JP2011251912A - Pharmaceutical preparation comprising micro-rna-143 derivative - Google Patents

Pharmaceutical preparation comprising micro-rna-143 derivative Download PDF

Info

Publication number
JP2011251912A
JP2011251912A JP2008242263A JP2008242263A JP2011251912A JP 2011251912 A JP2011251912 A JP 2011251912A JP 2008242263 A JP2008242263 A JP 2008242263A JP 2008242263 A JP2008242263 A JP 2008242263A JP 2011251912 A JP2011251912 A JP 2011251912A
Authority
JP
Japan
Prior art keywords
microrna
pyridine
compound
rna
modified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008242263A
Other languages
Japanese (ja)
Inventor
Yukihiro Akao
幸博 赤尾
Yukio Kitade
幸夫 北出
Soichiro Takenishi
壮一郎 竹西
Tomoe Susa
朋枝 須佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gifu University NUC
HOKKAIDO SYSTEM SCIENCE Co Ltd
Gifu Prefecture Kenkyu Kaihatsu Zaidan
Original Assignee
Gifu University NUC
HOKKAIDO SYSTEM SCIENCE Co Ltd
Gifu Prefecture Kenkyu Kaihatsu Zaidan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gifu University NUC, HOKKAIDO SYSTEM SCIENCE Co Ltd, Gifu Prefecture Kenkyu Kaihatsu Zaidan filed Critical Gifu University NUC
Priority to JP2008242263A priority Critical patent/JP2011251912A/en
Priority to PCT/JP2009/066002 priority patent/WO2010032704A1/en
Publication of JP2011251912A publication Critical patent/JP2011251912A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/111General methods applicable to biologically active non-coding nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/14Type of nucleic acid interfering N.A.
    • C12N2310/141MicroRNAs, miRNAs
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/31Chemical structure of the backbone
    • C12N2310/317Chemical structure of the backbone with an inverted bond, e.g. a cap structure
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2320/00Applications; Uses
    • C12N2320/50Methods for regulating/modulating their activity
    • C12N2320/51Methods for regulating/modulating their activity modulating the chemical stability, e.g. nuclease-resistance

Abstract

PROBLEM TO BE SOLVED: To provide a benzene-pyridine derivative of micro-RNA-143 less susceptible to degradation by a degrading enzyme (RNase) and a pharmaceutical use thereof.SOLUTION: The micro-RNA-143 is matched at two positions of 3' terminal of antisense strand among mismatch sequences of four positions of micro-RNA-143, modified with benzene-pyridine (BP) at 3' terminal and is less susceptible to degradation by a degrading enzyme (RNase). The therapeutic agent for digestive system cancer contains the micro-RNA-143.

Description

本発明は、マイクロRNA―143誘導体を含有する医薬に関する。より詳しくは、分解酵素(RNase)によって分解を受けにくいマイクロRNA―143のベンゼンーピリジン誘導体と、その医薬用途に関する。   The present invention relates to a medicament containing a microRNA-143 derivative. More specifically, the present invention relates to a benzene-pyridine derivative of microRNA-143 that is not easily degraded by a degrading enzyme (RNase) and its pharmaceutical use.

大腸ガンとさまざまな種類の確立したガン細胞系を用いてマイクロRNAs-143および-145の発現のレベルを測定したところ、マイクロRNAs-143および-145の発現のレベルが減少していることが判明し、マイクロRNAsの発現量が発癌と強く係わっていることが分かってきた(非特許文献1)。   Measurement of microRNAs-143 and -145 expression levels using colorectal cancer and various types of established cancer cell lines revealed decreased expression levels of microRNAs-143 and -145 However, it has been found that the expression level of microRNAs is strongly related to carcinogenesis (Non-patent Document 1).

大腸腫瘍において、マイクロRNA―143、およびー145の発現が極めて高頻度に減少していることが報告されている。マイクロRNA―143、およびマイクロRNA―145の発現低下の原因として、局在する領域の遺伝子の欠失やエピジェネテックな変化が考えられている(非特許文献2)。   In colorectal tumors, it has been reported that the expression of microRNA-143 and -145 decreases very frequently. As a cause of the decrease in the expression of microRNA-143 and microRNA-145, deletion of genes in the localized region and epigenetic changes are considered (Non-patent Document 2).

特許文献1には、細胞において、標的核酸分子に対する特異性を有する化学的に修飾された低分子干渉核酸(siRNA)コンストラクトを特徴とする化学修飾された核酸が開示されている。化学修飾の例として、ホスホロチオエートヌクレオチド間結合、2’−O−メチルリボヌクレオチド、2’−デオキシー2’−フルオロリボヌクレオチド、2’−デオキシリボヌクレオチド、「ユニバーサル塩基」ヌクレオチド、5−C―メチルヌクレオチド、および反転デオキシ無塩基残基を組み込むことが挙げられる。これらの化学的修飾は、種々のsiRNAコンストラクト中で用いた場合、細胞においてRNAi活性を保ち、同時に、これらの化合物の血清安定性を劇的に増加させることが示されている。   Patent Document 1 discloses a chemically modified nucleic acid characterized by a chemically modified small interfering nucleic acid (siRNA) construct having specificity for a target nucleic acid molecule in a cell. Examples of chemical modifications include phosphorothioate internucleotide linkages, 2′-O-methylribonucleotides, 2′-deoxy-2′-fluororibonucleotides, 2′-deoxyribonucleotides, “universal base” nucleotides, 5-C-methyl nucleotides, And incorporating an inverted deoxy abasic residue. These chemical modifications have been shown to preserve RNAi activity in cells and at the same time dramatically increase the serum stability of these compounds when used in various siRNA constructs.

また、特許文献2では、細胞内の標的核酸分子に対する特異性を持つ化学修飾した低分子干渉核酸(siRNA)構造が開示されている。化学修飾の例として、ホスホロチオエートヌクレオチド間結合、2’−O−メチルリボヌクレオチド、2’−デオキシー2’−フルオロリボヌクレオチド、2’−デオキシリボヌクレオチド、「ユニバーサル塩基」ヌクレオチド、5−C―メチルヌクレオチド、および逆位のデオキシ脱塩基残基の結合が挙げられている。複数の(1より多い)ホスホロチオエート置換が優れた耐性を示し、修飾したsiRNA構造に対する血清の安定性を大幅に向上させることが開示されている。   Patent Document 2 discloses a chemically modified small interfering nucleic acid (siRNA) structure having specificity for a target nucleic acid molecule in a cell. Examples of chemical modifications include phosphorothioate internucleotide linkages, 2′-O-methylribonucleotides, 2′-deoxy-2′-fluororibonucleotides, 2′-deoxyribonucleotides, “universal base” nucleotides, 5-C-methyl nucleotides, And the attachment of an inverted deoxyabasic residue. It has been disclosed that multiple (more than one) phosphorothioate substitutions exhibit excellent resistance and greatly improve serum stability against modified siRNA structures.

さらに、特許文献3においては、手術後の肺癌患者に関して、カプランーマイヤー法を用いてlet-7 miRNAの発現低下と当該患者の生存期間との相関性を分析した結果、let-7 miRNAの発現低下と当該患者の生存期間との間に有意な相関性があることを見出し、また、コックス回帰分析により分析した結果、let-7 miRNAの発現低下が肺癌患者の生存に対する独立した予後因子であるという知見が報告されている。そして、癌患者由来の生物学的サンプルにおいて、特定の成熟形miRNA、pre-miRNA、またはpri-miRNA等の発現量を測定することによって、癌患者の予後を判定することができることが開示されている。   Furthermore, in Patent Document 3, as a result of analyzing the correlation between the decrease in let-7 miRNA expression and the survival time of the patient using the Kaplan-Meier method for lung cancer patients after surgery, the expression of let-7 miRNA We found that there was a significant correlation between the decrease and the patient's survival time, and analysis by Cox regression analysis showed that reduced expression of let-7 miRNA is an independent prognostic factor for the survival of lung cancer patients The knowledge is reported. And it is disclosed that the prognosis of a cancer patient can be determined by measuring the expression level of a specific mature miRNA, pre-miRNA, pri-miRNA or the like in a biological sample derived from a cancer patient. Yes.

上記のように、癌患者においてマイクロRNAの発現量が減少していること、この減少したマイクロRNAを癌細胞に導入すると細胞増殖が抑制されることが判明した。しかし、野生型のマイクロRNAは生体に投与しても分解酵素(RNase)によって、分解されやすく抗腫瘍効果を十分に発揮できない。そのために、酵素によって分解されず、毒性が低く、抗腫瘍活性の高いマイクロRNAの出現が望まれている。
特開2006−271387号公報 特表2007−525192号公報 特開2008−000137号公報 特願2006−266918号公報 Y.Akao, N.Nakagawa, Y.Kitade, T.Kinoshita and T.Naoe ;Cancer Sci.,2007,98(12),1914-1920 中川義仁、赤尾幸博、直江知樹;消化器科、2007,44(5),484-492
As described above, it was found that the expression level of microRNA was decreased in cancer patients, and that cell proliferation was suppressed when the reduced microRNA was introduced into cancer cells. However, even when wild-type microRNA is administered to a living body, it is easily degraded by a degrading enzyme (RNase) and cannot sufficiently exert an antitumor effect. Therefore, the appearance of microRNA that is not degraded by enzymes, has low toxicity, and has high antitumor activity is desired.
JP 2006-271387 A Special table 2007-525192 gazette JP 2008-000137 A Japanese Patent Application No. 2006-266918 Y. Akao, N. Nakagawa, Y. Kitade, T. Kinoshita and T. Naoe; Cancer Sci., 2007,98 (12), 1914-1920 Nakagawa Yoshihito, Akao Yukihiro, Naoe Tomoki; Gastroenterology, 2007,44 (5), 484-492

腫瘍細胞でマイクロRNA―143の発現量が減少していること、このマイクロRNA―143を細胞に導入すると細胞増殖が抑制されることが知られている。しかし、マイクロRNA―143を生体内に投与しても抗腫瘍効果を発揮する前に分解され十分な効果が得られない可能性がある。そこで、本発明は、生体内で活性が高く、分解を受け難い、分解酵素(RNase)に強い抗腫瘍効果を有する修飾マイクロRNA―143を提供することにある。   It is known that the expression level of microRNA-143 is decreased in tumor cells, and that cell proliferation is suppressed when this microRNA-143 is introduced into cells. However, even if microRNA-143 is administered in vivo, it may be decomposed before exhibiting an antitumor effect and a sufficient effect may not be obtained. Therefore, the present invention is to provide a modified microRNA-143 having high anti-tumor effect against degradation enzyme (RNase), which has high activity in vivo and is hardly susceptible to degradation.

腫瘍細胞株でマイクロRNA―143の発現量が低下していることを見出し、腫瘍細胞にマイクロRNAを導入すると腫瘍細胞の増殖が抑制されることから、マイクロRNA―143に抗腫瘍効果があることを見出した(特願2006−266918)。しかし、野生型のマイクロRNA―143を投与しても抗腫瘍効果を発揮する前に分解酵素(RNase)で分解されやすいことから、生体内で分解を受け難いマイクロRNA―143を提供するために鋭意研究を重ねた。その結果、分解酵素で分解され難く、しかも野生型よりも高い抗腫瘍効果を有するアンチセンス鎖に変更を加えたBPマイクロRNA―143誘導体を提供することに成功した。   It has been found that the expression level of microRNA-143 is reduced in tumor cell lines, and when microRNA is introduced into tumor cells, the growth of tumor cells is suppressed, so that microRNA-143 has an antitumor effect (Japanese Patent Application No. 2006-266918). However, even if wild type microRNA-143 is administered, it is easily degraded by a degrading enzyme (RNase) before exerting an antitumor effect, so that microRNA-143 that is not easily degraded in vivo is provided. Researched earnestly. As a result, the present inventors succeeded in providing a BP microRNA-143 derivative in which an antisense strand which is hardly degraded by a degrading enzyme and has an antitumor effect higher than that of the wild type is modified.

本発明の特徴は、マイクロRNA―143の4箇所のミスマッチ配列のうちアンチセンス鎖の3’末端2個所をマッチさせたことを特徴とする3’末端がベンゼンーピリジン(BP)で修飾されたマイクロRNA―143(3,4M−miR−143)である。   A feature of the present invention is that the 3 ′ end is modified with benzene-pyridine (BP), which is characterized in that two 3 ′ ends of the antisense strand of four mismatch sequences of microRNA-143 are matched. MicroRNA-143 (3,4 M-miR-143).

本発明の別の特徴は、配列表SEQ ID No.1で表されるアンチセンス鎖の3’末端2個所をマッチさせたことを特徴とする3’末端がベンゼンーピリジン(BP)で修飾されたマイクロRNA―143(3,4M−miR−143)である。   Another feature of the present invention is that the 3 ′ end is modified with benzene-pyridine (BP), characterized in that two 3 ′ ends of the antisense strand represented by SEQ ID No. 1 are matched. MicroRNA-143 (3,4 M-miR-143).

本発明の別の特徴は、アンチセンス鎖の3’末端1個所をマッチさせたことを特徴とする3’末端がベンゼンーピリジン(BP)で修飾されたマイクロRNA―143(3,4M−miR−143)である。   Another feature of the present invention is a microRNA-143 (3,4M-miR) modified at the 3 ′ end with benzene-pyridine (BP), characterized in that one 3 ′ end of the antisense strand is matched. -143).

本発明の別の特徴は、配列表SEQ ID No.2で表されるアンチセンス鎖の3’末端1個所をマッチさせたことを特徴とする3’末端がベンゼンーピリジン(BP)で修飾されたマイクロRNA―143(1,2,4M−miR−143)である。   Another feature of the present invention is that the 3 ′ end is modified with benzene-pyridine (BP), which is characterized in that one 3 ′ end of the antisense strand represented by the sequence listing SEQ ID No. 2 is matched. MicroRNA-143 (1,2,4M-miR-143).

本発明の別の特徴は、アンチセンス鎖の3’末端2個所、又は1個所をマッチさせたことを特徴とする3’末端がベンゼンーピリジン(BP)で修飾されたマイクロRNA―143、又は配列表SEQ ID No.2、あるいは配列表SEQ ID No.1に記載の化合物を含有することを特徴とする医薬である。   Another feature of the present invention is that the 3 ′ end of the antisense strand is matched at two or one site, or the 3 ′ end is modified with benzene-pyridine (BP) -modified microRNA-143, or A pharmaceutical comprising the compound described in Sequence Listing SEQ ID No. 2 or SEQ ID No. 1 in Sequence Listing.

本発明の別の特徴は、アンチセンス鎖の3’末端2個所、又は1個所をマッチさせたことを特徴とする3’末端がベンゼンーピリジン(BP)で修飾されたマイクロRNA―143、又は配列表SEQ ID No.2、あるいは配列表SEQ ID No.1に記載の化合物を含有することを特徴とする消化器癌治療薬である。   Another feature of the present invention is that the 3 ′ end of the antisense strand is matched at two or one site, or the 3 ′ end is modified with benzene-pyridine (BP) -modified microRNA-143, or A therapeutic agent for gastrointestinal cancer comprising a compound described in SEQ ID NO. 2 of Sequence Listing or SEQ ID No. 1 of Sequence Listing.

生体内で酵素分解を受け難いベンゼンーピリジン(BP)で修飾したアンチセンス鎖の3’末端2個所、又は1個所をマッチさせたマイクロRNA―143を提供する。すなわち、生体内で分解酵素(RNase)によって分解され難く抗腫瘍効果を有する3’末端がベンゼンーピリジンで修飾されたアンチセンス鎖の3’末端2個所、又は1個所をマッチさせたマイクロRNA―143を提供する。   Provided is a microRNA-143 in which two or three sites on the 3 ′ end of an antisense strand modified with benzene-pyridine (BP), which is difficult to undergo enzymatic degradation in vivo, are matched. That is, microRNAs that match two or three 3 ′ ends of an antisense strand in which the 3 ′ end is modified with benzene-pyridine and has an antitumor effect that is difficult to be degraded by a degrading enzyme (RNase) in vivo— 143 is provided.

I.モノマー合成
本実施例では、以下のスキームIに示す化合物2〜化合物5を合成した。すなわち、イソフタル酸ジメチルを還元し化合物2を収率75%で得て、続いてDMTr化を行い化合物3を収率54%で得た。DTMr体3をアミダイド化して化合物4を88%の収率で得た。また、DMTr体3をスクシニル化し、CPG樹脂と結合させ、化合物5を106μmol/gの活性で得た。化合物2〜5の製造例を以下に示す。
I−I ベンゼンユニットの合成
イソフタル酸ジメチル(化合物1)を出発原料とし、LiBH4にて還元反応を行い、化合物2を得た。さらに一方の水酸基をDMTr保護し化合物3であるトリチル体を得た後、これを亜リン酸化することで化合物4であるアミダイトユニットを得た。また化合物3からスクシニル化を経てCPG担体である化合物5を得た。

I. Monomer Synthesis In this example, compounds 2 to 5 shown in the following scheme I were synthesized. That is, dimethyl isophthalate was reduced to obtain compound 2 in a yield of 75%, followed by DMTr conversion to obtain compound 3 in a yield of 54%. DTMr body 3 was amidated to obtain compound 4 in a yield of 88%. DMTr body 3 was succinylated and bound to CPG resin to obtain compound 5 with an activity of 106 μmol / g. Production examples of compounds 2 to 5 are shown below.
I-I Synthesis of benzene unit Using dimethyl isophthalate (Compound 1) as a starting material, a reduction reaction was performed with LiBH 4 to obtain Compound 2. Further, one hydroxyl group was DMTr protected to obtain a trityl compound, which was compound 3, and then phosphorylated to obtain an amidite unit, which was compound 4. Further, Compound 5 which is a CPG carrier was obtained from Compound 3 through succinylation.

< Scheme1 >

(化合物2:1,3-bis-hydroxymethylbenzeneの製造例)
イソフタル酸ジメチル(2.00g,10.30mmol)にAr雰囲気下、dry THF(51.5ml,0.2M solution)を加え、水素化ホウ素リチウム(1.12g,51.1mmol,5eq)を加えた。23時間攪拌した後、氷浴で酢酸を数滴加えて反応液を中性にし、反応を停止した。しばらく攪拌した後、析出した結晶をMeOHで溶解した。反応中のTLC(Hex:EtOAc=1:1)では生成物は1スポットであったが、反応を停止すると2スポットに分かれた。溶媒を減圧留去後、シリカゲルクロマトグラフィー(EtOAc only)で単離し、化合物2(75%)を得た。
(化合物3:1-(4,4’-dimethoxytrityloxy)methyl-3-hydroxymethylbenzeneの製造例)予め真空乾燥させておいた化合物2(0.5g,3.62mmol)をpyridine(18mL)に溶解し、DMAP(22.1mg,0.18mmol,0.05eq)と4,4’-Dimethoxytrityl chloride(1.23g,3.62mmol,1eq)を加え、Ar雰囲気下で17時間攪拌した。TLC(Hex:EtOAc=3:1)により原料の消失を確認した。EtOAcとsatNaHCO3 aqで抽出し、有機層をsat NaCl aqで洗浄、無水Na2SO4を加え乾燥させた。溶媒を減圧留去後、シリカゲルクロマトグラフィー(Hex:EtOAc=4:1)で単離し、化合物3(54%)を得た。
(化合物4:1-(4,4’-dimethoxytrityloxy)methyl-3-O-[(2-cyanoethyl) -(N,N-diisopropyl)]-phosphoamidiomethyl-hydroxymethylbenzene
の製造例)
予め真空乾燥させておいた化合物3(0.35g,0.80mmol)をdry THF(8mL)に溶解し、DIPEA(0.4mL,4.00mmol,5eq)と亜リン酸化試薬(0.29mL,1.60mmol,2eq)を加え、Ar雰囲気下で1.5時間攪拌した。TLC(EtOAc only)により原料の消失を確認した。EtOAcとsatNaHCO3 aqで抽出し、有機層をsat NaCl aqで洗浄、無水Na2SO4を加え乾燥させた。溶媒を減圧留去後、シリカゲルクロマトグラフィー(Hex:EtOAc=1:1)で単離し、化合物4(88%)を得た。
(化合物5(イソフタル酸誘導体のCPG樹脂)の製造例)
化合物3(0.30g,0.68mmol)をpyridine(6.8mL)に溶解し、そこにDMAP(3.7mg,0.03mmol,0.02eq)と無水コハク酸(204mg,2.04mmol,3eq)を加えAr雰囲気下で攪拌した。24時間攪拌した後、TLC(Hex:EtOAc=3:1)により反応の進行を確認し、EtOAcとsatNaHCO3 aqで抽出し、有機層をsat NaCl aqで洗浄、無水Na2SO4を加え乾燥させた。溶媒を減圧留去後、真空乾燥させた。この濃縮物(5)(0.04g,0.74mmol,109%)にdry DMF(10mL)を加え溶解させ、CPG(500mg,0.11mmol)を加え30分間靜置して反応液となじませた。その後、WSC(110mg,0.57mmol,4.9eq)を加え室温で一日振とうさせた。後処理として、pyridineで洗浄した後に0.1M DMAP in pyridine:無水酢酸(9:1)溶液(6mL)を加え、16時間振とうさせた。このものをMeOH、acetoneで洗浄し乾燥させ活性を測定した。化合物5の活性は108.6μmol/gであった。なお、活性は、乾燥したCPG樹脂6mgをガラスフィルターにのせ、HClO4:EtOH=3:2の溶液を流し込み、そのろ液のUV 498 nmの波長(DMTr基の波長)の吸光度を求め、以下の式に代入することにより算出した。
活性(μmol/g)=Abs,(498 nm)×Vol.(solution)(mL)×14.3/Weight(support)(mg)


I−II ピリジンユニットの合成
<Scheme1>

(Compound 2: Production example of 1,3-bis-hydroxymethylbenzene)
In THF, dry THF (51.5 ml, 0.2 M solution) was added to dimethyl isophthalate (2.00 g, 10.30 mmol), and lithium borohydride (1.12 g, 51.1 mmol, 5 eq) was added. After stirring for 23 hours, several drops of acetic acid were added in an ice bath to neutralize the reaction solution, and the reaction was stopped. After stirring for a while, the precipitated crystals were dissolved with MeOH. In TLC during the reaction (Hex: EtOAc = 1: 1), the product was one spot, but when the reaction was stopped, it was divided into two spots. After evaporating the solvent under reduced pressure, the residue was isolated by silica gel chromatography (EtOAc only) to obtain Compound 2 (75%).
(Compound 3: Production Example of 1- (4,4'-dimethoxytrityloxy) methyl-3-hydroxymethylbenzene) Compound 2 (0.5 g, 3.62 mmol), which had been dried in advance, was dissolved in pyridine (18 mL) and DMAP ( 22.1 mg, 0.18 mmol, 0.05 eq) and 4,4′-Dimethoxytrityl chloride (1.23 g, 3.62 mmol, 1 eq) were added, and the mixture was stirred under Ar atmosphere for 17 hours. The disappearance of the starting material was confirmed by TLC (Hex: EtOAc = 3: 1). Extraction was performed with EtOAc and satNaHCO 3 aq, and the organic layer was washed with sat NaCl aq, dried over anhydrous Na 2 SO 4 . After evaporating the solvent under reduced pressure, the residue was isolated by silica gel chromatography (Hex: EtOAc = 4: 1) to obtain Compound 3 (54%).
(Compound 4: 1- (4,4'-dimethoxytrityloxy) methyl-3-O-[(2-cyanoethyl)-(N, N-diisopropyl)]-phosphoamidiomethyl-hydroxymethylbenzene
Production example)
Compound 3 (0.35 g, 0.80 mmol), which had been vacuum-dried in advance, was dissolved in dry THF (8 mL), and DIPEA (0.4 mL, 4.00 mmol, 5 eq) and phosphorylation reagent (0.29 mL, 1.60 mmol, 2 eq) And stirred for 1.5 hours under Ar atmosphere. The disappearance of the raw material was confirmed by TLC (EtOAc only). Extraction was performed with EtOAc and satNaHCO 3 aq, and the organic layer was washed with sat NaCl aq, dried over anhydrous Na 2 SO 4 . After evaporating the solvent under reduced pressure, the residue was isolated by silica gel chromatography (Hex: EtOAc = 1: 1) to obtain Compound 4 (88%).
(Production Example of Compound 5 (CPG resin of isophthalic acid derivative))
Compound 3 (0.30 g, 0.68 mmol) is dissolved in pyridine (6.8 mL), and DMAP (3.7 mg, 0.03 mmol, 0.02 eq) and succinic anhydride (204 mg, 2.04 mmol, 3 eq) are added thereto under Ar atmosphere. Stir. After stirring for 24 hours, the progress of the reaction was confirmed by TLC (Hex: EtOAc = 3: 1), extracted with EtOAc and satNaHCO 3 aq, the organic layer was washed with sat NaCl aq, dried by adding anhydrous Na 2 SO 4 I let you. The solvent was distilled off under reduced pressure, followed by vacuum drying. To this concentrate (5) (0.04 g, 0.74 mmol, 109%), dry DMF (10 mL) was added and dissolved, CPG (500 mg, 0.11 mmol) was added, and the mixture was allowed to stand for 30 minutes to allow it to blend with the reaction solution. Thereafter, WSC (110 mg, 0.57 mmol, 4.9 eq) was added, and the mixture was shaken at room temperature for one day. As a post-treatment, after washing with pyridine, 0.1M DMAP in pyridine: acetic anhydride (9: 1) solution (6 mL) was added and shaken for 16 hours. This was washed with MeOH and acetone, dried, and the activity was measured. The activity of Compound 5 was 108.6 μmol / g. For activity, 6 mg of dried CPG resin was placed on a glass filter, a solution of HClO4: EtOH = 3: 2 was poured, and the absorbance of the filtrate at a wavelength of UV 498 nm (wavelength of DMTr group) was determined. Calculated by substituting into the equation.
Activity (μmol / g) = Abs, (498 nm) × Vol. (Solution) (mL) × 14.3 / Weight (support) (mg)


Synthesis of I-II pyridine unit

< Scheme2 >

(3’末端ダウングリングエンドの合成のためのピリジンカルボン酸ジメチル誘導体の合成)
2,6-ピリジンカルボン酸ジメチル(化合物6)を出発原料とし、LiBH4にて還元反応を行うことで、化合物7を得た。さらに一方の水酸基をDMTr保護し化合物8であるトリチル体を得た後、これを亜リン酸化することで化合物9であるアミダイトユニットを得た。また、この化合物からスクシニル化を経てCPG担体である化合物10を得た。
(化合物7:2,6-bis-hydroxymethylpyridineの製造例)
2.6ピリジンカルボン酸ジメチル(2.00g,10.25mmol)にAr雰囲気下、無水THF(51.3mL,0.2M solution)を加え、水素化ホウ素リチウム(1.16g, 51.3mmol,
5eq)を加えた。16時間攪拌した後、氷浴で酢酸を数滴加えて反応液を中性にし、反応を停止した。しばらく攪拌した後、析出した結晶をメタノールで溶解した。反応中のTLC(クロロホルム:メタノール=3:1)では生成物は1スポットであったが、反応を停止すると2スポットに分かれた。溶媒を減圧流去後、シリカゲルクロマトグラフィー(クロロホルム:メタノール=10:1~3:1)で単離し、化合物7(91%)を得た。
(化合物8:2-(4,4’-dimethoxytrityloxy)methyl-6-hydroxymethylpyridineの製造例)
予め真空乾燥させておいた化合物7(0.5g,3.62mmol)をpyridine(18mL)に溶解し、DMAP(22.1mg,0.18mmol,0.05eq)と4,4’-Dimethoxytrityl chloride
・ 22g,3.60mmol,1eq)を加え、Ar雰囲気下で16時間攪拌した。
(TLC(Hex:EtOAc=1:1)により原料の消失を確認した。EtOAcとsatNaHCO3
aqで抽出し、有機層をsat NaCl aqで洗浄、無水Na2SO4を加え乾燥させた。溶媒を減圧留去後、シリカゲルクロマトグラフィー(Hex:EtOAc=4:1~3:1)で単離し、化合物8(44%)を得た。
(化合物9:2-(4,4’-dimethoxytrityloxy)methyl-6-0-[(2-cyanoethyl) -(N,N-diisopropyl)]-phosphoamidiomethyl-hydroxymethylbenzeneの製造例)
予め真空乾燥させておいた化合物8(0.20g,0.45mmol)を無水THF(4.5mL)に溶解し、DIPEA(0.23mL,2.25mmol,5eq)と亜リン酸化試薬(0.16mL,0.90mmol,2eq)を加え、Ar雰囲気下で15時間攪拌した。TLC(EtOAc only)により原料の消失を確認した。EtOAcとsatNaHCO3 aqで抽出し、有機層をsat NaCl aqで洗浄、無水Na2SO4を加え乾燥させた。溶媒を減圧留去後、シリカゲルクロマトグラフィー(EtOAc only)で単離し、化合物9を0.27g(88%)得た。
(化合物10:ピリジルカルボン酸ジメチル誘導体のCPG樹脂の製造例)
化合物8(0.20g,0.45mmol)をpyridine(4.5mL)に溶解し、そこにDMAP(1.1mg,0.009mmol,0.02eq)と無水コハク酸(136mg,1.36mmol,3eq)を加えAr雰囲気下で攪拌した。17時間攪拌した後、TLC(Hex:EtOAc=1:1)により反応の進行を確認し、EtOAcとsatNaHCO3 aqで抽出し、有機層をsat NaCl aqで洗浄、無水Na2SO4を加え乾燥させた。溶媒を減圧留去後、真空乾燥させた。この濃縮物(0.16g,0.30mmol,66%)にdry DMF(7.5mL)を加え溶解させ、CPG(338mg,0.075mmol)を加え30分間靜置して反応液となじませた。その後、WSC(71mg,0.37mmol,4.9eq)を加え室温で一日振とうさせた。後処理として、pyridineで洗浄した後に0.1M DMAP in pyridine:無水酢酸(9:1)溶液(6mL)を加え、16時間振とうさせた。このものをpyridine、EtOH、acetoneで洗浄し乾燥させ活性を測定した。化合物10の活性は31.4μmol/gであった。
(化学修飾ダングリングエンドを有するmicroRNA(miRNA)の合成)
3’末端ダングリングエンドを有するRNAオリゴヌクレオチドを固相ホスホロアミダイト法に従って核酸自動合成機によって合成した。
<Scheme2>

(Synthesis of dimethyl pyridinecarboxylate for the synthesis of 3 'terminal down-gring end)
Compound 7 was obtained by carrying out a reduction reaction with LiBH 4 using dimethyl 2,6-pyridinecarboxylate (compound 6) as a starting material. Further, one hydroxyl group was DMTr protected to obtain a trityl compound, which was compound 8, and then phosphorylated to obtain an amidite unit, which was compound 9. Moreover, the compound 10 which is a CPG carrier was obtained from this compound through succinylation.
(Compound 7: Production example of 2,6-bis-hydroxymethylpyridine)
2.6 Anhydrous THF (51.3 mL, 0.2 M solution) was added to dimethyl pyridinecarboxylate (2.00 g, 10.25 mmol) under an Ar atmosphere, and lithium borohydride (1.16 g, 51.3 mmol,
5 eq) was added. After stirring for 16 hours, several drops of acetic acid were added in an ice bath to neutralize the reaction solution, and the reaction was stopped. After stirring for a while, the precipitated crystals were dissolved in methanol. In TLC during the reaction (chloroform: methanol = 3: 1), the product was one spot, but when the reaction was stopped, it was divided into two spots. After the solvent was removed under reduced pressure, the residue was isolated by silica gel chromatography (chloroform: methanol = 10: 1 to 3: 1) to obtain Compound 7 (91%).
(Compound 8: Production example of 2- (4,4'-dimethoxytrityloxy) methyl-6-hydroxymethylpyridine)
Compound 7 (0.5 g, 3.62 mmol), which had been vacuum-dried in advance, was dissolved in pyridine (18 mL), and DMAP (22.1 mg, 0.18 mmol, 0.05 eq) and 4,4'-Dimethoxytrityl chloride
-22 g, 3.60 mmol, 1 eq) was added, and the mixture was stirred for 16 hours under an Ar atmosphere.
(TLC (Hex: EtOAc = 1: 1) confirmed the disappearance of the starting material EtOAc and satNaHCO 3.
Extracted with aq, the organic layer was washed with sat NaCl aq, dried over anhydrous Na 2 SO 4 . After evaporating the solvent under reduced pressure, the residue was isolated by silica gel chromatography (Hex: EtOAc = 4: 1 to 3: 1) to obtain Compound 8 (44%).
(Compound 9: Production Example of 2- (4,4'-dimethoxytrityloxy) methyl-6-0-[(2-cyanoethyl)-(N, N-diisopropyl)]-phosphoamidiomethyl-hydroxymethylbenzene)
Compound 8 (0.20 g, 0.45 mmol), which had been vacuum-dried in advance, was dissolved in anhydrous THF (4.5 mL), and DIPEA (0.23 mL, 2.25 mmol, 5 eq) and phosphite reagent (0.16 mL, 0.90 mmol, 2 eq) were dissolved. And stirred for 15 hours under Ar atmosphere. The disappearance of the raw material was confirmed by TLC (EtOAc only). Extraction was performed with EtOAc and satNaHCO 3 aq, and the organic layer was washed with sat NaCl aq, dried over anhydrous Na 2 SO 4 . After evaporating the solvent under reduced pressure, the residue was isolated by silica gel chromatography (EtOAc only) to obtain 0.27 g (88%) of Compound 9.
(Compound 10: Production example of CPG resin of dimethyl pyridylcarboxylate derivative)
Compound 8 (0.20 g, 0.45 mmol) is dissolved in pyridine (4.5 mL), and DMAP (1.1 mg, 0.009 mmol, 0.02 eq) and succinic anhydride (136 mg, 1.36 mmol, 3 eq) are added thereto under Ar atmosphere. Stir. After stirring for 17 hours, the progress of the reaction was confirmed by TLC (Hex: EtOAc = 1: 1), extracted with EtOAc and satNaHCO 3 aq, the organic layer was washed with sat NaCl aq, dried by adding anhydrous Na 2 SO 4 I let you. The solvent was distilled off under reduced pressure, followed by vacuum drying. To this concentrate (0.16 g, 0.30 mmol, 66%), dry DMF (7.5 mL) was added and dissolved, CPG (338 mg, 0.075 mmol) was added, and the mixture was allowed to stand for 30 minutes to allow it to blend with the reaction solution. Thereafter, WSC (71 mg, 0.37 mmol, 4.9 eq) was added and the mixture was shaken at room temperature for one day. As a post-treatment, after washing with pyridine, 0.1M DMAP in pyridine: acetic anhydride (9: 1) solution (6 mL) was added and shaken for 16 hours. This was washed with pyridine, EtOH and acetone and dried to measure the activity. The activity of Compound 10 was 31.4 μmol / g.
(Synthesis of microRNA (miRNA) with chemically modified dangling ends)
An RNA oligonucleotide having a 3 ′ terminal dangling end was synthesized by an automatic nucleic acid synthesizer according to the solid phase phosphoramidite method.

RNAの固相合成に関してはCPG樹脂に結合したオリゴヌクレオチドをEtOH:NH3=3:1水溶液2mLを加えて室温で12時間振とうして樹脂からの切り出し及び脱保護を行った。また、縮合時間は15分とした。反応後のろ液をエッペンドルフチューブに移し、減圧下で乾固した。残渣に1M TBAF in THF 溶液1mLを加え、12時間振とうした。この反応液を0.1M TEAA bufferで希釈して30mLとした。この反応液を平衡化したC-18カラム(Sep-Pak)に通し、カラムに吸着させた。ここでカラムを滅菌水で洗浄して塩を取り除き50% CH3CN in H2O 3mLで溶出し、減圧下で乾固した。残渣にloading solution (1×TBE in 90% formamide )100 μLを加え20% PAGEにより(600V,20mA)目的のオリゴヌクレオチドを単離した。目的のオリゴヌクレオチドを切り出し0.1M TEAA buffer 1mM EDTA水溶液20mLを加え、12時間振とうした。このろ液を平衡化したC-18逆相かラム(Sep-Pak)に通し、カラムに吸着させた。ここでカラムを滅菌水で洗浄して塩を取り除き50% CH3CN in H2O 3mLで溶出し、減圧下乾固した。 For solid phase synthesis of RNA, 2 mL of EtOH: NH 3 = 3: 1 aqueous solution was added to the oligonucleotide bound to the CPG resin and shaken at room temperature for 12 hours to cleave from the resin and deprotect. The condensation time was 15 minutes. The filtrate after the reaction was transferred to an Eppendorf tube and dried under reduced pressure. 1 mL of 1M TBAF in THF solution was added to the residue and shaken for 12 hours. This reaction solution was diluted with 0.1 M TEAA buffer to 30 mL. This reaction solution was passed through an equilibrated C-18 column (Sep-Pak) and adsorbed on the column. Here, the column was washed with sterilized water to remove salt, and eluted with 3 mL of 50% CH 3 CN in H 2 O, and dried under reduced pressure. To the residue, 100 μL of loading solution (1 × TBE in 90% formamide) was added, and the target oligonucleotide was isolated by 20% PAGE (600 V, 20 mA). The target oligonucleotide was cut out, 20 mL of 0.1 M TEAA buffer 1 mM EDTA aqueous solution was added, and the mixture was shaken for 12 hours. The filtrate was passed through an equilibrated C-18 reverse phase or ram (Sep-Pak) and adsorbed onto the column. Here, the column was washed with sterilized water to remove salts, and eluted with 3 mL of 50% CH 3 CN in H 2 O, and dried under reduced pressure.


表1 合成したマイクロRNA―143誘導体の配列

Pはピリジンユニットを、Bはベンゼンユニットを示す。

Table 1. Sequence of synthesized microRNA-143 derivatives

P represents a pyridine unit and B represents a benzene unit.


表1に示すように、野生型マイクロRNA-143(wild)は(1)、(2)、(3)、(4)で示す4個所のミスマッチが存在する。このミスマッチの位置をそれぞれマッチさせた化合物を合成してその抗腫瘍効果を調べた。

As shown in Table 1, wild type microRNA-143 (wild) has four mismatches indicated by (1), (2), (3), and (4). A compound in which each mismatch position was matched was synthesized and its antitumor effect was examined.

DLD−1細胞の抑制
ヒト癌細胞は2mML-グルタミン、10%の熱不活性化FBS(Sigma,St.Louis,Mo,USA)を含むRPMI-1640培地中で、95%空気と5%炭酸ガスの雰囲気下、37℃で培養した。生存細胞数の測定は、トリパンブルー染色法により行った。
Inhibition of DLD-1 cells Human cancer cells are 95% air and 5% carbon dioxide in RPMI-1640 medium containing 2 mM L-glutamine, 10% heat inactivated FBS (Sigma, St. Louis, Mo, USA). In an atmosphere of 37 ° C. The number of viable cells was measured by trypan blue staining.

図1は大腸癌細胞DLD−1の増殖に対するマイクロRNA―143の誘導体の効果を調べた結果を示す。4個所(1)、(2)、(3)、(4)のミスマッチをマッチさせた1,2,3,4M-miR-143、及び5’端の(1)、(2)をマッチさせた1,2M-miR-143は4個所のミスマッチを有する野生型マイクロRNA-143(Wild-miR-143)に比較して、増殖が促進される傾向が見られた。これに対し、3’端の2個所(3)、(4)をマッチさせた3,4M-miR-143、さらに1個所(4)をマッチさせた1,2,4M-miR-143は有意に大腸癌細胞の増殖を抑制していた。   FIG. 1 shows the results of examining the effect of a microRNA-143 derivative on the proliferation of colon cancer cells DLD-1. Match 1,4,4,4M-miR-143 matched with mismatch at 4 locations (1), (2), (3), (4), and (1), (2) at 5 'end In addition, 1,2M-miR-143 tended to promote proliferation compared to wild-type microRNA-143 (Wild-miR-143) having four mismatches. On the other hand, the 3 'end 2 locations (3) and 3,4M-miR-143 matched (4), and 1 location (4) matched 1,2,4M-miR-143 are significant. In addition, the growth of colon cancer cells was suppressed.

この結果、3’末端のミスマッチを2箇所または1箇所マッチさせることにより、マイクロRNA―143の抗腫瘍効果を野生型よりも高くすることができ、さらに、3’末端をベンゼンーピリジンで修飾することによって分解酵素(RNase)に耐性のあるマイクロRNA−143を得ることができる。
[医薬組成物]
本発明のマイクロRNA―143は、医薬としてヒトおよび動物に投与される場合、マイクロRNA―143それ自体で与えられてもよく、または、薬学的に許容し得る担体とともに例えば0.1〜99.5%(より好ましくは、0.5〜90%)の活性成分を含む医薬組成物として与えられてもよい。
As a result, the antitumor effect of microRNA-143 can be made higher than that of the wild type by matching the mismatch at the 3 ′ end in two or one place, and the 3 ′ end is further modified with benzene-pyridine. As a result, microRNA-143 resistant to degrading enzyme (RNase) can be obtained.
[Pharmaceutical composition]
The microRNA-143 of the present invention may be given as microRNA-143 itself when administered to humans and animals as a medicine, or together with a pharmaceutically acceptable carrier, for example, 0.1 to 99. It may be given as a pharmaceutical composition containing 5% (more preferably 0.5-90%) of the active ingredient.

本発明のマイクロRNA―143を含有する医薬は、治療目的に適合した他の組成物(安定化剤、分解酵素阻害剤等の化合物を含む)、医学的治療方法におけるそのような組成物の使用、そのような組成物を例えば癌の治療(これは予防的治療を含みうる)のために患者に投与することを含む方法、任意のそのような目的のために投与する組成物、医薬または医薬の製造におけるマイクロRNA―143の使用、ならびに製薬上許容される賦形剤、ビヒクルまたは担体および場合により他の成分とその化合物とを混合することを含む医薬組成物の製造方法を提供される。   The medicament containing the microRNA-143 of the present invention includes other compositions adapted for therapeutic purposes (including compounds such as stabilizers, degrading enzyme inhibitors), and the use of such compositions in medical treatment methods. A method comprising administering such a composition to a patient, eg for the treatment of cancer (which may include prophylactic treatment), a composition, pharmaceutical or pharmaceutical administered for any such purpose There is provided a process for the manufacture of a pharmaceutical composition comprising the use of microRNA-143 in the manufacture of and a compound of the pharmaceutically acceptable excipient, vehicle or carrier and optionally other ingredients and the compound.

1つの実施形態においては、医薬組成物を提供するための方法は、
(a)本発明のマイクロRNA-143を製造し、
(b)そのようにして製造されたマイクロRNA-143を、製薬上許容される賦形剤と共に製剤化することを含む。
In one embodiment, the method for providing a pharmaceutical composition comprises:
(A) producing the microRNA-143 of the present invention,
(B) formulating the so-produced microRNA-143 with a pharmaceutically acceptable excipient.

本発明の医薬組成物は、本発明のマイクロRNA―143と製薬上許容される賦形剤とを含みうる。該マイクロRNA―143は、単独の活性物質として使用したり、相互に組合せて、又は任意の他の活性物質、例えば抗腫瘍療法用の物質、他の抗腫瘍化合物または放射線療法もしくは化学療法などの療法と組合せて使用することが可能である。   The pharmaceutical composition of the present invention may comprise the microRNA-143 of the present invention and a pharmaceutically acceptable excipient. The microRNA-143 can be used as a single active agent, in combination with each other, or any other active agent, such as an anti-tumor therapeutic agent, other anti-tumor compounds or radiotherapy or chemotherapy It can be used in combination with therapy.

本発明のマイクロRNA―143を使用するに際して、投与は、好ましくは、「予防的に有効な量」または「治療的に有効な量」(予防は療法とみなされうるが、場合に応じて判断される)で行い、これは、個体に対して利益を示すのに十分な量である。実際の投与量ならびに投与の速度および時間経過は、治療対象の性質および重症度に左右される。治療の処方、例えば投与量などに関する決定は、一般医および他の医師の責任において行われる。   In using the microRNA-143 of the present invention, administration is preferably “prophylactically effective amount” or “therapeutically effective amount” (prophylaxis can be considered a therapy, but will be determined accordingly). This is an amount sufficient to show benefit to the individual. The actual dose and the rate and time course of administration will depend on the nature and severity of the subject being treated. Decisions regarding treatment prescriptions, such as dosages, are made at the responsibility of general practitioners and other physicians.

本発明のマイクロRNA―143又は組成物は、例えば前記のような治療すべき状態に応じて、単独で、あるいは他の治療と組合せて同時に又は逐次的に投与することができる。   The microRNA-143 or composition of the invention can be administered alone or in combination with other treatments, either simultaneously or sequentially, eg, depending on the condition to be treated as described above.

本発明のマイクロRNA―143を使用する医薬組成物は、有効成分に加えて、製薬上許容される賦形剤、担体、バッファー、安定剤または当技術分野においてよく知られた他の配合物を含みうる。特に、それらは、製薬上許容される賦形剤を含みうる。そのような配合物は無毒性であるべきであり、有効成分の効力を妨げるものであってはならない。担体または他の配合物の厳密な性質は投与経路(これは、経口投与または注射、例えば皮膚、皮下または静脈内注射でありうる)に左右される。   Pharmaceutical compositions using the microRNA-143 of the present invention include, in addition to the active ingredient, pharmaceutically acceptable excipients, carriers, buffers, stabilizers or other formulations well known in the art. May be included. In particular, they can contain pharmaceutically acceptable excipients. Such formulations should be non-toxic and should not interfere with the efficacy of the active ingredient. The exact nature of the carrier or other formulation will depend on the route of administration, which may be oral administration or injection, eg, skin, subcutaneous or intravenous injection.

静脈内、皮膚または皮下注射、あるいは罹患部位への注射の場合には、マイクロRNA―143は、適当なpH、等張性および安定性を有し発熱物質を含有しない非経口的に許容される水溶液の形態となろう。当業者は、例えば等張ビヒクル、例えばSodium Chloride Injection、Ringer's Injection、Lactated Ringer's Injectionを使用して、適当な溶液を製造することが十分に可能である。必要に応じて、保存剤、安定剤、バッファー、抗酸化剤および/または他の添加剤を含有させることも可能である。   For intravenous, dermal or subcutaneous injection, or injection into the affected site, microRNA-143 is parenterally acceptable with appropriate pH, isotonicity and stability and does not contain pyrogens It will be in the form of an aqueous solution. Those skilled in the art are well able to produce suitable solutions using, for example, isotonic vehicles such as Sodium Chloride Injection, Ringer's Injection, Lactated Ringer's Injection. If necessary, preservatives, stabilizers, buffers, antioxidants and / or other additives may be included.

本発明のマイクロRNA―143を患部に輸送するための製剤においては、リポソーム、特にカチオニックリポソームを使用することが可能である。前記の技術およびプロトコールの具体例はRemington's Pharmaceutical Sciences, 16th edition, Osol, A. (編), 1980に記載されている。   In the preparation for transporting the microRNA-143 of the present invention to the affected area, it is possible to use liposomes, particularly cationic liposomes. Specific examples of such techniques and protocols are described in Remington's Pharmaceutical Sciences, 16th edition, Osol, A. (ed.), 1980.

本発明のマイクロRNA―143は、特定の部位に局所的に投与することが可能であり、あるいは、例えば動脈内ステントに基づく輸送を用いて、それが特定の細胞または組織を標的とするよう輸送することが可能である。あるタイプの細胞に、より特異的に本発明化合物を運搬するためには、抗体または細胞特異的リガンドのような標的化(ターゲッティング)系を使用した標的化療法を用いることができる。標的化は、より多くの化合物を正確に標的細胞に進入させるために望ましい。   The microRNA-143 of the present invention can be administered locally at a specific site, or transported so that it targets a specific cell or tissue, for example using intraarterial stent based transport Is possible. In order to deliver the compound of the present invention more specifically to a certain type of cell, a targeting therapy using a targeting system such as an antibody or a cell-specific ligand can be used. Targeting is desirable to allow more compounds to enter the target cell accurately.

合成二重鎖RNAの血清存在下における安定性の検討
合成二重鎖RNAを静脈投与した際の血液成分(血清中に含まれる各種成分)による分解などの影響を調べ、合成RNAの各種修飾のRNA安定化について検討した。
Examination of the stability of synthetic double-stranded RNA in the presence of serum Investigate the effects of degradation by blood components (various components contained in serum) when intravenously administering synthetic double-stranded RNA, and examine various modifications of synthetic RNA RNA stabilization was investigated.

hsa-pre-143 (Ambion社製)、3,4M-miR-143 (BP)、3,4M-miR-143( TTP)の各合成二重鎖RNAを、各20nMの濃度で5%牛胎児血清を含むRPMI-1640培地中に添加し、37℃にて1、2、5、10、15、30分インキュベートし、直ちにRNA分解酵素阻害剤(RNase OUT 40U, Invitrogen社製)を加えてRNAの分解を抑えた。100倍希釈した反応物2μlを鋳型としてTaqMan MicroRNA Reverse Transcription Kit (Applied Biosystems社製)を用いてcDNAを作成し、PreMix Ex Taq (TAKARA社製)、TaqMan MicroRNA Assay (Applied Biosystems社製)及びThermal Cycler Dice TP800 (TAKARA社製)を用いてReal-Time RT-PCRを行い、反応物中の残存RNAの定量を行った。定量は2nd Derivative Maximum法により解析し、Ct値として算出した( 時間0のCt値を0とした。Ct値が大きいほど量が少ないことを示す)。   Each synthetic double-stranded RNA of hsa-pre-143 (manufactured by Ambion), 3,4M-miR-143 (BP), 3,4M-miR-143 (TTP), 5% fetal calf at a concentration of 20 nM each Add to serum-containing RPMI-1640 medium, incubate at 37 ° C for 1, 2, 5, 10, 15, 30 minutes, immediately add RNase inhibitor (RNase OUT 40U, Invitrogen) and add RNA Suppressed decomposition. Prepare cDNA using TaqMan MicroRNA Reverse Transcription Kit (Applied Biosystems) using 2 μl of the diluted reaction product as a template, PreMix Ex Taq (TAKARA), TaqMan MicroRNA Assay (Applied Biosystems) and Thermal Cycler Real-Time RT-PCR was performed using Dice TP800 (manufactured by TAKARA), and the residual RNA in the reaction was quantified. The quantification was analyzed by the 2nd Derivative Maximum method and calculated as a Ct value (the Ct value at time 0 was set to 0. The larger the Ct value, the smaller the amount).

その結果、図2に示すようにAmbion社製のhsa-pre-143、3,4M-miR-143 のBP、及び TTP修飾したものをTTPを比較すると、総じて5分以内にRNAの分解が進行するが、30分後のCt値はそれぞれ8.14、5.38、6.51となり、BP修飾した合成3,4M-miR-143 が最もRNA残存量が多く、血清存在下で安定であることがわかった。   As a result, as shown in Fig. 2, degradation of RNA generally progressed within 5 minutes when comparing ATP's hsa-pre-143, 3,4M-miR-143 BP, and TTP modified TTP. However, the Ct values after 30 minutes were 8.14, 5.38, and 6.51, respectively, and it was found that BP-modified synthetic 3,4M-miR-143 had the largest amount of residual RNA and was stable in the presence of serum.

動物モデルを用いたベンゼンーピリジン修飾miR-143の抗腫瘍効果
動物腫瘍モデルを用いて、ベンゼンーピリジン修飾miR-143の抗腫瘍効果について検討した。4〜5週令のヌードマウスの皮下にヒト大腸癌細胞株DLD-1 2 x 106個の細胞を植え付けた。腫瘍が出現し、腫瘍径が1 x 0.5 cmを越えたものについては3群(1群:8匹)に分け、レニラ(海シイタケ)のルシフェラーゼ(R)、ベンゼンーピリジン修飾miR-143の 3,4M-miR-143、 1,2,4-miR-143をそれぞれ1回 0.2 mgのみ腫瘍に局注した。4週間後、腫瘍を摘出し、その重量を測定した。
Anti-tumor effect of benzene-pyridine modified miR-143 using animal model The anti-tumor effect of benzene-pyridine modified miR-143 was examined using an animal tumor model. Human colon cancer cell line DLD-1 2 × 10 6 cells were implanted subcutaneously in 4-5 week old nude mice. Tumors that appeared and the tumor diameter exceeded 1 x 0.5 cm were divided into 3 groups (1 group: 8 animals). Renilla (sea shiitake) luciferase (R), benzene-pyridine modified miR-143 3 , 4M-miR-143 and 1,2,4-miR-143 were administered locally to the tumor only 0.2 mg each. After 4 weeks, the tumor was removed and its weight was measured.

その結果、ベンゼンーピリジン修飾miR-143の 3,4M-miR-143の群はコントロールのR群に比べ有意に腫瘍重量は減少し、1,2,4-miR-143は解剖所見で半数に有効性が認められたがバラツキが大きく、有意差は出なかった。しかし、図3に示すように、全体的に縮小傾向が認められた。   As a result, the 3,4M-miR-143 group of benzene-pyridine modified miR-143 significantly decreased tumor weight compared to the control R group, and 1,2,4-miR-143 was halved by anatomical findings. Although the effectiveness was recognized, the variation was large and there was no significant difference. However, as shown in FIG.

図1は大腸癌細胞DLD−1に対するマイクロRNA―143の生存率を示す。FIG. 1 shows the survival rate of microRNA-143 against colon cancer cell DLD-1. 図2は合成二重鎖RNAの血清存在下における安定性の検討下結果を示す。FIG. 2 shows the results of studying the stability of synthetic double-stranded RNA in the presence of serum. 図3は動物モデルを用いた修飾miR-143の抗腫瘍効果の結果を示す。FIG. 3 shows the results of the antitumor effect of modified miR-143 using an animal model.

SEQUENCE LISTING

<110> Gifu International Institute of Biotechnology
Gifu University
Hokkaido System Sience K.K.

<120> Chemical modified Micro RNA

<130> I00104

<150> Akao Yukihiro
<151> 2008-08-10

<150> Kitade Yukio
<151> 2008-08-10

<150> Takenishi Shouichirou
<151> 2008-08-10

<150> Susa Tomoe
<151> 2008-08-10

<160> 5

<170> PatentIn version 3.3

<210> 1
<211> 22
<212> RNA
<213> colon


<220>
<221> modified_base
<222> (1)..(22)

<400> 1
ucucuacguc gugacaucga gu 22


<210> 2
<211> 22
<212> RNA
<213> colon


<220>
<221> modified_base
<222> (1)..(22)
<223> 3'-benzene,pyridine

<400> 2
acucuacuuc gugacgucga gu 22


<210> 3
<211> 22
<212> RNA
<213> colon


<220>
<221> modified_base
<222> (1)..(22)
<223> 3'-benzene,pyridine

<400> 3
ucucuacguc gugacgugga gu 22


<210> 4
<211> 22
<212> RNA
<213> colon


<220>
<221> modified_base
<222> (1)..(22)
<223> 3'-benzene,pyridine

<400> 4
acucuacuuc gugacgugga gu 22


<210> 5
<211> 22
<212> RNA
<213> colon


<220>
<221> modified_base
<222> (1)..(22)
<223> 3'-benzene,pyridine

<400> 5
acucuacuuc gugacaucga gu 22
SEQUENCE LISTING

<110> Gifu International Institute of Biotechnology
Gifu University
Hokkaido System Sience KK

<120> Chemical modified Micro RNA

<130> I00104

<150> Akao Yukihiro
<151> 2008-08-10

<150> Kitade Yukio
<151> 2008-08-10

<150> Takenishi Shouichirou
<151> 2008-08-10

<150> Susa Tomoe
<151> 2008-08-10

<160> 5

<170> PatentIn version 3.3

<210> 1
<211> 22
<212> RNA
<213> colon


<220>
<221> modified_base
<222> (1) .. (22)

<400> 1
ucucuacguc gugacaucga gu 22


<210> 2
<211> 22
<212> RNA
<213> colon


<220>
<221> modified_base
<222> (1) .. (22)
<223>3'-benzene, pyridine

<400> 2
acucuacuuc gugacgucga gu 22


<210> 3
<211> 22
<212> RNA
<213> colon


<220>
<221> modified_base
<222> (1) .. (22)
<223>3'-benzene, pyridine

<400> 3
ucucuacguc gugacgugga gu 22


<210> 4
<211> 22
<212> RNA
<213> colon


<220>
<221> modified_base
<222> (1) .. (22)
<223>3'-benzene, pyridine

<400> 4
acucuacuuc gugacgugga gu 22


<210> 5
<211> 22
<212> RNA
<213> colon


<220>
<221> modified_base
<222> (1) .. (22)
<223>3'-benzene, pyridine

<400> 5
acucuacuuc gugacaucga gu 22

Claims (6)

アンチセンス鎖の3’端2個所をマッチさせたことを特徴とする3’末端がベンゼンーピリジンで修飾されたマイクロRNA―143。 A microRNA-143 whose 3 'end is modified with benzene-pyridine, characterized in that two 3' ends of the antisense strand are matched. 配列表SEQ ID No.1で表される請求項1に記載のアンチセンス鎖の3’末端2個所をマッチさせたことを特徴とする3’末端がベンゼンーピリジンで修飾されたマイクロRNA―143。 The microRNA-143 modified at the 3 'end with benzene-pyridine, characterized in that two 3' ends of the antisense strand according to claim 1 represented by the sequence listing SEQ ID No. 1 are matched. . アンチセンス鎖の3’末端1個所をマッチさせたことを特徴とする3’末端がベンゼンーピリジンで修飾されたマイクロRNA―143。 A microRNA-143 in which the 3 'end is modified with benzene-pyridine, wherein one 3' end of the antisense strand is matched. 配列表SEQ ID No.2で表される請求項3に記載のアンチセンス鎖の3’末端1個所をマッチさせたことを特徴とする3’末端がベンゼンーピリジンで修飾されたマイクロRNA―143。 A microRNA-143 modified at the 3 'end with benzene-pyridine, wherein one 3' end of the antisense strand according to claim 3 represented by the sequence listing SEQ ID No. 2 is matched. . 請求項1から請求項4のいずれかに記載のマイクロRNA―143を含有することを特徴とする医薬。 A pharmaceutical comprising the microRNA-143 according to any one of claims 1 to 4. 請求項1から請求項4のいずれかに記載のマイクロRNA―143を含有することを特徴とする消化器癌治療薬。 A therapeutic agent for digestive organ cancer comprising the microRNA-143 according to any one of claims 1 to 4.
JP2008242263A 2008-09-22 2008-09-22 Pharmaceutical preparation comprising micro-rna-143 derivative Pending JP2011251912A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008242263A JP2011251912A (en) 2008-09-22 2008-09-22 Pharmaceutical preparation comprising micro-rna-143 derivative
PCT/JP2009/066002 WO2010032704A1 (en) 2008-09-22 2009-09-14 Pharmaceutical preparation comprising micro-rna-143 derivative

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008242263A JP2011251912A (en) 2008-09-22 2008-09-22 Pharmaceutical preparation comprising micro-rna-143 derivative

Publications (1)

Publication Number Publication Date
JP2011251912A true JP2011251912A (en) 2011-12-15

Family

ID=42039528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008242263A Pending JP2011251912A (en) 2008-09-22 2008-09-22 Pharmaceutical preparation comprising micro-rna-143 derivative

Country Status (2)

Country Link
JP (1) JP2011251912A (en)
WO (1) WO2010032704A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014195438A (en) * 2013-03-29 2014-10-16 シーシーアイ株式会社 Cell growth inhibitor and prevention/therapeutic agent of cancer
WO2017179660A1 (en) * 2016-04-14 2017-10-19 国立大学法人岐阜大学 microRNA-143 DERIVATIVE
JP2018153164A (en) * 2017-03-21 2018-10-04 国立大学法人岐阜大学 Cytostatic and cancer preventive/therapeutic agent

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2774989B1 (en) * 2011-11-02 2018-09-05 Osaka City University Double-stranded nucleic acid molecule for gene expression control
CN110088278B (en) 2016-10-31 2023-08-11 e-NA生物科技公司 Double-stranded nucleic acid molecules and uses thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003207708A1 (en) * 2002-02-20 2003-09-09 Sirna Therapeutics, Inc. Rna interference mediated inhibition of map kinase genes
JP4948163B2 (en) * 2003-05-23 2012-06-06 サーナ・セラピューティクス・インコーポレイテッド RNA interference-mediated suppression of gene expression using chemically modified small interfering nucleic acids (siNA)
KR101147147B1 (en) * 2004-04-01 2012-05-25 머크 샤프 앤드 돔 코포레이션 Modified polynucleotides for reducing off-target effects in rna interference
JPWO2006027862A1 (en) * 2004-09-07 2008-05-08 国立大学法人岐阜大学 Nucleoside analogs and oligonucleotide analogs containing them
JP2008086201A (en) * 2006-09-29 2008-04-17 Gifu Prefecture Kenkyu Kaihatsu Zaidan Method for detecting production of micro-rna and diagnosis/treatment of cancer, and micro-rna production adjusting agent

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014195438A (en) * 2013-03-29 2014-10-16 シーシーアイ株式会社 Cell growth inhibitor and prevention/therapeutic agent of cancer
WO2017179660A1 (en) * 2016-04-14 2017-10-19 国立大学法人岐阜大学 microRNA-143 DERIVATIVE
JPWO2017179660A1 (en) * 2016-04-14 2019-03-28 塩野義製薬株式会社 Micro RNA-143 derivative
US11041152B2 (en) 2016-04-14 2021-06-22 E-Na Biotec Inc. MicroRNA-143 derivative
JP2018153164A (en) * 2017-03-21 2018-10-04 国立大学法人岐阜大学 Cytostatic and cancer preventive/therapeutic agent

Also Published As

Publication number Publication date
WO2010032704A1 (en) 2010-03-25

Similar Documents

Publication Publication Date Title
CN103080314B (en) Dominant mutant genes expression inhibitor
US20150232845A1 (en) 5&#39; targeting oligonucleotides for modulating rna
CN102803284A (en) Chemical modification motifs for miRNA inhibitors and mimetics
CN107236735A (en) The inhibitor based on oligonucleotides comprising lock nucleic acid motif
JP6486836B2 (en) Artificial mimic miRNA for gene expression control and use thereof
ES2865446T3 (en) Diagnostic markers for the treatment of cell proliferative disorders with telomerase inhibitors
CN105899666A (en) Saccharide-modified nucleic acid molecules
JP2011251912A (en) Pharmaceutical preparation comprising micro-rna-143 derivative
DK2101789T3 (en) Combined telomerase inhibitor and gemcitabine for the treatment of cancer
CN110290794A (en) The microRNA and its purposes in cancer treatment of 5- halo uracil modification
JP5794559B2 (en) Drugs for regulating differentiation of mesenchymal cells and use thereof
CN106467915A (en) SiRNA and its method for application and suppression plk1 gene expression
CN108431224B (en) Small interfering nucleic acid, pharmaceutical composition and application thereof
CN107709561B (en) Modified siRNA and pharmaceutical composition containing same
EP4023297A1 (en) Nucleic acid medicine for targeting gastric cancer molecule
JP7385847B2 (en) Cancer growth inhibitor containing a snoRNA expression inhibitor as an active ingredient
US9617538B2 (en) Heptamer-type small guide nucleic acids inducing apoptosis of human leukemia cells
KR101993894B1 (en) Double Stranded Oligo RNA Structure Comprising miRNA
JP6687948B2 (en) Expression-suppressing nucleic acid molecule for controlling gene expression and use thereof
KR101861738B1 (en) Double Stranded Oligo RNA Structure Comprising miRNA
KR20160012071A (en) Prevention or Treatment for ischemic stroke using miR-551b-3p
JPWO2020153503A1 (en) Cancer growth inhibitor containing an inhibitor of ncRNA expression derived from the SNHG12 gene as an active ingredient
KR20220164732A (en) Modified short interfering RNA compositions and their use in cancer treatment
ES2764699T3 (en) MiRNA molecule defined by its source and its diagnostic and therapeutic uses in diseases or conditions associated with TEM
ONCOGENIC OTEH-8. PATHWAY-BASED APPROACH REVEALS SENSITIVITY TO RADIATION WHEN TARGETING E2F1 IN GLIOBLASTOMA