JP5794125B2 - Steel wire for welding used in gas shielded arc welding and gas shielded arc welding method using the same - Google Patents

Steel wire for welding used in gas shielded arc welding and gas shielded arc welding method using the same Download PDF

Info

Publication number
JP5794125B2
JP5794125B2 JP2011258384A JP2011258384A JP5794125B2 JP 5794125 B2 JP5794125 B2 JP 5794125B2 JP 2011258384 A JP2011258384 A JP 2011258384A JP 2011258384 A JP2011258384 A JP 2011258384A JP 5794125 B2 JP5794125 B2 JP 5794125B2
Authority
JP
Japan
Prior art keywords
mass
welding
content
steel wire
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011258384A
Other languages
Japanese (ja)
Other versions
JP2012130967A (en
Inventor
片岡 時彦
時彦 片岡
池田 倫正
倫正 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2011258384A priority Critical patent/JP5794125B2/en
Publication of JP2012130967A publication Critical patent/JP2012130967A/en
Application granted granted Critical
Publication of JP5794125B2 publication Critical patent/JP5794125B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Arc Welding In General (AREA)

Description

本発明は、シールドガスでアーク点をシールドして行なう溶接(すなわちガスシールドアーク溶接)に好適な溶接用鋼ワイヤ、およびそれを用いたガスシールドアーク溶接方法に関するものである。   The present invention relates to a steel wire for welding suitable for welding performed by shielding an arc point with a shielding gas (that is, gas shielded arc welding), and a gas shielded arc welding method using the same.

シールドガスとしてHe,Ar,CO2,O2,H2ガスあるいはこれらの混合ガスを用いるガスシールドアーク溶接(すなわちMIG溶接,MAG溶接,炭酸ガスアーク溶接)は、高能率の溶接技術として造船,建築,橋梁,自動車,建設機械等の様々な分野で広く普及している。ガスシールドアーク溶接は高能率であるという利点を有する反面、溶接の際に溶融メタルの飛散(いわゆるスパッタ)が多量に発生するという問題がある。 Gas shielded arc welding (ie, MIG welding, MAG welding, carbon dioxide arc welding) using He, Ar, CO 2 , O 2 , H 2 gas or a mixture of these as shielding gas is a highly efficient welding technology for shipbuilding and construction. Widely used in various fields such as bridges, automobiles and construction machinery. While gas shielded arc welding has the advantage of high efficiency, there is a problem in that a large amount of molten metal scattering (so-called spatter) occurs during welding.

そこでアークを安定化して、スパッタを減少させることによって、溶接作業性の改善および溶接能率の更なる向上を達成する技術が求められている。
近年、アーク現象の究明が進むにつれて、ガスシールドアーク溶接におけるスパッタの低減に寄与する溶滴のスプレー移行が可能となってきた。そしてスパッタの低減に加えて、さらに金属蒸気(いわゆるヒューム)およびアーク音の低減を達成して、溶接の作業環境を改善する技術が検討されている。
Therefore, there is a need for a technique that achieves improved welding workability and further improved welding efficiency by stabilizing the arc and reducing spatter.
In recent years, as the investigation of the arc phenomenon has progressed, it has become possible to perform spray transfer of droplets that contribute to the reduction of spatter in gas shielded arc welding. In addition to the reduction of spatter, a technique for improving the welding work environment by further reducing metal vapor (so-called fume) and arc noise has been studied.

たとえば特許文献1には、C,Si,Mn,希土類元素(以下、REMという)等の含有量を規定した炭酸ガスシールドアーク溶接に好適なソリッドワイヤが開示されている。また特許文献2には、REMを0.015〜0.100質量%含有するソリッドワイヤを用い、かつ溶接電流,溶接電圧,溶接速度,開先角度,ルートギャップから算出される指標を所定の範囲内に維持してガスシールドアーク溶接を行なう技術が開示されている。   For example, Patent Document 1 discloses a solid wire suitable for carbon dioxide shielded arc welding in which the contents of C, Si, Mn, rare earth elements (hereinafter referred to as REM), etc. are defined. Patent Document 2 uses a solid wire containing 0.015 to 0.100% by mass of REM, and maintains an index calculated from welding current, welding voltage, welding speed, groove angle, and root gap within a predetermined range. A technique for performing gas shielded arc welding is disclosed.

これらの技術は、いずれもガスシールドアーク溶接において安定したアークを得るために、REMを含有する溶接用鋼ワイヤを用いる。REMは、Feより比重が大きく、しかも強酸化性の金属であり、その酸化物の融点が高いので、素材となる溶鋼の製造過程にて偏析し易い。そのため溶接用鋼ワイヤ中にREMの濃淡が生じ、REM含有量が規定値を外れる部分を切断除去しなければならない。また、溶鋼から溶接用鋼ワイヤを製造する過程で割れが発生し易くなる。つまりREMの添加によって溶接用鋼ワイヤの歩留りが低下し、その製造コストが上昇する。   All of these techniques use a steel wire for welding containing REM in order to obtain a stable arc in gas shielded arc welding. REM has a higher specific gravity than Fe and is a highly oxidizable metal, and its oxide has a high melting point, so it is easily segregated in the manufacturing process of the molten steel as a raw material. For this reason, REM density is generated in the welding steel wire, and the portion where the REM content deviates from the specified value must be cut and removed. In addition, cracks are likely to occur during the process of manufacturing a welding steel wire from molten steel. In other words, the addition of REM decreases the yield of welding steel wires and increases the manufacturing cost.

特許3945396号公報Japanese Patent No. 3945396 特開2007-118068号公報JP 2007-118068

本発明は、REMを含有する溶接用鋼ワイヤを安定して製造することによって、溶接用鋼ワイヤの歩留りを向上し、その製造コストを低減することを目的とする。   An object of the present invention is to improve the yield of a welding steel wire and reduce its manufacturing cost by stably producing a welding steel wire containing REM.

発明者らは、ガスシールドアーク溶接に用いる溶接用鋼ワイヤにREMを含有させる技術について鋭意検討した。その結果、REMを含有する合金鋼の粉体(以下、合金鋼粉という)を予め製造し、その合金鋼粉を鋼製外皮に内包させることによって、所定量のREMを含有する溶接用鋼ワイヤを安定して製造できることが分かった。
またガスシールドアーク溶接において、アークを安定させてスパッタを減少するために合金鋼粉に含有させるREM量、および溶接用鋼ワイヤに占める合金鋼粉の割合等についても検討し、それぞれ好適な範囲を見出した。
The inventors diligently studied a technique for incorporating REM into a welding steel wire used in gas shielded arc welding. As a result, an alloy steel powder containing REM (hereinafter referred to as alloy steel powder) is manufactured in advance, and the alloy steel powder is encapsulated in a steel outer shell, so that a welding steel wire containing a predetermined amount of REM is obtained. It was found that can be manufactured stably.
In gas shielded arc welding, we also examined the amount of REM included in alloy steel powder to stabilize the arc and reduce spatter, and the ratio of alloy steel powder in the steel wire for welding. I found it.

本発明は、これらの知見に基づいてなされたものである。
すなわち本発明は、ガスシールドアーク溶接に用いる溶接用鋼ワイヤであって、REMを2〜60質量%含有し残部がFeおよび不可避的不純物からなる合金鋼粉を鋼製外皮に内包させ、合金鋼粉の質量をMPW(g),鋼製外皮の質量をmSH(g)として、溶接用鋼ワイヤ中の合金鋼粉の内包率100×MPW/(MPW+mSH)が0.05〜25.0質量%の範囲内を満足し、かつ合金鋼粉に含有されるREMの質量をMRE(g)として、溶接用鋼ワイヤ中のREMの含有率100×MRE/(MPW+mSH)が0.01〜0.5質量%の範囲内を満足するとともに、合金鋼粉に含有される各元素の質量と鋼製外皮に含有される各元素の質量とをそれぞれ合計してM PW +m SH に対する比率として得られる各元素の含有率が、Cの含有率0.01〜0.30質量%、Siの含有率0.10〜5.00質量%、Mnの含有率0.5〜5.0質量%、Crの含有率3.0質量%以下、Niの含有率3.0質量%以下、Moの含有率0.02〜1.5質量%、Cuの含有率3.0質量%以下、Bの含有率0.0001〜0.005質量%、Tiの含有率0.02〜0.20質量%、Alの含有率0.001〜0.20質量%、Pの含有率0.050質量%以下、Sの含有率0.050質量%以下、Caの含有率0.0008質量%以下の範囲内を満足し、残部がFeおよび不可避的不純物からなる溶接用鋼ワイヤである。
The present invention has been made based on these findings.
That is, the present invention relates to a steel wire for welding used in gas shielded arc welding, in which alloy steel powder containing 2 to 60% by mass of REM and the balance consisting of Fe and inevitable impurities is encapsulated in a steel outer shell, and alloy steel When the mass of the powder is M PW (g) and the mass of the steel outer shell is m SH (g), the inclusion rate of the alloy steel powder in the steel wire for welding is 100 × M PW / (M PW + m SH ) of 0.05 to 25.0 The content of REM in the steel wire for welding is 100 × M RE / (M PW + m SH ), where M RE (g) is the mass of REM that satisfies the mass% range and is contained in the alloy steel powder. In addition to satisfying the range of 0.01 to 0.5% by mass, the mass of each element contained in the alloy steel powder and the mass of each element contained in the steel outer shell are totaled to obtain a ratio to M PW + m SH . The content of each element is C content 0.01 to 0.30 mass%, Si content 0.10 to 5.00 mass%, Mn content 0.5 5.0% by mass, Cr content of 3.0% by mass or less, Ni content of 3.0% by mass or less, Mo content of 0.02 to 1.5% by mass, Cu content of 3.0% by mass or less, B content of 0.0001 to 0.005% by mass Within a range of 0.02 to 0.20% by mass of Ti, 0.001 to 0.20% by mass of Al, 0.050% by mass or less of P, 0.050% by mass or less of S, and 0.0008% by mass or less of Ca And the balance is a steel wire for welding consisting of Fe and inevitable impurities .

本発明の溶接用鋼ワイヤにおいては、合金鋼粉のC含有量を0.01〜3.0質量%,Si含有量を0.1〜6.0質量%とすることが好ましい。また、合金鋼粉のO含有量を0.003〜0.02質量%とすることが好ましい In the steel wire for welding of the present invention, it is preferable that the C content of the alloy steel powder is 0.01 to 3.0 mass% and the Si content is 0.1 to 6.0 mass%. Moreover, it is preferable that O content of alloy steel powder shall be 0.003-0.02 mass% .

また本発明は、上記の溶接用鋼ワイヤを用いて、正極性でガスシールドアーク溶接を行なうガスシールドアーク溶接方法である。   The present invention is also a gas shielded arc welding method for performing gas shielded arc welding with positive polarity using the welding steel wire.

本発明によれば、REMを含有する溶接用鋼ワイヤを安定して製造することができる。その結果、溶接用鋼ワイヤの歩留りを向上し、その製造コストを低減することが可能となる。さらに、本発明の溶接用鋼ワイヤを用いてガスシールドアーク溶接を行なうと、アークが安定するので、スパッタが減少し、かつビード形状が改善されるという効果も得られる。   According to the present invention, a welding steel wire containing REM can be stably produced. As a result, the yield of the steel wire for welding can be improved, and the manufacturing cost can be reduced. Furthermore, when the gas shielded arc welding is performed using the welding steel wire of the present invention, the arc is stabilized, so that the effects of reducing spatter and improving the bead shape can be obtained.

本発明の溶接用鋼ワイヤの例を模式的に示す断面図である。It is sectional drawing which shows the example of the steel wire for welding of this invention typically.

図1は、本発明の溶接用鋼ワイヤの例を模式的に示す断面図である。本発明の溶接用鋼ワイヤ1は、鋼製外皮2の内側に合金鋼粉3を内包したものである。
合金鋼粉3は、REMを含有する合金鋼を溶製し、さらに鋳造した合金鋼塊(いわゆるインゴット)を粉砕して得ることができる。直径0.8〜1.6mm程度の溶接用鋼ワイヤ1を得るためには、合金鋼粉3の粒径は数十μm〜百μm程度が好ましい。まず、合金鋼粉3の成分について説明する。
FIG. 1 is a cross-sectional view schematically showing an example of a welding steel wire according to the present invention. A steel wire 1 for welding according to the present invention is obtained by enclosing an alloy steel powder 3 inside a steel outer shell 2.
The alloy steel powder 3 can be obtained by melting alloy steel containing REM and further grinding the cast alloy steel ingot (so-called ingot). In order to obtain the welding steel wire 1 having a diameter of about 0.8 to 1.6 mm, the particle diameter of the alloy steel powder 3 is preferably about several tens of μm to one hundred μm. First, the components of the alloy steel powder 3 will be described.

REM含有量:2〜60質量%
REM(すなわち希土類元素)は、MAG溶接あるいは炭酸ガスアーク溶接を正極性で行なう場合に、溶滴のスプレー移行を実現するために不可欠な元素である。また、MIG溶接ではアークを安定させてビードの蛇行を抑制する作用を有する。
合金鋼粉3のREM含有量が2質量%未満では、合金鋼粉3とそれを内包する鋼製外皮2からなる溶接用鋼ワイヤ1を用いてガスシールドアーク溶接を行なう際に、それらの効果が得られない。一方、60質量%を超えると、溶接用鋼ワイヤ1中のREMの濃淡が助長されるばかりでなく、REMが酸化され易くなり、溶接用鋼ワイヤ1を用いてガスシールドアーク溶接を行なう際に、アークが不安定になり、溶接金属の靭性の低下を招く。したがって、REM含有量は2〜60質量%の範囲内とする。好ましくは5〜20質量%である。なお、REM含有量(質量%)は、合金鋼粉3に含有されるREMの質量MRE(g)と合金鋼粉3の質量MPW(g)の割合(=100×MRE/MPW)を指す。
REM content: 2-60% by mass
REM (that is, rare earth element) is an indispensable element for realizing spray transfer of droplets when MAG welding or carbon dioxide arc welding is performed with a positive polarity. MIG welding has the effect of stabilizing the arc and suppressing the meandering of the beads.
When the REM content of the alloy steel powder 3 is less than 2% by mass, the effect of the gas shield arc welding using the welding steel wire 1 composed of the alloy steel powder 3 and the steel outer skin 2 enclosing the alloy steel powder 3 is achieved. Cannot be obtained. On the other hand, if it exceeds 60% by mass, not only the density of REM in the welding steel wire 1 is promoted, but also REM is easily oxidized, and when performing gas shielded arc welding using the welding steel wire 1 The arc becomes unstable and the toughness of the weld metal is reduced. Therefore, the REM content is in the range of 2 to 60% by mass. Preferably it is 5-20 mass%. The REM content (% by mass) is the ratio of the mass M RE (g) of REM contained in the alloy steel powder 3 to the mass M PW (g) of the alloy steel powder 3 (= 100 × M RE / M PW ).

ここでREMは、周期表の3族に属する元素の総称である。本発明では、原子番号57〜71の元素を使用するのが好ましく、特にCe,Laが好適である。Ce,Laを合金鉄粉に添加する場合は、CeまたはLaを単独で添加しても良いし、CeおよびLaを併用しても良い。
合金鋼粉3は、REMを含有することを必須とするが、C,Si,Bを下記の範囲で含有することが好ましい。その理由は、これらの元素を鋼製外皮2のみから溶接金属に供給するように成分設計を行なうと、鋼製外皮2が脆化して、溶接用鋼ワイヤ1の製造工程にて断線を生じ易くなるからである。つまり、これらの元素を合金鋼粉3および鋼製外皮2から溶接金属に供給するように成分設計を行なうことが好ましい。
Here, REM is a general term for elements belonging to Group 3 of the periodic table. In the present invention, it is preferable to use an element having an atomic number of 57 to 71, and Ce and La are particularly preferable. When Ce and La are added to the alloy iron powder, Ce or La may be added alone, or Ce and La may be used in combination.
Alloy steel powder 3 is required to contain REM, but preferably contains C, Si, B in the following range. The reason for this is that if the component design is carried out so that these elements are supplied to the weld metal only from the steel outer shell 2, the steel outer shell 2 becomes brittle and breaks easily in the manufacturing process of the steel wire 1 for welding. Because it becomes. That is, it is preferable to design the components so that these elements are supplied from the alloy steel powder 3 and the steel outer shell 2 to the weld metal.

C含有量:0.01〜3.0質量%
Cは溶接金属の強度を確保するために重要な元素であるが、合金鋼粉3のC含有量が0.01質量%未満では、合金鋼粉3とそれを内包する鋼製外皮2からなる溶接用鋼ワイヤ1を用いてガスシールドアーク溶接を行なう際に、MIG溶接ではアークを安定させてビードの蛇行を抑制する効果が得られない。一方、3.0質量%を超えると、溶接用鋼ワイヤ1を用いてガスシールドアーク溶接を行なう際に、溶滴が不安定になるばかりでなく、溶接金属の靭性の低下を招く。したがって、C含有量は0.01〜3.0質量%の範囲内が好ましい。なお、C含有量(質量%)は、合金鋼粉3に含有されるCの質量MC(g)と合金鋼粉3の質量MPW(g)の割合(=100×MC/MPW)を指す。
C content: 0.01-3.0 mass%
C is an important element for ensuring the strength of the weld metal. If the C content of the alloy steel powder 3 is less than 0.01% by mass, the alloy steel powder 3 and the steel outer skin 2 that encloses the alloy steel powder 3 are used for welding. When performing gas shielded arc welding using the steel wire 1, MIG welding cannot provide the effect of stabilizing the arc and suppressing the meandering of the beads. On the other hand, when it exceeds 3.0 mass%, when performing gas shielded arc welding using the welding steel wire 1, not only the droplets become unstable, but also the toughness of the weld metal decreases. Therefore, the C content is preferably in the range of 0.01 to 3.0% by mass. The C content (% by mass) is the ratio of the mass M C (g) of C contained in the alloy steel powder 3 to the mass M PW (g) of the alloy steel powder 3 (= 100 × M C / M PW ).

Si含有量:0.1〜6.0質量%
Siは脱酸作用を有し、溶融メタルの脱酸に不可欠な元素であるが、合金鋼粉3のSi含有量が0.1質量%未満では、合金鋼粉3とそれを内包する鋼製外皮2からなる溶接用鋼ワイヤ1を用いてガスシールドアーク溶接を行なう際に、溶融メタルが十分に脱酸されないので、溶接金属にブロー欠陥が生じる。一方、6.0質量%を超えると、酸化によるスラグ生成量は増加するが、溶融メタル中で脱酸に寄与するSi量は飽和してしまう。しかも合金鋼粉3の硬度が高くなり、加工性が劣化する。したがって、Si含有量は0.1〜6.0質量%の範囲内が好ましい。なお、Si含有量(質量%)は、合金鋼粉3に含有されるSiの質量MSI(g)と合金鋼粉3の質量MPW(g)の割合(=100×MSI/MPW)を指す。
Si content: 0.1-6.0% by mass
Si has a deoxidizing action and is an indispensable element for deoxidizing molten metal. However, if the Si content of the alloy steel powder 3 is less than 0.1% by mass, the alloy steel powder 3 and the steel outer shell 2 containing it are contained. When performing gas shielded arc welding using the welding steel wire 1, the molten metal is not sufficiently deoxidized, and blow defects occur in the weld metal. On the other hand, if it exceeds 6.0% by mass, the amount of slag generated by oxidation increases, but the amount of Si contributing to deoxidation in the molten metal is saturated. In addition, the hardness of the alloy steel powder 3 increases, and the workability deteriorates. Therefore, the Si content is preferably in the range of 0.1 to 6.0 mass%. The Si content (% by mass) is the ratio of the mass M SI (g) of Si contained in the alloy steel powder 3 to the mass M PW (g) of the alloy steel powder 3 (= 100 × M SI / M PW ).

O含有量:0.003〜0.02質量%
Oは、合金鋼粉3の素材となる合金鋼の溶製工程および合金鋼粉3の製造工程にて混入する元素であるが、溶滴の移行形態を微細にする作用を有する。O含有量を0.003質量%未満まで減少させるためには、溶製工程における真空精錬等に多大に時間を要し、生産性の低下,製造コストの上昇を招く。またO含有量が0.003質量%未満では、溶滴を微細化する効果が得られない。一方、0.02質量%を超えると、合金鋼粉中のREMが溶接時に酸化され易くなり、上記したREMの効果を阻害する。したがって、O含有量は0.003〜0.02質量%の範囲内が好ましい。より好ましくは0.003質量%以上0.008質量%未満である。なお、O含有量(質量%)は、合金鋼粉3に含有されるOの質量MO(g)と合金鋼粉3の質量MPW(g)の割合(=100×MO/MPW)を指す。
O content: 0.003-0.02 mass%
O is an element mixed in the melting process of the alloy steel used as the raw material of the alloy steel powder 3 and the manufacturing process of the alloy steel powder 3, and has an effect of making the transition form of the droplets fine. In order to reduce the O content to less than 0.003 mass%, much time is required for vacuum refining or the like in the melting process, resulting in a decrease in productivity and an increase in manufacturing cost. On the other hand, if the O content is less than 0.003 mass%, the effect of making the droplets finer cannot be obtained. On the other hand, if it exceeds 0.02% by mass, REM in the alloy steel powder is easily oxidized during welding, thereby inhibiting the above-mentioned effect of REM. Therefore, the O content is preferably in the range of 0.003 to 0.02 mass%. More preferably, it is 0.003 mass% or more and less than 0.008 mass%. The O content (% by mass) is the ratio of the mass M O (g) of O contained in the alloy steel powder 3 to the mass M PW (g) of the alloy steel powder 3 (= 100 × M O / M PW ).

合金鋼粉3の上記した成分以外の残部は、Feおよび不可避的不純物である。合金鋼粉3には、その製造過程(すなわちREMを含有する合金鋼を溶製し、さらに鋳造したインゴットを粉砕する工程)で他の元素(たとえばP,S,Ca等)が混入する。それらの不純物は、溶接用鋼ワイヤ1に占める各元素の割合が後述する範囲内であれば問題はない。
この合金鋼粉3を鋼製外皮2に内包させて溶接用鋼ワイヤ1とする。鋼製外皮2の外径は0.8〜1.6mm程度が好ましい。ここで、合金鋼粉3と鋼製外皮2の割合について説明する。
The balance other than the above-described components of the alloy steel powder 3 is Fe and inevitable impurities. The alloy steel powder 3 is mixed with other elements (for example, P, S, Ca, etc.) in the production process (that is, a process of melting alloy steel containing REM and crushing the cast ingot). These impurities are not a problem as long as the ratio of each element in the welding steel wire 1 is within the range described later.
This alloy steel powder 3 is encapsulated in a steel outer shell 2 to form a steel wire 1 for welding. The outer diameter of the steel outer skin 2 is preferably about 0.8 to 1.6 mm. Here, the ratio of the alloy steel powder 3 and the steel outer shell 2 will be described.

内包率:0.05〜25.0質量%
合金鋼粉3の質量をMPW(g)とし、鋼製外皮2の質量をmSH(g)とすると、溶接用鋼ワイヤ1の質量はMPW+mSH(g)となる。溶接用鋼ワイヤ1に占める合金鋼粉3の割合(以下、内包率という)は100×MPW/(MPW+mSH)で算出され、その内包率を0.05〜25.0質量%の範囲内とする。合金鋼粉3の内包率が0.05質量%未満では、溶接用鋼ワイヤ1中に十分な量のREMを確保できず、しかも溶接用鋼ワイヤ1長手方向の合金鋼粉3の分布が不均一になるので、上記したREMの効果が安定して得られない。一方、25.0質量%を超えると、溶接用鋼ワイヤ1中に多量のREMが存在するので、REMが酸化され易くなり、溶接用鋼ワイヤ1を用いてガスシールドアーク溶接を行なう際に、溶接金属の靭性の低下を招く。また、溶接用鋼ワイヤ1の製造工程にて断線を生じ易くなる。
Inclusion rate: 0.05-25.0% by mass
When the mass of the alloy steel powder 3 is M PW (g) and the mass of the steel outer sheath 2 is m SH (g), the mass of the welding steel wire 1 is M PW + m SH (g). The ratio of the alloy steel powder 3 to the welding steel wire 1 (hereinafter referred to as the inclusion rate) is calculated by 100 × M PW / (M PW + m SH ), and the inclusion rate is in the range of 0.05 to 25.0 mass%. . If the inclusion rate of the alloy steel powder 3 is less than 0.05% by mass, a sufficient amount of REM cannot be secured in the welding steel wire 1, and the distribution of the alloy steel powder 3 in the longitudinal direction of the welding steel wire 1 is not uniform. Therefore, the above REM effect cannot be obtained stably. On the other hand, if it exceeds 25.0% by mass, a large amount of REM is present in the welding steel wire 1, so that REM is likely to be oxidized, and when performing gas shielded arc welding using the welding steel wire 1, the weld metal This leads to a decrease in toughness. Moreover, it becomes easy to produce a disconnection in the manufacturing process of the steel wire 1 for welding.

次に、溶接用鋼ワイヤ1に占める各元素の割合(以下、含有率という)について説明する。なお含有率は、溶接用鋼ワイヤ1の質量(=MPW+mSH)に対する各元素の質量比を指す。
REM含有率:0.01〜0.5質量%
合金鋼粉3に含有されるREMの質量をMRE(g)とし、溶接用鋼ワイヤ1に占めるREMの含有率は100×MRE/(MPW+mSH)で算出され、そのREM含有率を0.01〜0.5質量%の範囲内とする。REM含有率が0.01質量%未満では、上記したREMの効果が得られない。一方、0.5質量%を超えると、REM が酸化され易くなり、溶接用鋼ワイヤ1を用いてガスシールドアーク溶接を行なう際に、溶接金属の靭性の低下を招く。したがって、REM含有率は0.01〜0.5質量%とする。好ましくは0.025〜0.3質量%である。
Next, the ratio (hereinafter referred to as content) of each element in the welding steel wire 1 will be described. In addition, a content rate points out the mass ratio of each element with respect to the mass (= MPW + mSH ) of the steel wire 1 for welding.
REM content: 0.01-0.5% by mass
The mass of REM contained in the alloy steel powder 3 is M RE (g), and the content of REM in the welding steel wire 1 is calculated as 100 × M RE / (M PW + m SH ). Is in the range of 0.01 to 0.5 mass%. When the REM content is less than 0.01% by mass, the above REM effect cannot be obtained. On the other hand, if it exceeds 0.5 mass%, REM will be easily oxidized, and when gas shielded arc welding is performed using the welding steel wire 1, the toughness of the weld metal is reduced. Therefore, the REM content is set to 0.01 to 0.5% by mass. Preferably it is 0.025-0.3 mass%.

C含有率:0.01〜0.30質量%
合金鋼粉3に含有されるCの質量をMC(g)とし、鋼製外皮2に含有されるCの質量をmC(g)とすると、溶接用鋼ワイヤ1に占めるCの含有率は100×(MC+mC)/(MPW+mSH)で算出され、そのC含有率は0.01〜0.30質量%の範囲内とする。Cは溶接金属の強度を確保するために重要な元素であるが、C含有率が0.01質量%未満では、溶接用鋼ワイヤ1を用いてガスシールドアーク溶接を行なう際に、溶接金属の強度が低下する。しかも溶融メタル中のCの酸化反応によるO固溶量低減効果が得られない。また、溶接用鋼ワイヤ1の電気抵抗が低くなり、溶融効率が低下する。一方、0.30質量%を超えると、溶接用鋼ワイヤ1を用いてガスシールドアーク溶接を行なう際に、溶滴が不安定になるばかりでなく、溶接金属の靭性の低下を招く。また、溶接用鋼ワイヤ1の製造工程にて断線を生じ易くなる。したがって、C含有率は0.01〜0.30質量%の範囲内とする。好ましくは0.01〜0.08質量%である。
C content: 0.01-0.30 mass%
When the mass of C contained in the alloy steel powder 3 is M C (g) and the mass of C contained in the steel outer sheath 2 is m C (g), the C content in the welding steel wire 1 is calculated by 100 × (M C + m C ) / (M PW + m SH), its C content in the range of 0.01 to 0.30 wt%. C is an important element for ensuring the strength of the weld metal. However, when the C content is less than 0.01% by mass, the strength of the weld metal is low when performing gas shielded arc welding using the welding steel wire 1. descend. Moreover, the effect of reducing the amount of O solid solution due to the oxidation reaction of C in the molten metal cannot be obtained. Moreover, the electrical resistance of the steel wire 1 for welding becomes low, and the melting efficiency decreases. On the other hand, if it exceeds 0.30% by mass, not only the droplets become unstable when performing gas shielded arc welding using the welding steel wire 1, but also the toughness of the weld metal decreases. Moreover, it becomes easy to produce a disconnection in the manufacturing process of the steel wire 1 for welding. Therefore, the C content is in the range of 0.01 to 0.30 mass% . Preferably it is 0.01-0.08 mass%.

Si含有率:0.10〜5.00質量%
合金鋼粉3に含有されるSiの質量をMSI(g)とし、鋼製外皮2に含有されるSiの質量をmSI(g)とすると、溶接用鋼ワイヤ1に占めるSiの含有率は100×(MSI+mSI)/(MPW+mSH)で算出され、そのSi含有率は0.10〜5.00質量%の範囲内とする。Siは脱酸作用を有し、溶融メタルの脱酸に不可欠な元素であるが、Si含有率が0.10質量%未満では、溶接用鋼ワイヤ1を用いてガスシールドアーク溶接を行なう際に、溶融メタルが十分に脱酸されないので、溶接金属にブロー欠陥が生じる。また、溶接用鋼ワイヤ1の電気抵抗が低くなり、溶融効率が低下する。一方、5.00質量%を超えると、酸化によるスラグ生成量が増加する一方で、溶融メタル中で脱酸に寄与するSi量は飽和してしまう。しかも溶接用鋼ワイヤ1の硬度が高くなり、加工性が劣化する。したがって、Si含有率は0.10〜5.00質量%の範囲内とする。好ましくは0.5〜1.5質量%である。
Si content: 0.10 to 5.00% by mass
If the mass of Si contained in the alloy steel powder 3 is M SI (g) and the mass of Si contained in the steel outer sheath 2 is m SI (g), the Si content in the welding steel wire 1 is calculated by 100 × (M SI + m SI ) / (M PW + m SH), its Si content in the range of 0.10 to 5.00 wt%. Si has a deoxidizing action and is an indispensable element for deoxidizing molten metal. However, when the Si content is less than 0.10% by mass, it melts when performing gas shielded arc welding using the steel wire 1 for welding. Since the metal is not sufficiently deoxidized, blow defects occur in the weld metal. Moreover, the electrical resistance of the steel wire 1 for welding becomes low, and the melting efficiency decreases. On the other hand, if it exceeds 5.00% by mass, the amount of slag generated by oxidation increases, while the amount of Si contributing to deoxidation in the molten metal is saturated. And the hardness of the steel wire 1 for welding becomes high, and workability deteriorates. Therefore, Si content rate shall be in the range of 0.10-5.00 mass% . Preferably it is 0.5-1.5 mass%.

Mn含有率:0.5〜5.0質量%
合金鋼粉3に含有されるMnの質量をMMN(g)とし、鋼製外皮2に含有されるMnの質量をmMN(g)とすると、溶接用鋼ワイヤ1に占めるMnの含有率は100×(MMN+mMN)/(MPW+mSH)で算出され、そのMn含有率は0.5〜5.0質量%の範囲内とする。Mnは、Siと同様に脱酸作用を有し、溶融メタルの脱酸に不可欠な元素であるとともに、溶接金属の靭性および強度を確保する作用も有する。Mn含有率が0.5質量%未満では、その効果が得られない。また、溶接用鋼ワイヤ1の電気抵抗が低くなり、溶融効率が低下する。一方、5.0質量%を超えると、酸化によるスラグ生成量は増加する一方で、溶融メタル中で脱酸に寄与するMn量は飽和してしまう。しかも溶接用鋼ワイヤ1の硬度が高くなり、加工性が劣化する。したがって、Mn含有率は0.5〜5.0質量%の範囲内とする。好ましくは1.0〜3.0質量%である。
Mn content: 0.5-5.0 mass%
If the mass of Mn contained in the alloy steel powder 3 is M MN (g) and the mass of Mn contained in the steel outer sheath 2 is m MN (g), the content of Mn in the welding steel wire 1 is calculated by 100 × (M MN + m MN ) / (M PW + m SH), its Mn content is in the range of 0.5 to 5.0 wt%. Mn has a deoxidizing effect similar to Si, is an element indispensable for deoxidizing molten metal, and also has an effect of ensuring the toughness and strength of the weld metal. If the Mn content is less than 0.5% by mass, the effect cannot be obtained. Moreover, the electrical resistance of the steel wire 1 for welding becomes low, and the melting efficiency decreases. On the other hand, if it exceeds 5.0% by mass, the amount of slag produced by oxidation increases, while the amount of Mn contributing to deoxidation in the molten metal is saturated. And the hardness of the steel wire 1 for welding becomes high, and workability deteriorates. Therefore, the Mn content is in the range of 0.5 to 5.0 mass% . Preferably it is 1.0-3.0 mass%.

P含有率:0.050質量%以下
合金鋼粉3に含有されるPの質量をMP(g)とし、鋼製外皮2に含有されるPの質量をmP(g)とすると、溶接用鋼ワイヤ1に占めるPの含有率は100×(MP+mP)/(MPW+mSH)で算出され、そのP含有率は0.050質量%以下とする。Pは、溶接用鋼ワイヤ1の融点を低下させるとともに、電気抵抗を増加させて発熱性を高める作用を有するので、溶接用鋼ワイヤ1を用いてガスシールドアーク溶接を行なう際に、作業能率の向上に寄与する。しかも正極性の溶接においては、アークを安定させる作用も有する。ところが、P含有率が0.050質量%を超えると、溶融メタルの粘性が低下し、アークが不安定になるばかりでなく、小粒のスパッタが多量に発生する。しかも溶接金属に高温割れが発生し易くなる。
P content: 0.050 mass% or less When the mass of P contained in the alloy steel powder 3 is M P (g) and the mass of P contained in the steel outer shell 2 is m P (g), welding steel the content of P occupied in the wire 1 is calculated by 100 × (M P + m P ) / (M PW + m SH), its P content to 0.050 mass% or less. P has the effect of lowering the melting point of the welding steel wire 1 and increasing the heat resistance by increasing the electrical resistance. Therefore, when performing gas shielded arc welding using the welding steel wire 1, the work efficiency is improved. Contributes to improvement. Moreover, in the positive polarity welding, it also has an effect of stabilizing the arc. However, when the P content exceeds 0.050% by mass, the viscosity of the molten metal is lowered, the arc becomes unstable, and a large amount of small-sized spatter is generated. Moreover, hot cracks are likely to occur in the weld metal.

S含有率:0.050質量%以下
合金鋼粉3に含有されるSの質量をMS(g)とし、鋼製外皮2に含有されるSの質量をmS(g)とすると、溶接用鋼ワイヤ1に占めるSの含有率は100×(MS+mS)/(MPW+mSH)で算出され、そのS含有率は0.050質量%以下とする。Sは、溶融メタルの粘性を低下させて、溶接時に溶接用鋼ワイヤ先端に懸垂した溶滴の離脱を助けるとともに、正極性の溶接においてアークを安定させる作用を有する。ところが、S含有率が0.050質量%を超えると、小粒のスパッタが多量に発生し、しかも溶接金属の靭性が劣化する。
S content: 0.050 mass% or less When the mass of S contained in the alloy steel powder 3 is M S (g) and the mass of S contained in the steel outer shell 2 is m S (g), the welding steel the content of S occupied in the wire 1 is calculated by 100 × (M S + m S ) / (M PW + m SH), its S content is 0.050 mass% or less. S lowers the viscosity of the molten metal, helps release the droplet suspended from the tip of the welding steel wire during welding, and stabilizes the arc in positive polarity welding. However, if the S content exceeds 0.050% by mass, a large amount of small spatter is generated, and the toughness of the weld metal deteriorates.

Ca含有率:0.0008質量%以下
合金鋼粉3に含有されるCaの質量をMCA(g)とし、鋼製外皮2に含有されるCaの質量をmCA(g)とすると、溶接用鋼ワイヤ1に占めるCaの含有率は100×(MCA+mCA)/(MPW+mSH)で算出され、そのCa含有率は0.0008質量%以下とする。Caは、正極性の溶接においてアークを安定させる作用を有する元素であるが、Ca含有率が0.0008質量%を超えると、アークの安定性が阻害される。
Ca content: 0.0008 mass% or less When the mass of Ca contained in the alloy steel powder 3 is M CA (g) and the mass of Ca contained in the steel shell 2 is m CA (g), welding steel the content of Ca occupying the wire 1 is calculated by 100 × (M CA + m CA ) / (M PW + m SH), its Ca content to below 0.0008 wt%. Ca is an element having an effect of stabilizing the arc in positive polarity welding, but when the Ca content exceeds 0.0008 mass%, the stability of the arc is hindered.

Ti含有率:0.02〜0.20質量%
合金鋼粉3に含有されるTiの質量をMTI(g)とし、鋼製外皮2に含有されるTiの質量をmTI(g)とすると、溶接用鋼ワイヤ1に占めるTiの含有率は100×(MTI+mTI)/(MPW+mSH)で算出され、そのTi含有率は0.02〜0.20質量%の範囲内とする。Tiは、脱酸剤として作用するとともに、溶接金属の強度を高める作用を有する元素であるが、Ti含有率が0.02質量%未満では、その効果が得られない。そのため、溶融メタルが十分に脱酸されず、その粘性が低下するので、ビード形状が劣化する。一方、0.20質量%を超えると、溶接金属の靭性が著しく低下する。
Ti content: 0.02 to 0.20 mass%
When the mass of Ti contained in the alloy steel powder 3 is M TI (g) and the mass of Ti contained in the steel outer sheath 2 is m TI (g), the Ti content in the steel wire 1 for welding is calculated by 100 × (M TI + m TI ) / (M PW + m SH), its Ti content in the range of 0.02 to 0.20 wt%. Ti is an element that acts as a deoxidizing agent and has an effect of increasing the strength of the weld metal, but if the Ti content is less than 0.02% by mass, the effect cannot be obtained. Therefore, the molten metal is not sufficiently deoxidized and its viscosity is lowered, so that the bead shape is deteriorated. On the other hand, if it exceeds 0.20% by mass, the toughness of the weld metal is significantly reduced.

Al含有率:0.001〜0.20質量%
合金鋼粉3に含有されるAlの質量をMAL(g)とし、鋼製外皮2に含有されるAlの質量をmAL(g)とすると、溶接用鋼ワイヤ1に占めるAlの含有率は100×(MAL+mAL)/(MPW+mSH)で算出され、そのAl含有率は0.001〜0.20質量%の範囲内とする。Alは、脱酸剤として作用するとともに、溶接金属の強度を高める作用を有する元素であるが、Al含有率が0.001質量%未満では、その効果が得られない。そのため、溶融メタルが十分に脱酸されず、その粘性が低下するので、ビード形状が劣化する。一方、0.20質量%を超えると、溶接金属の靭性が著しく低下する。
Al content: 0.001 to 0.20 mass%
When the mass of Al contained in the alloy steel powder 3 is M AL (g) and the mass of Al contained in the steel outer sheath 2 is m AL (g), the Al content in the welding steel wire 1 is calculated by 100 × (M AL + m AL ) / (M PW + m SH), its Al content in the range of 0.001 to 0.20 wt%. Al is an element that acts as a deoxidizer and has an effect of increasing the strength of the weld metal. However, when the Al content is less than 0.001% by mass, the effect cannot be obtained. Therefore, the molten metal is not sufficiently deoxidized and its viscosity is lowered, so that the bead shape is deteriorated. On the other hand, if it exceeds 0.20% by mass, the toughness of the weld metal is significantly reduced.

Mo含有率:0.02〜1.5質量%
合金鋼粉3に含有されるMoの質量をMMO(g)とし、鋼製外皮2に含有されるMoの質量をmMO(g)とすると、溶接用鋼ワイヤ1に占めるMoの含有率は100×(MMO+mMO)/(MPW+mSH)で算出され、そのMo含有率は0.02〜1.5質量%の範囲内とする。Moは、溶接金属の強度を高める作用を有する元素であるが、Mo含有率が0.02質量%未満では、その効果が得られない。一方、1.5質量%を超えると、溶接金属の靭性が著しく低下する。
Mo content: 0.02 to 1.5 mass%
If the mass of Mo contained in the alloy steel powder 3 is M MO (g) and the mass of Mo contained in the steel outer sheath 2 is m MO (g), the Mo content in the welding steel wire 1 is calculated by 100 × (M MO + m MO ) / (M PW + m SH), its Mo content in the range of 0.02 to 1.5 wt%. Mo is an element having an effect of increasing the strength of the weld metal, but if the Mo content is less than 0.02% by mass, the effect cannot be obtained. On the other hand, if it exceeds 1.5 mass%, the toughness of the weld metal is significantly reduced.

B含有率:0.0001〜0.005質量%
合金鋼粉3に含有されるBの質量をMB(g)とし、鋼製外皮2に含有されるBの質量をmB(g)とすると、溶接用鋼ワイヤ1に占めるBの含有率は100×(MB+mB)/(MPW+mSH)で算出され、そのB含有率は0.0001〜0.005質量%の範囲内とする。Bは、溶接金属の強度を高める作用を有する元素であるが、B含有率が0.0001質量%未満では、その効果が得られない。一方、0.005質量%を超えると、溶接金属の靭性が著しく低下する。
B content: 0.0001 to 0.005 mass%
When the mass of B contained in the alloy steel powder 3 is M B (g) and the mass of B contained in the steel outer sheath 2 is m B (g), the content of B in the welding steel wire 1 is calculated by 100 × (M B + m B ) / (M PW + m SH), its B content in the range of 0.0001 to 0.005 mass%. B is an element having an effect of increasing the strength of the weld metal, but if the B content is less than 0.0001% by mass, the effect cannot be obtained. On the other hand, if it exceeds 0.005% by mass, the toughness of the weld metal is significantly reduced.

Cr含有率:3.0質量%以下
合金鋼粉3に含有されるCrの質量をMCR(g)とし、鋼製外皮2に含有されるCrの質量をmCR(g)とすると、溶接用鋼ワイヤ1に占めるCrの含有率は100×(MCR+mCR)/(MPW+mSH)で算出され、そのCr含有率は3.0質量%以下とする。Crは、溶接金属の強度を増加させ、かつ耐候性を改善する作用を有する元素であるが、Cr含有率が3.0質量%を超えると、溶接金属の靭性が低下する。
Cr content: 3.0% by mass or less If the mass of Cr contained in the alloy steel powder 3 is M CR (g) and the mass of Cr contained in the steel outer shell 2 is m CR (g), welding steel Cr content occupying the wire 1 is calculated by 100 × (M CR + m CR ) / (M PW + m SH), its Cr content to 3.0 mass% or less. Cr is an element that has the effect of increasing the strength of the weld metal and improving the weather resistance, but if the Cr content exceeds 3.0% by mass, the toughness of the weld metal decreases.

Ni含有率:3.0質量%以下
合金鋼粉3に含有されるNiの質量をMNI(g)とし、鋼製外皮2に含有されるNiの質量をmNI(g)とすると、溶接用鋼ワイヤ1に占めるNiの含有率は100×(MNI+mSH)/(MPW+mSH)で算出され、そのNi含有率は3.0質量%以下とする。Niは、溶接金属の強度を増加させ、かつ耐候性を改善する作用を有する元素であるが、Ni含有率が3.0質量%を超えると、溶接金属の靭性が低下する。
Ni content: 3.0% by mass or less If the mass of Ni contained in alloy steel powder 3 is M NI (g) and the mass of Ni contained in steel outer shell 2 is m NI (g), welding steel the content of Ni to total wire 1 is calculated by 100 × (M NI + m SH ) / (M PW + m SH), its Ni content is 3.0 mass% or less. Ni is an element that has the effect of increasing the strength of the weld metal and improving the weather resistance. However, if the Ni content exceeds 3.0 mass%, the toughness of the weld metal decreases.

Cu含有率:3.0質量%以下
合金鋼粉3に含有されるCuの質量をMCU(g)とし、鋼製外皮2に含有されるCuの質量をmCU(g)とすると、溶接用鋼ワイヤ1に占めるCuの含有率は100×(MCU+mCU)/(MPW+mSH)で算出され、そのCu含有率は3.0質量%以下とする。Cuは、溶接金属の強度を増加させ、かつ耐候性を改善する作用を有する元素であるが、Cu含有率が3.0質量%を超えると、溶接金属の靭性が低下する。
Cu content: 3.0 mass% or less When the mass of Cu contained in the alloy steel powder 3 is M CU (g) and the mass of Cu contained in the steel outer shell 2 is m CU (g), welding steel the content of Cu occupying the wire 1 is calculated by 100 × (M CU + m CU ) / (M PW + m SH), its Cu content to 3.0 mass% or less. Cu is an element that has the effect of increasing the strength of the weld metal and improving the weather resistance. However, if the Cu content exceeds 3.0% by mass, the toughness of the weld metal decreases.

鋼製外皮2の上記した成分以外の残部は、Feおよび不可避的不純物である。
以上に説明した通り、本発明の溶接用鋼ワイヤ1は、鋼製外皮2の内側に合金鋼粉3を内包したものであるが、合金鋼粉3と溶接用フラックスを併用しても良い。つまり、鋼製外皮2の内側に合金鋼粉3と溶接用フラックスを内包した溶接用鋼ワイヤ1を用いてガスシールドアーク溶接を行なうと、アークが安定し、スパッタが減少するという効果が一層向上する。
The balance other than the above-described components of the steel outer shell 2 is Fe and inevitable impurities.
As described above, the welding steel wire 1 of the present invention includes the alloy steel powder 3 inside the steel outer shell 2, but the alloy steel powder 3 and the welding flux may be used in combination. In other words, when the gas shielded arc welding is performed using the welding steel wire 1 containing the alloy steel powder 3 and the welding flux inside the steel outer shell 2, the effect of stabilizing the arc and reducing spatter is further improved. To do.

また、合金鋼粉3に加えて、REMを含有しない合金粉(たとえばFe-Si,Fe-Mn,Fe-S,Fe-Ti等)を鋼製外皮2に内包させても良い。その溶接用鋼ワイヤ1を用いてガスシールドアーク溶接を行なうと、容易に溶接金属の強度および靭性を確保できるという効果が得られる他、脱酸素作用により鋼板側に形成される溶融プール表面が安定化し、アークそのものをより安定化させる効果が得られる。   Further, in addition to the alloy steel powder 3, alloy powder not containing REM (for example, Fe—Si, Fe—Mn, Fe—S, Fe—Ti, etc.) may be included in the steel outer shell 2. When gas shielded arc welding is performed using the welding steel wire 1, the effect of easily ensuring the strength and toughness of the weld metal can be obtained, and the surface of the molten pool formed on the steel plate side by deoxidation is stable. And the effect of stabilizing the arc itself can be obtained.

合金鋼粉3に加えて、溶接用フラックスや合金粉を内包させた溶接用鋼ワイヤ1における各元素の含有率は、鋼製外皮2と合金鋼粉3の合計質量(=MPW+mSH)に対する比で上記の通り規定する。また、合金鋼粉3の内包率も鋼製外皮2と合金鋼粉3の合計質量(=MPW+mSH)に対する比で上記の通り規定する。
従来から正極性のガスシールドアーク溶接ではアークが不安定になることが知られているが、本発明の溶接用鋼ワイヤを用いると、REMが溶接用鋼ワイヤ全長にわたって均一に分布しているので、正極性であってもアークが安定する。
In addition to the alloy steel powder 3, the content of each element in the welding steel wire 1 containing the welding flux and alloy powder is the total mass of the steel outer sheath 2 and the alloy steel powder 3 (= M PW + m SH ). The ratio is defined as above. The inclusion rate of the alloy steel powder 3 is also defined as described above by the ratio to the total mass (= M PW + m SH ) of the steel outer shell 2 and the alloy steel powder 3.
Conventionally, it has been known that the arc becomes unstable in positive gas shielded arc welding, but when the welding steel wire of the present invention is used, REM is uniformly distributed over the entire length of the welding steel wire. Even with positive polarity, the arc is stable.

真空溶解して得られた溶鋼にミッシュメタル(Ce:La:Y=6:3:1)を添加して表1に示す成分の合金鋼を溶製し、さらに鋳造した合金鋼塊を粉砕して、粒径10〜150μmの合金鋼粉を得た。表1中の発明例(合金鋼粉記号a〜e)は、合金鋼粉のREM含有量が本発明の範囲を満足する例であり、比較例(合金鋼粉記号f,g)は、合金鋼粉のREM含有量が本発明の範囲を外れる例である。   Misch metal (Ce: La: Y = 6: 3: 1) is added to the molten steel obtained by vacuum melting to melt the alloy steel having the components shown in Table 1, and the cast alloy steel ingot is pulverized. Thus, an alloy steel powder having a particle size of 10 to 150 μm was obtained. The invention examples (alloy steel powder symbols a to e) in Table 1 are examples in which the REM content of the alloy steel powder satisfies the scope of the present invention, and the comparative examples (alloy steel powder symbols f and g) are alloys. This is an example in which the REM content of steel powder is outside the scope of the present invention.

Figure 0005794125
Figure 0005794125

その合金鋼粉を、図1に示すように鋼製外皮(すなわち直径4.1mmの軟鋼フープ線)に充填した後、冷間で伸線加工を施し、溶接用鋼ワイヤ(直径1.2mm)とした。さらに、溶接用鋼ワイヤの表面に潤滑油(溶接用鋼ワイヤ10kgあたり0.4〜1.7g)を塗布した。
溶接用鋼ワイヤに占める合金鋼粉の内包率は表2に示す通りである。また溶接用鋼ワイヤに占める各元素の含有率は表2に示す通りである。表2中の発明例(溶接用鋼ワイヤNo.1〜3、5〜12)は、発明例の合金鋼粉を使用し、かつ溶接用鋼ワイヤに占める合金鋼粉の内包率および溶接用鋼ワイヤに占めるREMの含有率が本発明の範囲を満足する例である。比較例のうち、溶接用鋼ワイヤNo.13,14は、比較例の合金鋼粉を使用しかつ溶接用鋼ワイヤに占めるREMの含有率が本発明の範囲を外れる例、溶接用鋼ワイヤNo.15は、溶接用鋼ワイヤに占めるREMの含有率が本発明の範囲を外れる例である。
As shown in FIG. 1, the alloy steel powder was filled in a steel outer shell (that is, a mild steel hoop wire having a diameter of 4.1 mm) and then cold-drawn to obtain a steel wire for welding (diameter 1.2 mm). . Further, lubricating oil (0.4 to 1.7 g per 10 kg of the welding steel wire) was applied to the surface of the welding steel wire.
Table 2 shows the inclusion rate of the alloy steel powder in the welding steel wire. The content of each element in the welding steel wire is as shown in Table 2. The invention examples in Table 2 (welding steel wires No. 1 to 3, 5 to 12) use the alloy steel powder of the invention example, and the inclusion rate of the alloy steel powder in the welding steel wire and the welding steel This is an example in which the content of REM in the wire satisfies the scope of the present invention. Among the comparative examples, the welding steel wire Nos. 13 and 14 are examples in which the alloy steel powder of the comparative example is used and the REM content in the welding steel wire is outside the scope of the present invention. .15 is an example in which the REM content in the welding steel wire is outside the scope of the present invention.

Figure 0005794125
Figure 0005794125

これらの溶接用鋼ワイヤを用いて溶接試験を行ない、スパッタの発生量とビードの形状を調査した。
(a)スパッタ発生量の調査
板厚12mmの鋼板を用いて、表3に示す溶接条件(炭酸ガスシールドアーク溶接)でビードオン溶接を行ない、Cu製捕集自具を用いて直径0.1mm以上のスパッタを補修した。溶接時間は1分とした。その捕集したスパッタが、溶着量100g当り0.8g以下を良(○)、0.8g超え1.5g以下を可(△)、1.5g超えを不可(×)として評価した。その結果を表4に示す。
Welding tests were conducted using these welding steel wires, and the amount of spatter generated and the bead shape were investigated.
(a) Investigation of spatter generation rate Using a steel plate with a thickness of 12 mm, bead-on welding was performed under the welding conditions shown in Table 3 (carbon dioxide shielded arc welding), and a diameter of 0.1 mm or more was obtained using a Cu collection tool. Sputter was repaired. The welding time was 1 minute. The collected sputter was evaluated as good (◯) when 0.8 g or less per 100 g of welding amount, acceptable (Δ) when over 0.8 g and 1.5 g or less and (x) when over 1.5 g. The results are shown in Table 4.

(b)ビード形状の調査
板厚3.2mmの鋼板を用いて、表3に示す溶接条件(MIG溶接)で重ね隅肉溶接を行ない、ビードの断面を観察した。そのビードの幅の最大値と最小値との差が、溶接長さ250mm当り1.0mm以下を良(○)、1.0mm超え2.0mm以下を可(△)、2.0mm超えを不可(×)として評価した。その結果を表4に示す。
(b) Investigation of bead shape Using a steel plate having a thickness of 3.2 mm, lap fillet welding was performed under the welding conditions (MIG welding) shown in Table 3, and the cross section of the bead was observed. The difference between the maximum value and the minimum value of the bead width is 1.0 mm or less per weld length of 250 mm (good), 1.0 mm to 2.0 mm or less is acceptable (△), and 2.0 mm or less is not acceptable (×). evaluated. The results are shown in Table 4.

表3ではリットルをLと記す。   In Table 3, L is written as L.

Figure 0005794125
Figure 0005794125

Figure 0005794125
Figure 0005794125

表4から明らかなように、炭酸ガスシールドアーク溶接によるスパッタ発生量は、発明例では1.5g以下であったのに対して、比較例では2.0gを超えた。
また、MIG溶接によるビード形状は、発明例では良または可と評価されたのに対して、比較例では不可と評価された。
As is apparent from Table 4, the amount of spatter generated by carbon dioxide shielded arc welding was 1.5 g or less in the inventive example, whereas it exceeded 2.0 g in the comparative example.
Further, the bead shape by MIG welding was evaluated as good or acceptable in the invention example, but was not evaluated in the comparative example.

本発明によればREMを含有する溶接用鋼ワイヤを安定して得ることができる。その結果、溶接用鋼ワイヤの歩留りを向上し、その製造コストを低減することが可能となる。さらに、本発明の溶接用鋼ワイヤを用いてガスシールドアーク溶接を行なうと、アークが安定するので、スパッタが減少し、かつビード形状が改善されるという効果も得られるので、産業上格段の効果を奏する。   According to the present invention, a welding steel wire containing REM can be stably obtained. As a result, the yield of the steel wire for welding can be improved, and the manufacturing cost can be reduced. Furthermore, when gas shielded arc welding is performed using the steel wire for welding of the present invention, since the arc is stabilized, the effects of reducing spatter and improving the bead shape can be obtained. Play.

1 溶接用鋼ワイヤ
2 鋼製外皮
3 合金鋼粉
1 Steel wire for welding 2 Steel hull 3 Alloy steel powder

Claims (4)

ガスシールドアーク溶接に用いる溶接用鋼ワイヤであって、REMを2〜60質量%含有し残部がFeおよび不可避的不純物からなる合金鋼粉を鋼製外皮に内包させ、前記合金鋼粉の質量をMPW(g)、前記鋼製外皮の質量をmSH(g)として、前記溶接用鋼ワイヤ中の前記合金鋼粉の内包率100×MPW/(MPW+mSH)が0.05〜25.0質量%の範囲内を満足し、かつ前記合金鋼粉に含有される前記REMの質量をMRE(g)として、前記溶接用鋼ワイヤ中の前記REMの含有率100×MRE/(MPW+mSH)が0.01〜0.5質量%の範囲内を満足するとともに、前記合金鋼粉に含有される各元素の質量と前記鋼製外皮に含有される各元素の質量とをそれぞれ合計して前記M PW +m SH に対する比率として得られる各元素の含有率が、Cの含有率0.01〜0.30質量%、Siの含有率0.10〜5.00質量%、Mnの含有率0.5〜5.0質量%、Crの含有率3.0質量%以下、Niの含有率3.0質量%以下、Moの含有率0.02〜1.5質量%、Cuの含有率3.0質量%以下、Bの含有率0.0001〜0.005質量%、Tiの含有率0.02〜0.20質量%、Alの含有率0.001〜0.20質量%、Pの含有率0.050質量%以下、Sの含有率0.050質量%以下、Caの含有率0.0008質量%以下の範囲内を満足し、残部がFeおよび不可避的不純物からなることを特徴とする溶接用鋼ワイヤ。 A steel wire for welding used in gas shielded arc welding, in which alloy steel powder containing 2 to 60% by mass of REM and the balance consisting of Fe and inevitable impurities is encapsulated in a steel outer sheath, and the mass of the alloy steel powder is M PW (g), where the mass of the steel outer sheath is m SH (g), the inclusion rate of the alloy steel powder in the steel wire for welding is 100 × M PW / (M PW + m SH ) of 0.05 to 25.0 mass %, And the mass of the REM contained in the alloy steel powder is M RE (g), and the content of the REM in the steel wire for welding is 100 × M RE / (M PW + m SH ) satisfies the range of 0.01 to 0.5 mass%, and the mass of each element contained in the alloy steel powder and the mass of each element contained in the steel outer shell are summed up to calculate the MPW The content of each element obtained as a ratio with respect to + m SH is a C content of 0.01 to 0.30 mass%, a Si content of 0.1 0 to 5.00 mass%, Mn content 0.5 to 5.0 mass%, Cr content 3.0 mass% or less, Ni content 3.0 mass% or less, Mo content 0.02 to 1.5 mass%, Cu content 3.0 mass % Or less, B content 0.0001 to 0.005 mass%, Ti content 0.02 to 0.20 mass%, Al content 0.001 to 0.20 mass%, P content 0.050 mass% or less, S content 0.050 mass% or less A welding steel wire characterized by satisfying a Ca content of 0.0008% by mass or less, with the balance being Fe and inevitable impurities . 前記合金鋼粉が、Cを0.01〜3.0質量%、Siを0.1〜6.0質量%含有することを特徴とする請求項1に記載の溶接用鋼ワイヤ。   The steel wire for welding according to claim 1, wherein the alloy steel powder contains 0.01 to 3.0 mass% of C and 0.1 to 6.0 mass% of Si. 前記合金鋼粉が、Oを0.003〜0.02質量%含有することを特徴とする請求項1または2に記載の溶接用鋼ワイヤ。   The steel wire for welding according to claim 1 or 2, wherein the alloy steel powder contains 0.003 to 0.02 mass% of O. 請求項1〜のいずれか一項に記載の溶接用鋼ワイヤを用いて、正極性でガスシールドアーク溶接を行なうことを特徴とするガスシールドアーク溶接方法。 A gas shielded arc welding method, wherein gas shielded arc welding is performed with positive polarity using the welding steel wire according to any one of claims 1 to 3 .
JP2011258384A 2010-11-30 2011-11-28 Steel wire for welding used in gas shielded arc welding and gas shielded arc welding method using the same Active JP5794125B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011258384A JP5794125B2 (en) 2010-11-30 2011-11-28 Steel wire for welding used in gas shielded arc welding and gas shielded arc welding method using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010267165 2010-11-30
JP2010267165 2010-11-30
JP2011258384A JP5794125B2 (en) 2010-11-30 2011-11-28 Steel wire for welding used in gas shielded arc welding and gas shielded arc welding method using the same

Publications (2)

Publication Number Publication Date
JP2012130967A JP2012130967A (en) 2012-07-12
JP5794125B2 true JP5794125B2 (en) 2015-10-14

Family

ID=46647185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011258384A Active JP5794125B2 (en) 2010-11-30 2011-11-28 Steel wire for welding used in gas shielded arc welding and gas shielded arc welding method using the same

Country Status (1)

Country Link
JP (1) JP5794125B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220025957A (en) 2019-12-20 2022-03-03 제이에프이 스틸 가부시키가이샤 Steel wire for gas shielded arc welding, gas shielded arc welding method and manufacturing method of gas shielded arc welded joint

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10180487A (en) * 1996-12-27 1998-07-07 Kobe Steel Ltd Flux cored wire for self shield arc welding
JP3511366B2 (en) * 1998-09-09 2004-03-29 株式会社神戸製鋼所 Flux-cored wire for gas-shielded arc welding for galvanized steel sheet welding
JP2008049357A (en) * 2006-08-23 2008-03-06 Nippon Steel & Sumikin Welding Co Ltd Flux-cored wire for gas-shielded arc welding
JP2008290116A (en) * 2007-05-24 2008-12-04 Jfe Steel Kk Fillet welded joint and fillet welding method
JP5136466B2 (en) * 2008-03-28 2013-02-06 新日鐵住金株式会社 Flux-cored wire for welding high-strength steel and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220025957A (en) 2019-12-20 2022-03-03 제이에프이 스틸 가부시키가이샤 Steel wire for gas shielded arc welding, gas shielded arc welding method and manufacturing method of gas shielded arc welded joint

Also Published As

Publication number Publication date
JP2012130967A (en) 2012-07-12

Similar Documents

Publication Publication Date Title
JP5411820B2 (en) Flux-cored welding wire and overlay welding arc welding method using the same
US10286499B2 (en) Ni based alloy flux cored wire
KR100920550B1 (en) Flux-cored wire for titania-based gas shielded arc welding
JP6257193B2 (en) Flux-cored wire for overlay welding
JP2009255125A (en) PURE Ar GAS SHIELDED WELDING MIG FLUX-CORED WIRE AND MIG ARC WELDING METHOD
JP2017148821A (en) Flux-cored wire for arc welding developed for duplex stainless steel and welding metal
JP5097499B2 (en) Flux-cored wire for gas shielded arc welding for low alloy heat resistant steel
WO2018051823A1 (en) Wire for electroslag welding, flux for electroslag welding and welded joint
JP2017131900A (en) Stainless steel flux-cored wire
JP5450260B2 (en) Weld metal with excellent hot crack resistance
US9102013B2 (en) Flux-cored welding wire for carbon steel and process for arc welding
JP2011212691A (en) Flux-cored welding wire for small diameter multi-electrode submerged arc welding
JP2016187828A (en) Flux-cored wire for gas shield arc welding
CN109128573B (en) Large-heat-input electro-gas welding gas-shielded flux-cored wire based on grain refinement mechanism
JP2016187827A (en) Flux-cored wire for gas shield arc welding
JP6969705B1 (en) Steel wire for gas shielded arc welding, gas shielded arc welding method, and manufacturing method of gas shielded arc welded joint
JP2006198630A (en) Flux-cored wire for welding high-tensile steel
JP4806299B2 (en) Flux cored wire
JP3860437B2 (en) Iron-based consumable welding materials and welded joints with excellent fatigue strength at welded joints
JP6661516B2 (en) Non-consumable nozzle type electroslag welding method and method for manufacturing electroslag welding joint
JP5794125B2 (en) Steel wire for welding used in gas shielded arc welding and gas shielded arc welding method using the same
JP5244035B2 (en) Weld metal
JP2007118069A (en) Gas-shielded arc welding method
JP4309172B2 (en) Low hydrogen coated arc welding rod for low alloy heat resistant steel
JP6071798B2 (en) Flux for single-sided submerged arc welding

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130708

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140326

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150324

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150714

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150727

R150 Certificate of patent or registration of utility model

Ref document number: 5794125

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250