して閾値シフト量の絶対値|ΔVth|が1V以下となっていた。したがって、第2の領域508の成膜(少なくとも成膜開始時の)圧力が5.0Pa以上12.0Pa未満であることが好ましいのが分かった。また、成膜圧力を5.0Pa以上に調整すると、波長420nmの光照射に対する閾値シフト量の成膜圧力依存性を緩和することができることも確認した。すなわち、成膜圧力が5.0Pa以上であれば、成膜圧力が仮に変動したとしても、閾値シフト量の変動を抑制することができる。   As shown in FIG. 12, when the film formation pressure in the second region 508 in the second film formation step is 5.0 Pa or more and less than 12.0 Pa, the absolute value of the threshold shift amount with respect to light irradiation with a wavelength of 420 nm. The value | ΔVth | was 1 V or less. Therefore, it was found that the film formation pressure (at least at the start of film formation) in the second region 508 is preferably 5.0 Pa or more and less than 12.0 Pa. It was also confirmed that when the film formation pressure was adjusted to 5.0 Pa or more, the film formation pressure dependence of the threshold shift amount with respect to light irradiation with a wavelength of 420 nm could be relaxed. That is, if the film formation pressure is 5.0 Pa or more, even if the film formation pressure fluctuates, fluctuations in the threshold shift amount can be suppressed.

さらに、図12に示すように、第2成膜工程における成膜圧力を10.0Pa以下に調整すると、成膜圧力が10.0Pa以下の範囲内で成膜圧力が仮に変動したとしても、閾値シフト量の変動を抑制できることも確認した。したがって、第2の領域508の成膜(少なくとも成膜開始時の)圧力が10.0Pa以下であることが好ましいのが分かった。   Furthermore, as shown in FIG. 12, when the film formation pressure in the second film formation step is adjusted to 10.0 Pa or less, even if the film formation pressure fluctuates within the range of 10.0 Pa or less, the threshold value It was also confirmed that the shift amount can be suppressed. Therefore, it was found that the film formation pressure (at least at the start of film formation) in the second region 508 is preferably 10.0 Pa or less.

<TFT特性に対する第1の領域の組成依存性>
−実施例6〜8に係るTFTの作製−
次に、TFT特性に対する第1の領域の組成依存性について以下のような実施例6〜8に係るボトムゲート型でトップコンタクト型のTFTを作製することで検証した。なお、実施例6〜8に係るTFTでは、以下で説明する作製条件を除き、上述した実施例1に係るTFTの作製条件と同じ条件を用いた。
<Dependence of composition of first region on TFT characteristics>
-Fabrication of TFTs according to Examples 6-8-
Next, the composition dependence of the first region with respect to the TFT characteristics was verified by fabricating bottom gate top contact TFTs according to Examples 6 to 8 as described below. In the TFTs according to Examples 6 to 8, except for the manufacturing conditions described below, the same conditions as the TFT manufacturing conditions according to Example 1 described above were used.

まず、実施例6〜8に係るTFTでは、第1の領域506の成膜条件を以下の表2の通りとした。   First, in the TFTs according to Examples 6 to 8, the film formation conditions of the first region 506 were as shown in Table 2 below.

Figure 0005795551
Figure 0005795551

また、第2の領域506の成膜圧力は10.0Paに固定した。   The film formation pressure in the second region 506 was fixed at 10.0 Pa.

以上により、実施例6〜8に係るボトムゲート型でトップコンタクト型のTFTを得た。 Thus, bottom gate type and top contact type TFTs according to Examples 6 to 8 were obtained.

−評価−
上述した評価方法を用いて、実施例6〜8に係るTFTの移動度と波長420nmの光照射に対する閾値シフト量ΔVthを求めた結果を、以下の表3に示す。
-Evaluation-
Table 3 below shows the results of calculating the mobility of the TFTs according to Examples 6 to 8 and the threshold shift amount ΔVth for light irradiation with a wavelength of 420 nm using the evaluation method described above.

Figure 0005795551
Figure 0005795551

表3に示す通り、第1の領域506の組成条件を変えても、移動度と閾値シフト量ΔVthは良好であることが分かった。また、実施例6と実施例7のように第1の領域506がInとZnを含むと、実施例8のように第1の領域506がInとSnを含んでいる場合に比べて、波長420nmの光照射に対する閾値シフト量を顕著に抑制できていることが分かった。   As shown in Table 3, the mobility and the threshold shift amount ΔVth were found to be good even when the composition conditions of the first region 506 were changed. Further, when the first region 506 includes In and Zn as in the sixth and seventh embodiments, the wavelength is larger than that in the case where the first region 506 includes In and Sn as in the eighth embodiment. It was found that the threshold shift amount with respect to light irradiation of 420 nm could be remarkably suppressed.

<TFT特性に対する第1の領域の熱処理温度依存性>
次に、TFT特性に対する第1の領域506の熱処理温度依存性について検討した。
実施例6〜8に係るTFTで熱処理前のTFTを、350℃で熱処理するのではなく、300℃、450℃で熱処理した。
<Dependence of heat treatment temperature of first region on TFT characteristics>
Next, the heat treatment temperature dependency of the first region 506 with respect to TFT characteristics was examined.
The TFTs according to Examples 6 to 8 were heat-treated at 300 ° C. and 450 ° C. instead of being heat-treated at 350 ° C. before the heat treatment.

上述した評価方法を用いて、実施例6〜8に係るTFTについて、300℃、350℃(表3の値と同じ)、450℃で熱処理した場合の移動度と波長420nmの光照射に対する閾値シフト量ΔVthを求めた結果を、以下の表4に示す。   Using the evaluation method described above, the TFTs according to Examples 6 to 8 were subjected to heat treatment at 300 ° C., 350 ° C. (same as the values in Table 3), and 450 ° C., and the threshold shift for light irradiation with a wavelength of 420 nm. The results of determining the amount ΔVth are shown in Table 4 below.

Figure 0005795551
Figure 0005795551

表4に示す通り、ITOを除き、熱処理温度を変えても、移動度と閾値シフト量ΔVthは良好であることが分かった。ITOの場合は、450℃未満の熱処理では移動度と閾値シフト量ΔVthが良好であったが、450℃で熱処理すると、TFTが正常に動作せず、移動度と閾値シフト量ΔVthが求められなかった。このことからも、本実施例のTFTを熱処理する場合は、InとZnとを含むことが好ましいことが分かった。なお、熱処理温度が300℃以上450℃未満であれば、第1の領域506の組成によらず、TFTが確実に動作することも分かった。   As shown in Table 4, it was found that the mobility and the threshold shift amount ΔVth were good even when the heat treatment temperature was changed except for ITO. In the case of ITO, the mobility and the threshold shift amount ΔVth were good when the heat treatment was less than 450 ° C. However, when the heat treatment was performed at 450 ° C., the TFT did not operate normally, and the mobility and the threshold shift amount ΔVth could not be obtained. It was. This also indicates that it is preferable to contain In and Zn when heat treating the TFT of this example. It has also been found that when the heat treatment temperature is 300 ° C. or higher and lower than 450 ° C., the TFT operates reliably regardless of the composition of the first region 506.

なお、上記各実施例及び比較例は、第2成膜工程後に熱処理工程を行うことが前提となっているが、熱処理工程を行わない場合であっても、成膜圧力と移動度及び閾値シフト量との関係は変化しないことも確認している。   In each of the above examples and comparative examples, it is assumed that the heat treatment step is performed after the second film formation step. However, even when the heat treatment step is not performed, the film formation pressure, mobility, and threshold shift are performed. It has also been confirmed that the relationship with quantity does not change.

10,30,500 TFT(電界効果型トランジスタ)
14 ゲート電極
16 ゲート絶縁膜
18 酸化物半導体層
18A,506 第1の領域
18B,508 第2の領域
20,510 ソース電極
22,512 ドレイン電極
502 基板(ゲート電極)
504 熱酸化膜(ゲート絶縁膜)
10, 30, 500 TFT (Field Effect Transistor)
14 Gate electrode 16 Gate insulating film 18 Oxide semiconductor layers 18A, 506 First region 18B, 508 Second region 20, 510 Source electrode 22, 512 Drain electrode 502 Substrate (gate electrode)
504 Thermal oxide film (gate insulating film)

Claims (13)

ゲート電極と、ゲート絶縁膜と、酸化物半導体層と、ソース電極と、ドレイン電極と、を形成するボトムゲート型の電界効果型トランジスタの製造方法であって、
前記酸化物半導体層の形成工程として、
In、Ga、Zn、Mg、Al、Sn、Sb、Cd、及びGeからなる群より選ばれる少なくとも一種を含む第1の領域を成膜する第1成膜工程と、
In、Ga、Zn、Mg、Al、Sn、Sb、Cd、及びGeからなる群より選ばれる少なくとも一種を含み前記第1の領域よりも電気伝導度が小さい第2の領域を、前記第1の領域の表面にスパッタリング法により成膜し、且つ、前記第2の領域の少なくとも成膜開始時の成膜圧力を2.0Pa以上13.0Pa以下に調整する第2成膜工程と、
を順に行う電界効果型トランジスタの製造方法。
A method of manufacturing a bottom gate type field effect transistor for forming a gate electrode, a gate insulating film, an oxide semiconductor layer, a source electrode, and a drain electrode,
As the step of forming the oxide semiconductor layer,
A first film forming step of forming a first region including at least one selected from the group consisting of In, Ga, Zn, Mg, Al, Sn, Sb, Cd, and Ge;
A second region containing at least one selected from the group consisting of In, Ga, Zn, Mg, Al, Sn, Sb, Cd, and Ge and having a lower electrical conductivity than the first region; A second film forming step of forming a film on the surface of the region by a sputtering method, and adjusting a film forming pressure at least at the start of film formation in the second region to 2.0 Pa or more and 13.0 Pa or less;
A method of manufacturing a field effect transistor in which the steps are sequentially performed.
前記第2成膜工程では、前記成膜開始時の成膜圧力を5.0Pa以上12.0Pa未満に調整する、
請求項1に記載の電界効果型トランジスタの製造方法。
In the second film formation step, the film formation pressure at the start of the film formation is adjusted to 5.0 Pa or more and less than 12.0 Pa.
A method of manufacturing the field effect transistor according to claim 1.
前記第2成膜工程では、前記成膜開始時の成膜圧力を10.0Pa以下に調整する、
請求項1又は請求項2に記載の電界効果型トランジスタの製造方法。
In the second film formation step, the film formation pressure at the start of the film formation is adjusted to 10.0 Pa or less.
A method for manufacturing the field effect transistor according to claim 1.
前記第2成膜工程では、前記成膜開始時の成膜圧力を8.0Pa以下に調整する、
請求項3に記載の電界効果型トランジスタの製造方法。
In the second film formation step, a film formation pressure at the start of the film formation is adjusted to 8.0 Pa or less.
A method for manufacturing the field effect transistor according to claim 3.
前記第2成膜工程では、成膜途中で成膜圧力を前記成膜開始時の成膜圧力よりも低い圧力に切り替える、
請求項1〜請求項4の何れか1項に記載の電界効果型トランジスタの製造方法。
In the second film-forming step, the film-forming pressure is switched to a pressure lower than the film-forming pressure at the start of the film-forming during the film-forming process.
The manufacturing method of the field effect transistor of any one of Claims 1-4.
前記第2の領域を最初の5nmの膜厚まで前記成膜開始時の成膜圧力で成膜し、前記第2の領域の残りを1.0Pa未満の成膜圧力で成膜する、
請求項5に記載の電界効果型トランジスタの製造方法。
Depositing the second region up to a first film thickness of 5 nm at the deposition pressure at the start of deposition, and depositing the remainder of the second region at a deposition pressure of less than 1.0 Pa.
A method for manufacturing a field effect transistor according to claim 5.
前記第1の領域の膜厚を、10nm以下とし、
前記第2の領域の膜厚を、前記第1の領域の膜厚以上とする、
請求項1〜請求項6の何れか1項に記載の電界効果型トランジスタの製造方法。
The film thickness of the first region is 10 nm or less,
The film thickness of the second region is equal to or greater than the film thickness of the first region.
The manufacturing method of the field effect transistor of any one of Claims 1-6.
前記第1成膜工程では、前記第1の領域にInとZnとが含まれるように成膜する、
請求項1〜請求項7の何れか1項に記載の電界効果型トランジスタの製造方法。
In the first film formation step, the first region is formed so as to contain In and Zn.
The manufacturing method of the field effect transistor of any one of Claims 1-7.
前記第1成膜工程及び前記第2成膜工程では、前記第1の領域及び前記第2の領域にInが含まれるように成膜し、且つ、前記第1の領域のIn原子組成比率を、前記第2の領域のIn原子組成比率よりも高くする、
請求項1〜請求項8の何れか1項に記載の電界効果型トランジスタの製造方法。
In the first film formation step and the second film formation step, the first region and the second region are formed so as to contain In, and the In atom composition ratio of the first region is set. , Higher than the In atom composition ratio of the second region,
The manufacturing method of the field effect transistor of any one of Claims 1-8.
前記第1成膜工程及び前記第2成膜工程は、前記第1の領域及び前記第2の領域にGaが含まれるように成膜し、且つ、前記第1の領域のGa原子組成比率を、第2の領域のGa原子組成比率よりも低くする、
請求項1〜請求項9の何れか1項に記載の電界効果型トランジスタの製造方法。
In the first film forming step and the second film forming step, the first region and the second region are formed so that Ga is contained, and the Ga atom composition ratio of the first region is set. , Lower than the Ga atom composition ratio of the second region,
The manufacturing method of the field effect transistor of any one of Claims 1-9.
前記第1成膜工程及び前記第2成膜工程では、スパッタリング法を用いて成膜室内に酸素ガスを含むガスを流しながら前記第1の領域及び前記第2の領域を成膜し、且つ、前記第1成膜工程では、前記第2成膜工程時に流す酸素ガスの流量よりも少ない量の酸素ガスを流す、
請求項1〜請求項10の何れか1項に記載の電界効果型トランジスタの製造方法。
In the first film formation step and the second film formation step, the first region and the second region are formed using a sputtering method while flowing a gas containing oxygen gas into the film formation chamber, and In the first film formation step, a smaller amount of oxygen gas is flowed than the flow rate of oxygen gas flowed during the second film formation step.
The manufacturing method of the field effect transistor of any one of Claims 1-10.
前記酸化物半導体層の形成工程中、又は前記第2成膜工程の後に、300℃以上600℃以下で熱処理する熱処理工程を有する、
請求項8に記載の電界効果型トランジスタの製造方法。
A heat treatment step of performing heat treatment at 300 ° C. or more and 600 ° C. or less during the oxide semiconductor layer formation step or after the second film formation step;
A method for producing the field effect transistor according to claim 8.
前記酸化物半導体層の形成工程中、又は前記第2成膜工程の後に、300℃以上450℃未満で熱処理する熱処理工程を有する、
請求項1〜請求項11の何れか1項に記載の電界効果型トランジスタの製造方法。
A heat treatment step of performing heat treatment at 300 ° C. or higher and lower than 450 ° C. during the oxide semiconductor layer forming step or after the second film forming step;
The method for manufacturing a field effect transistor according to claim 1.
JP2012110605A 2012-05-14 2012-05-14 Method for manufacturing field effect transistor Active JP5795551B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012110605A JP5795551B2 (en) 2012-05-14 2012-05-14 Method for manufacturing field effect transistor
PCT/JP2013/062959 WO2013172236A1 (en) 2012-05-14 2013-05-08 Method for manufacturing field-effect transistor
KR1020147031859A KR101661834B1 (en) 2012-05-14 2013-05-08 Method for manufacturing field-effect transistor
TW102116623A TWI580048B (en) 2012-05-14 2013-05-10 Method for producing field-effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012110605A JP5795551B2 (en) 2012-05-14 2012-05-14 Method for manufacturing field effect transistor

Publications (2)

Publication Number Publication Date
JP2013239521A JP2013239521A (en) 2013-11-28
JP5795551B2 true JP5795551B2 (en) 2015-10-14

Family

ID=49583643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012110605A Active JP5795551B2 (en) 2012-05-14 2012-05-14 Method for manufacturing field effect transistor

Country Status (4)

Country Link
JP (1) JP5795551B2 (en)
KR (1) KR101661834B1 (en)
TW (1) TWI580048B (en)
WO (1) WO2013172236A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112014005486B4 (en) 2013-12-02 2024-08-22 Semiconductor Energy Laboratory Co., Ltd. Display device
US9349751B2 (en) 2013-12-12 2016-05-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
TWI545777B (en) * 2014-01-15 2016-08-11 Kobe Steel Ltd Thin film transistor
TW201606861A (en) * 2014-08-06 2016-02-16 中華映管股份有限公司 Fabricating method of thin film transistor
US20180097027A1 (en) * 2015-04-17 2018-04-05 Sharp Kabushiki Kaisha Imaging panel and x-ray imaging device including same
CN105355661A (en) * 2015-10-10 2016-02-24 无锡盈芯半导体科技有限公司 Thin film transistor and preparation method for semiconductor channel layer of thin film transistor
KR20170126398A (en) * 2016-05-09 2017-11-17 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and display device including the semiconductor device
TWI684283B (en) * 2017-06-07 2020-02-01 日商日新電機股份有限公司 Manufacturing method of thin film transistor
JP7317282B2 (en) * 2019-07-19 2023-07-31 日新電機株式会社 Method for manufacturing thin film transistor
CN113223927B (en) * 2021-04-16 2023-02-10 西安电子科技大学 Preparation method for realizing p-type doped gallium oxide by utilizing bending stress

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1812969B1 (en) * 2004-11-10 2015-05-06 Canon Kabushiki Kaisha Field effect transistor comprising an amorphous oxide
KR101270172B1 (en) * 2007-08-29 2013-05-31 삼성전자주식회사 Oxide thin film transistor and manufacturing method for the same
JP5345359B2 (en) * 2008-09-18 2013-11-20 富士フイルム株式会社 Thin film field effect transistor and display device using the same
EP2421030B1 (en) * 2008-09-19 2020-10-21 Semiconductor Energy Laboratory Co., Ltd. Display device
KR102251817B1 (en) 2008-10-24 2021-05-12 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and method for manufacturing the same
JP2010205798A (en) 2009-02-27 2010-09-16 Japan Science & Technology Agency Method of manufacturing thin-film transistor
JP2011054812A (en) * 2009-09-03 2011-03-17 Hitachi Ltd Thin film transistor, and method for manufacturing the same
JP2011077450A (en) * 2009-10-01 2011-04-14 Fujifilm Corp Thin film transistor and method of manufacturing thin film transistor
KR101768433B1 (en) * 2009-12-18 2017-08-16 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Method for manufacturing semiconductor device
WO2012029612A1 (en) * 2010-09-03 2012-03-08 Semiconductor Energy Laboratory Co., Ltd. Sputtering target and method for manufacturing semiconductor device
JP5626978B2 (en) * 2010-09-08 2014-11-19 富士フイルム株式会社 THIN FILM TRANSISTOR, MANUFACTURING METHOD THEREOF, AND APPARATUS HAVING THE THIN FILM TRANSISTOR

Also Published As

Publication number Publication date
KR101661834B1 (en) 2016-09-30
KR20140144744A (en) 2014-12-19
TWI580048B (en) 2017-04-21
WO2013172236A1 (en) 2013-11-21
JP2013239521A (en) 2013-11-28
TW201401516A (en) 2014-01-01

Similar Documents

Publication Publication Date Title
JP5795551B2 (en) Method for manufacturing field effect transistor
JP4982620B1 (en) Manufacturing method of field effect transistor, field effect transistor, display device, image sensor, and X-ray sensor
JP5657433B2 (en) Thin film transistor manufacturing method, thin film transistor, display device, sensor, and X-ray digital imaging device
JP5606787B2 (en) Thin film transistor manufacturing method, thin film transistor, image sensor, X-ray sensor, and X-ray digital imaging apparatus
JP5626978B2 (en) THIN FILM TRANSISTOR, MANUFACTURING METHOD THEREOF, AND APPARATUS HAVING THE THIN FILM TRANSISTOR
JP5995504B2 (en) FIELD EFFECT TRANSISTOR AND METHOD FOR MANUFACTURING THE SAME, DISPLAY DEVICE, IMAGE SENSOR, AND X-RAY SENSOR
JP5615744B2 (en) FIELD EFFECT TRANSISTOR, DISPLAY DEVICE, SENSOR, AND METHOD FOR MANUFACTURING FIELD EFFECT TRANSISTOR
WO2013024647A1 (en) Thin film transistor, method for producing same, display device, image sensor, x-ray sensor, and x-ray digital imaging device
WO2013024646A1 (en) Thin film transistor, method for producing same, display device, image sensor, x-ray sensor, and x-ray digital imaging device
KR101687468B1 (en) Thin-film transistor, method for producing same, display device, image sensor, x-ray sensor, and x-ray digital imaging device
KR101717336B1 (en) Method for producing thin-film transistor
JP5869110B2 (en) Thin film transistor, display device, image sensor and X-ray sensor
JP5657434B2 (en) Method for manufacturing oxide semiconductor thin film, field effect transistor, display device, and sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150721

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150813

R150 Certificate of patent or registration of utility model

Ref document number: 5795551

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250