JP5794559B2 - Drugs for regulating differentiation of mesenchymal cells and use thereof - Google Patents

Drugs for regulating differentiation of mesenchymal cells and use thereof Download PDF

Info

Publication number
JP5794559B2
JP5794559B2 JP2010539252A JP2010539252A JP5794559B2 JP 5794559 B2 JP5794559 B2 JP 5794559B2 JP 2010539252 A JP2010539252 A JP 2010539252A JP 2010539252 A JP2010539252 A JP 2010539252A JP 5794559 B2 JP5794559 B2 JP 5794559B2
Authority
JP
Japan
Prior art keywords
mirna
differentiation
strand
cells
osteoblast
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010539252A
Other languages
Japanese (ja)
Other versions
JPWO2010058824A1 (en
Inventor
伊藤 智広
智広 伊藤
赤尾 幸博
幸博 赤尾
三島 敏
敏 三島
幸夫 北出
幸夫 北出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
API Co Ltd
Gifu University
Original Assignee
API Co Ltd
Gifu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by API Co Ltd, Gifu University filed Critical API Co Ltd
Priority to JP2010539252A priority Critical patent/JP5794559B2/en
Publication of JPWO2010058824A1 publication Critical patent/JPWO2010058824A1/en
Application granted granted Critical
Publication of JP5794559B2 publication Critical patent/JP5794559B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0654Osteocytes, Osteoblasts, Odontocytes; Bones, Teeth
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/08Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/08Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
    • A61P19/10Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease for osteoporosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6881Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for tissue or cell typing, e.g. human leukocyte antigen [HLA] probes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/11Antisense
    • C12N2310/113Antisense targeting other non-coding nucleic acids, e.g. antagomirs
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/14Type of nucleic acid interfering N.A.
    • C12N2310/141MicroRNAs, miRNAs
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2330/00Production
    • C12N2330/10Production naturally occurring
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/60Transcription factors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/136Screening for pharmacological compounds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers

Description

本願は、2008年11月19日に出願した日本国特許出願 特願2008−296166に基づく優先権を主張するものであって、この出願の内容全体を参照により本願明細書に引用したものとする。
本発明は、間葉系細胞の分化を調節(抑制/促進)するための薬剤及びその利用に関する。
This application claims the priority based on Japanese Patent Application No. 2008-296166 filed on November 19, 2008, and the entire contents of this application are incorporated herein by reference. .
The present invention relates to a drug for regulating (suppressing / promoting) differentiation of mesenchymal cells and use thereof.

近年、骨芽細胞の分化を調節する様々な蛋白質が同定されているが、それらは骨形成蛋白質(Bone Morphogenetic Protein, 以下BMPと略す)のごとく種々の組織に作用してしまうような特異性の極めて低い蛋白質であるか、あるいはDNAに直接作用する転写制御因子である。例えばBMPは、強い骨誘導作用がある一方、筋肉等の軟部組織をも骨化させてしまうことから、医薬として用いるのは難しい。また。骨芽細胞の分化を調節する転写制御因子としてはcbfa1 の他にホメオボックス遺伝子であるMsxやDlxが知られている。なかでも、Dlx5は、脊椎動物の個体の発生過程において骨 組織に特異的に発現することが知られており、骨芽細胞の成熟に従ってDlx5 遺伝子の発現レベルが増加し、Dlx5蛋白が骨芽細胞の表現形質を遺伝子レベルで制御していることが報告されている。さらに、BMPの刺激によって骨芽細胞で特異的にDlx5 遺伝子が誘導されること、このDlx5 を過剰発現させた骨芽細胞では分化が著しく亢進していることが報告されている。   In recent years, various proteins that regulate osteoblast differentiation have been identified, but they have such specificity that they act on various tissues such as bone morphogenetic protein (BMP). It is a very low protein or transcriptional regulator that acts directly on DNA. For example, BMP has a strong osteoinductive effect, but also ossifies soft tissues such as muscles, making it difficult to use as a medicine. Also. In addition to cbfa1, Msx and Dlx, which are homeobox genes, are known as transcriptional regulatory factors that regulate osteoblast differentiation. Among them, Dlx5 is known to be specifically expressed in bone tissue during the development of vertebrate individuals, and the expression level of Dlx5 gene increases with the maturation of osteoblasts. It has been reported that the phenotypic traits of the gene are controlled at the gene level. Furthermore, it is reported that the Dlx5 gene is specifically induced in osteoblasts by stimulation of BMP, and that differentiation is remarkably enhanced in osteoblasts overexpressing this Dlx5.

骨芽細胞の分化には、miRNA(マイクロRNA、microRNA)が関与する可能性も報告されている(特許文献1)。miRNAは、細胞内在性の、20〜25塩基程度の非コードRNAである。miRNAは、ゲノムDNA上のmiRNA遺伝子から、まず数百〜数千塩基程度の長さの一次転写物(pri−miRNA)として転写され、次いで、プロセシングを受け、約60〜70塩基程度のヘアピン構造を有するpre−miRNAとなる。その後、核から細胞質内に移り、更にプロセシングを受けて、20〜24塩基程度の二量体(ガイド鎖とパッセンジャー鎖)の成熟miRNAとなる。成熟miRNAは、そのうちのガイド鎖(アンチセンス鎖)がRISCと呼ばれるタンパク質と複合体を形成し、標的遺伝子のmRNAに作用することで、標的遺伝子の翻訳を阻害する働きをすることが知られている。   It has also been reported that miRNA (microRNA, microRNA) may be involved in osteoblast differentiation (Patent Document 1). miRNA is a non-coding RNA of about 20 to 25 bases that is endogenous to cells. miRNA is first transcribed from a miRNA gene on genomic DNA as a primary transcript (pri-miRNA) having a length of about several hundred to several thousand bases, and then processed to a hairpin structure of about 60 to 70 bases. It becomes pre-miRNA which has. Then, it moves from the nucleus into the cytoplasm and further undergoes processing to become a mature miRNA of a dimer (guide strand and passenger strand) of about 20 to 24 bases. Mature miRNAs are known to function as a guide strand (antisense strand) in a complex with a protein called RISC and act on the mRNA of the target gene, thereby inhibiting the translation of the target gene. Yes.

特開2008−184450号公報JP 2008-184450 A

特許文献1に記載のmiRNAは、ターゲットとなる遺伝子が不明であり、このため、miRNAを導入したり、miRNAの機能を阻害することの影響が不明である。骨芽細胞などの分化の調節のためには、Dlx5遺伝子のように、骨芽細胞の分化の過程において特異的に作用する転写因子をターゲットとすることが好ましい。   The target gene of the miRNA described in Patent Document 1 is unknown, and therefore the effect of introducing miRNA or inhibiting the function of miRNA is unknown. In order to regulate differentiation of osteoblasts and the like, it is preferable to target transcription factors that act specifically in the process of osteoblast differentiation, such as the Dlx5 gene.

そこで、本発明は、骨芽細胞等の分化過程に特異的に作用して、分化を調節する調節剤及びその用途を提供することを目的とする。   Therefore, an object of the present invention is to provide a regulator that specifically acts on the differentiation process of osteoblasts and the like and regulates differentiation, and uses thereof.

本発明者らは、miRNAがDlx5遺伝子の発現を翻訳レベルで阻害しているこという知見を得て、本発明を完成した。すなわち、本明細書の開示によれば、以下の手段が提供される。   The present inventors have obtained the knowledge that miRNA inhibits the expression of Dlx5 gene at the translation level, and have completed the present invention. That is, according to the disclosure of the present specification, the following means are provided.

(1)Dlx5遺伝子の3’非翻訳領域に結合するmiRNA、その前駆体及びこれらをコードするDNA構築物並びに前記miRNAの阻害剤から選択される有効成分を有する、間葉系細胞の分化調節剤。
(2)前記miRNAは、RNA−141、miRNA−200a及びmiRNA−208から選択される1種又は2種類以上である、(1)に記載の間葉系細胞の分化調節剤。
(3)前記miRNA、その前駆体及びこれらをコードするDNA構築物から選択されるいずれかを有効成分とし、間葉系細胞の分化を抑制する、(1)又は(2)に記載の間葉系細胞の分化調節剤。
(4)前記阻害剤を有効成分とし、間葉系細胞の分化を促進する、(1)に記載の間葉系細胞の分化調節剤。
(5)前記阻害剤は、前記miRNAのガイド鎖の少なくとも一部に対するアンチセンス配列を含む第1のRNA鎖を有し、該第1のRNA鎖中に少なくとも一つの以下の式で表されるヌクレオシド誘導体を備える一本鎖RNAを含む、(4)に記載の間葉系細胞の分化調節剤。
[式(1)中、Zは、CH又はNを表す。]
(6)前記第1のRNA鎖は、内在性の前記miRNAの前記ガイド鎖に対するパッセンジャー鎖よりも前記ガイド鎖に対する相補性が高い、(5)に記載の間葉系細胞の分化調節剤。
(7)前記第1のRNA鎖は、その3'末端側に前記ヌクレオシド誘導体を備える、請求項5又は6に記載の間葉系細胞の分化調節剤。
(8)前記阻害剤は、前記第1のRNA鎖と前記マイクロRNAのガイド鎖である第2のRNA鎖とを備える二重鎖RNAを含む、(5)〜(7)のいずれかに記載の間葉系細胞の分化調節剤。
(9)前記第2のRNA鎖は、その3'末端側に前記ヌクレオシド誘導体を備える、(8)に記載の間葉系細胞の分化調節剤。
(10)前記間葉系細胞は、前骨芽細胞及び骨芽細胞の少なくともいずれかである、請求項1〜9のいずれかに記載の間葉系細胞の分化調節剤。
(11)間葉系細胞の分化異常に起因する疾患を治療又は予防するための医薬であって、(1)〜(10)のいずれかに記載の間葉系細胞の分化調節剤を含む、医薬。
(12)前記疾患は、前記間葉系細胞の分化抑制又は分化不足に起因する疾患である、請求項11に記載の医薬。
(13)前記間葉系細胞が骨芽細胞であり、前記疾患が骨粗鬆症、骨形成不全、及び発達期における成長阻害からなる群より選択される少なくともいずれかである請求項12に記載の医薬。
(14)間葉系細胞の分化調節剤の評価方法であって、
Dlx5遺伝子の3’非翻訳領域に結合するmiRNAの作用の増大又は低下を指標とする、評価方法。
(15)Dlx5遺伝子を有する間葉系幹細胞若しくは前駆細胞又は非ヒト動物に対して被験化合物を供給する工程と、
前記間葉系幹細胞若しくは前駆細胞又は非ヒト動物におけるDlx5遺伝子の3’非翻訳領域に結合するmiRNAの発現量を前記被験化合物の非供給時との対比に基づいて、前記被験化合物の骨芽細胞の分化調節作用を評価する工程と、
を備える、(15)に記載の方法。
(1) A mesenchymal cell differentiation regulator comprising an active ingredient selected from miRNA binding to the 3 ′ untranslated region of the Dlx5 gene, a precursor thereof, a DNA construct encoding them, and an inhibitor of the miRNA.
(2) The agent for regulating differentiation of mesenchymal cells according to (1), wherein the miRNA is one or more selected from RNA-141, miRNA-200a, and miRNA-208.
(3) The mesenchymal system according to (1) or (2), wherein any one selected from the miRNA, a precursor thereof, and a DNA construct encoding them is an active ingredient and suppresses differentiation of mesenchymal cells. Cell differentiation regulator.
(4) The differentiation regulator for mesenchymal cells according to (1), wherein the inhibitor is an active ingredient and promotes differentiation of mesenchymal cells.
(5) The inhibitor has a first RNA strand containing an antisense sequence for at least part of the guide strand of the miRNA, and is represented by at least one of the following formulas in the first RNA strand. The agent for regulating differentiation of mesenchymal cells according to (4), comprising a single-stranded RNA comprising a nucleoside derivative.
[In the formula (1), Z represents CH or N. ]
(6) The differentiation regulator for mesenchymal cells according to (5), wherein the first RNA strand has a higher complementarity to the guide strand than a passenger strand of the endogenous miRNA to the guide strand.
(7) The agent for regulating differentiation of mesenchymal cells according to claim 5 or 6, wherein the first RNA strand comprises the nucleoside derivative on the 3 'end side thereof.
(8) The inhibitor according to any one of (5) to (7), comprising a double-stranded RNA comprising the first RNA strand and a second RNA strand that is a guide strand of the microRNA. Differentiation regulator of mesenchymal cells.
(9) The differentiation regulator for mesenchymal cells according to (8), wherein the second RNA strand comprises the nucleoside derivative on the 3 ′ end side thereof.
(10) The agent for regulating differentiation of mesenchymal cells according to any one of claims 1 to 9, wherein the mesenchymal cells are at least one of preosteoblasts and osteoblasts.
(11) A medicament for treating or preventing a disease caused by abnormal differentiation of mesenchymal cells, comprising a differentiation regulator for mesenchymal cells according to any one of (1) to (10), Medicine.
(12) The medicament according to claim 11, wherein the disease is a disease caused by suppression of differentiation or insufficient differentiation of the mesenchymal cells.
(13) The medicament according to claim 12, wherein the mesenchymal cell is an osteoblast, and the disease is at least one selected from the group consisting of osteoporosis, osteogenesis dysfunction, and growth inhibition during development.
(14) A method for evaluating a differentiation regulator of mesenchymal cells,
An evaluation method using as an index the increase or decrease in the action of miRNA binding to the 3 ′ untranslated region of the Dlx5 gene.
(15) supplying a test compound to a mesenchymal stem cell or progenitor cell having a Dlx5 gene or a non-human animal;
Based on the expression level of the miRNA that binds to the 3 ′ untranslated region of the Dlx5 gene in the mesenchymal stem cell or progenitor cell or the non-human animal compared to when the test compound is not supplied, osteoblasts of the test compound Evaluating the differentiation regulating action of
The method according to (15), comprising:

miRNA141の前駆体を示す図である。It is a figure which shows the precursor of miRNA141. miRNA200a及び208の前駆体を示す図である。It is a figure which shows the precursor of miRNA200a and 208. FIG. BMP−2刺激における骨芽細胞分化の状態をALP活性と染色結果として示す図である。It is a figure which shows the state of osteoblast differentiation in BMP-2 stimulation as an ALP activity and a dyeing | staining result. BMP−2誘導骨芽細胞分化におけるmicroRNA発現の変動を示すグラフである。It is a graph which shows the fluctuation | variation of microRNA expression in BMP-2 induced osteoblast differentiation. 人工microRNA−141,−200aの各前駆体導入によるBMP−2誘導骨芽細胞分化への影響をALP活性として示すグラフである。It is a graph which shows the influence on BMP-2 induction osteoblast differentiation by each precursor introduction | transduction of artificial microRNA-141, -200a as ALP activity. 人工microRNA−141,−200aの各前駆体導入によるBMP−2誘導骨芽細胞分化への影響を示す図である。It is a figure which shows the influence on BMP-2 induction osteoblast differentiation by each precursor introduction | transduction of artificial microRNA-141 and -200a. 人工microRNA−141,−200aの各前駆体導入によるBMP−2誘導骨芽細胞分化への影響をDlx5タンパク質の発現量(ウエスタンブロッティング)として示す図である。It is a figure which shows the influence on BMP-2 induction osteoblast differentiation by each precursor introduction | transduction of artificial microRNA-141, -200a as an expression level (Western blotting) of Dlx5 protein. microRNA−141及び−200aの標的遺伝子の同定結果を示す図である。It is a figure which shows the identification result of the target gene of microRNA-141 and -200a. microRNA−141及び−200aに対するアンチセンス鎖による標的遺伝子のDlx5のmRNA発現への影響を示すグラフである。It is a graph which shows the influence on mRNA expression of Dlx5 of a target gene by the antisense strand with respect to microRNA-141 and -200a. microRNA−200aの作用を阻害する二本鎖RNAの構造を示す図である。It is a figure which shows the structure of double stranded RNA which inhibits the effect | action of microRNA-200a. 化学修飾microRNA−141、−200a及び−208のアンチセンス鎖及び二本鎖RNAの導入における骨芽細胞分化への影響(ALP活性の上昇)を示す図である。It is a figure which shows the influence (increase in ALP activity) on osteoblast differentiation in the introduction | transduction of antisense strand and double strand RNA of chemically modified microRNA-141, -200a, and -208. 化学修飾microRNA−141及び200aアンチセンス鎖及び二本鎖RNAの導入における骨芽細胞分化への影響(ヒドロキシアパタイト結晶の形成状態)を示す図である。It is a figure which shows the influence (formation state of a hydroxyapatite crystal | crystallization) on osteoblast differentiation in introduction | transduction of chemically modified microRNA-141 and 200a antisense strand and double strand RNA.

本明細書の開示は、Dlx5遺伝子の3’非翻訳領域に結合するmiRNA及びその利用に関する。本明細書の開示は、Dlx5遺伝子の3’非翻訳領域に結合してその翻訳を抑制するmiRNAを見出したことに基づいている。すなわち、本明細書の開示によれば、該miRNA、その前駆体及びこれらをコードするDNA構築物を間葉系細胞の分化を抑制するものとして利用できる。また、前記miRNAの阻害剤を間葉系細胞の分化を促進するものとして利用できる。より具体的には、本明細書の開示によれば、さらに、miRNAのパッセンジャー鎖やその誘導体に修飾を加えたRNA1本鎖と、このRNA1本鎖にさらにガイド鎖を組み合わせたmiRNA様二本鎖が、いずれも間葉系細胞の分化の促進剤として利用できる。さらに、さらに、本明細書の開示によれば、このような間葉系細胞の分化の調節剤を用いる医薬、間葉系細胞の分化調節剤の評価方法も提供される。以下、本明細書の開示の実施形態につき詳細に説明する。   The disclosure herein relates to miRNAs that bind to the 3 'untranslated region of the Dlx5 gene and uses thereof. The disclosure herein is based on the discovery of miRNAs that bind to the 3 'untranslated region of the Dlx5 gene and suppress its translation. That is, according to the disclosure of the present specification, the miRNA, a precursor thereof, and a DNA construct encoding them can be used as those for suppressing differentiation of mesenchymal cells. Moreover, the said miRNA inhibitor can be utilized as what accelerates | stimulates the differentiation of a mesenchymal cell. More specifically, according to the disclosure of the present specification, a miRNA-like duplex in which a miRNA passenger strand or a derivative thereof is further modified with an RNA single strand in which the RNA single strand is further combined with a guide strand. However, both can be used as promoters of differentiation of mesenchymal cells. Furthermore, according to the disclosure of the present specification, a medicament using such a regulator of differentiation of mesenchymal cells and a method for evaluating a differentiation regulator of mesenchymal cells are also provided. Hereinafter, embodiments of the present disclosure will be described in detail.

なお、以下の説明において、miRNA、pri−miRNA、pre−miRNAにおいて、最終的に標的となる遺伝子のmRNAと対合するmRNAに対するアンチセンス鎖(又は当該アンチセンスセンス鎖を含むRNA領域)をガイド鎖と表現し、前記アンチセンス鎖に対するセンス鎖(又は当該センス鎖を含むRNA領域)をパッセンジャー鎖というものとする。   In the following description, in miRNA, pri-miRNA, and pre-miRNA, an antisense strand (or an RNA region containing the antisense sense strand) against mRNA that finally paired with mRNA of a target gene is guided. A sense strand (or an RNA region containing the sense strand) with respect to the antisense strand is referred to as a passenger strand.

(間葉系細胞の分化調節剤)
本明細書に開示の分化調節剤は、間葉系幹細胞又は前駆細胞の間葉系細胞への分化合物を調節する。したがって、分化調節剤の投与対象は、間葉系細胞への分化能を有する細胞である。間葉系細胞への分化能を有する細胞の種類としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、間葉系幹細胞及び間葉系前駆細胞が挙げられる。間葉系幹細胞及び前駆細胞の入手方法としても、特に制限はなく、目的に応じて適宜選択することができ、例えば、個体の骨髄等から単離することにより得ることもできるし、或いは、既にクローン化された間葉系幹細胞として各種機関から入手することもできる。このような既にクローン化された間葉系幹細胞としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、マウスの細胞として、マウスST2細胞、マウスNRG細胞などが挙げられる(それぞれ独立行政法人理化学研究所バイオリソースセンター(BRC)から入手可能である)。なお、間葉系幹細胞以外の細胞であっても、間葉系細胞への分化能を有する細胞であればよい。本明細書においては、間葉系幹細胞としては、前駆骨芽細胞が挙げられる。
(Mesenchymal cell differentiation regulator)
The differentiation regulator disclosed in the present specification regulates a compound separated into mesenchymal cells of mesenchymal stem cells or progenitor cells. Therefore, the administration target of the differentiation regulator is a cell having the ability to differentiate into mesenchymal cells. There is no restriction | limiting in particular as a kind of cell which has the differentiation ability to a mesenchymal cell, According to the objective, it can select suitably, For example, a mesenchymal stem cell and a mesenchymal progenitor cell are mentioned. The method for obtaining mesenchymal stem cells and progenitor cells is not particularly limited, and can be appropriately selected according to the purpose. For example, it can be obtained by isolation from the bone marrow of an individual, or has already been obtained. It can also be obtained from various institutions as cloned mesenchymal stem cells. Such already cloned mesenchymal stem cells are not particularly limited and may be appropriately selected depending on the intended purpose. Examples of mouse cells include mouse ST2 cells and mouse NRG cells. (Each can be obtained from RIKEN BioResource Center (BRC)). In addition, even if it is cells other than a mesenchymal stem cell, what is necessary is just a cell which has the differentiation ability to a mesenchymal cell. In the present specification, the mesenchymal stem cells include progenitor osteoblasts.

また、間葉系細胞の種類としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、骨芽細胞、脂肪細胞、筋細胞、軟骨細胞などが挙げられる。これらの中でも、特に、骨芽細胞が好ましい。   Moreover, there is no restriction | limiting in particular as a kind of mesenchymal cell, According to the objective, it can select suitably, For example, an osteoblast, an adipocyte, a muscle cell, a chondrocyte etc. are mentioned. Among these, osteoblasts are particularly preferable.

本明細書に開示の間葉系細胞の分化調節剤は、Dlx5遺伝子の3’非翻訳領域に結合するmiRNA、その前駆体及びこれらをコードするDNAを転写可能に保持するDNA構築物並びに前記miRNAの阻害剤から選択される有効成分を有することができる。   The agent for regulating differentiation of mesenchymal cells disclosed in the present specification comprises a miRNA that binds to the 3 ′ untranslated region of the Dlx5 gene, a precursor thereof, a DNA construct that retains DNA encoding the same, and the miRNA It can have an active ingredient selected from inhibitors.

(miRNA)
Dlx5遺伝子の3’非翻訳領域に結合するmiRNAとは、当該非翻訳領域に結合してDlx5遺伝子の翻訳を抑制する作用を有する1本鎖RNA(二本鎖miRNAのガイド鎖に相当する。)を意味している。かかるRNAは、miR−141、miR−200a及びmiR−208であり、その成熟配列はそれぞれ以下に示すとおりであり(配列番号1〜6)、マウス、ヒト等で保存されている。図1及び図2に、それぞれmiR−141、miR−200a及びmiRNA−208の模式図を示す。
(ヒト)
miR-141: UAACACUGUCUGGUAAAGAUGG(配列番号1)
miR-200a: UAACACUGUCUGGUAACGAUGU(配列番号2)
miR-208: AUAAGACGAGCAAAAAGCUUGU(配列番号3)
(マウス)
miR-141: UAACACUGUCUGGUAAAGAUGG(配列番号4)
miR-200a: UAACACUGUCUGGUAACGAUGU(配列番号5)
miR-208: AUAAGACGAGCAAAAAGCUUGU(配列番号6)
(MiRNA)
The miRNA that binds to the 3 ′ untranslated region of the Dlx5 gene is a single-stranded RNA that has the action of binding to the untranslated region and suppressing translation of the Dlx5 gene (corresponding to the guide strand of the double-stranded miRNA). Means. Such RNAs are miR-141, miR-200a, and miR-208, and their mature sequences are as shown below (SEQ ID NOs: 1 to 6), respectively, and are conserved in mice, humans, and the like. 1 and 2 show schematic diagrams of miR-141, miR-200a, and miRNA-208, respectively.
(Human)
miR-141: UAACACUGUCUGGUAAAGAUGG (SEQ ID NO: 1)
miR-200a: UAACACUGUCUGGUAACGAUGU (SEQ ID NO: 2)
miR-208: AUAAGACGAGCAAAAAGCUUGU (SEQ ID NO: 3)
(mouse)
miR-141: UAACACUGUCUGGUAAAGAUGG (SEQ ID NO: 4)
miR-200a: UAACACUGUCUGGUAACGAUGU (SEQ ID NO: 5)
miR-208: AUAAGACGAGCAAAAAGCUUGU (SEQ ID NO: 6)

こうしたmiRNAは、その塩基配列に基づき、従来公知の手法を用いて、天然物から単離することにより、化学的に合成することにより、あるいはin vivo又はin vitroで遺伝子工学的に生産させることができる。また、こうしたmiRNAは、内在性の成熟型miRNAを模倣するように合成された類縁体であってもよい。こうした類縁体としては、例えば、Ambion社などから入手可能である。こうしたmiRNAは、一本鎖であってもよいし、相補鎖を備える二本鎖であってもよい。   Such miRNAs can be produced by isolation from natural products, chemical synthesis, or genetic engineering in vivo or in vitro based on the nucleotide sequence of the miRNA. it can. Such miRNAs may also be analogs synthesized to mimic endogenous mature miRNAs. Such analogs are available from Ambion, for example. Such miRNA may be single-stranded or double-stranded with a complementary strand.

(miRNA前駆体)
miRNA前駆体としては、例えば、pri−miRNA、pre−miRNAなどが挙げられる。その具体例としては、例えば、マウス及びヒトにつき、以下の表に示すpri−miRNA及びpre−miRNAがそれぞれ挙げられる。このようなmiRNA前駆体も、従来公知の手法を用いて、天然物から単離することにより、化学的に合成することにより、あるいはin vivo又はin vitroで遺伝子工学的に生産させることができる。さらに、miRNA前駆体としては、内在性のmiR125b前駆体を模倣するように合成された、miR125b前駆体類縁体を同様に用いることもできる。miR125b前駆体は、一本鎖であってもよいし、二本鎖であってもよい。
(MiRNA precursor)
Examples of the miRNA precursor include pri-miRNA and pre-miRNA. Specific examples thereof include pri-miRNA and pre-miRNA shown in the following table for mouse and human, respectively. Such miRNA precursors can also be produced by isolation from natural products, chemical synthesis, or in vivo or in vitro genetic engineering using conventionally known techniques. Furthermore, miR125b precursor analogs synthesized to mimic endogenous miR125b precursors can also be used as miRNA precursors. The miR125b precursor may be single-stranded or double-stranded.

(miRNA等のDNA構築物)
miRNA及びmiRNA前駆体をコードするDNAを転写可能に保持するDNA構築物は、in vivo又はin vitroでこうしたRNA鎖を転写可能にコードしたDNAコンストラクトである。たとえば、in vitroでmiRNA等を転写可能なコンストラクトは、ウイルスプロモーターの制御下にmiRNA等をコードするDNAを連結したベクターが挙げられる。また、in vivoでmiRNA等を転写可能なコンストラクトは、哺乳類細胞で有効なプロモーターの制御下にmiRNA等をコードするDNAを連結したベクターが挙げられる。このようなin vivo又はin vitro転写用のベクターは商業的に入手が可能であり、そのプロトコールに従い、miRNA等の塩基配列に基づけば、容易にかかるベクターを構築できる。
(DNA constructs such as miRNA)
A DNA construct that holds miRNA and miRNA precursor-encoding DNA in a transcribable manner is a DNA construct that encodes such an RNA strand in a transcribable manner in vivo or in vitro. For example, a construct capable of transcribing miRNA or the like in vitro includes a vector in which DNA encoding miRNA or the like is linked under the control of a viral promoter. In addition, examples of constructs that can transcribe miRNA and the like in vivo include vectors in which DNA encoding miRNA and the like is linked under the control of a promoter effective in mammalian cells. Such vectors for in vivo or in vitro transcription are commercially available, and such vectors can be easily constructed based on the base sequence such as miRNA according to the protocol.

(miRNAの阻害剤)
miRNAの阻害剤は、miRNAの機能を低下させる化合物であれば足り特に限定されない。例えば、miR141、miR200a、これらの前駆体のガイド鎖の少なくとも一部の相補鎖である第1のRNA鎖(いわゆるアンチセンスセンスmiRNA)が挙げられる。第1のRNA鎖における相補鎖としては、必ずしもmiRNA及びその前駆体の全体の相補鎖である必要はなく、その機能を低下させる作用を有する限りその一部の相補鎖であってもよい。また、完全な相補鎖である必要はなく、miRNA等の少なくともいずれかに対する完全な相補鎖である必要はなく、miRNA等の機能を低下させる作用を有する限り、不完全な相補鎖であってもよい。
(Inhibitor of miRNA)
The miRNA inhibitor is not particularly limited as long as it is a compound that reduces the function of miRNA. Examples thereof include miR141, miR200a, and a first RNA strand (so-called antisense sense miRNA) that is a complementary strand of at least a part of the guide strand of these precursors. The complementary strand in the first RNA strand does not necessarily need to be the entire complementary strand of miRNA and its precursor, and may be a partial complementary strand as long as it has the function of reducing its function. In addition, it is not necessary to be a complete complementary strand, it is not necessary to be a complete complementary strand to at least one of miRNA and the like, and an incomplete complementary strand may be used as long as it has an action of reducing the function of miRNA or the like. Good.

第1のRNA鎖においては、内在性のmiRNA等におけるガイド鎖に対するパッセンジャー鎖と比較して相補性が高められていることが好ましい。すなわち、内在性のmiRNAにおいて、ガイド鎖とパッセンジャー鎖との間に、ミスマッチが存在する場合、そのようなミスマッチの個数が第1のRNA鎖において低減されていることが好ましい。ミスマッチをどの程度低減すればよいかは特に限定されないが、第1のRNA鎖が阻害剤として機能する限り、すべてのミスマッチを解消する必要はなく、その一部が解消されていてもよい。阻害剤としての相補鎖において解消されるミスマッチの箇所(内在性miRNAのガイド鎖における位置)は、特に限定しないが、3’末端側にあるミスマッチが解消されることにより、阻害剤として好ましい。   In the first RNA strand, it is preferable that complementarity is enhanced as compared with the passenger strand for the guide strand in the endogenous miRNA or the like. That is, in the case of endogenous miRNA, when there is a mismatch between the guide strand and the passenger strand, the number of such mismatches is preferably reduced in the first RNA strand. Although how much a mismatch should be reduced is not specifically limited, as long as the 1st RNA chain | strand functions as an inhibitor, it is not necessary to eliminate all the mismatches, The one part may be eliminated. The position of the mismatch (position in the guide strand of the endogenous miRNA) that is eliminated in the complementary strand as the inhibitor is not particularly limited, but it is preferable as the inhibitor by eliminating the mismatch at the 3 ′ end side.

miRNAの阻害剤は、第1のRNA鎖とmiRNA等のガイド鎖である第2のRNA鎖とを備えていてもよい。本明細書の開示によれば、こうした二本鎖状態であっても阻害剤として有効であることがわかっている(後述の実施例参照)。   The miRNA inhibitor may comprise a first RNA strand and a second RNA strand that is a guide strand such as miRNA. According to the disclosure of the present specification, it is known that even in such a double-stranded state, it is effective as an inhibitor (see Examples described later).

本明細書に開示の阻害剤の少なくとも相補鎖においては、式(1)で表されるヌクレオシド誘導体を備えていることが好ましい。かかる誘導体を第1のRNA鎖に備えることで、ヌクレアーゼ耐性を向上させ、阻害剤としての機能をより高めることができる。   It is preferable that at least the complementary strand of the inhibitor disclosed in the present specification is provided with a nucleoside derivative represented by the formula (1). By providing such a derivative in the first RNA strand, nuclease resistance can be improved and the function as an inhibitor can be further enhanced.

[式(1)中、Zは、CH又はNを表す。] [In the formula (1), Z represents CH or N. ]

本発明のオリゴオリゴヌクレオチド誘導体においては、式(1)中、Zは、Nであってもよいし、CHであってもよい。式(1)における6員環は、全体として疎水性であって、親水性又は極性の置換基を有していないことが好ましい。6員環が有していてもよい置換基としては、非極性の置換基であることが好ましく、炭素数1〜4個の鎖状アルキル基を有することができる。すなわち、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基及びtert−ブチル基が挙げられる。   In the oligooligonucleotide derivative of the present invention, in formula (1), Z may be N or CH. The 6-membered ring in formula (1) is generally hydrophobic and preferably has no hydrophilic or polar substituent. The substituent that the 6-membered ring may have is preferably a nonpolar substituent, and can have a chain alkyl group having 1 to 4 carbon atoms. That is, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, and a tert-butyl group are exemplified.

なお、式(1)の6員環を含む構造(以下の「化3」に示す式(1)における点線枠内)に替えて、以下の環状構造体2b〜2gを用いることもできる。これらの環においても、上記と同様の置換基を備えていてもよい。Zは、式(1)におけるのと同義である。化合物2b〜2gのなかでも、単環式である2bを好ましく用いることができる。また、2dも好ましく用いることができる。   The following cyclic structures 2b to 2g can be used instead of the structure containing the six-membered ring of the formula (1) (within the dotted frame in the formula (1) shown in the following “Chemical Formula 3”). These rings may also have the same substituents as described above. Z has the same meaning as in formula (1). Of the compounds 2b to 2g, monocyclic 2b can be preferably used. Moreover, 2d can also be used preferably.

かかるヌクレオシド誘導体は、第1のRNA鎖において、1個又は2個以上備えることができる。複数のヌクレオシド誘導体は、前記Zにおいて同一のものを複数個備えていてもよいし、前記ZがNのヌクレオシド誘導体と前記ZがCHであるヌクレオシド誘導体が組み合わされていてもよい。かかるヌクレオシド誘導体は、例えば、国際公開パンフレット(WO/2007/094135)において開示されている。   One or two or more such nucleoside derivatives can be provided in the first RNA strand. The plurality of nucleoside derivatives may include a plurality of the same ones in Z, or a nucleoside derivative in which Z is N and a nucleoside derivative in which Z is CH may be combined. Such nucleoside derivatives are disclosed, for example, in an international publication pamphlet (WO / 2007/094135).

また、かかるヌクレオシド誘導体は、以下のホスホアミダイド誘導体やCPG誘導体を用いることにより、一般的なCPG等を用いるオリゴヌクレオチド合成法によってオリゴヌクレオチドに導入することができる。すなわち、リン酸エステル結合を介してオリゴヌクレオチド鎖に導入される。かかるホスホアミダイド誘導体及びCPG誘導体は、当業者であれば、以下に示すスキーム1によって合成することができる。なお、以下の方法は、ピリジンカルボン酸について説明するが、ベンジル誘導体についても同様である。すなわち、フタル酸ジメチル等のベンジル誘導体あるいはピリジンジカルボン酸ジメチル等を還元し、続いてDMTr化し、さらに、これをアミダイト試薬によりアミダイト化してアミダイト体を得る。一方、DMTr体をスクシニル化し、さらにCPG樹脂と結合させてCPG誘導体を得ることができる。なお、ベンジル誘導体等に対する塩基のカップリングに先だって、ベンジル誘導体等が備える水酸基に適当な保護基を付与しておき、塩基のカップリング後、DMTr化前の適当な段階で脱保護することが好ましい。   Further, such a nucleoside derivative can be introduced into an oligonucleotide by a general oligonucleotide synthesis method using CPG or the like by using the following phosphoramidide derivative or CPG derivative. That is, it is introduced into the oligonucleotide chain via a phosphate ester bond. Those skilled in the art can synthesize such phosphoramidide derivatives and CPG derivatives according to Scheme 1 shown below. In addition, although the following method demonstrates pyridinecarboxylic acid, it is the same also about a benzyl derivative. That is, a benzyl derivative such as dimethyl phthalate or dimethyl pyridinedicarboxylate is reduced, followed by DMTr, which is further amidated with an amidite reagent to obtain an amidite. On the other hand, a DMTr body can be succinylated and further combined with a CPG resin to obtain a CPG derivative. Prior to the coupling of the base to the benzyl derivative or the like, it is preferable that a suitable protecting group is added to the hydroxyl group provided in the benzyl derivative or the like, and deprotection is performed at an appropriate stage after the coupling of the base and before DMTr formation. .

ヌクレオシド誘導体は、第1のRNA鎖において、第1のRNA鎖中のmiRNA等のガイド鎖との相補配列以外の部分に備えられていることが好ましい。第1のRNA鎖がターゲットとするmiRNA等のガイド鎖との相補鎖形成(すなわち、miRNAとしての機能の阻害)を阻害しないためである。したがって、ヌクレオシド誘導体は、第1のRNA鎖の好ましくは3’末端側及び/又は5’末端端側に備えられる。より好ましくは、第1のRNA鎖の3’末端側に、3’末端から適数個の範囲内で追加される。ヌクレオシド誘導体の個数は、ヌクレオシド誘導体を追加しない場合よりもヌクレアーゼ耐性が向上する限りにおいて限定されないが、好ましくは、1〜4個程度である。   The nucleoside derivative is preferably provided in a portion of the first RNA strand other than the complementary sequence to the guide strand such as miRNA in the first RNA strand. This is because the first RNA strand does not inhibit the formation of a complementary strand (that is, inhibition of the function as the miRNA) with the target strand such as miRNA. Therefore, the nucleoside derivative is preferably provided on the 3 ′ end side and / or the 5 ′ end end side of the first RNA strand. More preferably, it is added to the 3 ′ end side of the first RNA strand within an appropriate number of ranges from the 3 ′ end. The number of nucleoside derivatives is not limited as long as the nuclease resistance is improved as compared with the case where no nucleoside derivative is added, but it is preferably about 1 to 4.

かかるヌクレオシド誘導体は、第2のRNA鎖に備えられていてもよい。第2のRNA鎖に備えられることにより、第1のRNA鎖の安定性も高まると考えられる。ヌクレオシド誘導体は、既に説明した第1のRNA鎖における各種態様と同様の態様で第2のRNA鎖に備えられることが好ましい。   Such a nucleoside derivative may be provided in the second RNA strand. By providing the second RNA strand, it is considered that the stability of the first RNA strand is also increased. The nucleoside derivative is preferably provided in the second RNA strand in the same manner as the various embodiments in the first RNA strand already described.

第1のRNA鎖及び第2のRNA鎖は、化学合成又は遺伝子工学的に製造できるほか、Ambion社等から商業的に入手可能である。第1のRNA鎖及び第2のRNA鎖には、細胞内等における安定性を確保する観点から、その塩基、糖等において適宜修飾が施されていてもよい。例えば、よりmiRNA等と強固に二本鎖を形成し、より効果的にmiRNA等の機能を阻害する(低下させる)ことができる点で、例えば、PNA(ペプチド核酸)やLNA(Locked Nucleic Acid)等の修飾を有したものであることが好ましい。前記LNA(Locked Nucleic Acid)等の修飾を有する相補鎖としては、例えば、miRCURY Knockdown Probes(Exiqon社)などを利用することができる(例えば、Biomedecine & Pharmacotherapy,Volume60,Issue9,November 2006,Pages633−638参照)。また、相補鎖としては、細胞内で分解されることを阻止してより安定に存在することができ、例えば、2’O−methyl等の修飾を有したものであることも好ましい。(例えば、Nucleic Acids Research,2003,Vol.31,No.11 2705−2716参照)。   The first RNA strand and the second RNA strand can be produced by chemical synthesis or genetic engineering, and are commercially available from Ambion and the like. The first RNA strand and the second RNA strand may be appropriately modified in their bases, sugars, etc. from the viewpoint of ensuring stability in the cell or the like. For example, PNA (peptide nucleic acid) or LNA (Locked Nucleic Acid), for example, can form a double strand more strongly with miRNA or the like, and more effectively inhibit (reduce) the function of miRNA or the like. It is preferable to have a modification such as As a complementary strand having a modification such as LNA (Locked Nucleic Acid), for example, miRCURY Knockdown Probes (Exiqon) can be used (for example, Biomedine & Pharmacotherapy, Volume 60, Issue 63, No. 63, No. 63, No. 63, No. 63, No. 63, No. 63, No. 63, reference). In addition, the complementary strand can be present more stably by preventing degradation in the cell. For example, the complementary strand preferably has a modification such as 2'O-methyl. (See, for example, Nucleic Acids Research, 2003, Vol. 31, No. 11 2705-2716).

阻害剤としては、miRNA等に対する第1のRNA鎖、さらには第1のRNA鎖と第2のRNA鎖をコードするDNAを転写可能に保持するDNA構築物であってもよい。かかるDNA構築物は、in vivo又はin vitro転写用のベクターを用いることで容易に得ることができる。   The inhibitor may be a DNA construct that holds the first RNA strand against miRNA or the like, and further DNA that encodes the first RNA strand and the second RNA strand in a transcribable manner. Such a DNA construct can be easily obtained by using a vector for in vivo or in vitro transcription.

本明細書に開示の分化調節剤の有効成分は、目的に応じて選択される。すなわち、分化調節剤を、間葉系細胞の分化を抑制する目的に利用する場合、miRNA、miRNA前駆体及びmiRNA等の上記DNA構築物を用いることができる。また、分化調節剤を間葉系細胞の分化を促進する目的に利用する場合、上記阻害剤を用いることができる。有効成分は、同一の目的に寄与する有効成分を1種単独で使用してもよいし、2種以上を併用してもよい。また、前記間葉系細胞の分化促進剤中の前記有効成分の含有量としては、特に制限はなく、目的に応じて適宜設定することができる。   The active ingredient of the differentiation regulator disclosed in the present specification is selected according to the purpose. That is, when the differentiation regulator is used for the purpose of suppressing the differentiation of mesenchymal cells, the above DNA constructs such as miRNA, miRNA precursor and miRNA can be used. In addition, when the differentiation regulator is used for the purpose of promoting the differentiation of mesenchymal cells, the above inhibitor can be used. As the active ingredient, one active ingredient contributing to the same purpose may be used alone, or two or more active ingredients may be used in combination. Moreover, there is no restriction | limiting in particular as content of the said active ingredient in the differentiation promoting agent of the said mesenchymal cell, According to the objective, it can set suitably.

本明細書に開示の分化調節剤は、上記した有効成分のみを含有していてもよいが、必要に応じてそのほかの成分を含むことができる。その他の成分としては、特に制限はなく、目的に応じて適宜選択することができる。例えば、前記有効成分を所望の濃度に希釈等するための、水、各種緩衝液などが挙げられる。また、前記その他の成分としては、間葉系細胞への分化を抑制又は促進したい細胞(対象細胞;例えば、骨芽細胞等の間葉系幹細胞)に前記有効成分を導入するための、導入用試薬なども挙げられる。前記導入用試薬としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、Lipofectamin 2000(Invitrogen社)などが挙げられる。   The differentiation regulator disclosed in the present specification may contain only the above-described active ingredient, but may contain other ingredients as necessary. There is no restriction | limiting in particular as another component, According to the objective, it can select suitably. Examples thereof include water and various buffer solutions for diluting the active ingredient to a desired concentration. In addition, as the other components, for introducing the active component into cells (target cells; for example, mesenchymal stem cells such as osteoblasts) that are desired to suppress or promote differentiation into mesenchymal cells. Examples include reagents. The introduction reagent is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include Lipofectamine 2000 (Invitrogen).

本明細書に開示の分化調節剤は、Dlx5遺伝子の翻訳を抑制又は促進できることがから、間葉系幹細胞又は間葉系前駆細胞等の間葉系細胞への分化を抑制又は促進することができる。したがって、間葉系細胞への分化に関連する疾患を予防又は治療するための医薬として利用できる。また、間葉系細胞への分化に関連する研究試薬や医薬の評価並びにスクリーニングにも好ましく用いることができる。   Since the differentiation regulator disclosed in the present specification can suppress or promote the translation of the Dlx5 gene, it can suppress or promote differentiation into mesenchymal cells such as mesenchymal stem cells or mesenchymal progenitor cells. . Therefore, it can be used as a medicament for preventing or treating diseases associated with differentiation into mesenchymal cells. Moreover, it can be preferably used also for evaluation and screening of research reagents and drugs related to differentiation into mesenchymal cells.

(間葉系細胞の分化異常に起因する疾患を治療又は予防するための医薬)
本明細書に開示の医薬は、間葉系細胞の分化異常に起因する疾患を治療又は予防するための医薬であって、上記した分化調節剤を有効成分として含むことができる。分化調節剤は、本明細書に既に開示した各種分化調節剤を、医薬が対象とする疾患の種類に応じて選択される。本明細書に開示の医薬が間葉系細胞の分化過剰に起因する疾患であるときには、miRNA、miRNA前駆体、これらを転写するためのDNA構築物を有効成分とすることができる。一方、本明細書に開示の医薬が間葉系細胞の分化抑制に起因する疾患であるときには、阻害剤を有効成分とする。
(Medicine for treating or preventing diseases caused by abnormal differentiation of mesenchymal cells)
The medicament disclosed in the present specification is a medicament for treating or preventing a disease caused by abnormal differentiation of mesenchymal cells, and can contain the above-described differentiation regulator as an active ingredient. The differentiation regulator is selected from the various differentiation regulators already disclosed in the present specification according to the type of disease targeted by the pharmaceutical. When the medicament disclosed in the present specification is a disease caused by excessive differentiation of mesenchymal cells, miRNA, miRNA precursor, and a DNA construct for transcription of these can be used as active ingredients. On the other hand, when the medicament disclosed in the present specification is a disease caused by suppression of differentiation of mesenchymal cells, an inhibitor is used as an active ingredient.

本明細書に開示の医薬における分化調節剤の含有量は、特に制限はなく、目的に応じて適宜選択することができる。また、本明細書に開示の医薬は、有効成分のみからなっていてもよいが、必要に応じてそのほかの成分を含むことができる。その他の成分としては、特に制限はなく、目的に応じて適宜選択することができる。典型的には、薬学上許容され得る担体などが挙げられる。前記担体としても、特に制限はなく、例えば、前記医薬の剤型等に応じて適宜選択することができる。また、前記医薬中の前記その他の成分の含有量としても、特に制限はなく、目的に応じて適宜選択することができる。   The content of the differentiation regulator in the medicament disclosed in the present specification is not particularly limited and can be appropriately selected depending on the purpose. Moreover, the medicament disclosed in the present specification may be composed of only active ingredients, but may contain other ingredients as necessary. There is no restriction | limiting in particular as another component, According to the objective, it can select suitably. Typically, a pharmaceutically acceptable carrier and the like can be mentioned. The carrier is not particularly limited and may be appropriately selected depending on, for example, the pharmaceutical dosage form. Moreover, there is no restriction | limiting in particular also as content of the said other component in the said pharmaceutical, According to the objective, it can select suitably.

本明細書に開示の医薬は、従来公知の各種の製剤形態を採ることができる。後述するような所望の投与方法に応じて適宜選択することができ、例えば、経口固形剤(錠剤、被覆錠剤、顆粒剤、散剤、カプセル剤等)、経口液剤(内服液剤、シロップ剤、エリキシル剤等)、注射剤(溶液、懸濁液、用事溶解用固形剤等)、軟膏剤、貼付剤、ゲル剤、クリーム剤、外用散剤、スプレー剤、吸入散剤などが挙げられる。こうした各種製剤において適宜必要とされる添加剤は、当業者において周知であり、当業者であれば目的に応じて種々の製剤を製造することができる。   The medicament disclosed in the present specification can take various conventionally known preparation forms. It can be appropriately selected according to the desired administration method as will be described later. For example, oral solid preparations (tablets, coated tablets, granules, powders, capsules, etc.), oral liquid preparations (internal solutions, syrups, elixirs) Etc.), injections (solutions, suspensions, solid preparations for dissolution, etc.), ointments, patches, gels, creams, external powders, sprays, inhaled powders and the like. Additives that are appropriately required in these various preparations are well known to those skilled in the art, and those skilled in the art can produce various preparations according to the purpose.

本明細書に開示の医薬は、好ましくは、投与対象又は投与対象から採取された細胞を含む組織に対して、細胞内への医薬のトランスフェクションに適した製剤形態を採る。たとえば、適用部位に応じた注射製剤(皮下注射、静脈注射、筋肉注射、骨髄注射、歯髄注射、腹腔内注射等)の形態をとることができる。注射剤は、例えば、有効成分のほか、pH調節剤、緩衝剤、安定化剤、等張化剤、局所麻酔剤等を添加し、常法により皮下用、筋肉内用、静脈内用等の注射剤を製造することができる。なお、pH調節剤及び緩衝剤としては、例えば、クエン酸ナトリウム、酢酸ナトリウム、リン酸ナトリウムなどが挙げられる。前記安定化剤としては、例えば、ピロ亜硫酸ナトリウム、EDTA、チオグリコール酸、チオ乳酸などが挙げられる。前記等張化剤としては、例えば、塩化ナトリウム、ブドウ糖などが挙げられる。前記局所麻酔剤としては、例えば、塩酸プロカイン、塩酸リドカインなどが挙げられる。   The medicament disclosed in the present specification preferably takes a dosage form suitable for transfection of a medicament into a cell to a subject to be administered or a tissue containing cells collected from the subject to be administered. For example, it can take the form of an injection preparation (subcutaneous injection, intravenous injection, intramuscular injection, bone marrow injection, dental pulp injection, intraperitoneal injection, etc.) according to the application site. Injections include, for example, active ingredients, pH regulators, buffers, stabilizers, isotonic agents, local anesthetics, etc., and are used for subcutaneous, intramuscular, intravenous, etc. by conventional methods. An injection can be produced. Examples of the pH adjuster and buffer include sodium citrate, sodium acetate, and sodium phosphate. Examples of the stabilizer include sodium pyrosulfite, EDTA, thioglycolic acid, thiolactic acid, and the like. Examples of the isotonic agent include sodium chloride and glucose. Examples of the local anesthetic include procaine hydrochloride and lidocaine hydrochloride.

本明細書に開示の医薬の投与方法は特に限定されないが、医薬の剤型に応じて適宜選択される。上記のとおり、本明細書に開示の医薬は、例えば、有効成分を、患者における細胞や組織に対してトランスフェクトすることにより投与することができる。なお、細胞や組織は、間葉系幹細胞や前駆細胞が存在する箇所であることが好ましい。例えば、骨芽細胞への分化異常に起因する疾患においては、骨芽細胞への幹細胞や前駆細胞が存在する箇所、典型的には骨髄等を投与対象とすることが好ましい。   The administration method of the medicine disclosed in the present specification is not particularly limited, but is appropriately selected according to the dosage form of the medicine. As described above, the medicament disclosed in the present specification can be administered, for example, by transfecting an active ingredient into cells or tissues in a patient. The cells and tissues are preferably locations where mesenchymal stem cells and progenitor cells are present. For example, in a disease caused by abnormal differentiation into osteoblasts, it is preferable to administer a site where stem cells or progenitor cells to osteoblasts are present, typically bone marrow.

また、患者等から採取した間葉系幹細胞や間葉系前駆細胞あるいはこれらを含む組織にトランスフェクトし、その細胞を患者に移植することにより投与することができる。トランスフェクトの方法には、特に制限はなく、例えば、従来公知のリポフェクションやエレクトロレーション等の方法を適宜選択して利用することができる。患者の生体外でトランスフェクションを行った細胞を患者に移植する方法としても、特に制限なく、例えば、従来公知の細胞移植方法を適宜利用することができる。   In addition, it can be administered by transfecting mesenchymal stem cells or mesenchymal progenitor cells collected from a patient or the like or a tissue containing them and transplanting the cells into the patient. The transfection method is not particularly limited, and for example, conventionally known methods such as lipofection and electrolysis can be appropriately selected and used. There are no particular limitations on the method of transplanting cells transfected in vitro to the patient, and for example, conventionally known cell transplantation methods can be used as appropriate.

なお、本明細書に開示の医薬の投与量としては、特に制限はなく、投与対象である患者の年齢、体重、所望の効果の程度等に応じて適宜選択することができる。また、その投与回数としては、特に制限はなく、投与対象である患者の年齢、体重、所望の効果の程度等に応じて適宜選択することができる。さらに、その投与時期としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記間葉系細胞の分化異常(過剰や抑制)に起因する疾患に対して、予防的に投与されてもよいし、治療的に投与されてもよい。本明細書に開示の医薬の投与対象となる哺乳動物としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ヒト、マウス、ラット、ウシ、ブタ、サル、イヌ、ネコなどが挙げられる。   In addition, there is no restriction | limiting in particular as dosage of the medicine disclosed by this specification, According to the age of a patient who is an administration object, a body weight, the grade of a desired effect, etc., it can select suitably. The number of administrations is not particularly limited, and can be appropriately selected according to the age, weight, desired degree of effect, etc. of the patient to be administered. Furthermore, there is no restriction | limiting in particular as the administration time, According to the objective, it can select suitably, For example, prophylactically with respect to the disease resulting from the differentiation abnormality (excess and suppression) of the said mesenchymal cell. It may be administered or may be administered therapeutically. The mammal to be administered with the medicament disclosed in the present specification is not particularly limited and can be appropriately selected according to the purpose. For example, human, mouse, rat, cow, pig, monkey, dog, cat Etc.

本明細書に開示の医薬が予防又は治療の対象とする疾患は、間葉系細胞の分化異常(過剰や抑制)に起因する疾患である。例えば、間葉系細胞としては、骨芽細胞であることが好ましい。本明細書に開示の分化調節剤は、骨芽細胞の分化過程で特異的に作用するDlx5遺伝子の発現に関連するからである。間葉系細胞の分化過剰に起因する疾患としては、例えば、骨芽細胞の分化過剰に起因する、骨芽細胞型骨肉種等が挙げられる。また、間葉系細胞の分化抑制(分化不足)に起因する疾患としては、骨芽細胞の分化抑制又は不足に起因する、骨粗鬆症(閉経後骨粗鬆症、老人性骨粗鬆症、ステロイド治療による骨粗鬆症、糖尿病性骨粗鬆症)、骨形成不全、発達期における成長阻害等が挙げられる。   The disease targeted by prevention or treatment by the medicament disclosed in the present specification is a disease caused by abnormal differentiation (excess or suppression) of mesenchymal cells. For example, the mesenchymal cell is preferably an osteoblast. This is because the differentiation regulator disclosed in the present specification is related to the expression of the Dlx5 gene that specifically acts in the differentiation process of osteoblasts. Examples of the diseases caused by excessive differentiation of mesenchymal cells include osteoblast type osteosarcoma caused by excessive differentiation of osteoblasts. In addition, diseases caused by suppression of differentiation (insufficient differentiation) of mesenchymal cells include osteoporosis (postmenopausal osteoporosis, senile osteoporosis, osteoporosis due to steroid treatment, diabetic osteoporosis due to suppression or lack of differentiation of osteoblasts) ), Bone dysplasia, and growth inhibition in the developmental stage.

(評価方法)
本明細書に開示の間葉系細胞の分化調節剤の評価方法は、Dlx5遺伝子の3’非翻訳領域に結合するmiRNAの作用の増大又は低下を指標とすることができる。本明細書に開示の評価方法によれば、間葉系細胞の分化を抑制又は促進できる分化調節剤を得ることができる。すなわち、本明細書に開示の評価方法は、本明細書に開示の分化調節剤及び医薬の有効成分のスクリーニング方法として利用できる。
(Evaluation method)
The method for evaluating a differentiation regulator of mesenchymal cells disclosed in the present specification can be based on an increase or decrease in the action of miRNA that binds to the 3 ′ untranslated region of the Dlx5 gene. According to the evaluation method disclosed in this specification, a differentiation regulator capable of suppressing or promoting the differentiation of mesenchymal cells can be obtained. That is, the evaluation method disclosed in the present specification can be used as a screening method for the differentiation regulator and pharmaceutical active ingredient disclosed in the present specification.

本明細書に開示の評価方法は、典型的には、Dlx5遺伝子を有する間葉系幹細胞若しくは前駆細胞であって当該遺伝子を標的とする内在のmiRNA等を有する細胞又は非ヒト動物に対して被験化合物を供給する工程と、前記間葉系幹細胞又は非ヒト動物におけるDlx5遺伝子の3’非翻訳領域に結合するmiRNAの発現量を前記被験化合物の非供給時との対比に基づいて、前記被験化合物の間葉系幹細胞の分化調節作用を評価する工程と、を備えることができる。さらに、本明細書に開示のスクリーニング方法は、評価工程後において、間葉系幹細胞の分化を促進又は抑制する被験化合物を選択する工程を備えることができる。   The evaluation method disclosed herein is typically tested on cells or non-human animals that have mesenchymal stem cells or progenitor cells that have the Dlx5 gene and have endogenous miRNA that targets the gene. Based on the comparison between the step of supplying the compound and the expression level of miRNA that binds to the 3 ′ untranslated region of the Dlx5 gene in the mesenchymal stem cell or the non-human animal, when the test compound is not supplied And a step of evaluating the differentiation regulating action of mesenchymal stem cells. Furthermore, the screening method disclosed in the present specification can include a step of selecting a test compound that promotes or suppresses the differentiation of mesenchymal stem cells after the evaluation step.

上記した供給工程は、既に説明したように、本明細書に開示の分化調節剤や医薬を細胞又は患者等に投与する際に用いられる従来公知のトランスフェクトの方法を採用できる。被験化合物としては、特に限定しない。例えば、本明細書に開示の分化調節剤の候補となるmiRNA等やその阻害剤が挙げられる。   As described above, a conventionally known transfection method used when administering the differentiation regulator or medicament disclosed in the present specification to cells or patients can be used for the above-described supplying step. The test compound is not particularly limited. For example, miRNA that is a candidate for a differentiation regulator disclosed in the present specification, or an inhibitor thereof.

上記した評価工程では、被験化合物が内在性のmiRNAの作用を増強するか低減するかどうかを評価する。評価方法は特に特定しないで、目的に応じて適宜選択することができる。例えば、被験化合物の存在下及び非存在下での内在性miRNAの発現量やDlx5遺伝子の発現量(好ましくはタンパク質としての発現量)を測定することができる。また、骨芽細胞に対する間葉系幹細胞や前駆細胞を細胞として用いる場合には、アルカリフォスファターゼの活性等の各種の骨芽細胞への分化指標を用いることもできる。   In the above-described evaluation step, it is evaluated whether the test compound enhances or reduces the action of endogenous miRNA. The evaluation method is not particularly specified and can be appropriately selected according to the purpose. For example, the expression level of endogenous miRNA and the expression level of Dlx5 gene (preferably the expression level as a protein) in the presence and absence of the test compound can be measured. In addition, when mesenchymal stem cells or progenitor cells for osteoblasts are used as cells, differentiation indicators for various osteoblasts such as alkaline phosphatase activity can also be used.

評価工程では、例えば、被験化合物の非存在下(非供給時)と比べて、被験化合物の存在下(供給時)において、miRNA等の発現量等が増大するときには、被験化合物は、内在性miRNAの作用を増大させると評価することができる。すなわち、被験化合物は、間葉系細胞への分化を抑制する被験化合物であると評価できる。一方、被験化合物の存在下において、miRNA等の発現量等が低下するときには、被験化合物は、内在性miRNAの作用を低下させると評価することができる。すなわち、被験化合物が間葉系細胞への分化を促進すると評価できる。   In the evaluation step, for example, when the expression level of miRNA and the like is increased in the presence of the test compound (during supply) compared to the absence of the test compound (during supply), the test compound is endogenous miRNA. It can be evaluated as increasing the action of. That is, the test compound can be evaluated as a test compound that suppresses differentiation into mesenchymal cells. On the other hand, when the expression level of miRNA or the like decreases in the presence of the test compound, the test compound can be evaluated to decrease the action of the endogenous miRNA. That is, it can be evaluated that the test compound promotes differentiation into mesenchymal cells.

なお、以上の供給工程又は評価工程のいずれかあるいはこれらの工程の間において、適宜間葉系幹細胞や前駆細胞の間葉系細胞への分化を誘導する処理を施しておいてもよい。分化誘導処理としては、例えば、骨芽細胞への誘導処理には、BMP−2等を用いることができる。かかる分化誘導処理下において、被験化合物について評価することで、一層明確に被験化合物の分化抑制能や分化促進能を検出することができる。   In addition, you may perform the process which induces | guides | derives the mesenchymal stem cell or the progenitor cell to the mesenchymal cell suitably in either of the above supply process or evaluation process, or between these processes. As the differentiation induction process, for example, BMP-2 or the like can be used for the induction process to osteoblasts. By evaluating the test compound under such differentiation induction treatment, it is possible to more clearly detect the differentiation inhibiting ability and differentiation promoting ability of the test compound.

また、本明細書に開示のスクリーニング方法は、上記供給工程と上記評価工程に加えて選択工程を備えることができる。選択工程は、間葉系細胞への分化を抑制又は促進すると評価できた被験化合物を間葉系細胞への分化調節剤として選択する工程である。選択された被験化合物は、本明細書に開示の分化調節剤及び医薬の有効成分あるいはその候補として有用である。   Moreover, the screening method disclosed in this specification can include a selection step in addition to the supply step and the evaluation step. The selection step is a step of selecting a test compound that can be evaluated to suppress or promote differentiation into mesenchymal cells as an agent for regulating differentiation into mesenchymal cells. The selected test compound is useful as a differentiation regulator and a pharmaceutical active ingredient disclosed herein or as a candidate thereof.

以下、本発明の実施例を説明するが、本発明は、これらの実施例に何ら限定されるものではない。   Examples of the present invention will be described below, but the present invention is not limited to these examples.

(実験例1)
(BMP−2刺激における骨芽細胞分化)
マウス頭蓋骨由来前駆骨芽細胞株MC3T3−E1細胞(理化学研究所より分与)を24−wellプレートに1×10cells/mlに調整した細胞を500μl/wellずつ播種し、MEM−α(10%FBS,100U/mlペニシリン、100μg/mlストレプトマイシン含有:Invitrogen社製)で24時間前培養した。24時間後、BMP−2(BioVison社製)を培地に終濃度が200ng/mlとなるように加え、24〜72時間培養した。各設定培養時間後、細胞を回収し、細胞溶解液を加え、超音波破濁(10秒、3回)した。その後遠心分離(14,500rpm、4℃、15分)し、上清を新しい1.5mlチューブに移し、酵素活性測定まで氷上で保管した。骨芽細胞分化は分化中段階で活性が上昇するアルカリフォスファターゼ(以下ALPと省略)の活性を指標に評価した。ALPの活性についてはラボアッセイ(登録商標)ALPキット(和光純薬工業株式会社製)による酵素活性及びTRACP&ALP double−stain kit(タカラバイオ株式会社製)によるALP染色の二重評価により行った。結果を図3に示す。
(Experimental example 1)
(Osteblast differentiation by BMP-2 stimulation)
Mouse skull-derived progenitor osteoblast cell line MC3T3-E1 cells (distributed from RIKEN) were seeded on 24-well plates at 1 × 10 5 cells / ml at 500 μl / well, and MEM-α (10 % FBS, 100 U / ml penicillin, 100 μg / ml streptomycin contained: manufactured by Invitrogen) for 24 hours. After 24 hours, BMP-2 (manufactured by BioVison) was added to the medium to a final concentration of 200 ng / ml and cultured for 24-72 hours. After each set culture time, cells were collected, a cell lysate was added, and ultrasonic turbidity (10 seconds, 3 times) was performed. Thereafter, centrifugation (14,500 rpm, 4 ° C., 15 minutes) was performed, and the supernatant was transferred to a new 1.5 ml tube and stored on ice until measurement of enzyme activity. Osteoblast differentiation was evaluated using as an index the activity of alkaline phosphatase (hereinafter abbreviated as ALP) whose activity increases during the differentiation stage. About the activity of ALP, it performed by the double evaluation of the enzyme activity by a lab assay (trademark) ALP kit (made by Wako Pure Chemical Industries, Ltd.) and the ALP dyeing | staining by TRACP & ALP double-stain kit (made by Takara Bio Inc.). The results are shown in FIG.

図3に示すように、マウス頭蓋骨由来前駆骨芽細胞株MC3T3−E1細胞をBMP−2で分化誘導させると48時間後より分化中段階で活性の上昇するALPの活性が有意に上昇した。このことから本細胞においてBMP−2により分化誘導されることがわかった。   As shown in FIG. 3, when the mouse skull-derived progenitor osteoblast cell line MC3T3-E1 cells were induced to differentiate with BMP-2, the activity of ALP, whose activity increased in the middle stage of differentiation, increased significantly after 48 hours. From this, it was found that differentiation was induced by BMP-2 in this cell.

(実験例2)
(BMP−2誘導骨芽細胞分化におけるmicroRNA発現の変動)
BMP−2誘導におけるmicroRNA発現の変化を確認するためにBMP−2誘導処理(終濃度:200ng/ml)したMC3T3−E1細胞と無処理の細胞から全RNAをTrizol(Invitrogen社製)を用いて抽出した。そのうち一部を三菱レイヨン株式会社製 microRNAアレイ解析に供した。その結果、発現量が変化したmicroRNA(登録商標)miR−)−141、−200aについてさらにTaqman microRNA assay kit(Applied Biosystems社製)に供し、Real Time−PCR法により再現性を確認した。結果を図4に示す。
(Experimental example 2)
(Changes in microRNA expression during BMP-2 induced osteoblast differentiation)
In order to confirm the change of microRNA expression in BMP-2 induction, total RNA was extracted from BMP-2 induction treated (final concentration: 200 ng / ml) MC3T3-E1 cells and untreated cells using Trizol (manufactured by Invitrogen). Extracted. Some of them were subjected to microRNA array analysis manufactured by Mitsubishi Rayon Co., Ltd. As a result, microRNA (registered trademark) miR-)-141, -200a in which the expression level was changed was further subjected to Taqman microRNA assay kit (Applied Biosystems), and reproducibility was confirmed by Real Time-PCR method. The results are shown in FIG.

図4に示すように、MC3T3−E1細胞を、BMP−2分化誘導処理をした細胞と無処理の細胞から抽出した全RNAを三菱レイヨン株式会社製microRNAアレイ解析に供したところmicroRNA(miR−)−141、−200a、208の発現が変化した。再現性をTaqman(登録商標)microRNA assay kit(Applied Biosystems社製)を用いたReal Time−PCR法により確認したところ有意に発現を低下させた。これらの結果より、BMP−2分化誘導刺激によりこれらのmiR類の発現が低下することが確認された。   As shown in FIG. 4, when the total RNA extracted from MC3T3-E1 cells from BMP-2 differentiation-inducing cells and untreated cells was subjected to microRNA array analysis manufactured by Mitsubishi Rayon Co., Ltd., microRNA (miR-). -141, -200a, 208 expression was altered. When reproducibility was confirmed by the Real Time-PCR method using Taqman (registered trademark) microRNA assay kit (Applied Biosystems), the expression was significantly reduced. From these results, it was confirmed that the expression of these miRs was reduced by BMP-2 differentiation-inducing stimulation.

(実験例3)
(人工miRNA−141、−200a、−208の各前駆体導入によるBMP−2誘導骨芽細胞分化への影響)
内在性のmiRNA分子を模倣するようにデザインされているPre−miR(登録商標)Precursor−141、−200a、208(Ambion社製)をそれぞれLipofectamime(登録商標)RNAiMAX(Invitrogen社製)を用いたリポフェクション法によりMC3T3−E1細胞に終濃度が20nMおよび40nMとなるように導入した。導入したmiR類の機能を検証するために既知のmiRNA機能と同等と見なしうる影響を与えないPre−miR(登録商標)Negative ControlをNegative controlに用いた。各種導入した細胞をOPTI−MEM無血清培地(Invitrogen社製)で18時間培養後、MEM−α(10%FBS,100U/mlペニシリン、100μg/mlストレプトマイシン含有)に培地交換後72時間培養した。その後、24−wellプレートに1×10cells/mlに調整した細胞を500μl/wellずつ播種し、播種3時間後にBMP−2を終濃度が200ng/mlとなるように加え分化を誘導し、72時間培養した。分化誘導72時間後、上記実験例1に示したALP活性及び染色により分化能を評価した。結果を図5及び図6に示す。
(Experimental example 3)
(Influence on BMP-2-induced osteoblast differentiation by introduction of precursors of artificial miRNA-141, -200a, -208)
Pre-miR (registered trademark) Precursor-141, -200a, 208 (produced by Ambion) designed to mimic endogenous miRNA molecules were used with Lipofectameme (registered trademark) RNAiMAX (produced by Invitrogen), respectively. The cells were introduced into MC3T3-E1 cells by a lipofection method so that the final concentrations were 20 nM and 40 nM. In order to verify the function of the introduced miRs, Pre-miR (registered trademark) Negative Control that does not have an effect that can be regarded as equivalent to the known miRNA function was used for the negative control. Various introduced cells were cultured in OPTI-MEM serum-free medium (manufactured by Invitrogen) for 18 hours, and then cultured in MEM-α (containing 10% FBS, 100 U / ml penicillin, 100 μg / ml streptomycin) for 72 hours. Thereafter, cells adjusted to 1 × 10 5 cells / ml were seeded on a 24-well plate at 500 μl / well, and 3 hours after seeding, BMP-2 was added to a final concentration of 200 ng / ml to induce differentiation, Cultured for 72 hours. 72 hours after differentiation induction, differentiation ability was evaluated by the ALP activity and staining shown in Experimental Example 1 above. The results are shown in FIGS.

図5に示すように、MC3T3−E1細胞に内在性のmiRNA分子を模倣するようにデザインされているPre−miR(登録商標)Precursor−141、−200a、−208(Ambion社製)を導入し、BMP−2にて分化誘導させたところ、これらmiR類を導入した細胞では骨芽細胞の分化指標であるALP活性がBMP−2処理、Negative Control群と比較して有意に低下することが確認された。また、図6に示すように、ALP染色結果も同様にmiR導入により染色が淡色化していることが確認された。これら結果から、これらmiR類の発現低下は骨芽細胞の分化に関与していることが確認された。   As shown in FIG. 5, Pre-miR (registered trademark) Precursor-141, -200a, -208 (Ambion) designed to mimic endogenous miRNA molecules were introduced into MC3T3-E1 cells. As a result of differentiation induction with BMP-2, it was confirmed that ALP activity, which is an osteoblast differentiation index, was significantly reduced in cells introduced with these miRs compared to BMP-2 treatment and the negative control group. It was done. Further, as shown in FIG. 6, it was confirmed that the ALP staining result was also lightly stained by miR introduction. From these results, it was confirmed that the decrease in the expression of these miRs is involved in osteoblast differentiation.

(実験例4)
(miRNA−141及び−200aの標的遺伝子の同定)
miR−141、−200aの標的遺伝子をサンガー研究所のデータベースmiRBase Targets Version5(http://microrna.sanger.ac.uk/targets/v5/)およびTargetScan4.2 (http://www.targetscan.org/)により検索したところ、これまでに骨芽細胞分化を制御すると報告されている(文献1−5)転写因子の一つであるdistal−less homeobox 5(Dlx5)を共通に標的としていることが推測された。そこで推測された標的遺伝子であるDlxのタンパク発現をウエスタンブロッティング法により検討した。
(Experimental example 4)
(Identification of miRNA-141 and -200a target genes)
miR-141, -200a target genes were transferred to the Sanger Institute database miRBase Targets Version 5 (http://microrna.sanger.ac.uk/targets/v5/) and TargetScan4.2 (http: //www.tar. As a result of searching by /), it has been reported so far to control osteoblast differentiation (References 1-5). Distal-less homeobox 5 (Dlx5), which is one of transcription factors, is commonly targeted. Was guessed. Thus, the protein expression of Dlx, which was the estimated target gene, was examined by Western blotting.

MC3T3−E1細胞に上記実験3と同様に、Pre−miR(登録商標)Precursor−141、−200aを導入し(終濃度:40nM)、6−wellプレートに1×10cells/mlに調整した細胞を1ml/wellずつ播種し、播種3時間後にBMP−2(終濃度:200ng/ml)加え、72時間培養した。分化誘導72時間後、細胞溶解液(RIPA緩衝液)を加え、細胞溶解液を調製し、SDS−PAGE後、ウエスタンブロッティングに供した。検出には化学発光を利用したECL−Plus(登録商標)(GE Healthcare社製)を用いた。結果を、図7に示す。Pre-miR (registered trademark) Precursor-141, -200a was introduced into MC3T3-E1 cells in the same manner as in Experiment 3 above (final concentration: 40 nM) and adjusted to 1 × 10 5 cells / ml on a 6-well plate. Cells were seeded at 1 ml / well, BMP-2 (final concentration: 200 ng / ml) was added 3 hours after seeding, and cultured for 72 hours. After 72 hours of induction of differentiation, a cell lysate (RIPA buffer) was added to prepare a cell lysate, which was subjected to Western blotting after SDS-PAGE. For detection, ECL-Plus (registered trademark) (manufactured by GE Healthcare) using chemiluminescence was used. The results are shown in FIG.

図7に示すように、MC3T3−E1細胞にPre−miR(登録商標)Precursor−141、−200a(Ambion社製)を導入し、BMP−2にて分化誘導させた細胞から細胞溶解液を調製し、ウエスタンブロッティングンに供したところ、これらmiR類を導入した細胞群ではBMP−2処理、Negative control群に比べ顕著に骨芽細胞分化に関わる転写因子であるDlx5のタンパク発現を抑制した。この抑制はBMP−2無処理のレベルに匹敵していた。この結果からmicroRNA−141および−200aがDlx5を標的遺伝子としていることが確認された。   As shown in FIG. 7, Pre-miR (registered trademark) Precursor-141, -200a (Ambion) was introduced into MC3T3-E1 cells, and a cell lysate was prepared from the cells induced to differentiate with BMP-2. However, when subjected to Western blotting, the cell group into which these miRs were introduced significantly suppressed the protein expression of Dlx5, which is a transcription factor involved in osteoblast differentiation, as compared to the BMP-2 treatment and the negative control group. This suppression was comparable to the BMP-2 untreated level. From this result, it was confirmed that microRNA-141 and -200a have Dlx5 as a target gene.

(実験例5)
(microRNA−141及び−200aによる標的遺伝子のDlx5のmRNA発現への影響)
上記実験例4よりmiR−141及び−200aが骨芽細胞分化に関わるDlx5のタンパク発現を有意に抑制したことからこれらmiR類のタンパク発現抑制メカニズムについてReal Time−PCR法にて検討した。MC3T3−E1細胞に上記実験例3と同様にPre−miR(登録商標)Precursor−141、−200aを導入し、6−wellプレートに1×10cells/mlに調整した細胞を1ml/wellずつ播種し、播種3時間後にBMP−2(終濃度:200ng/ml)加え、72時間培養した。その後各細胞から全RNAをTrizol(Invitrogen社製)を用いて抽出し,PrimeScript(登録商標)RT reagent Kit(タカラバイオ株式会社社製)によりcDNAを調製後、SYBER(登録商標)Premix Ex Taq(登録商標)II(タカラバイオ株式会社社製)によりmRNAの発現量を測定した。内部標準にはGAPDH(glyceraldehyde−3−phosphate dehydrogenase)を用いた。Real Time−PCRに用いたプライマー対はGAPDHについてはmouse housekeeping Gene primer(mouse Gapdh primer)(タカラバイオ株式会社社製)を用い、Dlx5については以下に示す。結果を図8に示す。
(Experimental example 5)
(Effect of microRNA-141 and -200a on Dlx5 mRNA expression of target gene)
Since miR-141 and -200a significantly suppressed the protein expression of Dlx5 involved in osteoblast differentiation from Experimental Example 4 above, the protein expression suppression mechanism of these miRs was examined by the Real Time-PCR method. Pre-miR (registered trademark) Precursor-141, -200a was introduced into MC3T3-E1 cells in the same manner as in Experimental Example 3, and the cells adjusted to 1 × 10 5 cells / ml were added to the 6-well plate at 1 ml / well. After seeding, 3 hours after sowing, BMP-2 (final concentration: 200 ng / ml) was added and cultured for 72 hours. Thereafter, total RNA was extracted from each cell using Trizol (manufactured by Invitrogen), cDNA was prepared using PrimeScript (registered trademark) RT reagent Kit (manufactured by Takara Bio Inc.), and then SYBER (registered trademark) Premix Ex Taq ( The expression level of mRNA was measured by registered trademark II (manufactured by Takara Bio Inc.). GAPDH (glyceraldehyde-3 -phosphate dehydrogenase) was used as an internal standard. As the primer pair used for Real Time-PCR, mouse housekeeping gene primer (manufactured by mouse Gapdh primer) (manufactured by Takara Bio Inc.) is used for GAPDH, and Dlx5 is shown below. The results are shown in FIG.

Dlx5−sense;5’−GCTCTAGAGCTAGATGGGCTACTTTCTCTT−3’
Dlx5−antisense;5’−GCTCTAGAGCGTTCAAACATCCCCGTATGA−3’
Dlx5-sense; 5'-GCTCTAGAGCTAGATGGGCACTACTTCTCTT-3 '
Dlx5-antisense; 5′-GCTCTAGAGCGTTCAAACATCCCCGTATGA-3 ′

図8に示すように、Real Time−PCR法でDlx5のmRNAレベルを確認したところmiRを導入した細胞においてもDlx5のmRNA発現はBMP−2処理、Negative control群と変わらなかった。この結果から、これらmiR類はDlx5のmRNAを分解するのではなくmRNAからの翻訳を制御することによりDlx5のタンパク発現を抑制していることが確認された。   As shown in FIG. 8, when the mRNA level of Dlx5 was confirmed by the Real Time-PCR method, the mRNA expression of Dlx5 was not different from that of the BMP-2 treatment and negative control group even in the cells into which miR was introduced. From these results, it was confirmed that these miRs suppressed Dlx5 protein expression by controlling translation from mRNA rather than degrading Dlx5 mRNA.

(実験例6)
(microRNA−141および−200aアンチセンス鎖導入における骨芽細胞分化への影響)
内在性のmicroRNAに特異的に結合し、阻害するようにデザインされているAnti−miR(登録商標)Inhibitor−141、−200a(Ambion社製)を上記実験例3と同様の方法により細胞に導入した(終濃度:20nM,40nM,80nM)。BMPによる分化誘導24、48、72時間後、上記実験例1に示したALP活性により分化能を評価した。結果を図9に示す。
(Experimental example 6)
(Influence on osteoblast differentiation by introduction of microRNA-141 and -200a antisense strand)
Anti-miR (registered trademark) Inhibitor-141, -200a (manufactured by Ambion) designed to specifically bind to and inhibit endogenous microRNAs was introduced into cells by the same method as in Experimental Example 3 above. (Final concentrations: 20 nM, 40 nM, 80 nM). After 24, 48 and 72 hours of induction of differentiation by BMP, the differentiation ability was evaluated by the ALP activity shown in Experimental Example 1 above. The results are shown in FIG.

図9に示すように、MC3T3−E1細胞に内在性のmicroRNAに特異的に結合し、阻害するようにデザインされているAnti−miR(登録商標)Inhibitor−141、−200a(miR阻害剤)を導入し、BMP−2にて分化誘導させたところ、これらmiR阻害剤を導入した細胞では骨芽細胞の分化指標であるALP活性がBMP−2処理、Negative Control群と比較して有意に上昇することが確認された。また、このALP活性は培養時間及び添加濃度依存性があることも確認された。これら結果から、これらmiR阻害剤のアンチセンス鎖の導入は骨芽細胞の分化促進剤として有効であることが確認された。   As shown in FIG. 9, Anti-miR (registered trademark) Inhibitor-141, -200a (miR inhibitor) designed to specifically bind to and inhibit the microRNA endogenous to MC3T3-E1 cells. When introduced and induced to differentiate with BMP-2, the ALP activity, which is an osteoblast differentiation index, is significantly increased in cells introduced with these miR inhibitors compared to the BMP-2 treated and negative control group. It was confirmed. It was also confirmed that this ALP activity was dependent on the culture time and added concentration. From these results, it was confirmed that introduction of the antisense strand of these miR inhibitors is effective as an osteoblast differentiation promoter.

(実験例7)
(化学修飾microRNA200aアンチセンス鎖導入における骨芽細胞分化への影響)
図10に示すように、2本鎖におけるミスマッチが5箇所存在するmiRNA−200aのpassenger鎖の塩基配列を2箇所または3箇所マッチングさせた修飾miRNA(阻害剤)を準備した。なお、この修飾miRNAの3末端には、式(1)においてZがCHであるヌクレオシド誘導体(図10においては「B」で示す。)及び同式(1)においてZがNであるヌクレオシド誘導体(図10においては「P」で示す。)を各RNA鎖の3’末端に導入した。なお、用いたホスホアミダイド及びCPGへの固定は以下のスキーム1、2に示すとおりであり、各スキーム中のそれぞれの化合物の合成方法を以下に示す。なお、これらのホスホアミダイド体は、他のヌクレオチド誘導体のホスホアミド体と同様に扱って修飾RNAを合成した。3’末端ダングリングエンドを有するRNAオリゴヌクレオチドを固相ホスホロアミダイト法に従って核酸自動合成機によって合成した。すなわち、RNAの固相合成に関してはCPG樹脂に結合したオリゴヌクレオチドをEtOH:NH3=3:1水溶液2mLを加えて室温で12時間振とうして樹脂からの切り出し及び脱保護を行った。また、縮合時間は15分とした。反応後のろ液をエッペンドルフチューブに移し、減圧下で乾固した。残渣に1M TBAF in THF 溶液1mLを加え、12時間振とうした。この反応液を0.1M TEAA bufferで希釈して30mLとした。この反応液を平衡化したC-18カラム(Sep-Pak)に通し、カラムに吸着させた。ここでカラムを滅菌水で洗浄して塩を取り除き50% CH3CN in H2O 3mLで溶出し、減圧下で乾固した。残渣にloading solution (1×TBE in 90% formamide )100 μLを加え20% PAGEにより(600V,20mA)目的のオリゴヌクレオチドを単離した。目的のオリゴヌクレオチドを切り出し0.1M TEAA buffer 1mM EDTA水溶液20mLを加え、12時間振とうした。このろ液を平衡化したC-18逆相かラム(Sep-Pak)に通し、カラムに吸着させた。ここでカラムを滅菌水で洗浄して塩を取り除き50% CH3CN in H2O 3mLで溶出し、減圧下乾固した。
(Experimental example 7)
(Influence on osteoblast differentiation by introduction of chemically modified microRNA200a antisense strand)
As shown in FIG. 10, a modified miRNA (inhibitor) was prepared by matching the base sequence of the passenger strand of miRNA-200a having 5 mismatches in the double strand at two or three locations. In addition, at the 3 terminal of this modified miRNA, the nucleoside derivative (indicated by “B” in FIG. 10) in which Z is CH in formula (1) and the nucleoside derivative in which Z is N in formula (1) ( In FIG. 10, "P") was introduced at the 3 'end of each RNA strand. In addition, fixation to the used phosphoramidide and CPG is as shown in the following schemes 1 and 2, and the synthesis method of each compound in each scheme is shown below. These phosphoamidide bodies were treated in the same manner as phosphoamide bodies of other nucleotide derivatives to synthesize modified RNA. An RNA oligonucleotide having a 3 ′ terminal dangling end was synthesized by an automatic nucleic acid synthesizer according to the solid phase phosphoramidite method. That is, for solid phase synthesis of RNA, 2 mL of EtOH: NH 3 = 3: 1 aqueous solution was added to the oligonucleotide bound to CPG resin, and the mixture was shaken at room temperature for 12 hours to cleave from the resin and deprotect. The condensation time was 15 minutes. The filtrate after the reaction was transferred to an Eppendorf tube and dried under reduced pressure. 1 mL of 1M TBAF in THF solution was added to the residue and shaken for 12 hours. This reaction solution was diluted with 0.1 M TEAA buffer to 30 mL. This reaction solution was passed through an equilibrated C-18 column (Sep-Pak) and adsorbed on the column. Here, the column was washed with sterilized water to remove salt, and eluted with 3 mL of 50% CH 3 CN in H 2 O, and dried under reduced pressure. To the residue, 100 μL of loading solution (1 × TBE in 90% formamide) was added, and the target oligonucleotide was isolated by 20% PAGE (600 V, 20 mA). The target oligonucleotide was cut out, 20 mL of 0.1 M TEAA buffer 1 mM EDTA aqueous solution was added, and the mixture was shaken for 12 hours. The filtrate was passed through an equilibrated C-18 reverse phase or ram (Sep-Pak) and adsorbed onto the column. Here, the column was washed with sterilized water to remove salts, and eluted with 3 mL of 50% CH 3 CN in H 2 O, and dried under reduced pressure.

(ベンゼンユニットの合成)
上記スキームIに示す化合物2〜化合物5を合成した。すなわち、イソフタル酸ジメチルを還元し化合物2を収率75%で得て、続いてDMTr化を行い化合物3を収率54%で得た。DTMr体3をアミダイド化して化合物4を88%の収率で得た。また、DMTr体3をスクシニル化し、CPG樹脂と結合させ、化合物5を106μmol/gの活性で得た。化合物2〜5の製造例を以下に示す。
(Synthesis of benzene unit)
Compounds 2 to 5 shown in the above scheme I were synthesized. That is, dimethyl isophthalate was reduced to obtain compound 2 in a yield of 75%, followed by DMTr conversion to obtain compound 3 in a yield of 54%. DTMr body 3 was amidated to obtain compound 4 in a yield of 88%. DMTr body 3 was succinylated and bound to CPG resin to obtain compound 5 with an activity of 106 μmol / g. Production examples of compounds 2 to 5 are shown below.

イソフタル酸ジメチル(化合物1)を出発原料とし、LiBH4にて還元反応を行い、化合物2を得た。さらに一方の水酸基をDMTr保護し化合物3であるトリチル体を得た後、これを亜リン酸化することで化合物4であるアミダイトユニットを得た。また化合物3からスクシニル化を経てCPG担体である化合物5を得た。Using dimethyl isophthalate (Compound 1) as a starting material, a reduction reaction was performed with LiBH 4 to obtain Compound 2. Further, one hydroxyl group was DMTr protected to obtain a trityl compound, which was compound 3, and then phosphorylated to obtain an amidite unit, which was compound 4. Further, Compound 5 which is a CPG carrier was obtained from Compound 3 through succinylation.

(化合物2:1,3-bis-hydroxymethylbenzeneの製造例)
イソフタル酸ジメチル(2.00g,10.30mmol)にAr雰囲気下、dry THF(51.5ml,0.2M solution)を加え、水素化ホウ素リチウム(1.12g,51.1mmol,5eq)を加えた。23時間攪拌した後、氷浴で酢酸を数滴加えて反応液を中性にし、反応を停止した。しばらく攪拌した後、析出した結晶をMeOHで溶解した。反応中のTLC(Hex:EtOAc=1:1)では生成物は1スポットであったが、反応を停止すると2スポットに分かれた。溶媒を減圧留去後、シリカゲルクロマトグラフィー(EtOAc only)で単離し、化合物2(75%)を得た。
(Compound 2: Production example of 1,3-bis-hydroxymethylbenzene)
In THF, dry THF (51.5 ml, 0.2 M solution) was added to dimethyl isophthalate (2.00 g, 10.30 mmol), and lithium borohydride (1.12 g, 51.1 mmol, 5 eq) was added. After stirring for 23 hours, several drops of acetic acid were added in an ice bath to neutralize the reaction solution, and the reaction was stopped. After stirring for a while, the precipitated crystals were dissolved with MeOH. In TLC during the reaction (Hex: EtOAc = 1: 1), the product was one spot, but when the reaction was stopped, it was divided into two spots. After evaporating the solvent under reduced pressure, the residue was isolated by silica gel chromatography (EtOAc only) to obtain Compound 2 (75%).

(化合物3:1-(4,4’-dimethoxytrityloxy)methyl-3-hydroxymethylbenzeneの製造例)
予め真空乾燥させておいた化合物2(0.5g,3.62mmol)をpyridine(18mL)に溶解し、DMAP(22.1mg,0.18mmol,0.05eq)と4,4’-Dimethoxytrityl chloride(1.23g,3.62mmol,1eq)を加え、Ar雰囲気下で17時間攪拌した。TLC(Hex:EtOAc=3:1)により原料の消失を確認した。EtOAcとsatNaHCO3 aqで抽出し、有機層をsat NaCl aqで洗浄、無水Na2SO4を加え乾燥させた。溶媒を減圧留去後、シリカゲルクロマトグラフィー(Hex:EtOAc=4:1)で単離し、化合物3(54%)を得た。
(Compound 3: Production example of 1- (4,4'-dimethoxytrityloxy) methyl-3-hydroxymethylbenzene)
Compound 2 (0.5 g, 3.62 mmol), which had been vacuum-dried in advance, was dissolved in pyridine (18 mL), and DMAP (22.1 mg, 0.18 mmol, 0.05 eq) and 4,4'-Dimethoxytrityl chloride (1.23 g, 3.62 mmol) , 1 eq) and stirred for 17 hours under Ar atmosphere. The disappearance of the starting material was confirmed by TLC (Hex: EtOAc = 3: 1). Extraction was performed with EtOAc and satNaHCO 3 aq, and the organic layer was washed with sat NaCl aq, dried over anhydrous Na 2 SO 4 . After evaporating the solvent under reduced pressure, the residue was isolated by silica gel chromatography (Hex: EtOAc = 4: 1) to obtain Compound 3 (54%).

(化合物4:1-(4,4’-dimethoxytrityloxy)methyl-3-0-[(2-cyanoethyl) -(N,N-diisopropyl)]-
phosphoamidiomethyl-hydroxymethylbenzeneの製造例)
予め真空乾燥させておいた化合物3(0.35g,0.80mmol)をdry THF(8mL)に溶解し、DIPEA(0.4mL,4.00mmol,5eq)と亜リン酸化試薬(0.29mL,1.60mmol,2eq)をp加え、Ar雰囲気下で1.5時間攪拌した。TLC(EtOAc only)により原料の消失を確認した。EtOAcとsatNaHCO3 aqで抽出し、有機層をsat NaCl aqで洗浄、無水Na2SO4を加え乾燥させた。溶媒を減圧留去後、シリカゲルクロマトグラフィー(Hex:EtOAc=1:1)で単離し、化合物4(88%)を得た。
(Compound 4: 1- (4,4'-dimethoxytrityloxy) methyl-3-0-[(2-cyanoethyl)-(N, N-diisopropyl)]-
Production example of phosphoamidiomethyl-hydroxymethylbenzene)
Compound 3 (0.35 g, 0.80 mmol), which had been vacuum-dried in advance, was dissolved in dry THF (8 mL), and DIPEA (0.4 mL, 4.00 mmol, 5 eq) and phosphorylation reagent (0.29 mL, 1.60 mmol, 2 eq) Was added and stirred for 1.5 hours under Ar atmosphere. The disappearance of the raw material was confirmed by TLC (EtOAc only). Extraction was performed with EtOAc and satNaHCO 3 aq, and the organic layer was washed with sat NaCl aq, dried over anhydrous Na 2 SO 4 . After evaporating the solvent under reduced pressure, the residue was isolated by silica gel chromatography (Hex: EtOAc = 1: 1) to obtain Compound 4 (88%).

(化合物5(イソフタル酸誘導体のCPG樹脂)の製造例)
化合物3(0.30g,0.68mmol)をpyridine(6.8mL)に溶解し、そこにDMAP(3.7mg,0.03mmol,0.02eq)と無水コハク酸(204mg,2.04mmol,3eq)を加えAr雰囲気下で攪拌した。24時間攪拌した後、TLC(Hex:EtOAc=3:1)により反応の進行を確認し、EtOAcとsatNaHCO3 aqで抽出し、有機層をsat NaCl aqで洗浄、無水Na2SO4を加え乾燥させた。溶媒を減圧留去後、真空乾燥させた。この濃縮物(5)(0.04g,0.74mmol,109%)にdry DMF(10mL)を加え溶解させ、CPG(500mg,0.11mmol)を加え30分間靜置して反応液となじませた。その後、WSC(110mg,0.57mmol,4.9eq)を加え室温で一日振とうさせた。後処理として、pyridineで洗浄した後に0.1M DMAP in pyridine:無水酢酸(9:1)溶液(6mL)を加え、16時間振とうさせた。このものをMeOH、acetoneで洗浄し乾燥させ活性を測定した。化合物5の活性は108.6μmol/gであった。なお、活性は、乾燥したCPG樹脂6mgをガラスフィルターにのせ、HClO4:EtOH=3:2の溶液を流し込み、そのろ液のUV 498 nmの波長(DMTr基の波長)の吸光度を求め、以下の式に代入することにより算出した。
活性(μmol/g)=Abs,(498 nm)×Vol.(solution)(mL)×14.3/Weight(support)(mg)
(Production Example of Compound 5 (CPG resin of isophthalic acid derivative))
Compound 3 (0.30 g, 0.68 mmol) is dissolved in pyridine (6.8 mL), and DMAP (3.7 mg, 0.03 mmol, 0.02 eq) and succinic anhydride (204 mg, 2.04 mmol, 3 eq) are added thereto under Ar atmosphere. Stir. After stirring for 24 hours, the progress of the reaction was confirmed by TLC (Hex: EtOAc = 3: 1), extracted with EtOAc and satNaHCO 3 aq, the organic layer was washed with sat NaCl aq, dried by adding anhydrous Na 2 SO 4 I let you. The solvent was distilled off under reduced pressure, followed by vacuum drying. To this concentrate (5) (0.04 g, 0.74 mmol, 109%), dry DMF (10 mL) was added and dissolved, CPG (500 mg, 0.11 mmol) was added, and the mixture was allowed to stand for 30 minutes to allow it to blend with the reaction solution. Thereafter, WSC (110 mg, 0.57 mmol, 4.9 eq) was added, and the mixture was shaken at room temperature for one day. As a post-treatment, after washing with pyridine, 0.1M DMAP in pyridine: acetic anhydride (9: 1) solution (6 mL) was added and shaken for 16 hours. This was washed with MeOH and acetone, dried, and the activity was measured. The activity of Compound 5 was 108.6 μmol / g. For activity, 6 mg of dried CPG resin was placed on a glass filter, a solution of HClO4: EtOH = 3: 2 was poured, and the absorbance of the filtrate at a wavelength of UV 498 nm (wavelength of DMTr group) was determined. Calculated by substituting into the equation.
Activity (μmol / g) = Abs, (498 nm) × Vol. (Solution) (mL) × 14.3 / Weight (support) (mg)

(3’末端ダウングリングエンドの合成のためのピリジンカルボン酸ジメチル誘導体の合成)
2,6-ピリジンカルボン酸ジメチル(化合物6)を出発原料とし、LiBH4にて還元反応を行うことで、化合物7を得た。さらに一方の水酸基をDMTr保護し化合物10であるトリチル体を得た後、この化合物からスクシニル化を経てCPG担体である化合物10を得た。なお、参考までにアミダイト体9の合成例も示す。
(Synthesis of dimethyl pyridinecarboxylate for the synthesis of 3 'terminal down-gring end)
Compound 7 was obtained by carrying out a reduction reaction with LiBH 4 using dimethyl 2,6-pyridinecarboxylate (compound 6) as a starting material. Further, one of the hydroxyl groups was DMTr protected to obtain a trityl compound, which was compound 10, and then compound 10 as a CPG carrier was obtained from this compound through succinylation. In addition, the synthesis example of the amidite body 9 is also shown for reference.

(化合物7:2,6-bis-hydroxymethylpyridineの製造例)
2.6ピリジンカルボン酸ジメチル(2.00g,10.25mmol)にAr雰囲気下、無水THF(51.3mL,0.2M solution)を加え、水素化ホウ素リチウム(1.16g, 51.3mmol,
5eq)を加えた。16時間攪拌した後、氷浴で酢酸を数滴加えて反応液を中性にし、反応を停止した。しばらく攪拌した後、析出した結晶をメタノールで溶解した。反応中のTLC(クロロホルム:メタノール=3:1)では生成物は1スポットであったが、反応を停止すると2スポットに分かれた。溶媒を減圧流去後、シリカゲルクロマトグラフィー(クロロホルム:メタノール=10:1~3:1)で単離し、化合物7(91%)を得た。
(Compound 7: Production example of 2,6-bis-hydroxymethylpyridine)
2.6 Anhydrous THF (51.3 mL, 0.2 M solution) was added to dimethyl pyridinecarboxylate (2.00 g, 10.25 mmol) under an Ar atmosphere, and lithium borohydride (1.16 g, 51.3 mmol,
5 eq) was added. After stirring for 16 hours, several drops of acetic acid were added in an ice bath to neutralize the reaction solution, and the reaction was stopped. After stirring for a while, the precipitated crystals were dissolved in methanol. In TLC during the reaction (chloroform: methanol = 3: 1), the product was one spot, but when the reaction was stopped, it was divided into two spots. After the solvent was removed under reduced pressure, the residue was isolated by silica gel chromatography (chloroform: methanol = 10: 1 to 3: 1) to obtain Compound 7 (91%).

(化合物8:2-(4,4’-dimethoxytrityloxy)methyl-6-hydroxymethylpyridineの製造例)
予め真空乾燥させておいた化合物7(0.5g,3.62mmol)をpyridine(18mL)に溶解し、DMAP(22.1mg,0.18mmol,0.05eq)と4,4’-Dimethoxytrityl chloride
・ 22g,3.60mmol,1eq)を加え、Ar雰囲気下で16時間攪拌した。
(TLC(Hex:EtOAc=1:1)により原料の消失を確認した。EtOAcとsatNaHCO3
aqで抽出し、有機層をsat NaCl aqで洗浄、無水Na2SO4を加え乾燥させた。溶媒を減圧留去後、シリカゲルクロマトグラフィー(Hex:EtOAc=4:1~3:1)で単離し、化合物8(44%)を得た。
(Compound 8: Production example of 2- (4,4'-dimethoxytrityloxy) methyl-6-hydroxymethylpyridine)
Compound 7 (0.5 g, 3.62 mmol), which had been vacuum-dried in advance, was dissolved in pyridine (18 mL), and DMAP (22.1 mg, 0.18 mmol, 0.05 eq) and 4,4'-Dimethoxytrityl chloride
-22 g, 3.60 mmol, 1 eq) was added, and the mixture was stirred for 16 hours under an Ar atmosphere.
(TLC (Hex: EtOAc = 1: 1) confirmed the disappearance of the starting material EtOAc and satNaHCO 3.
Extracted with aq, the organic layer was washed with sat NaCl aq, dried over anhydrous Na 2 SO 4 . After evaporating the solvent under reduced pressure, the residue was isolated by silica gel chromatography (Hex: EtOAc = 4: 1 to 3: 1) to obtain Compound 8 (44%).

(化合物9:2-(4,4’-dimethoxytrityloxy)methyl-6-0-[(2-cyanoethyl) -(N,N-diisopropyl)]-phosphoamidiomethyl-hydroxymethylbenzeneの製造例)
予め真空乾燥させておいた化合物8(0.20g,0.45mmol)を無水THF(4.5mL)に溶解し、DIPEA(0.23mL,2.25mmol,5eq)と亜リン酸化試薬(0.16mL,0.90mmol,2eq)を加え、Ar雰囲気下で15時間攪拌した。TLC(EtOAc only)により原料の消失を確認した。EtOAcとsatNaHCO3 aqで抽出し、有機層をsat NaCl aqで洗浄、無水Na2SO4を加え乾燥させた。溶媒を減圧留去後、シリカゲルクロマトグラフィー(EtOAc only)で単離し、化合物9を得た。
(Compound 9: Production Example of 2- (4,4'-dimethoxytrityloxy) methyl-6-0-[(2-cyanoethyl)-(N, N-diisopropyl)]-phosphoamidiomethyl-hydroxymethylbenzene)
Compound 8 (0.20 g, 0.45 mmol), which had been vacuum-dried in advance, was dissolved in anhydrous THF (4.5 mL), and DIPEA (0.23 mL, 2.25 mmol, 5 eq) and phosphite reagent (0.16 mL, 0.90 mmol, 2 eq) were dissolved. And stirred for 15 hours under Ar atmosphere. The disappearance of the raw material was confirmed by TLC (EtOAc only). Extraction was performed with EtOAc and satNaHCO 3 aq, and the organic layer was washed with sat NaCl aq, dried over anhydrous Na 2 SO 4 . After evaporating the solvent under reduced pressure, the residue was isolated by silica gel chromatography (EtOAc only) to obtain Compound 9.

(化合物10:ピリジルカルボン酸ジメチル誘導体のCPG樹脂の製造例)
化合物8(0.20g,0.45mmol)をpyridine(4.5mL)に溶解し、そこにDMAP(1.1mg,0.009mmol,0.02eq)と無水コハク酸(136mg,1.36mmol,3eq)を加えAr雰囲気下で攪拌した。17時間攪拌した後、TLC(Hex:EtOAc=1:1)により反応の進行を確認し、EtOAcとsatNaHCO3 aqで抽出し、有機層をsat NaCl aqで洗浄、無水Na2SO4を加え乾燥させた。溶媒を減圧留去後、真空乾燥させた。この濃縮物(0.16g,0.30mmol,66%)にdry DMF(7.5mL)を加え溶解させ、CPG(338mg,0.075mmol)を加え30分間靜置して反応液となじませた。その後、WSC(71mg,0.37mmol,4.9eq)を加え室温で一日振とうさせた。後処理として、pyridineで洗浄した後に0.1M DMAP in pyridine:無水酢酸(9:1)溶液(6mL)を加え、16時間振とうさせた。このものをMeOH、acetoneで洗浄し乾燥させ活性を測定した。化合物10の活性は31.4μmol/gであった。
(Compound 10: Example of production of CPG resin of dimethyl pyridylcarboxylate derivative)
Compound 8 (0.20 g, 0.45 mmol) is dissolved in pyridine (4.5 mL), and DMAP (1.1 mg, 0.009 mmol, 0.02 eq) and succinic anhydride (136 mg, 1.36 mmol, 3 eq) are added thereto under Ar atmosphere. Stir. After stirring for 17 hours, the progress of the reaction was confirmed by TLC (Hex: EtOAc = 1: 1), extracted with EtOAc and satNaHCO 3 aq, the organic layer was washed with sat NaCl aq, dried by adding anhydrous Na 2 SO 4 I let you. The solvent was distilled off under reduced pressure, followed by vacuum drying. To this concentrate (0.16 g, 0.30 mmol, 66%), dry DMF (7.5 mL) was added and dissolved, CPG (338 mg, 0.075 mmol) was added, and the mixture was allowed to stand for 30 minutes to allow it to blend with the reaction solution. Thereafter, WSC (71 mg, 0.37 mmol, 4.9 eq) was added, and the mixture was shaken at room temperature for one day. As a post-treatment, after washing with pyridine, 0.1M DMAP in pyridine: acetic anhydride (9: 1) solution (6 mL) was added and shaken for 16 hours. This was washed with MeOH and acetone, dried, and the activity was measured. The activity of Compound 10 was 31.4 μmol / g.

各修飾miRNA(阻害剤)及び実験例6で用いたAnti−miR(登録商標)Inhibitor−141、−200aのほか−208(Ambion社製)を、上記実験例3と同様な方法により細胞に導入した(終濃度:20nM,40nM、80nM)。BMPによる分化誘導24、48、72時間後、上記実験例1に示したALP活性及び染色により分化能を評価した。また、ハイドロキシアパタイト結晶を形成させた。これらの結果を図11及び図12に示す。   Each modified miRNA (inhibitor) and Anti-miR (registered trademark) Inhibitor-141, -200a used in Experimental Example 6 as well as -208 (Ambion) were introduced into cells by the same method as in Experimental Example 3 above. (Final concentrations: 20 nM, 40 nM, 80 nM). After 24, 48 and 72 hours of induction of differentiation by BMP, differentiation ability was evaluated by the ALP activity and staining shown in Experimental Example 1 above. In addition, hydroxyapatite crystals were formed. These results are shown in FIGS.

図11及び図12に示すように、これらmiRNA(阻害剤)を導入した細胞では骨芽細胞の分化指標であるALP活性、ハイドロキシアパタイト結晶の形成がBMP−2処理群及びNegative Control群と比較して有意に上昇することが確認された。また、このALP活性は培養時間及び添加濃度依存性があることも確認された。これら結果から、これらpassenger鎖の塩基配列を2箇所または3箇所マッチングさせ、式(1)で表されるヌクレオシド誘導体を導入した修飾miRNA−200aの導入は骨芽細胞の分化促進剤として有効であることが確認された。   As shown in FIG. 11 and FIG. 12, in the cells into which these miRNAs (inhibitors) were introduced, ALP activity and hydroxyapatite crystal formation, which are osteoblast differentiation indicators, were compared with those of the BMP-2 treatment group and the Negative Control group. Was significantly increased. It was also confirmed that this ALP activity was dependent on the culture time and added concentration. From these results, introduction of the modified miRNA-200a in which the base sequences of these passsenger chains are matched at two or three positions and the nucleoside derivative represented by the formula (1) is introduced is effective as an osteoblast differentiation promoter. It was confirmed.

Claims (11)

Dlx5遺伝子の3’非翻訳領域に結合するmiRNA−141、miRNA−200a及びmiRNA−208から選択される1種又は2種類以上のmiRNA、その前駆体及びこれらをコードするDNA構築物並びに前記miRNAの阻害剤であって、前記miRNAのガイド鎖の少なくとも一部に対するアンチセンス配列を含む第1のRNA鎖を有する前記阻害剤から選択される有効成分を有する、骨芽細胞の分化調節剤。   One or more miRNAs selected from miRNA-141, miRNA-200a and miRNA-208 that bind to the 3 ′ untranslated region of the Dlx5 gene, precursors thereof, DNA constructs encoding these, and inhibition of the miRNA An agent for regulating differentiation of osteoblasts, comprising an active ingredient selected from the inhibitor having a first RNA strand containing an antisense sequence for at least part of the guide strand of the miRNA. 前記miRNA、その前駆体及びこれらをコードするDNA構築物から選択されるいずれかを有効成分とし、骨芽細胞への分化を抑制する、請求項1に記載の骨芽細胞の分化調節剤。   The osteoblast differentiation regulator according to claim 1, wherein the miRNA, a precursor thereof, and a DNA construct encoding them are used as active ingredients to suppress differentiation into osteoblasts. 前記阻害剤を有効成分とし、骨芽細胞への分化を促進する、請求項1に記載の骨芽細胞の分化調節剤。   The osteoblast differentiation regulator according to claim 1, wherein the inhibitor is an active ingredient and promotes differentiation into osteoblasts. 前記阻害剤は、前記第1のRNA鎖中に少なくとも一つの以下の式で表されるヌクレオシド誘導体を備える一本鎖RNAを含む、請求項3に記載の骨芽細胞の分化調節剤。
[式(1)中、Zは、CH又はNを表す。]
The osteoblast differentiation regulator according to claim 3, wherein the inhibitor comprises a single-stranded RNA comprising at least one nucleoside derivative represented by the following formula in the first RNA strand.
[In the formula (1), Z represents CH or N. ]
前記第1のRNA鎖は、内在性の前記miRNAの前記ガイド鎖に対するパッセンジャー鎖よりも前記ガイド鎖に対する相補性が高い、請求項1〜4のいずれかに記載の骨芽細胞の分化調節剤。   The osteoblast differentiation regulator according to any one of claims 1 to 4, wherein the first RNA strand has higher complementarity to the guide strand than a passenger strand to the guide strand of the endogenous miRNA. 前記第1のRNA鎖は、その3’末端側に前記ヌクレオシド誘導体を備える、請求項4に記載の骨芽細胞の分化調節剤。   The osteoblast differentiation regulator according to claim 4, wherein the first RNA strand comprises the nucleoside derivative on the 3 'terminal side thereof. 前記阻害剤は、前記第1のRNA鎖と前記miRNAのガイド鎖である第2のRNA鎖とを備える二重鎖RNAを含む、請求項1〜6のいずれかに記載の骨芽細胞の分化調節剤。   The osteoblast differentiation according to any one of claims 1 to 6, wherein the inhibitor comprises a double-stranded RNA comprising the first RNA strand and a second RNA strand that is a guide strand of the miRNA. Regulator. 前記第2のRNA鎖は、その3’末端側に前記ヌクレオシド誘導体を備える、請求項7に記載の骨芽細胞の分化調節剤。   The osteoblast differentiation regulator according to claim 7, wherein the second RNA strand comprises the nucleoside derivative on the 3 'terminal side. 骨粗鬆症、骨形成不全、及び発達期における成長阻害からなる群より選択される少なくともいずれかである疾患を治療又は予防するための医薬であって、請求項1〜8のいずれかに記載の骨芽細胞の分化調節剤を含む、医薬。   A medicament for treating or preventing a disease which is at least one selected from the group consisting of osteoporosis, osteogenesis dysgenesis, and growth inhibition during development, comprising: osteoblast according to any one of claims 1-8. A pharmaceutical comprising a cell differentiation regulator. 骨芽細胞の分化調節剤の評価方法であって、
Dlx5遺伝子を有する前駆骨芽細胞又は非ヒト動物に対して被験化合物を供給する工程を備え、
Dlx5遺伝子の3’非翻訳領域に結合するmiRNA−141、miRNA−200a及びmiRNA−208から選択される1種又は2種類以上のmiRNAの作用の増大又は低下を指標とする、評価方法。
A method for evaluating an osteoblast differentiation regulator,
Providing a test compound to a progenitor osteoblast or non-human animal having a Dlx5 gene,
An evaluation method using as an index the increase or decrease in the action of one or more miRNAs selected from miRNA-141, miRNA-200a and miRNA-208 that bind to the 3 ′ untranslated region of the Dlx5 gene.
記前駆骨芽細胞又は非ヒト動物におけるDlx5遺伝子の3’非翻訳領域に結合するmiRNA−141、miRNA−200a及びmiRNA−208から選択される1種又は2種類以上のmiRNAの発現量を前記被験化合物の非供給時との対比に基づいて、前記被験化合物の骨芽細胞の分化調節作用を評価する工程と、
を備える、請求項10に記載の方法。
Before Symbol wherein the expression level of one or more types of miRNA is selected from precursor osteoblast miRNA-141, miRNA-200a and miRNA-208 in cells or non-human animal that bind to the 3 'untranslated region of Dlx5 gene A step of evaluating the osteoblast differentiation-regulating action of the test compound based on comparison with the time of non-supply of the test compound;
The method of claim 10, comprising:
JP2010539252A 2008-11-19 2009-11-19 Drugs for regulating differentiation of mesenchymal cells and use thereof Expired - Fee Related JP5794559B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010539252A JP5794559B2 (en) 2008-11-19 2009-11-19 Drugs for regulating differentiation of mesenchymal cells and use thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008296166 2008-11-19
JP2008296166 2008-11-19
JP2010539252A JP5794559B2 (en) 2008-11-19 2009-11-19 Drugs for regulating differentiation of mesenchymal cells and use thereof
PCT/JP2009/069654 WO2010058824A1 (en) 2008-11-19 2009-11-19 Substance for regulating differentiation into mesenchymal cell, and use thereof

Publications (2)

Publication Number Publication Date
JPWO2010058824A1 JPWO2010058824A1 (en) 2012-04-19
JP5794559B2 true JP5794559B2 (en) 2015-10-14

Family

ID=42198263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010539252A Expired - Fee Related JP5794559B2 (en) 2008-11-19 2009-11-19 Drugs for regulating differentiation of mesenchymal cells and use thereof

Country Status (2)

Country Link
JP (1) JP5794559B2 (en)
WO (1) WO2010058824A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5850702B2 (en) * 2011-10-25 2016-02-03 国立大学法人岐阜大学 Differentiation regulator of mesenchymal cells, medicament using the same, and screening method for substances having differentiation regulating action on mesenchymal cells
EP3088524A4 (en) 2013-12-26 2017-08-09 Tokyo Medical University Artificial mimic mirna for controlling gene expression, and use of same
SG11201605247XA (en) 2013-12-27 2016-08-30 Bonac Corp Artificial match-type mirna for controlling gene expression and use therefor
SG11201705223XA (en) * 2014-12-27 2017-07-28 Bonac Corp NATURALLY OCCURING miRNA FOR CONTROLLING GENE EXPRESSION, AND USE OF SAME
JP6602847B2 (en) 2015-03-27 2019-11-06 株式会社ボナック Single-stranded nucleic acid molecule with delivery function and gene expression control ability
CN107189985B (en) * 2017-07-24 2021-02-02 中国人民解放军军事医学科学院基础医学研究所 Application of miRNA (micro ribonucleic acid) molecule and inhibitor thereof in regulation and control of osteogenic differentiation of mesenchymal stem cells

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007094135A1 (en) * 2006-02-15 2007-08-23 Gifu University Oligonucleotide derivative and use thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007094135A1 (en) * 2006-02-15 2007-08-23 Gifu University Oligonucleotide derivative and use thereof

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JPN6013064334; Nat Cell Biol Vol.10, No.5, 200805, p.593-601 *
JPN6013064337; J Biomed Mater Res B Appl Biomater Vol.8, No.2, 200802, p.369-74 *
JPN6013064338; J Biol Chem Vol.278, No.36, 2003, p.34387-94 *

Also Published As

Publication number Publication date
WO2010058824A1 (en) 2010-05-27
JPWO2010058824A1 (en) 2012-04-19

Similar Documents

Publication Publication Date Title
AU2021203174A1 (en) Compositions and methods for modulating RNA
CA2977624C (en) Pharmaceutical composition for treating cancer comprising microrna as active ingredient
EP2427472B1 (en) Lipophilic polynucleotide conjugates
US20110152352A1 (en) Smad proteins control drosha-mediated mirna maturation
JP2017140030A (en) UNA oligomers and amidites for therapeutic agents
KR102473431B1 (en) Antisense nucleic acids
JP5794559B2 (en) Drugs for regulating differentiation of mesenchymal cells and use thereof
HUE027321T2 (en) Antisense nucleic acid
JP2014196317A (en) Method for promoting angiogenesis, vascularization, or vessel repair or for inhibiting tumor angiogenesis
EP2298359A1 (en) Nucleic acid capable of controlling degranulation of mast cell
KR20100126430A (en) Microrna(mirna) and downstream targets for diagnostic and therapeutic purposes
CN109415732A (en) For adjusting the antisense oligonucleotides of HTRA1 expression
WO2010120969A1 (en) Targeting of the mir-30 family and let-7 family as a treatment for heart disease
EA031110B1 (en) Boronic acid conjugates of oligonucleotide analogues
EP3088524A1 (en) Artificial mimic mirna for controlling gene expression, and use of same
CN108064175A (en) Inhibitor of MYH7B and application thereof
US20160222386A1 (en) Nucleic acid molecule for inhibiting activity of rnai molecule
JP2021526797A (en) Oligonucleotides for controlling ATXN2 expression
JP5850702B2 (en) Differentiation regulator of mesenchymal cells, medicament using the same, and screening method for substances having differentiation regulating action on mesenchymal cells
EP3423581A1 (en) Targeting microrna for cancer treatment
JP2011251912A (en) Pharmaceutical preparation comprising micro-rna-143 derivative
KR101286154B1 (en) Composition for Promoting Chondrogenesis from Stem Cells and Anti-Tumor Composition Comprising Anti-sense Oligonucleotides
CN114829599A (en) Use of SCAMP3 inhibitors for treating hepatitis b virus infection
JP2021519261A (en) Compositions and Methods for Cell Reprogramming
JP2023506547A (en) Use of COPS3 inhibitors to treat hepatitis B virus infection

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20120921

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120921

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20121126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150707

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150805

R150 Certificate of patent or registration of utility model

Ref document number: 5794559

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees