JP5793732B2 - Highly crystalline conductive α-type gallium oxide thin film doped with dopant and method for producing the same - Google Patents

Highly crystalline conductive α-type gallium oxide thin film doped with dopant and method for producing the same Download PDF

Info

Publication number
JP5793732B2
JP5793732B2 JP2011164748A JP2011164748A JP5793732B2 JP 5793732 B2 JP5793732 B2 JP 5793732B2 JP 2011164748 A JP2011164748 A JP 2011164748A JP 2011164748 A JP2011164748 A JP 2011164748A JP 5793732 B2 JP5793732 B2 JP 5793732B2
Authority
JP
Japan
Prior art keywords
thin film
raw material
tin
substrate
mist
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011164748A
Other languages
Japanese (ja)
Other versions
JP2013028480A (en
Inventor
敏幸 川原村
敏幸 川原村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kochi Prefectural University Corp
Original Assignee
Kochi Prefectural University Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kochi Prefectural University Corp filed Critical Kochi Prefectural University Corp
Priority to JP2011164748A priority Critical patent/JP5793732B2/en
Publication of JP2013028480A publication Critical patent/JP2013028480A/en
Application granted granted Critical
Publication of JP5793732B2 publication Critical patent/JP5793732B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Description

本発明は、ドーパントを添加した結晶性の高い導電性α型酸化ガリウム薄膜およびその生成方法に関するものである。   The present invention relates to a highly crystalline conductive α-type gallium oxide thin film to which a dopant is added and a method for producing the same.

酸化ガリウム(Ga)は、室温において4.8−5.3eVという広いバンドギャップを持ち、可視光及び紫外光をほとんど吸収しない透明半導体である。そのため、特に、深紫外線領域で動作する光・電子デバイスや透明エレクトロニクスにおいて使用するための有望な材料である。
最近では、酸化ガリウム(Ga)を基にした、光検知器、発光ダイオード(LED)及びトランジスタの開発が行われている(非特許文献1参照)。
特許文献1には、酸化ガリウム単結晶基板を備える紫外線用フォトディテクタが開示されている。
Gallium oxide (Ga 2 O 3 ) is a transparent semiconductor that has a wide band gap of 4.8 to 5.3 eV at room temperature and hardly absorbs visible light and ultraviolet light. Therefore, it is a promising material particularly for use in optical / electronic devices and transparent electronics that operate in the deep ultraviolet region.
Recently, a photodetector, a light emitting diode (LED), and a transistor based on gallium oxide (Ga 2 O 3 ) have been developed (see Non-Patent Document 1).
Patent Document 1 discloses an ultraviolet photodetector including a gallium oxide single crystal substrate.

酸化ガリウム(Ga)には、α、β、γ、σ、εの5つの結晶構造が存在し、一般的に安定な構造は、β‐Gaである。
純粋な酸化ガリウム(Ga)は通常の状態ではほぼ非導電性であるので、酸化ガリウム(Ga)を用いた光・電子デバイスの実現には、酸化ガリウム(Ga)にドーパントを添加して導電性を付加することが必要である。
Gallium oxide (Ga 2 O 3 ) has five crystal structures of α, β, γ, σ, and ε, and a generally stable structure is β-Ga 2 O 3 .
Since pure gallium oxide (Ga 2 O 3) is in the normal state is substantially non-conductive, the realization of optical and electronic devices using gallium oxide (Ga 2 O 3), gallium oxide (Ga 2 O 3 ) To add conductivity by adding a dopant.

ドーパントを添加した導電性のβ‐Ga薄膜はすでに開発されている。
β‐Ga薄膜は、ゾル‐ゲル法、スプレー法、パルスレーザー堆積(PLD)法等の方法により生成することができる。
特許文献2には、β‐Ga単結晶ウエハ上に積層して形成されていることを特徴とする高機能性Ga単結晶膜が開示されている。
しかしながら、薄膜は、結晶質であるが、単斜晶という結晶系を取り、上下軸と前後軸が斜交し,左右軸がこの両者に直交する座標系(結晶軸)で記載される一群の結晶であり、物理的に異方であるため、我々が一般に電子材料等で利用する結晶系とは異なるため、他材料をβ‐Ga上に成長させようとした場合、その整合性が上手くとれず、歪みなどが生じやすくなり、結晶性の高い薄膜を成長させることが困難となる。従って、高品質なデバイスの作製が難しくなり、好ましくない。また、β‐Ga薄膜の成長は高い基板温度や高い真空度を必要とするので、製造コストも増大する。
Conductive β-Ga 2 O 3 thin films doped with dopants have already been developed.
The β-Ga 2 O 3 thin film can be produced by a method such as a sol-gel method, a spray method, or a pulse laser deposition (PLD) method.
Patent Document 2 discloses a highly functional Ga 2 O 3 single crystal film characterized by being formed by being laminated on a β-Ga 2 O 3 single crystal wafer.
However, although the thin film is crystalline, it takes a crystal system called monoclinic crystal, the vertical axis and the longitudinal axis are oblique, and the horizontal axis is orthogonal to both. Since it is a crystal and is physically anisotropic, it is different from the crystal system that we generally use for electronic materials etc., so when trying to grow other materials on β-Ga 2 O 3 , its consistency However, it becomes difficult to grow a thin film with high crystallinity. Therefore, it is difficult to produce a high-quality device, which is not preferable. Further, since the growth of the β-Ga 2 O 3 thin film requires a high substrate temperature and a high degree of vacuum, the manufacturing cost also increases.

一方、α‐Gaは、既に汎用に販売されているサファイア基板と同じ結晶構造を有するため、光・電子デバイスへの利用には好適である。
非特許文献2には、超音波噴霧ミストCVD法によって、α‐Al基板にα‐Ga薄膜を形成したことが開示されている。
しかしながら、非特許文献2のα‐Ga薄膜は、導電性が付加されておらず、この技術だけでは、光・電子デバイスへの利用に好適でない。
On the other hand, α-Ga 2 O 3 is suitable for use in optical / electronic devices because it has the same crystal structure as a sapphire substrate that has already been sold for general use.
Non-Patent Document 2 discloses that an α-Ga 2 O 3 thin film is formed on an α-Al 2 O 3 substrate by an ultrasonic spray mist CVD method.
However, the α-Ga 2 O 3 thin film of Non-Patent Document 2 does not have conductivity, and this technique alone is not suitable for use in optical / electronic devices.

最近では、500℃と適度に低い温度のc面サファイア基板上に、ミストCVD法により常圧で、α‐Gaを含有する結晶性の高いα‐(Ga1−X合金(Mは金属材料)を成長させることに成功している。
非特許文献3には、サファイア基板上に、結晶性の高いα‐(Ga1−X合金を製作したことが開示されている。
α‐(Ga1−X合金を光・電子デバイスへ利用するには、導電性α‐Gaの成長が必須の条件である。しかしながら、非特許文献3のα‐(Ga1−X合金に含有されるα‐Gaは導電性が付加されていない。
Recently, α- (Ga 1-X M X ) 2 having high crystallinity containing α-Ga 2 O 3 on a c-plane sapphire substrate having a moderately low temperature of 500 ° C. at normal pressure by a mist CVD method. It has succeeded in growing an O 3 alloy (M is a metal material).
Non-Patent Document 3 discloses that an α- (Ga 1-X M X ) 2 O 3 alloy having high crystallinity was manufactured on a sapphire substrate.
In order to use the α- (Ga 1-X M X ) 2 O 3 alloy for an optical / electronic device, the growth of conductive α-Ga 2 O 3 is an essential condition. However, the conductivity of the α-Ga 2 O 3 contained in the α- (Ga 1-X M X ) 2 O 3 alloy of Non-Patent Document 3 is not added.

α‐Gaはその高い結晶性が故に、錫等のドーパントが入り込みにくいため、導電性を付加することができず、光・電子デバイスへの適用にまで至っていないのが現状である。 Since α-Ga 2 O 3 has high crystallinity, it is difficult for dopants such as tin to enter, so that conductivity cannot be added, and it has not yet been applied to optical and electronic devices.

特開2008−303119号公報JP 2008-303119 A 特開2009−130012号公報JP 2009-130012 A

IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 58, NO.5 MAY 2011IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 58, NO.5 MAY 2011 Japanese Journal of Applied Physics Vol.47 No.9, 2008, pp.7311-7313 「Heteroepitaxy of Corundum-Structured α- Ga2O3 Thin Films on α-Al2O3 Substrates by Ultrasonic Mist Chemical Vapor Deposition」Japanese Journal of Applied Physics Vol.47 No.9, 2008, pp.7311-7313 `` Heteroepitaxy of Corundum-Structured α-Ga2O3 Thin Films on α-Al2O3 Substrates by Ultrasonic Mist Chemical Vapor Deposition '' Applied Physics Express 2 (2009) 075501 「Fabrication of Highly Crystalline Corundum-Structured α-(Ga1-XFex)2O3 Alloy Thin Films on Sapphire Substrates」Applied Physics Express 2 (2009) 075501 `` Fabrication of Highly Crystalline Corundum-Structured α- (Ga1-XFex) 2O3 Alloy Thin Films on Sapphire Substrates ''

本発明は、上述したような問題点を解決すべくなされたものであって、ドーパントを添加した結晶性の高い導電性α‐Ga薄膜およびその生成方法を提供するものである。 The present invention has been made to solve the above-described problems, and provides a conductive α-Ga 2 O 3 thin film with high crystallinity to which a dopant is added and a method for producing the same.

請求項1に係る発明は、錫を含有し、膜厚が220〜240nmのときのX線回折測定での半値全幅(ωFWHM)(s −1 )が60〜70であり、キャリア密度(cm −3 )が8×10 17 〜1×10 19 であることを特徴とする結晶性の高い導電性α‐Ga薄膜に関する。
The invention according to claim 1 contains tin, has a full width at half maximum (ωFWHM) (s −1 ) of 60 to 70 in an X-ray diffraction measurement when the film thickness is 220 to 240 nm , and a carrier density (cm 3) is about 8 × 10 17 ~1 × 10 19 high crystallinity conductivity alpha-Ga 2 O 3 thin film characterized in that a.

請求項2に係る発明は、錫を含有し、膜厚が220〜240nmのときのX線回折測定での半値全幅(ωFWHM)(s −1 )が60〜70であり、キャリア密度(cm −3 )が8×10 17 〜1×10 19 である結晶性の高い導電性α‐Ga 薄膜が表面に成長してなることを特徴とする基板に関する。
The invention according to claim 2 contains tin, has a full width at half maximum (ωFWHM) (s −1 ) of 60 to 70 in the X-ray diffraction measurement when the film thickness is 220 to 240 nm , and the carrier density (cm − 3 ) relates to a substrate characterized in that a highly crystalline conductive α-Ga 2 O 3 thin film of 8 × 10 17 to 1 × 10 19 is grown on the surface .

請求項に係る発明は、下記工程(a)〜(d)を備えることを特徴とする結晶性の高い導電性α‐Ga薄膜の生成方法に関する。
(a)水、塩酸及び過酸化水素を含む溶液と、ガリウム化合物と、錫(II)化合物とを混合して原料溶液を調製する工程
(b)前記原料溶液をミスト化し、ミスト状原料を調製する工程
(c)前記ミスト状原料を、キャリアガスによって基板の成膜面に供給する工程
(d)前記基板を加熱することにより、前記ミスト状原料を熱分解させ、前記基板上に、4価の錫が添加された導電性α‐Ga薄膜を形成する工程
The invention according to claim 3 relates to a method for producing a highly crystalline conductive α-Ga 2 O 3 thin film comprising the following steps (a) to (d).
(A) Step of preparing a raw material solution by mixing a solution containing water, hydrochloric acid and hydrogen peroxide, a gallium compound, and a tin (II) compound (b) Mistating the raw material solution to prepare a mist-like raw material (C) supplying the mist-like raw material to the film-forming surface of the substrate with a carrier gas; (d) heating the substrate to thermally decompose the mist-like raw material; Of forming a conductive α-Ga 2 O 3 thin film to which tin is added

本願発明によれば、α‐Ga薄膜にドーパントが添加されていることにより、薄膜に導電性を付加することができる。また、α型のGa薄膜とすることで結晶性の高い薄膜とすることができる。これにより光・電子デバイスへの利用可能性を高めることができる。
According to the present invention, conductivity can be added to the thin film by adding the dopant to the α-Ga 2 O 3 thin film. In addition, a thin film with high crystallinity can be obtained by using an α-type Ga 2 O 3 thin film. Thereby, the applicability to an optical / electronic device can be improved.

本願発明によれば、前記ドーパントが4価の錫であることを特徴とする結晶性の高い導電性α‐Ga薄膜であることにより、高い導電性を有するα‐Ga薄膜とすることができる。これにより光・電子デバイスへの利用可能性を高めることができる。
According to the present invention, by the dopant is high conductivity α-Ga 2 O 3 thin film crystal property you being a tetravalent tin, has high conductivity alpha-Ga 2 O Three thin films can be obtained. Thereby, the applicability to an optical / electronic device can be improved.

本願発明によれば、ドーパントを添加した結晶性の高い導電性α‐Ga薄膜が表面に成長してなることを特徴とする基板であることにより、結晶性の高い導電性α‐Ga薄膜を備える基板を提供することができる。
According to the present invention, a highly crystalline conductive α-Ga 2 O 3 thin film doped with a dopant is formed on the surface, whereby a highly crystalline conductive α-Ga. A substrate comprising a 2 O 3 thin film can be provided.

本願発明によれば、前記ドーパントが4価の錫であることを特徴とする基板であることにより、高い導電性を有するα‐Ga薄膜を備える基板とすることができる。これにより光・電子デバイスへの利用可能性を高めることができる。
According to the present invention, by the dopant is board you being a tetravalent tin, may be a substrate with α-Ga 2 O 3 thin film having a high conductivity. Thereby, the applicability to an optical / electronic device can be improved.

本願発明によれば、α‐Ga薄膜の生成方法が、(a)水、塩酸及び過酸化水素を含む溶液と、ガリウム化合物と、錫(II)化合物とを混合して原料溶液を調製する工程と、(b)前記原料溶液をミスト化し、ミスト状原料を調製する工程と、(c)前記ミスト状原料を、キャリアガスによって基板の成膜面に供給させる工程と、(d)前記基板を加熱することにより、前記ミスト状原料を熱分解させ、前記基板上に、4価の錫が添加された導電性α‐Ga薄膜を形成する工程と、を備えることにより、結晶性が高く、確実に導電性が付加された、高い導電性を有するα‐Ga薄膜を、安全に、環境への負荷が少なく、簡単な構成の設備で製造することができる。

According to the present invention, a method for producing an α-Ga 2 O 3 thin film is obtained by mixing (a) a solution containing water, hydrochloric acid and hydrogen peroxide, a gallium compound, and a tin (II) compound. A step of preparing, (b) a step of misting the raw material solution to prepare a mist-like raw material, (c) a step of supplying the mist-like raw material to the film-forming surface of the substrate by a carrier gas, and (d) By thermally decomposing the mist-like raw material by heating the substrate, and forming a conductive α-Ga 2 O 3 thin film to which tetravalent tin is added on the substrate, A highly conductive α-Ga 2 O 3 thin film having high crystallinity and reliably added conductivity can be manufactured safely and with less burden on the environment with a simple configuration.

本発明の結晶性の高い導電性α‐Ga薄膜の生成方法を説明するための概略図である。It is a schematic diagram for explaining a method of generating a high crystallinity conductive α-Ga 2 O 3 thin film of the present invention. 比較例2〜5のα‐Ga薄膜のX線回折図である。It is an X-ray diffraction pattern of the α-Ga 2 O 3 thin film of Comparative Examples 2 to 5. 実施例2,5及び比較例1のα‐Ga薄膜のX線回折図及びX線ロッキングカーブである。 2 is an X-ray diffraction diagram and an X-ray rocking curve of α-Ga 2 O 3 thin films of Examples 2 and 5 and Comparative Example 1. FIG. 実施例1〜5及び比較例1の特性を示すグラフである。6 is a graph showing characteristics of Examples 1 to 5 and Comparative Example 1.

以下、本発明に係る結晶性の高い導電性α‐Ga薄膜およびその生成方法について図を参照しながら説明する。 Hereinafter, a highly crystalline conductive α-Ga 2 O 3 thin film and a method for producing the same according to the present invention will be described with reference to the drawings.

本発明の薄膜は、ドーパントを添加した結晶性の高い導電性α‐Ga薄膜である。
ドーパントは、α‐Ga薄膜に導電性を付加することができるものであれば特に限定されないが、I族、II族、IV族、V族、VII族などの元素を用いることができる。I族の元素としてはLi,Na,K、II族の元素としてはZn,Mg,Ti,Fe,Ca、IV族の元素としてはSi,Ge,Ti,Zr,Sn、V族の元素としてはN,P,As,Sb、VII族の元素としてはCl,F,Br,I等を用いることができ、その中でもSn(錫)やZn(亜鉛)であるのが好ましく、4価の錫であるのが特に好ましい。4価の錫がα‐Ga薄膜に添加されることにより、高い導電性を備えるα‐Ga薄膜とすることができる。
The thin film of the present invention is a conductive α-Ga 2 O 3 thin film with high crystallinity to which a dopant is added.
The dopant is not particularly limited as long as it can add conductivity to the α-Ga 2 O 3 thin film, but elements such as Group I, Group II, Group IV, Group V, and Group VII can be used. . Li, Na, K as Group I elements, Zn, Mg, Ti, Fe, Ca as Group II elements, Si, Ge, Ti, Zr, Sn, Group V elements as Group IV elements Cl, F, Br, I, etc. can be used as the elements of N, P, As, Sb, and VII. Among them, Sn (tin) and Zn (zinc) are preferable, and tetravalent tin is preferable. It is particularly preferred. By tetravalent tin is added to the α-Ga 2 O 3 thin film can be an α-Ga 2 O 3 thin film having a high conductivity.

本発明の結晶性の高い導電性α‐Ga薄膜は、基板表面上に成長して形成され得る。
基板の材料としては、α‐Gaが成長するものであれば特に限定されないが、例えば、結晶基板、特にサファイア(Al)基板が好適に用いられる。
α‐Ga薄膜は三方晶系のコランダム構造を有し、これはサファイアと同じ結晶構造であるので、サファイア基板上にα‐Ga薄膜が成長しやすいため、サファイア基板が好適に用いられる。
The highly crystalline conductive α-Ga 2 O 3 thin film of the present invention can be formed by growing on a substrate surface.
The material of the substrate is not particularly limited as long as α-Ga 2 O 3 grows. For example, a crystal substrate, particularly a sapphire (Al 2 O 3 ) substrate is preferably used.
Since the α-Ga 2 O 3 thin film has a trigonal corundum structure, which is the same crystal structure as sapphire, the α-Ga 2 O 3 thin film is easy to grow on the sapphire substrate. Used for.

本発明の結晶性の高い導電性α‐Ga薄膜は、ミストCVD法によって製造され、(a)水、塩酸及び過酸化水素を含む溶液と、ガリウム化合物と、錫(II)化合物とを混合して原料溶液を調製する工程と、
(b)前記原料溶液をミスト化し、ミスト状原料を調製する工程と、
(c)前記ミスト状原料を、キャリアガスによって基板の成膜面に供給する工程と、
(d)前記基板を加熱することにより、前記ミスト状原料を熱分解させ、前記基板上に、4価の錫が添加された導電性α‐Ga薄膜を形成する工程と、を備えている。
The highly crystalline conductive α-Ga 2 O 3 thin film of the present invention is manufactured by a mist CVD method, and includes (a) a solution containing water, hydrochloric acid and hydrogen peroxide, a gallium compound, a tin (II) compound, Preparing a raw material solution by mixing
(B) misting the raw material solution to prepare a mist-like raw material;
(C) supplying the mist-like raw material to the film formation surface of the substrate with a carrier gas;
(D) by thermally decomposing the mist-like raw material by heating the substrate, and forming a conductive α-Ga 2 O 3 thin film to which tetravalent tin is added on the substrate. ing.

図1は、本発明の結晶性の高い導電性α‐Ga薄膜の生成方法を説明するための概略図である。
原料供給ユニット(11)において原料溶液を調製する。
まず、水、塩酸及び過酸化水素を含む溶液を調製する。この溶液の混合比は特に限定されるものではないが、例えば、水:塩酸:過酸化水素=100:1:0.5で調製される。
塩酸及び過酸化水素は、後に混合される錫(II)化合物と反応して、錫(II)化合物を錫(IV)化合物に変換する役割をする。過酸化水素はまた、生成されるα‐Ga薄膜の結晶を伸縮させ、ドーパントを入り込みやすくする役割をする。
FIG. 1 is a schematic diagram for explaining a method for producing a highly crystalline conductive α-Ga 2 O 3 thin film according to the present invention.
A raw material solution is prepared in the raw material supply unit (11).
First, a solution containing water, hydrochloric acid and hydrogen peroxide is prepared. The mixing ratio of this solution is not particularly limited, but it is prepared, for example, with water: hydrochloric acid: hydrogen peroxide = 100: 1: 0.5.
Hydrochloric acid and hydrogen peroxide react with a tin (II) compound to be mixed later to convert the tin (II) compound into a tin (IV) compound. Hydrogen peroxide also plays a role in stretching the crystals of the α-Ga 2 O 3 thin film that is produced and making it easier for dopants to enter.

次いで、この溶液と、ガリウム化合物と、錫(II)化合物とを混合して原料溶液を調製する。
ガリウム化合物としては、特に限定されるものではないが、ガリウムアセチルアセトナート(GaAcac)及びガリウムクロライドが好適に用いられる。
錫(II)化合物としては、塩化錫(II)が好適に用いられる。
Next, this solution, a gallium compound, and a tin (II) compound are mixed to prepare a raw material solution.
The gallium compound is not particularly limited, but gallium acetylacetonate (GaAcac 3 ) and gallium chloride are preferably used.
As the tin (II) compound, tin (II) chloride is preferably used.

次いで、得られた原料溶液をミスト化し、ミスト状原料(1)を調製する。
ミスト化の手段は、特に限定されるものではないが例えば、加圧式、回転ディスク式、超音波式、オリフィス振動式、静電式等のスプレー式全般を用いることができ、特に超音波式が好適に用いられる。超音波によるミスト化には、超音波振動子(5)が好適に用いられる。原料溶液をいれた容器を超音波振動子(5)にかけることにより原料溶液がミスト化し、ミスト状原料(1)が調製される。
Next, the obtained raw material solution is misted to prepare a mist-like raw material (1).
The means of mist formation is not particularly limited, and for example, general spray methods such as a pressurization method, a rotating disk method, an ultrasonic method, an orifice vibration method, and an electrostatic method can be used. Preferably used. An ultrasonic transducer (5) is preferably used for mist formation using ultrasonic waves. By applying the container containing the raw material solution to the ultrasonic vibrator (5), the raw material solution becomes mist, and a mist-like raw material (1) is prepared.

このミスト状原料(1)を、キャリアガス(2)によって、成膜室(21)内に設置された基板(4)の成膜面に供給する。
キャリアガス(2)の供給手段が原料溶液の上流側に備えられ、キャリアガス(2)を下流側(成膜室(21)側)へ送り出すことにより、ミスト状原料(1)も下流側へ送り出される。
キャリアガス(2)としては、特に限定されるものではないが、空気や、アルゴン等の希ガスが好適に用いられる。
This mist-like raw material (1) is supplied by the carrier gas (2) to the film formation surface of the substrate (4) installed in the film formation chamber (21).
A carrier gas (2) supply means is provided on the upstream side of the raw material solution, and the mist-like raw material (1) is also moved downstream by sending the carrier gas (2) to the downstream side (deposition chamber (21) side). Sent out.
Although it does not specifically limit as carrier gas (2), Noble gases, such as air and argon, are used suitably.

キャリアガス(2)によって下流側へ送り出されたミスト状原料(1)は、原料供給管(12)を介して成膜室(21)に導入される。
以下、成膜室(21)の構造について詳述するが、本発明の成膜室(21)の構造は以下のものに限定されるものではない。
成膜室(21)は、原料供給管(12)から搬送されたミスト状原料(1)が導入及び整流される整流空間(22)と、整流空間(22)で整流されたミスト状原料(1)が搬送され基板(4)上に成膜するための熱分解反応が行われる反応空間(23)と、反応空間(23)及び反応空間(23)に設置される基板(4)を加熱するためのヒータ(6)と、を備えている。
原料供給管(12)から搬送されたミスト状原料(1)は、広い空間を有する整流空間(22)に導入される。導入されたミスト状原料(1)はここで整流され、反応空間(23)に搬送される。
The mist-like raw material (1) sent to the downstream side by the carrier gas (2) is introduced into the film forming chamber (21) through the raw material supply pipe (12).
Hereinafter, although the structure of the film-forming chamber (21) will be described in detail, the structure of the film-forming chamber (21) of the present invention is not limited to the following.
The film forming chamber (21) includes a rectifying space (22) into which the mist-like raw material (1) conveyed from the raw-material supply pipe (12) is introduced and rectified, and a mist-like raw material rectified in the rectifying space (22) ( 1) is transported and a reaction space (23) in which a thermal decomposition reaction is performed to form a film on a substrate (4), and a reaction space (23) and a substrate (4) installed in the reaction space (23) are heated. And a heater (6).
The mist-like raw material (1) conveyed from the raw material supply pipe (12) is introduced into a rectifying space (22) having a wide space. The introduced mist-like raw material (1) is rectified here and conveyed to the reaction space (23).

反応空間(23)は、整流空間(22)から流路が狭まるように扁平形状を有する(ファインチャネル構造)。その高さは0.5〜3.0mmが好ましい。反応空間(23)の下面には基板(4)が設置される。反応空間(23)の下方には基板(4)及び反応空間(23)を加熱するためのヒータ(6)が備えられる。反応空間(23)に導入されたミスト状原料(1)は、ヒータ(6)によって加熱され、熱分解を起こし、基板(4)上にα‐Ga薄膜を生成する。 The reaction space (23) has a flat shape (fine channel structure) so that the flow path is narrowed from the rectifying space (22). The height is preferably 0.5 to 3.0 mm. A substrate (4) is placed on the lower surface of the reaction space (23). Below the reaction space (23), a heater (6) for heating the substrate (4) and the reaction space (23) is provided. The mist-like raw material (1) introduced into the reaction space (23) is heated by the heater (6), undergoes thermal decomposition, and generates an α-Ga 2 O 3 thin film on the substrate (4).

反応空間(23)に導入されたミスト状原料(1)は、急激に狭まった流路を通ることで、流体の圧力降下によってその運動エネルギーが減少し、速度を失ったミスト状原料(1)は重力方向へ沈降する。このため、原料の基板(4)への押し付け効果により、確実に基板(4)上に成膜することができる。
また、反応空間(23)は非常に狭いため、導入されたミスト状原料(1)はヒータ(6)によって効率よく加熱され反応温度に達する。よって高い反応効率を達成できる。
さらに、表面粗度が中心から端部に至るまで低く均一な薄膜を基板表面に生成することができる。また、大型基板の成膜にも適用することができる。
The mist-like raw material (1) introduced into the reaction space (23) passes through a rapidly narrowed flow path, so that its kinetic energy decreases due to the pressure drop of the fluid, and the mist-like raw material (1) loses speed. Sinks in the direction of gravity. For this reason, it can form into a film on a board | substrate (4) reliably by the press effect to the board | substrate (4) of a raw material.
Further, since the reaction space (23) is very narrow, the introduced mist-like raw material (1) is efficiently heated by the heater (6) and reaches the reaction temperature. Therefore, high reaction efficiency can be achieved.
Furthermore, a uniform thin film having a low surface roughness from the center to the end can be formed on the substrate surface. Further, the present invention can be applied to film formation on a large substrate.

錫(II)化合物は、溶液中で過酸化水素及び塩酸と反応し、塩化錫(IV)に変換されている。変換された錫(IV)化合物の4価の錫(Sn(IV))がドーパントとして、α‐Ga薄膜に添加される。 Tin (II) compounds react with hydrogen peroxide and hydrochloric acid in solution and are converted to tin (IV) chloride. Tetravalent tin (Sn (IV)) of the converted tin (IV) compound is added as a dopant to the α-Ga 2 O 3 thin film.

2価の錫(II)化合物をドーパントの出発原料とし、4価の錫(IV)を添加するのが本発明のα‐Ga薄膜の生成方法の特徴である。
これは以下の反応式(1)に基づいている(錫(II)化合物が塩化錫(II)の場合)。
(式1)SnCl+H+2HCl→SnCl+2H
It is a feature of the method for producing an α-Ga 2 O 3 thin film according to the present invention that a divalent tin (II) compound is used as a dopant starting material and tetravalent tin (IV) is added.
This is based on the following reaction formula (1) (when the tin (II) compound is tin (II) chloride).
(Formula 1) SnCl 2 + H 2 O 2 + 2HCl → SnCl 4 + 2H 2 O

本出願の発明者は、これまで幾度も錫添加を試みた結果、SnClを用いてα‐Ga薄膜中に錫の添加を行っても薄膜に高い導電性を付加することができないが、SnClを用いてα‐Ga薄膜中に錫の添加を行うと薄膜に導電性を付加することができることがわかった。
しかしながら、SnClは常温で液体であり、空気中の水分と反応して塩化水素の白煙を生じる。また、多量の水を加えると激しく加水分解して発熱し煙霧を生じるため、本発明の薄膜生成方法においては非常に危険である。
一方、SnClは常温では固体であり、安定である。
そこで、上記(式1)の安全な反応を利用し、SnCl等の錫(II)化合物からSnCl等の錫(IV)化合物に変換し、Sn(IV)をα‐Ga薄膜に添加することにより、安全且つ確実にα‐Ga薄膜に導電性を付加することができる。
The inventors of the present application have tried to add tin several times so far, and even if tin is added to the α-Ga 2 O 3 thin film using SnCl 2 , high conductivity cannot be added to the thin film. However, it was found that when Sn is added to the α-Ga 2 O 3 thin film using SnCl 4 , conductivity can be added to the thin film.
However, SnCl 4 is a liquid at normal temperature and reacts with moisture in the air to produce white smoke of hydrogen chloride. In addition, when a large amount of water is added, it is violently hydrolyzed to generate heat and generate fumes, which is very dangerous in the thin film production method of the present invention.
On the other hand, SnCl 2 is solid and stable at room temperature.
Therefore, by utilizing the safe reaction of the above (formula 1), a tin (II) compound such as SnCl 2 is converted into a tin (IV) compound such as SnCl 4 , and Sn (IV) is converted into an α-Ga 2 O 3 thin film. By adding to the α-Ga 2 O 3 thin film, it is possible to add conductivity to the α-Ga 2 O 3 thin film.

以下の実施例においては、成膜室(21)内及び基板(4)の温度は350〜500℃が好ましい。350℃未満であると反応に必要なエネルギーが不足し導電性α‐Ga薄膜を生成することができないので好ましくない。500℃を超えると、基板への負荷が増大するため好ましくない。しかしながら、成膜装置、先駆材料(溶質)及び溶媒等の条件や、電界やプラズマ等の外部エネルギーを加える手法等の工夫によっても、温度条件も変わるので、成膜室(21)内及び基板(4)の温度は上記温度に限定されるものではない。 In the following examples, the temperature in the film forming chamber (21) and the substrate (4) is preferably 350 to 500 ° C. If it is less than 350 ° C., the energy required for the reaction is insufficient, and a conductive α-Ga 2 O 3 thin film cannot be produced, which is not preferable. Exceeding 500 ° C. is not preferable because the load on the substrate increases. However, the temperature conditions also change depending on the conditions such as the film forming apparatus, the precursor material (solute) and the solvent, and the method of applying external energy such as an electric field and plasma. The temperature of 4) is not limited to the above temperature.

以下の実施例に基づいてさらに詳細に説明するが、本発明に係る結晶性の高い導電性α‐Ga薄膜およびその生成方法は、これらに限定されるものではない。 Be described in more detail with reference to the following examples, crystalline high conductivity α-Ga 2 O 3 thin film and the generation method of the present invention is not limited thereto.

実施例1
<原料溶液の調製>
水、塩酸及び過酸化水素を100:1:0.5の重量比で混合し、溶液を得た。この溶液に、ガリウムアセチルアセトナート(GaAcac)(シグマアルドリッチ社製)を0.020mol/Lになるように添加し、ドーパントとして塩化錫(II)を0、2、4、6、8、10%の割合で添加し、原料溶液を容器中に調製した。夫々、比較例1、実施例1、2、3、4、5とする。塩酸、過酸化水素及び塩化錫(II)を加えないものを比較例2〜5とした。
Example 1
<Preparation of raw material solution>
Water, hydrochloric acid and hydrogen peroxide were mixed at a weight ratio of 100: 1: 0.5 to obtain a solution. To this solution, gallium acetylacetonate (GaAcac 3 ) (manufactured by Sigma-Aldrich) was added to 0.020 mol / L, and tin (II) chloride was added as a dopant to 0, 2, 4, 6, 8, 10 The raw material solution was prepared in a container. These are referred to as Comparative Example 1, Examples 1, 2, 3, 4, and 5, respectively. Comparative Examples 2 to 5 were those to which hydrochloric acid, hydrogen peroxide and tin (II) chloride were not added.

<ミスト状原料の調製>
上記工程で得た原料溶液を、超音波振動子HM−2412(本多電子株式会社製)に、2.4MHz,24V・0.625A,3(周波数、電力、個数)の条件で供し、原料溶液をミスト化し、容器内の空間中にミスト状原料を調製した。
<Preparation of mist-like raw material>
The raw material solution obtained in the above step is subjected to an ultrasonic vibrator HM-2412 (manufactured by Honda Electronics Co., Ltd.) under the conditions of 2.4 MHz, 24 V · 0.625 A, 3 (frequency, power, number), The solution was misted to prepare a mist-like raw material in the space in the container.

<基板の成膜面への供給>
次いで、容器内にキャリアガスとして圧縮空気を流速2.0L/minで供給し、空間中のミスト状原料を原料供給管へ搬送した。さらに、原料供給管へ希釈ガスとして圧縮空気を流速4.5L/minで供給し、ミスト状原料を希釈しながら高さ1mmの反応空間のファインチャネル構造を有する成膜室へ搬送した。
<Supply to the deposition surface of the substrate>
Next, compressed air was supplied as a carrier gas into the container at a flow rate of 2.0 L / min, and the mist-like raw material in the space was conveyed to the raw material supply pipe. Furthermore, compressed air was supplied as a dilution gas to the raw material supply pipe at a flow rate of 4.5 L / min, and the mist-like raw material was conveyed to a film forming chamber having a fine channel structure of a reaction space having a height of 1 mm while being diluted.

<成膜>
成膜室にc面サファイア(c−Al)基板を反応空間に設置した。基板温度は、原料に塩酸、過酸化水素及び塩化錫(II)を夫々0、2、4、6、8、10%含む実施例1〜5及び比較例1を400℃になるようにヒータで加熱し、塩酸、過酸化水素及び塩化錫(II)を含まない原料の基板温度は、350、400、450、500℃にヒータで加熱し、夫々比較例2〜5とした。成長時間10分で基板上に薄膜を生成させた。
<Film formation>
A c-plane sapphire (c-Al 2 O 3 ) substrate was placed in the reaction space in the deposition chamber. The substrate temperature was adjusted with heaters so that the raw materials of Examples 1 to 5 and Comparative Example 1 containing hydrochloric acid, hydrogen peroxide and tin (II) 0, 2, 4, 6, 8, and 10% were 400 ° C. The substrate temperature of the raw material which did not contain hydrochloric acid, hydrogen peroxide, and tin (II) chloride was heated to 350, 400, 450, and 500 ° C. with a heater, and Comparative Examples 2 to 5 were used. A thin film was formed on the substrate with a growth time of 10 minutes.

上記した方法により、α‐Ga薄膜を得た。実施例1〜5、比較例1〜5の原料、基板温度、錫のドーピング濃度を表1に示す。得られたα‐Ga薄膜に対して、以下の評価を行った。 An α-Ga 2 O 3 thin film was obtained by the method described above. Table 1 shows the raw materials, substrate temperature, and tin doping concentration of Examples 1 to 5 and Comparative Examples 1 to 5. The following evaluation was performed with respect to the obtained α-Ga 2 O 3 thin film.

<X線回折測定>
α‐Ga薄膜に対してX線回折測定器(リガク社製、ATX−G、CuKα1線1.540561Å)を用いてX線回折測定を行い、結晶性を評価した。比較例2〜5のα‐Ga薄膜のX線回折測定結果を図2、実施例2、5及び比較例1のα‐Ga薄膜のX線回折測定結果を図3(a)、そのX線ロッキングカーブを図3(b)に示す。
<X-ray diffraction measurement>
X-ray diffraction measurement was performed on the α-Ga 2 O 3 thin film using an X-ray diffractometer (manufactured by Rigaku Corporation, ATX-G, CuKα 1 line 1.54056140) to evaluate crystallinity. Comparative Examples 2 to 5 alpha-Ga 2 O 3 2 X-ray diffraction measurement of a thin film, Examples 2, 5 and Comparative Example 1 of alpha-Ga 2 O 3 FIG results of X-ray diffraction measurement of the thin film 3 ( a) The X-ray rocking curve is shown in FIG.

図2より、α‐Ga結晶の(0006)面の回折線であるピークA、及び基板のα‐Alの(0006)面の回折線であるピークBが観測された。350〜450℃という温度領域においてα‐Al薄膜が形成されていることがわかる。 From FIG. 2, peak A, which is the diffraction line of the (0006) plane of the α-Ga 2 O 3 crystal, and peak B, which is the diffraction line of the (0006) plane of the α-Al 2 O 3 of the substrate, were observed. It can be seen that the α-Al 2 O 3 thin film is formed in the temperature range of 350 to 450 ° C.

図3より、α‐Ga結晶の(0006)面の回折線であるピークC、及び基板のα‐Alの(0006)面の回折線であるピークDが観測された。錫のドーピング濃度0%、4%、10%すべてにおいて、α‐Al薄膜が形成されていることがわかる。
10%という高い錫のドーピング濃度においても、ピークがはっきりしており、高い結晶性を達成できていることがわかる。
尚、α‐Ga結晶の(0006)面の回折線を示すピークが、実施例1〜5及び比較例1と、比較例2〜5とを比較するとずれているが、これは過酸化水素によって結晶が伸縮して、ドーパント(錫)が入り込みやすくなっていると推測される。
From FIG. 3, peak C, which is the diffraction line of the (0006) plane of the α-Ga 2 O 3 crystal, and peak D, which is the diffraction line of the (0006) plane of α-Al 2 O 3 of the substrate, were observed. It can be seen that α-Al 2 O 3 thin films are formed at tin doping concentrations of 0%, 4%, and 10%.
It can be seen that even at a high tin doping concentration of 10%, the peak is clear and high crystallinity can be achieved.
The peak having a diffraction line of (0006) plane of α-Ga 2 O 3 crystal, and Examples 1 to 5 and Comparative Example 1, but are offset when compared with Comparative Example 2-5, which is over It is presumed that the crystals are expanded and contracted by hydrogen oxide, and the dopant (tin) is likely to enter.

<α‐Ga薄膜の特性>
実施例1〜5及び比較例1のα‐Ga薄膜の夫々の厚み(nm)、半値全幅(ωFWHM)(s−1)、抵抗率(Ωcm)、キャリア濃度(cm−3)、移動度(cm/Vs)を測定した。測定には、ホール測定装置HL5500PC(アクセント社製)を用いた。結果を図4に示す。
抵抗率は、薄膜の抵抗値を膜厚で除した単位厚み当たりの抵抗値である。錫のドーピング濃度0%のα‐Ga薄膜の抵抗は大きすぎて測定限度を超えたため測定することができなかった。錫のドーピング濃度0%のα‐Ga薄膜のキャリア濃度と移動度も同様に測定限度を超え、測定できなかった。錫のドーピング濃度2〜10%においては、抵抗は10Ωcm以下であり、錫のドーピング濃度4%において、最も小さい抵抗率2Ωcmであった。
本発明の薄膜生成方法により、α‐Ga薄膜に導電性が付加されていることが証明された。
<Characteristics of α-Ga 2 O 3 thin film>
The thickness (nm), full width at half maximum (ωFWHM) (s −1 ), resistivity (Ωcm), carrier concentration (cm −3 ) of each of the α-Ga 2 O 3 thin films of Examples 1 to 5 and Comparative Example 1 Mobility (cm 2 / Vs) was measured. For the measurement, a Hall measuring device HL5500PC (manufactured by Accent) was used. The results are shown in FIG.
The resistivity is a resistance value per unit thickness obtained by dividing the resistance value of the thin film by the film thickness. The resistance of the α-Ga 2 O 3 thin film having a tin doping concentration of 0% was too large to exceed the measurement limit, and thus could not be measured. Similarly, the carrier concentration and mobility of the α-Ga 2 O 3 thin film having a tin doping concentration of 0% exceeded the measurement limit and could not be measured. The resistance was 10 2 Ωcm or less at a tin doping concentration of 2 to 10%, and the lowest resistivity was 2 Ωcm at a tin doping concentration of 4%.
It was proved that conductivity was added to the α-Ga 2 O 3 thin film by the thin film production method of the present invention.

厚みは、X線回折の2θ/ωプロットに現れるラウエ干渉縞から計算されたものである。錫が添加されたα‐Ga薄膜の厚みは220〜240nmである。
錫が添加されたα‐Ga薄膜の半値全幅(ωFWHM)は、60〜70s−1であった。β‐Ga薄膜は約200s−1であるので、非常に結晶性が高いことがわかる。
錫が添加されたα‐Ga薄膜のキャリア濃度は、8×1017〜1×1019cm−3であり、最も高かったのは錫のドーピング濃度4%のα‐Ga薄膜であった。錫のドーピング濃度2,4%のα‐Ga薄膜は、n型の導電性を示している。一方、錫のドーピング濃度6,8,10%のα‐Ga薄膜は、n型かp型かを決定する特徴を示さなかった。
The thickness is calculated from Laue interference fringes appearing in the 2θ / ω plot of X-ray diffraction. The thickness of the α-Ga 2 O 3 thin film to which tin is added is 220 to 240 nm.
The full width at half maximum (ωFWHM) of the α-Ga 2 O 3 thin film to which tin was added was 60 to 70 s −1 . Since the β-Ga 2 O 3 thin film is about 200 s −1 , it can be seen that the crystallinity is very high.
The carrier concentration of the α-Ga 2 O 3 thin film to which tin was added was 8 × 10 17 to 1 × 10 19 cm −3 , and the highest was α-Ga 2 O 3 having a tin doping concentration of 4%. It was a thin film. The α-Ga 2 O 3 thin film having a tin doping concentration of 2,4% exhibits n-type conductivity. On the other hand, α-Ga 2 O 3 thin films with tin doping concentrations of 6, 8, and 10% did not show characteristics that determine n-type or p-type.

以上の結果から、本発明の薄膜生成方法により、ドーパントをα‐Ga薄膜に添加することができ、これにより導電性のα‐Ga薄膜を生成することができたことがわかる。また、ドーパントを添加しても、高い結晶性を維持できることがわかる。 From the above results, it was confirmed that the dopant could be added to the α-Ga 2 O 3 thin film by the thin film formation method of the present invention, thereby producing a conductive α-Ga 2 O 3 thin film. Recognize. It can also be seen that high crystallinity can be maintained even when a dopant is added.

本発明は、光検知器、発光ダイオード(LED)及びトランジスタ等の光・電子デバイスに好適に利用されるものである。   The present invention is suitably used for optical / electronic devices such as photodetectors, light emitting diodes (LEDs), and transistors.

1 ミスト状原料
2 キャリアガス
3 希釈ガス
4 基板
5 超音波振動子
6 ヒータ
11 原料供給ユニット
12 原料供給管
21 成膜室
22 整流空間
23 反応空間
DESCRIPTION OF SYMBOLS 1 Mist-form raw material 2 Carrier gas 3 Dilution gas 4 Substrate 5 Ultrasonic vibrator 6 Heater 11 Raw material supply unit 12 Raw material supply pipe 21 Deposition chamber 22 Rectification space 23 Reaction space

Claims (3)

錫を含有し、膜厚が220〜240nmのときのX線回折測定での半値全幅(ωFWHM)(s −1 )が60〜70であり、キャリア密度(cm −3 )が8×10 17 〜1×10 19 であることを特徴とする結晶性の高い導電性α‐Ga薄膜。 The full width at half maximum (ωFWHM) (s −1 ) in X-ray diffraction measurement when tin is contained and the film thickness is 220 to 240 nm is 60 to 70, and the carrier density (cm −3 ) is 8 × 10 17 to A conductive α-Ga 2 O 3 thin film having high crystallinity, which is 1 × 10 19 . 錫を含有し、膜厚が220〜240nmのときのX線回折測定での半値全幅(ωFWHM)(s −1 )が60〜70であり、キャリア密度(cm −3 )が8×10 17 〜1×10 19 である結晶性の高い導電性α‐Ga薄膜が表面に成長してなることを特徴とする基板。 The full width at half maximum (ωFWHM) (s −1 ) in X-ray diffraction measurement when tin is contained and the film thickness is 220 to 240 nm is 60 to 70, and the carrier density (cm −3 ) is 8 × 10 17 to A substrate characterized in that a conductive α-Ga 2 O 3 thin film having high crystallinity of 1 × 10 19 is grown on the surface. 下記工程(a)〜(d)を備えることを特徴とする結晶性の高い導電性α‐Ga薄膜の生成方法。
(a)水、塩酸及び過酸化水素を含む溶液と、ガリウム化合物と、錫(II)化合物とを混合して原料溶液を調製する工程
(b)前記原料溶液をミスト化し、ミスト状原料を調製する工程
(c)前記ミスト状原料を、キャリアガスによって基板の成膜面に供給する工程
(d)前記基板を加熱することにより、前記ミスト状原料を熱分解させ、前記基板上に、4価の錫が添加された導電性α‐Ga薄膜を形成する工程。
A method for producing a highly crystalline conductive α-Ga 2 O 3 thin film comprising the following steps (a) to (d):
(A) Step of preparing a raw material solution by mixing a solution containing water, hydrochloric acid and hydrogen peroxide, a gallium compound, and a tin (II) compound (b) Mistating the raw material solution to prepare a mist-like raw material (C) supplying the mist-like raw material to the film-forming surface of the substrate with a carrier gas; (d) heating the substrate to thermally decompose the mist-like raw material; Forming a conductive α-Ga 2 O 3 thin film to which tin is added.
JP2011164748A 2011-07-27 2011-07-27 Highly crystalline conductive α-type gallium oxide thin film doped with dopant and method for producing the same Active JP5793732B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011164748A JP5793732B2 (en) 2011-07-27 2011-07-27 Highly crystalline conductive α-type gallium oxide thin film doped with dopant and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011164748A JP5793732B2 (en) 2011-07-27 2011-07-27 Highly crystalline conductive α-type gallium oxide thin film doped with dopant and method for producing the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2015046298A Division JP5987229B2 (en) 2015-03-09 2015-03-09 Highly crystalline conductive α-type gallium oxide thin film doped with dopant and method for producing the same

Publications (2)

Publication Number Publication Date
JP2013028480A JP2013028480A (en) 2013-02-07
JP5793732B2 true JP5793732B2 (en) 2015-10-14

Family

ID=47785906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011164748A Active JP5793732B2 (en) 2011-07-27 2011-07-27 Highly crystalline conductive α-type gallium oxide thin film doped with dopant and method for producing the same

Country Status (1)

Country Link
JP (1) JP5793732B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020066575A1 (en) 2018-09-27 2020-04-02 信越化学工業株式会社 Stack, semiconductor device, method of manufacturing stack
WO2021079571A1 (en) 2019-10-24 2021-04-29 信越化学工業株式会社 Method for producing gallium precursor, and method for producing layered product using same

Families Citing this family (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6103633B2 (en) * 2013-02-08 2017-03-29 高知県公立大学法人 Ozone-supported high-quality homogeneous metal oxide thin film fabrication technology, and oxide thin-film transistor manufacturing method using the thin-film fabrication technology
JP5397794B1 (en) 2013-06-04 2014-01-22 Roca株式会社 Method for producing oxide crystal thin film
US9966439B2 (en) 2013-07-09 2018-05-08 Flosfia Inc. Semiconductor device and manufacturing method for same, crystal, and manufacturing method for same
JP6233959B2 (en) * 2013-10-10 2017-11-22 株式会社Flosfia Method for producing oxide crystal thin film
JP6152514B2 (en) * 2013-10-17 2017-06-28 株式会社Flosfia Semiconductor device and manufacturing method thereof, and crystal and manufacturing method thereof
US10090388B2 (en) * 2014-03-31 2018-10-02 Flosfia Inc. Crystalline multilayer structure and semiconductor device
EP2927934B1 (en) 2014-03-31 2017-07-05 Flosfia Inc. Crystalline multilayer structure and semiconductor device
EP2942803B1 (en) 2014-05-08 2019-08-21 Flosfia Inc. Crystalline multilayer structure and semiconductor device
JP6158757B2 (en) * 2014-06-25 2017-07-05 日本電信電話株式会社 Method for forming gallium oxide crystal film
JP6867637B2 (en) * 2014-06-27 2021-04-28 株式会社Flosfia Suceptor
JP6627132B2 (en) * 2014-06-27 2020-01-08 株式会社Flosfia Film forming apparatus and film forming method
KR102125822B1 (en) * 2014-07-22 2020-06-23 가부시키가이샤 플로스피아 Crystalline semiconductor film, plate-like body and semiconductor device
JP2016051824A (en) * 2014-08-29 2016-04-11 高知県公立大学法人 Epitaxial growth method and growth device, and method of producing quantum well structure
CN106796891B (en) 2014-09-02 2020-07-17 株式会社Flosfia Multilayer structure, method for manufacturing same, semiconductor device, and crystal film
JP6539906B2 (en) * 2014-09-25 2019-07-10 株式会社Flosfia Method of manufacturing crystalline laminated structure and semiconductor device
JP7344426B2 (en) * 2014-11-26 2023-09-14 株式会社Flosfia crystalline laminated structure
JP6547225B2 (en) * 2015-02-06 2019-07-24 高知県公立大学法人 Film thickness calculation method, film forming apparatus and program
JP6422159B2 (en) * 2015-02-25 2018-11-14 国立研究開発法人物質・材料研究機構 α-Ga2O3 Single Crystal, α-Ga2O3 Manufacturing Method, and Semiconductor Device Using the Same
JP6967213B2 (en) * 2015-04-10 2021-11-17 株式会社Flosfia Crystalline oxide semiconductor membranes and semiconductor devices
JP6436538B2 (en) * 2015-06-16 2018-12-12 国立研究開発法人物質・材料研究機構 ε-Ga2O3 single crystal, ε-Ga2O3 manufacturing method, and semiconductor device using the same
KR102075227B1 (en) * 2015-06-18 2020-02-07 도시바 미쓰비시덴키 산교시스템 가부시키가이샤 How to Form Metal Oxide
JP6789490B2 (en) * 2016-04-27 2020-11-25 株式会社Flosfia Fuel cell separator and its manufacturing method
JP6216978B2 (en) * 2016-05-31 2017-10-25 株式会社Flosfia Ga2O3 semiconductor device
US10804362B2 (en) 2016-08-31 2020-10-13 Flosfia Inc. Crystalline oxide semiconductor film, crystalline oxide semiconductor device, and crystalline oxide semiconductor system
US11152208B2 (en) 2016-09-15 2021-10-19 Flosfia Inc. Semiconductor film, method of forming semiconductor film, complex compound for doping, and method of doping
KR20190074288A (en) 2016-11-07 2019-06-27 가부시키가이샤 플로스피아 The crystalline oxide semiconductor film and the semiconductor device
JP7023985B2 (en) * 2017-12-22 2022-02-22 富士フイルム株式会社 Film formation method
JP2019142756A (en) * 2018-02-22 2019-08-29 トヨタ自動車株式会社 Film deposition method
JP2020011859A (en) 2018-07-17 2020-01-23 トヨタ自動車株式会社 Film deposition method, and manufacturing method of semiconductor device
CN112752616B (en) * 2018-08-01 2023-07-14 株式会社尼康 Mist generating device, mist film forming method, and mist film forming device
JP2019070197A (en) * 2018-12-17 2019-05-09 高知県公立大学法人 Film thickness calculation method, film deposition apparatus and program
JP6934852B2 (en) * 2018-12-18 2021-09-15 信越化学工業株式会社 Manufacturing method of gallium oxide film
JP6857641B2 (en) 2018-12-19 2021-04-14 信越化学工業株式会社 Film formation method and film deposition equipment
JP7239919B2 (en) * 2019-02-13 2023-03-15 信越化学工業株式会社 Film forming method and film forming apparatus
JP7179294B2 (en) 2019-04-12 2022-11-29 信越化学工業株式会社 Method for producing gallium oxide semiconductor film
JP6784871B1 (en) * 2019-04-24 2020-11-11 日本碍子株式会社 Semiconductor film
JP2020188170A (en) * 2019-05-15 2020-11-19 トヨタ自動車株式会社 Mist generation device and deposition device
JP7212890B2 (en) * 2019-06-05 2023-01-26 株式会社デンソー Oxide Film Forming Method, Semiconductor Device Manufacturing Method, and Oxide Film Forming Apparatus
JP7216371B2 (en) 2019-06-05 2023-02-01 株式会社デンソー Oxide Film Forming Method, Semiconductor Device Manufacturing Method, and Oxide Film Forming Apparatus
JP7053539B2 (en) * 2019-08-02 2022-04-12 信越化学工業株式会社 Laminates, semiconductor films, semiconductor devices, semiconductor systems and methods for manufacturing laminates
JP6842128B2 (en) * 2019-09-26 2021-03-17 国立研究開発法人物質・材料研究機構 α-Ga2O3 single crystal manufacturing equipment
JP7315927B2 (en) * 2020-02-12 2023-07-27 株式会社デンソー Semiconductor device and its manufacturing method
JP6975417B2 (en) 2020-02-27 2021-12-01 信越化学工業株式会社 Atomization device for film formation and film formation device using this
JP6994694B2 (en) 2020-02-27 2022-01-14 信越化学工業株式会社 Atomization device for film formation and film formation device using this
JP6925548B1 (en) * 2020-07-08 2021-08-25 信越化学工業株式会社 Manufacturing method and film forming equipment for gallium oxide semiconductor film
KR20230044417A (en) 2020-08-05 2023-04-04 신에쓰 가가꾸 고교 가부시끼가이샤 Atomization device for film forming, film forming device and film forming method
CN116157550A (en) 2020-08-06 2023-05-23 信越化学工业株式会社 Semiconductor laminate, semiconductor element, and method for manufacturing semiconductor element
CN112111783A (en) * 2020-10-14 2020-12-22 天津工业大学 Electrostatic atomization chemical vapor deposition gallium oxide film system
JP7200205B2 (en) * 2020-12-15 2023-01-06 信越化学工業株式会社 Deposition method
JP7313530B2 (en) 2020-12-15 2023-07-24 信越化学工業株式会社 Deposition method
TWM633935U (en) 2021-04-07 2022-11-11 日商信越化學工業股份有限公司 Manufacturing system of laminated body, laminated body, and semiconductor device
WO2022230342A1 (en) * 2021-04-27 2022-11-03 日本碍子株式会社 Composite substrate, method for manufacturing composite substrate, and method for manufacturing gallium oxide crystal film
TW202242209A (en) 2021-04-28 2022-11-01 日商信越化學工業股份有限公司 Multilayer structure, semiconductor device and method for producing multilayer structure
JP2023056328A (en) 2021-10-07 2023-04-19 信越化学工業株式会社 Film forming apparatus and method for forming crystalline semiconductor film using the same
CN115029780B (en) * 2022-08-11 2022-10-25 苏州燎塬半导体有限公司 Growth device and method of N-type conductive gallium oxide single crystal film
WO2024043134A1 (en) * 2022-08-26 2024-02-29 信越化学工業株式会社 FILM FORMING METHOD, FILM FORMING DEVICE, SUSCEPTOR, AND α-GALLIUM OXIDE FILM

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4174913B2 (en) * 1999-06-04 2008-11-05 昭和電工株式会社 Group III nitride semiconductor light emitting device
JP4083396B2 (en) * 2000-07-10 2008-04-30 独立行政法人科学技術振興機構 Ultraviolet transparent conductive film and manufacturing method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020066575A1 (en) 2018-09-27 2020-04-02 信越化学工業株式会社 Stack, semiconductor device, method of manufacturing stack
KR20210058834A (en) 2018-09-27 2021-05-24 신에쓰 가가꾸 고교 가부시끼가이샤 Laminates, semiconductor devices, and manufacturing methods of laminates
WO2021079571A1 (en) 2019-10-24 2021-04-29 信越化学工業株式会社 Method for producing gallium precursor, and method for producing layered product using same
KR20220088423A (en) 2019-10-24 2022-06-27 신에쓰 가가꾸 고교 가부시끼가이샤 The manufacturing method of a gallium precursor and the manufacturing method of the laminated body using the same
EP4050133A4 (en) * 2019-10-24 2023-08-30 Shin-Etsu Chemical Co., Ltd. Method for producing gallium precursor, and method for producing layered product using same

Also Published As

Publication number Publication date
JP2013028480A (en) 2013-02-07

Similar Documents

Publication Publication Date Title
JP5793732B2 (en) Highly crystalline conductive α-type gallium oxide thin film doped with dopant and method for producing the same
JP5987229B2 (en) Highly crystalline conductive α-type gallium oxide thin film doped with dopant and method for producing the same
JP5397794B1 (en) Method for producing oxide crystal thin film
Umar et al. ZnO nanosheet networks and hexagonal nanodiscs grown on silicon substrate: growth mechanism and structural and optical properties
JP6436538B2 (en) ε-Ga2O3 single crystal, ε-Ga2O3 manufacturing method, and semiconductor device using the same
JP2015070248A (en) Oxide thin film and method for manufacturing the same
JP7166522B2 (en) Crystalline film manufacturing method
JP6701472B2 (en) Crystalline oxide semiconductor film and semiconductor device
JP6459001B2 (en) Method for manufacturing semiconductor device or crystal structure
JP2015017027A (en) Semiconductor device and method of producing the same, and crystal and method of producing the same
JP2016222538A (en) ZnO FILM, NANO STRUCTURE AND LOW TEMPERATURE CONTINUOUS CIRCULATION REACTOR FOR SYNTHESIZING BULK SINGLE CRYSTAL IN AQUEOUS SOLUTION
JP6233959B2 (en) Method for producing oxide crystal thin film
Johnson et al. Atmospheric pressure plasma enhanced chemical vapor deposition of zinc oxide and aluminum zinc oxide
CN102304701A (en) Preparation method of silicon carbide film
CN107119319A (en) A kind of cuprous iodide two-dimensional material, preparation and its application
Masuda Mist CVD growth of ZnO-based thin films and nanostructures
JP2019048766A (en) α-Ga 2O3 SINGLE CRYSTAL, METHOD FOR MANUFACTURING THE SAME AND SEMICONDUCTOR ELEMENT USING α-Ga2O3 SINGLE CRYSTAL
CN101127380B (en) ZnO nano structure vertical on silicon/insulation layer structure underlay and its making method
CN112368429A (en) Film forming method and crystalline layered structure
Guo et al. Formation of crystalline InGaO3 (ZnO) n nanowires via the solid-phase diffusion process using a solution-based precursor
JP2014131020A (en) CuO THIN-FILM MANUFACTURING METHOD AND CuO THIN-FILM
JP2016157879A (en) Crystalline oxide semiconductor film and semiconductor device
JP2017010967A (en) Deposition method
CN112334606A (en) Crystalline oxide film
Mun et al. The effect of precursor concentration on ZnO nanorod grown by low-temperature aqueous solution method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140925

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150309

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150513

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150602

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20150701

R150 Certificate of patent or registration of utility model

Ref document number: 5793732

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250