JP5791680B2 - Method and system for predicting earthquake damage in buildings - Google Patents

Method and system for predicting earthquake damage in buildings Download PDF

Info

Publication number
JP5791680B2
JP5791680B2 JP2013205980A JP2013205980A JP5791680B2 JP 5791680 B2 JP5791680 B2 JP 5791680B2 JP 2013205980 A JP2013205980 A JP 2013205980A JP 2013205980 A JP2013205980 A JP 2013205980A JP 5791680 B2 JP5791680 B2 JP 5791680B2
Authority
JP
Japan
Prior art keywords
building
earthquake
acceleration
specific
assumed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013205980A
Other languages
Japanese (ja)
Other versions
JP2015068801A (en
Inventor
優 里
優 里
Original Assignee
株式会社地層科学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社地層科学研究所 filed Critical 株式会社地層科学研究所
Priority to JP2013205980A priority Critical patent/JP5791680B2/en
Publication of JP2015068801A publication Critical patent/JP2015068801A/en
Application granted granted Critical
Publication of JP5791680B2 publication Critical patent/JP5791680B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Geophysics And Detection Of Objects (AREA)

Description

本発明は特定の建造物に生じる地震被害を予測する方法及びシステムに関する。   The present invention relates to a method and system for predicting earthquake damage occurring in a specific building.

震源位置から離れた特定場所での地震動を予測する場合には距離減衰式が広く利用されている。距離減衰式は、ある場所での地震動を震源位置からその場所までの距離及びマグニチュードの関数として表すものであり、過去に生じた実際の地震の多くの観測結果から回帰して導かれている。距離減衰式としては複数のものが利用されているが、例えば司・翠川の距離減衰式ではマグニチュードMの地震の特定場所での地震動(理論最大加速度)Aは次式により求められる(司宏俊・翠川三郎(1999):断層タイプ及び地盤条件を考慮した最大加速度・最大速度の距離減衰式,日本建築学会構造系論文集,第523号,pp.63−70)。   The distance attenuation formula is widely used to predict earthquake motion at a specific location away from the epicenter. The distance attenuation formula expresses the ground motion at a certain place as a function of the distance from the epicenter to the place and the magnitude, and is derived by regression from many observation results of actual earthquakes that occurred in the past. For example, in the distance attenuation equation of Tsukasa and Yodogawa, the ground motion (theoretical maximum acceleration) A at a specific location of the magnitude M earthquake can be obtained by the following equation (Toshihiro Soshi) Saburo Sasakawa (1999): Distance attenuation formula of maximum acceleration and maximum speed considering fault type and ground condition, Architectural Institute of Japan, 523, pp. 63-70).

logA=b−log(X+c)―0.003X
ただし、Xは震源位置から特定位置までの直線距離(震源位置から特定位置までの地表距離をL、震源の深さをDとしてX=√(L+D)、b=0.53M+0.0044D+0.38、c=0.0055×100.5M
logA = b−log (X + c) −0.003X
Where X is the linear distance from the epicenter position to the specific position (L is the ground distance from the epicenter position to the specific position, and D is the depth of the epicenter, X = √ (L 2 + D 2 ), b = 0.53M + 0.0044D + 0 .38, c = 0.0055 × 10 0.5M

しかしながら、この距離減衰式は全国各地での地震の観測結果に基づき求められたものであり、予測対象場所の地震動に影響を与える地質や地形状況などの対象場所特有の条件が考慮されていないので、算出される理論最大加速度は個別具体的ではなく平均値的なものとならざるを得ない。   However, this distance attenuation formula is obtained based on the observation results of earthquakes in various parts of the country, and does not take into account the conditions specific to the target location such as geology and topographical conditions that affect the ground motion of the predicted location. The calculated theoretical maximum acceleration must be an average value rather than an individual specific value.

そこで、例えば特許文献1に記載されているように、過去に発生した地震による予測対象場所での実際の地震動を観測しておき、この地震の震源位置とマグニチュードから距離減衰式を用いて算出される予測対象場所での理論地震動と観測された実際の地震動を比較して補正係数を導き出し、後に地震が生じた場合に、距離減衰式から算出された予測対象場所での理論地震動に補正係数を乗じたものを予測地震動とすることが行われている。   Therefore, as described in Patent Document 1, for example, the actual ground motion at the prediction target location due to the earthquake that occurred in the past is observed, and is calculated from the location and magnitude of this earthquake using the distance attenuation formula. Compare the theoretical ground motion at the predicted location with the actual observed ground motion and derive a correction factor.If an earthquake occurs later, the correction factor is applied to the theoretical ground motion at the predicted location calculated from the distance attenuation formula. The multiplied one is used as a predicted earthquake motion.

特開2007−71707号公報JP 2007-71707 A

ところで、特許文献1に記載された地震動予測システムで観測される実際の地震動は地盤又は地表面位置におけるものである。したがって、このような地震動予測システムは距離減衰式による理論地震動と建造物での地震動とを直接関連付けるものではないので、地震発生時の建造物の正確な被害状況を予測できない。また、この特許文献1の地震動予測システムは実際に発生した地震によるリアルタイムな地震動を推定するためのものであるから、種々の地震を想定し、この想定した地震が生じた場合の被害を推定しておくといったこともできない。   By the way, the actual ground motion observed by the ground motion prediction system described in Patent Document 1 is in the ground or the ground surface position. Therefore, since such a ground motion prediction system does not directly relate the theoretical ground motion by the distance attenuation formula and the ground motion at the building, it cannot predict the exact damage situation of the building at the time of the earthquake. In addition, since the ground motion prediction system of Patent Document 1 is for estimating real-time ground motion due to an actually occurring earthquake, it assumes various earthquakes and estimates the damage when this assumed earthquake occurs. You can't even keep it.

そこで本発明は、想定した地震が発生した場合に建造物に生じる被害状況を正確に把握できる建造物の地震被害予測方法及び予測システムを提供することを目的とする。   Therefore, an object of the present invention is to provide a earthquake damage prediction method and a prediction system for a building that can accurately grasp the damage situation that occurs in the building when an assumed earthquake occurs.

この目的を達成するための本発明の建造物の地震被害予測方法は、所定の震源地又は震源位置で所定のマグニチュードの想定地震が発生した場合の特定位置に設けられている特定建造物の被害を予測する建造物の地震被害予測方法であって、現実の地震が発生したときにこの現実の地震により前記特定建造物に加わる建造物加速度を測定し、前記現実の地震により前記特定位置の地盤に加わる理論最大加速度を距離減衰式により算出し、測定された建造物最大加速度又は測定された建造物加速度から導かれる前記特定建造物の建造物応答度と算出された理論最大加速度とを回帰分析することにより建造物最大加速度又は建造物応答度の理論最大加速度への回帰式を求め、前記想定地震について距離減衰式を用いて算出された前記特定位置の地盤の理論最大加速度を、求められた回帰式に代入して前記想定地震により前記特定建造物に加わる建造物最大加速度又は前記想定地震により前記特定建造物に生じる建造物応答度を導き出して予測するものである。ここでは、距離減衰式による理論最大加速度から特定建造物に加わる最大加速度又は特定建造物の応答度を直接導き出すことができる。   In order to achieve this object, the earthquake damage prediction method for a building according to the present invention is based on the damage of a specific building provided at a specific location when an assumed earthquake of a predetermined magnitude occurs at a predetermined epicenter or location. A method for predicting earthquake damage to a building, in which when a real earthquake occurs, a building acceleration applied to the specific building by the real earthquake is measured, and the ground at the specific position is measured by the real earthquake. The theoretical maximum acceleration applied to the vehicle is calculated by the distance attenuation formula, and the regression analysis is performed between the measured building maximum acceleration or the response of the specific building derived from the measured building acceleration and the calculated theoretical maximum acceleration. To obtain the regression equation of the building maximum acceleration or the building response to the theoretical maximum acceleration, and the ground at the specific position calculated using the distance attenuation equation for the assumed earthquake. Substituting the theoretical maximum acceleration of the above into the obtained regression equation and deriving and predicting the building maximum acceleration applied to the specific building by the assumed earthquake or the building responsiveness generated in the specific building by the assumed earthquake It is. Here, the maximum acceleration applied to the specific building or the response level of the specific building can be directly derived from the theoretical maximum acceleration by the distance attenuation formula.

特定建造物の地震による被害をより具体的に予測するためには、現実の地震が発生したときにこの現実の地震により特定建造物に加わる建造物加速度を特定建造物の高さ方向複数個所で測定し、測定された高さ方向複数個所の加速度情報(例えば加速度波形、加速度情報又は加速度波形としては例えば水平方向のものを用いることができる)から建造物応答度として特定建造物の層間変形角(例えば最大層間変形角)を導き、この層間変形角の理論最大加速度への回帰式を求め、想定地震について算出された特定位置の地盤の理論最大加速度を、求められた回帰式に代入して想定地震による特定建造物の層間変形角を導き出して予測することが好ましい。   In order to more specifically predict the damage caused by an earthquake in a specific building, the acceleration of the building that is applied to the specific building due to this real earthquake at multiple locations in the height direction of the specific building. Measured and measured acceleration information at multiple locations in the height direction (for example, acceleration waveform, acceleration information or acceleration waveform can be used, for example, horizontal direction), and the inter-layer deformation angle of a specific building as building response (For example, the maximum interlayer deformation angle) is derived, the regression equation to the theoretical maximum acceleration of this interlayer deformation angle is obtained, and the theoretical maximum acceleration of the ground at the specific position calculated for the assumed earthquake is substituted into the obtained regression equation. It is preferable to derive and predict an interlayer deformation angle of a specific building due to an assumed earthquake.

本発明では、現実の地震が発生するたびにこの現実の地震により前記建造物に加わる建造物加速度を測定し、それぞれの前記現実の地震により前記特定位置の地盤に加わる理論最大加速度を距離減衰式により算出し、測定された建造物最大加速度又は測定された建造物加速度から導かれた建造物応答度と算出された理論最大加速度とを回帰分析することにより建造物最大加速度又は建造物応答度の理論最大加速度への回帰式を求めることとなる。例えば回帰式は現実の地震が発生するたびに更新される。   In the present invention, each time an actual earthquake occurs, the building acceleration applied to the building by the actual earthquake is measured, and the theoretical maximum acceleration applied to the ground at the specific position by each actual earthquake is calculated by a distance attenuation formula. Of the measured building maximum acceleration or the building response derived from the measured building acceleration and the calculated theoretical maximum acceleration by regression analysis of the building maximum acceleration or building response. The regression formula to the theoretical maximum acceleration will be obtained. For example, the regression equation is updated every time an actual earthquake occurs.

また、この目的を達成するための本発明の建造物の地震被害予測システムは、所定の震源地又は震源位置で所定のマグニチュードの想定地震が発生した場合の特定位置に設けられている特定建造物の被害を予測する建造物の地震被害予測システムであって、前記特定建造物に設けられた加速度センサと、現実の地震が発生したときにこの加速度センサにより測定された前記特定建造物の建造物加速度を用い、前記想定地震により前記特定建造物に加わる建造物最大加速度又は前記想定地震により前記特定建造物に生じる建造物応答度を予測する予測装置と、を備え、前記予測装置は、距離減衰式により算出された、前記現実の地震により前記特定位置の地盤に加わる理論最大加速度と、測定された建造物加速度(建造物最大加速度)又は測定された建造物加速度から導かれた前記特定建造物に生じる建造物応答度とを回帰分析することにより建造物加速度(建造物最大加速度)又は建造物応答度の理論最大加速度への回帰式を求める回帰分析手段と、震源地又は震源位置及びマグニチュードを特定して想定地震を仮定する地震想定手段と、この地震想定手段により仮定された前記想定地震により前記特定位置の地盤に加わる理論最大加速度を距離減衰式によって算出し、算出された前記理論最大加速度を前記回帰式に代入して前記想定地震により前記特定建造物に加わる建造物最大加速度又は前記想定地震により前記特定建造物に生じる建造物応答度を導き出す予測手段と、を有するものである。   In addition, the earthquake damage prediction system for a building of the present invention for achieving this object is a specific building provided at a specific location when an assumed earthquake of a predetermined magnitude occurs at a predetermined epicenter or location. An earthquake damage prediction system for a building that predicts damage of the building, the acceleration sensor provided in the specific building, and the building of the specific building measured by the acceleration sensor when an actual earthquake occurs A prediction device that uses acceleration to predict a building maximum acceleration applied to the specific building by the assumed earthquake or a building responsiveness generated in the specific building by the assumed earthquake, and the prediction device is a distance attenuation Calculated by the formula, the theoretical maximum acceleration applied to the ground at the specific position by the actual earthquake and the measured building acceleration (the maximum building acceleration) or measurement The building acceleration (building maximum acceleration) or the regression formula to the theoretical maximum acceleration of the building response is obtained by performing a regression analysis on the building responsiveness generated in the specific building derived from the measured building acceleration. Regression analysis means, earthquake assumption means that assumes an epicenter by specifying the epicenter or location and magnitude, and the theoretical maximum acceleration applied to the ground at the specific position by the assumed earthquake assumed by this earthquake assumption means Calculated by an attenuation equation, and substitutes the calculated theoretical maximum acceleration into the regression equation, and the building maximum acceleration applied to the specific building by the assumed earthquake or the building responsiveness generated in the specific building by the assumed earthquake Predicting means for deriving.

加速度センサは特定建造物の高さ方向複数個所に設けることができる。この場合には、回帰分析手段は、複数の加速度センサにより測定されたそれぞれの加速度情報から建造物応答度として特定建造物の層間変形角を導き、この層間変形角の理論最大加速度への回帰式を求め、予測手段は、算出された理論最大加速度を回帰式に代入して想定地震による層間変形角を導き出すものとすることができる。   The acceleration sensor can be provided at a plurality of locations in the height direction of the specific building. In this case, the regression analysis means derives the interlayer deformation angle of the specific building as the building response from each acceleration information measured by the plurality of acceleration sensors, and the regression equation to the theoretical maximum acceleration of this interlayer deformation angle. And the prediction means can substitute the calculated theoretical maximum acceleration into the regression equation to derive the interlayer deformation angle due to the assumed earthquake.

本発明では任意に地震を想定し、この想定した地震により建造物が受ける被害を効果的に予測することができる。   In the present invention, an earthquake is arbitrarily assumed, and damage to a building due to the assumed earthquake can be effectively predicted.

本発明に係る建造物の地震被害予測システムを用いた地震被害予測報告サービス機構の概略を示す図である。It is a figure which shows the outline of the earthquake damage prediction report service mechanism using the earthquake damage prediction system of the building which concerns on this invention. 加速度センサの構成を示すブロック図である。It is a block diagram which shows the structure of an acceleration sensor. 加速度センサの動作を示すフロー図である。It is a flowchart which shows operation | movement of an acceleration sensor. 加速度の測定結果を示す図である。It is a figure which shows the measurement result of acceleration. 地震被害予測サーバの構成を示すブロック図である。It is a block diagram which shows the structure of an earthquake damage prediction server. 記憶部の構成を示す図である。It is a figure which shows the structure of a memory | storage part. 回帰式設定・更新部の構成を示す図である。It is a figure which shows the structure of a regression equation setting / update part. 被害予測データベースの構成を示す図である。It is a figure which shows the structure of a damage prediction database. 理論最大加速度と建造物最大加速度の相関図である。It is a correlation diagram of theoretical maximum acceleration and building maximum acceleration. 理論最大加速度と層間変形角の相関図である。It is a correlation diagram of a theoretical maximum acceleration and an interlayer deformation angle.

以下、図面を参照して本発明の実施の形態を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

まず、図1を参照して本発明に係る建造物の地震被害予測システムを用いた地震被害予測サービス機構を説明する。   First, an earthquake damage prediction service mechanism using the earthquake damage prediction system for buildings according to the present invention will be described with reference to FIG.

地震被害予測サービス機構は建造物1、3、5を地震被害予測対象とするものである(通常は種々の高さの多数のマンションやオフィスビルあるいは一般家屋を地震被害予測対象とするが、ここでは3つの建造物のみを図示する)。建造物1は平屋の家屋であり、床付近に加速度センサ7が取り付けられている。この加速度センサ7は建造物1内に置かれた利用者端末9(例えばパソコン)に接続されていて、建造物1の床付近に地震により加えられる加速度を測定して利用者端末9に測定結果を送信する。利用者端末9は例えばルータ(図示せず)を介して通信網11(ここではインターネット)に接続されている。建造部3は2階建ての家屋であり、1階の床付近と2階の床付近にそれぞれ加速度センサ7が取り付けられている。これらの加速度センサ7は建造物3内に置かれた利用者端末13(例えばパソコン)に接続されていて、1階の床付近及び2階の床付近に地震により加えられる加速度をそれぞれ測定して利用者端末13に測定結果を送信する。利用者端末13は例えばルータ(図示せず)を介してインターネット11に接続されている。建造物5は3階建てのマンションであり、1階のフロア付近、2階のフロア付近及び3階のフロア付近にそれぞれ加速度センサ7が取り付けられている。これらの加速度センサ7は建造物5内に置かれた利用者端末15(例えばパソコン)に接続されていて、1階のフロア付近、2階のフロア付近及び3階のフロア付近に地震により加えられる加速度をそれぞれ測定して利用者端末15に測定結果を送信する。この利用者端末15はインターネット11に接続されている。   The Earthquake Damage Prediction Service Organization targets buildings 1, 3, and 5 for earthquake damage prediction (usually, many condominiums, office buildings, and general houses with various heights are subject to earthquake damage prediction, but here (Only three buildings are shown). The building 1 is a one-story house, and an acceleration sensor 7 is attached near the floor. The acceleration sensor 7 is connected to a user terminal 9 (for example, a personal computer) placed in the building 1, measures the acceleration applied by the earthquake near the floor of the building 1, and sends a measurement result to the user terminal 9. Send. The user terminal 9 is connected to a communication network 11 (here, the Internet) via a router (not shown), for example. The building 3 is a two-story house, and an acceleration sensor 7 is attached to the vicinity of the first floor and the second floor. These acceleration sensors 7 are connected to a user terminal 13 (for example, a personal computer) placed in the building 3 and measure accelerations applied by the earthquake near the floor on the first floor and the floor on the second floor, respectively. The measurement result is transmitted to the user terminal 13. The user terminal 13 is connected to the Internet 11 via a router (not shown), for example. The building 5 is a three-story condominium, and an acceleration sensor 7 is attached near the first floor, near the second floor, and near the third floor. These acceleration sensors 7 are connected to a user terminal 15 (for example, a personal computer) placed in the building 5, and are applied to the vicinity of the first floor, the second floor, and the third floor by an earthquake. The acceleration is measured and the measurement result is transmitted to the user terminal 15. This user terminal 15 is connected to the Internet 11.

インターネット11には地震被害予測サーバ17(予測装置)が接続されていて、建造物1、3、5の加速度センサ7の測定結果は、建造物1の利用者端末9、建造物3の利用者端末13及び建造物5の利用者端末15を介してインターネット11を通り地震被害予測サーバ17に例えば電子メールで送信される。また、地震被害予測サーバ17はインターネット11を介して、気象庁やK−NETなどの地震観測網19から提供される震源地情報(震源位置及びマグニチュード)を含んだ地震情報を常時監視して取得する。そして、地震被害予測サーバ17は、受信したそれぞれの加速度センサ7の測定結果及び取得し記憶した地震情報に基づき、サービス提供者が仮想した想定地震による建造物1、3、5の被害状況を予測し、予測結果をそれぞれの利用者端末9、13、15に例えば電子メールで送信して報告する。   An earthquake damage prediction server 17 (prediction device) is connected to the Internet 11, and the measurement results of the acceleration sensors 7 of the buildings 1, 3, and 5 are the user terminal 9 of the building 1 and the user of the building 3. For example, it is transmitted to the earthquake damage prediction server 17 through the Internet 11 via the terminal 13 and the user terminal 15 of the building 5 by e-mail. In addition, the earthquake damage prediction server 17 constantly monitors and acquires earthquake information including epicenter information (seismic source position and magnitude) provided from an earthquake observation network 19 such as the Japan Meteorological Agency or K-NET via the Internet 11. . Then, the earthquake damage prediction server 17 predicts the damage situation of the buildings 1, 3, and 5 due to the hypothetical earthquake hypothesized by the service provider based on the received measurement results of the respective acceleration sensors 7 and the acquired and stored earthquake information. Then, the prediction result is transmitted to each user terminal 9, 13, 15 by e-mail, for example, and reported.

図2乃至図4を参照して加速度センサ7の構成及び動作を説明する。   The configuration and operation of the acceleration sensor 7 will be described with reference to FIGS.

加速度センサ7は、制御部21、インターフェース部23、表示部25、記憶部27(ここではSDカード)及びセンサ部29を備えて構成されている。制御部21はCPU及びRAMなどから構成され、インターフェース部23、表示部25及び記憶部27の各部の動作を全体的に制御する。インターフェース部23はセンサ部29の測定結果の利用者端末9、13、15への受け渡しを管理する。表示部25はディスプレイを有して構成され、測定された最大加速度等を表示する。SDカード27はセンサ部29の測定結果を格納する。センサ部29は例えばピエゾ抵抗型3軸加速度センサであり、水平方向の加速度及び垂直方向の加速度を測定することができる。   The acceleration sensor 7 includes a control unit 21, an interface unit 23, a display unit 25, a storage unit 27 (here, an SD card), and a sensor unit 29. The control unit 21 includes a CPU, a RAM, and the like, and controls the operations of the interface unit 23, the display unit 25, and the storage unit 27 as a whole. The interface unit 23 manages the transfer of the measurement result of the sensor unit 29 to the user terminals 9, 13, and 15. The display unit 25 includes a display, and displays the measured maximum acceleration and the like. The SD card 27 stores the measurement result of the sensor unit 29. The sensor unit 29 is, for example, a piezoresistive triaxial acceleration sensor, and can measure horizontal acceleration and vertical acceleration.

加速度センサ7では図3に示すように、電源をオンにすると(ステップ1)、センサ部29が建造物1、3、5の加速度(建造物加速度又は応答加速度)の測定又は計測を開始し(ステップ2)、センサ部29は電源がオフとなるまで建造物加速度を継続して測定する。制御部21はセンサ部29の測定結果を所定の短い時間(記憶時間)だけ保持し、記憶時間の経過とともに測定結果は順次消去される。制御部21はセンサ部29が開始閾値(プリトリガーレベル)に達する加速度を測定したか否かを監視し(ステップ3)、加速度が開始閾値に達したと判断した場合には、判断時に記憶している加速度測定結果を消去することなく判断時以降の加速度測定結果を記憶する(ステップ4)。開始閾値は、例えば地震動の初期の加速度の大きさである。制御部21は加速度測定結果の記憶を開始すると、センサ部29が終了閾値(ポストトリガーレベル)にまで収束した加速度を測定したか否かを監視し(ステップ5)、加速度が終了閾値に収束したと判断した場合には、この判断時から所定の短い時間の間だけ加速度測定結果の記憶を継続し、図4に示すような加速度の測定結果(図4の測定結果は例えば水平方向の加速度の測定結果)をSDカード27に記憶する(ステップ6)。ここで制御部21は加速度が終了閾値に収束するまでの記録を消去し、加速度が次に開始閾値に達するまでセンサ部29の測定結果を所定の短い時間だけ保持する動作を継続する。なお、制御部21は利用者端末9、13、15が起動されているときにSDカード27から図4の測定結果を読み出し利用者端末9、13、15に送信する。利用者端末9、13、15は例えば常時起動されている。また、図4のA点は加速度がプリトリガーレベルに達した時点を示し、B点は加速度がポストトリガーレベルに達した時点を示し、点Aまでの時間Cは加速度が開始閾値に達する前での測定結果の記憶時間又は保持時間を示し、点Bからの時間Dは加速度が終了閾値に収束してからの加速度測定結果の記憶継続時間を示す。   As shown in FIG. 3, in the acceleration sensor 7, when the power is turned on (step 1), the sensor unit 29 starts measuring or measuring the acceleration (building acceleration or response acceleration) of the buildings 1, 3, and 5 ( Step 2), the sensor unit 29 continuously measures the building acceleration until the power is turned off. The control unit 21 holds the measurement result of the sensor unit 29 for a predetermined short time (storage time), and the measurement result is sequentially deleted as the storage time elapses. The control unit 21 monitors whether or not the sensor unit 29 has measured the acceleration reaching the start threshold (pre-trigger level) (step 3), and if it is determined that the acceleration has reached the start threshold, it is stored at the time of determination. The acceleration measurement result after the determination is stored without deleting the acceleration measurement result (step 4). The start threshold is, for example, the magnitude of the initial acceleration of earthquake motion. When the control unit 21 starts storing the acceleration measurement result, it monitors whether or not the sensor unit 29 has measured the acceleration that has converged to the end threshold (post-trigger level) (step 5), and the acceleration has converged to the end threshold. When the determination is made, the acceleration measurement result is continuously stored for a predetermined short time from this determination, and the acceleration measurement result as shown in FIG. 4 (the measurement result in FIG. (Measurement result) is stored in the SD card 27 (step 6). Here, the control unit 21 deletes the record until the acceleration converges to the end threshold, and continues the operation of holding the measurement result of the sensor unit 29 for a predetermined short time until the acceleration reaches the start threshold next time. Note that the control unit 21 reads the measurement result of FIG. 4 from the SD card 27 and transmits it to the user terminals 9, 13, 15 when the user terminals 9, 13, 15 are activated. The user terminals 9, 13, 15 are always activated, for example. Further, point A in FIG. 4 indicates a point in time when the acceleration reaches the pre-trigger level, point B indicates a point in time when the acceleration reaches the post-trigger level, and time C to point A is before the acceleration reaches the start threshold. The time D from the point B indicates the storage duration of the acceleration measurement result after the acceleration converges to the end threshold.

図5乃至図8を参照して地震被害予測サーバ17の構成を説明する。   The configuration of the earthquake damage prediction server 17 will be described with reference to FIGS.

地震被害予測サーバ17は、例えばパソコンとすることができ、制御部31、通信部33、入力部35(地震想定手段)、表示部37、記憶部39、回帰式設定・更新部41(回帰分析手段)及び地震応答度予測部43(予測手段)とを備えて構成される。制御部31はCPU及びRAMなどから構成され、予測サーバ17の各部の動作を全体的に制御する。通信部33は利用者端末9、13、15からの加速度センサ7の測定結果の受信、地震観測網19から提供される地震情報の取得、そして利用者端末9、13、15への被害状況の予測の送信を管理する。入力部35はキーボード及びマウスを有して構成され、例えば想定地震を特定して入力するのに使用する。表示部37はディスプレイを有して構成され、加速度センサ7の測定結果、取得した地震情報、想定地震入力画面及び被害予測結果などを表示する。記憶部39はハードディスクを有して構成され、図6に示すように、回帰式設定・更新部41及び地震応答度予測部43を構成するプログラム45や回帰式の設定及び地震応答度の予測に必要な距離減衰式47及び被害予測データベース49等を格納する。回帰式設定・更新部41はCPU及び記憶部39からの読出プログラムで構成され、図7に示すように、最大加速度算出部51、地震応答度設定部53及び回帰式決定部55を有している。地震応答度予測部43はCPU及び記憶部39からの読出プログラムで構成され、入力部35から入力された想定地震が発生した際の、建造物1の最大加速度(地震応答度)、建造物3の層間変形角(地震応答度)及び建造物5の1階−2階層間変形角・1階−3階(あるいは2階−3階)層間変形角(地震応答度)を予測する。   The earthquake damage prediction server 17 can be, for example, a personal computer, and includes a control unit 31, a communication unit 33, an input unit 35 (earthquake assumption means), a display unit 37, a storage unit 39, a regression equation setting / updating unit 41 (regression analysis). Means) and an earthquake response degree prediction unit 43 (prediction means). The control unit 31 includes a CPU, a RAM, and the like, and controls the operation of each unit of the prediction server 17 as a whole. The communication unit 33 receives the measurement results of the acceleration sensor 7 from the user terminals 9, 13, 15, acquires the earthquake information provided from the earthquake observation network 19, and reports the damage status to the user terminals 9, 13, 15. Manage the sending of predictions. The input unit 35 includes a keyboard and a mouse, and is used to specify and input an assumed earthquake, for example. The display unit 37 is configured to include a display, and displays a measurement result of the acceleration sensor 7, acquired earthquake information, an assumed earthquake input screen, a damage prediction result, and the like. The storage unit 39 has a hard disk, and as shown in FIG. 6, the program 45 constituting the regression equation setting / updating unit 41 and the earthquake response prediction unit 43, the setting of the regression equation, and the earthquake response prediction The necessary distance attenuation formula 47 and damage prediction database 49 are stored. The regression equation setting / updating unit 41 includes a CPU and a reading program from the storage unit 39, and includes a maximum acceleration calculation unit 51, an earthquake response level setting unit 53, and a regression equation determination unit 55 as shown in FIG. Yes. The earthquake response degree prediction unit 43 includes a CPU and a read program from the storage unit 39. When an assumed earthquake input from the input unit 35 occurs, the maximum acceleration (earthquake response level) of the building 1 and the building 3 The inter-layer deformation angle (earthquake response) and the first- and second-floor deformation angles / first- and third-floor (or second- and third-floor) interlayer deformation angles (earthquake response) of the building 5 are predicted.

被害予測データベース49は、建造物1、建造物3及び建造物5のそれぞれについて、図8に示すように、計測位置情報57(特定位置の情報)、回帰係数情報59、被害予測テーブル61及び地震観測情報テーブル63を有している。計測位置情報57には加速度センサ7の設置位置の北緯と東経が記録される。建造物3や建造物5についての計測位置情報57には、例えば1階の加速度センサ7の設置位置の北緯と東経が記録される。回帰係数情報59には、建造物最大加速度を予測する際に用いる理論最大加速度の一次回帰式(建造物1の場合)の傾き(a)と切片(b)あるいは層間変形角を予測する際に用いる理論最大加速度の一次回帰式(建造物3、5の場合)の傾き(a)と切片(b)が記録されるが、建造物5では予測する層間変形角が複数あるのでそれぞれについての傾き(a)と切片(b)が記録される。被害予測テーブル61には想定地震ごとに震源情報と予測情報とが記録される。震源情報では想定地震のマグニチュード、想定地震の震源地又は震源位置の北緯、東経及び深度、そして想定地震による理論最大加速度が記録され、予測情報では建造物最大加速度(建造物1の場合)又は層間変形角(建造物3、5の場合)が記載されるが、建造物5では予測する層間変形角が複数あるのでそれぞれについての角度が記録される。地震観測情報テーブル63には実際に発生した地震ごとに震源情報と計測情報とが記録される。震源情報では実際の地震のマグニチュード、実際の地震の震源地又は震源位置の北緯、東経及び深度、そして実際の地震による理論最大加速度が記録され、計測情報では実際の建造物最大加速度(建造物3、5では加速度センサ7の個数に対応して複数記録される)及び建造物3、5の場合には加速度測定結果から導かれる層間変形角が記録されるが、建造物5では加速度測定結果から導かれる層間変形角が複数あるのでそれぞれについての角度が記録される。   As shown in FIG. 8, the damage prediction database 49 includes measurement position information 57 (specific position information), regression coefficient information 59, damage prediction table 61, and earthquake for each of the building 1, the building 3, and the building 5. An observation information table 63 is provided. In the measurement position information 57, north latitude and east longitude of the installation position of the acceleration sensor 7 are recorded. In the measurement position information 57 for the building 3 and the building 5, for example, north latitude and east longitude of the installation position of the acceleration sensor 7 on the first floor are recorded. In the regression coefficient information 59, the slope (a) and intercept (b) of the linear regression equation (in the case of the building 1) and the intercept (b) or the interlayer deformation angle used when predicting the building maximum acceleration are predicted. The slope (a) and intercept (b) of the linear regression equation (in the case of buildings 3 and 5) used for the theoretical maximum acceleration to be used are recorded. (A) and intercept (b) are recorded. In the damage prediction table 61, epicenter information and prediction information are recorded for each assumed earthquake. In the hypocenter information, the magnitude of the hypothetical earthquake, the north latitude, the east longitude and the depth of the hypocenter of the hypothetical earthquake, and the theoretical maximum acceleration due to the hypothetical earthquake are recorded. Deformation angles (in the case of buildings 3 and 5) are described. Since there are a plurality of predicted interlayer deformation angles in the building 5, the angles for each are recorded. In the earthquake observation information table 63, epicenter information and measurement information are recorded for each actually occurring earthquake. The seismic source information records the magnitude of the actual earthquake, the north latitude, the east longitude and the depth of the actual seismic source or location, and the theoretical maximum acceleration due to the actual earthquake. The measured information records the actual building maximum acceleration (building 3 5 is recorded in correspondence with the number of acceleration sensors 7, and in the case of buildings 3 and 5, the interlayer deformation angle derived from the acceleration measurement result is recorded. Since there are a plurality of induced interlayer deformation angles, the angle for each is recorded.

次に、地震被害予測サーバ17の動作を説明する。   Next, the operation of the earthquake damage prediction server 17 will be described.

地震被害予測サーバ17が地震観測網19から新しい地震の情報(マグニチュード、震源の北緯、東経及び深度)を取得するたびに、最大加速度算出部51はそれぞれの地震観測情報テーブル63に取得情報を記録するとともに、取得情報及び計測位置情報57に基づき距離減衰式47を用いて算出した建造物1、3、5についての理論最大加速度を地震観測情報テーブル63に記録する。地震被害予測サーバ17には、例えば電子メールにより加速度センサ7からの加速度記録又は加速度情報(図4参照)が送られてくるが、地震被害予測サーバ17が加速度記録を受け取ると、地震応答度設定部53は地震観測情報テーブル63に記録されている地震の発生時刻(図示せず)と送られてきた加速度情報に記録された時刻(図示せず)とを比較照合し、当該加速度情報が地震観測情報テーブル63に記録されたどの地震のものかを特定する。そして、地震応答度設定部53は、加速度記録又は加速度情報から建造物最大加速度を読み取って又は算出して地震観測情報テーブル63の該当欄に記録するとともに、建造物3の場合には1階の加速度情報と2階の加速度情報とから1階と2階の層間変形角(例えば最大層間変形角)を求める。求め方は、例えば図4に示す加速度波形を用い、1階の加速度波形と2階の加速度波形とから建造物3の1階と2階のフーリエ振幅スペクトルをそれぞれ求め、1階のフーリエ振幅スペクトルと2階のフーリエ振幅スペクトルとの比に基づき1次の固有周期を算出して建造物3の1階と2階の層間変形角(例えば最大層間変形角)を導き出し、地震観測情報テーブル63に記録する。建造物5の場合には1階と2階の層間変形角(例えば最大層間変形角)及び1階と3階(あるいは2階と3階)の層間変形角(例えば最大層間変形角)を導き出してそれぞれ地震観測情報テーブル63に記録する。   Each time the earthquake damage prediction server 17 acquires new earthquake information (magnitude, north latitude, east longitude and depth) from the earthquake observation network 19, the maximum acceleration calculation unit 51 records the acquisition information in each earthquake observation information table 63. At the same time, the theoretical maximum acceleration for the buildings 1, 3 and 5 calculated using the distance attenuation formula 47 based on the acquired information and the measured position information 57 is recorded in the earthquake observation information table 63. For example, an acceleration record or acceleration information (see FIG. 4) is sent from the acceleration sensor 7 to the earthquake damage prediction server 17 by e-mail. When the earthquake damage prediction server 17 receives the acceleration record, the earthquake response level setting is performed. The unit 53 compares and collates the earthquake occurrence time (not shown) recorded in the earthquake observation information table 63 with the time (not shown) recorded in the transmitted acceleration information, and the acceleration information is stored in the earthquake. The earthquake recorded in the observation information table 63 is specified. The earthquake response level setting unit 53 reads or calculates the maximum acceleration of the building from the acceleration record or acceleration information and records it in the corresponding column of the earthquake observation information table 63. From the acceleration information and the acceleration information of the second floor, an interlayer deformation angle (for example, a maximum interlayer deformation angle) of the first floor and the second floor is obtained. For example, the acceleration waveform shown in FIG. 4 is used, and the first and second floor Fourier amplitude spectra of the building 3 are obtained from the first floor acceleration waveform and the second floor acceleration waveform, respectively. The first-order natural period is calculated based on the ratio of the Fourier amplitude spectrum of the second floor and the first- and second-floor interlayer deformation angles (for example, the maximum interlayer deformation angle) of the building 3 are derived and stored in the earthquake observation information table 63. Record. In the case of the building 5, the interlayer deformation angle between the first floor and the second floor (for example, the maximum interlayer deformation angle) and the interlayer deformation angle between the first floor and the third floor (or the second floor and the third floor) (for example, the maximum interlayer deformation angle) are derived. Respectively recorded in the earthquake observation information table 63.

回帰式決定部55は、建造物1の地震観測情報テーブル63に記録されているすべての地震の理論最大加速度と建造物最大加速度を用いて建造物最大加速度の論理最大加速度への一次回帰式の傾き(a)と切片(b)とを求め、回帰係数情報59に記録する。この動作を図9に示す建造物最大加速度と論理最大加速度の相関図を用いて説明すると、すべての地震に対応して記録されたプロットにより回帰直線65が回帰分析され、この回帰直線65の傾き(a)と切片(b)が導き出される。回帰式決定部55はまた、建造物3、5のそれぞれの地震観測情報テーブル63に記録されているすべての地震の理論最大加速度と層間変形角を用いて層間変形角の論理最大加速度への一次回帰式の傾き(a)と切片(b)とを求め、回帰係数情報59に記録する。この動作を図10に示す層間変形角と論理最大加速度の相関図を用いて説明すると、すべての地震に対応して記録されたプロットにより回帰直線67が回帰分析され、この回帰直線67の傾き(a)と切片(b)が導き出される。   The regression equation determination unit 55 uses the theoretical maximum acceleration of all earthquakes and the building maximum acceleration recorded in the earthquake observation information table 63 of the building 1 to calculate a linear regression equation to the logical maximum acceleration of the building maximum acceleration. The slope (a) and the intercept (b) are obtained and recorded in the regression coefficient information 59. This operation will be described with reference to the correlation diagram of the building maximum acceleration and the logical maximum acceleration shown in FIG. 9. The regression line 65 is regression-analyzed by plots recorded for all earthquakes, and the slope of the regression line 65 is calculated. (A) and intercept (b) are derived. The regression equation determination unit 55 also uses a theoretical maximum acceleration and an interlayer deformation angle of all earthquakes recorded in the earthquake observation information table 63 of each of the buildings 3 and 5 to perform a primary conversion of the interlayer deformation angle to the logical maximum acceleration. The regression equation slope (a) and intercept (b) are obtained and recorded in the regression coefficient information 59. This operation will be described with reference to the correlation diagram between the interlayer deformation angle and the logical maximum acceleration shown in FIG. 10. The regression line 67 is regression-analyzed by plots recorded corresponding to all earthquakes, and the slope ( a) and intercept (b) are derived.

ここで、地震被害予測サーバ17に入力部35から震源地又は震源位置の北緯、東経及び震度、そしてマグニチュードを特定して想定地震情報が入力されると、地震応答度予測部43は、入力された震源地情報及び計測位置情報57を用いて算出した震源地からの距離及びマグニチュードを記憶部39の距離減衰式47に代入して建造物1の位置の理論最大加速度を算出して被害予測テーブル61に記録する。そして、建造物1の位置の理論最大加速度を回帰係数情報59を用いて生成した建造物1用の回帰式に代入し、想定地震が生じた場合の建造物1に生じる建造物最大加速度を算出して予測し、被害予測テーブル61に記録するとともに利用者端末9に例えば電子メールで送信する。また、地震応答度予測部43は、入力された震源地又は震源位置からの距離及びマグニチュードを記憶部39の距離減衰式47に代入して得た建造物3、5の位置の理論最大加速度を被害予測テーブル61に記録する。そして、建造物3、5の位置の理論最大加速度を回帰係数情報59を用いて生成した建造物3、5用の回帰式に代入し、想定地震が生じた場合の建造物3、5に生じる層間変形角を算出して予測し、被害予測テーブル61に記録するとともに利用者端末13、15に例えば電子メール送信する。なお、想定地震による被害の予測結果は、利用者端末9、13、15ではなく利用者の携帯端末に送信する構成としてもよい。   Here, when earthquake information is input from the input unit 35 to the earthquake damage prediction server 17 by specifying the epicenter or the north latitude, the east longitude and the seismic intensity, and the magnitude of the hypocenter, the earthquake response level prediction unit 43 is input. Damage prediction table by calculating the theoretical maximum acceleration of the position of the building 1 by substituting the distance and magnitude from the epicenter calculated using the epicenter information and the measured position information 57 into the distance attenuation formula 47 of the storage unit 39 61. Then, the theoretical maximum acceleration at the position of the building 1 is substituted into the regression equation for the building 1 generated using the regression coefficient information 59, and the maximum building acceleration generated in the building 1 when an assumed earthquake occurs is calculated. The prediction is made and recorded in the damage prediction table 61 and transmitted to the user terminal 9 by e-mail, for example. Further, the earthquake response degree prediction unit 43 substitutes the theoretical maximum acceleration of the positions of the buildings 3 and 5 obtained by substituting the distance and magnitude from the input epicenter or the epicenter position into the distance attenuation formula 47 of the storage unit 39. Record in the damage prediction table 61. Then, the theoretical maximum acceleration at the position of the buildings 3 and 5 is substituted into the regression formula for the buildings 3 and 5 generated using the regression coefficient information 59, and the resultant is generated in the buildings 3 and 5 when an assumed earthquake occurs. The interlayer deformation angle is calculated and predicted, recorded in the damage prediction table 61, and transmitted to the user terminals 13 and 15, for example, by e-mail. In addition, it is good also as a structure which transmits the prediction result of the damage by an assumed earthquake to not a user terminal 9,13,15 but a user's portable terminal.

本発明の建造物の地震被害予測方法及び予測システムは例えば一般家屋、マンション及びオフィスビルに用いることができる。   The earthquake damage prediction method and prediction system for a building according to the present invention can be used in, for example, ordinary houses, condominiums, and office buildings.

1、3、5 建造物
7 加速度センサ
9、13、15 利用者端末
17 地震被害予測サーバ
19 地震観測網
1, 3, 5 Building 7 Acceleration sensor 9, 13, 15 User terminal
17 Earthquake damage prediction server 19 Seismic network

Claims (5)

所定の震源地で所定のマグニチュードの想定地震が発生した場合の特定位置に設けられている特定建造物の被害を予測する建造物の地震被害予測方法であって、
現実の地震が発生したときにこの現実の地震により前記特定建造物に加わる建造物加速度を測定し、
前記現実の地震により前記特定位置の地盤に加わる理論最大加速度を距離減衰式により算出し、
測定された建造物最大加速度又は測定された建造物加速度から導かれる前記特定建造物の建造物応答度と算出された理論最大加速度とを回帰分析することにより建造物最大加速度又は建造物応答度の理論最大加速度への回帰式を求め、
前記想定地震について距離減衰式を用いて算出された前記特定位置の地盤の理論最大加速度を、求められた回帰式に代入して前記想定地震により前記特定建造物に加わる建造物最大加速度又は前記想定地震により前記特定建造物に生じる建造物応答度を導き出して予測する、ことを特徴とする建造物の地震被害予測方法。
An earthquake damage prediction method for a building that predicts damage to a specific building provided at a specific location when an assumed earthquake of a predetermined magnitude occurs at a predetermined epicenter,
When an actual earthquake occurs, measure the building acceleration applied to the specific building by the actual earthquake,
The theoretical maximum acceleration applied to the ground at the specific position by the real earthquake is calculated by a distance attenuation formula,
By regressing the measured building maximum acceleration or the building response of the specific building derived from the measured building acceleration and the calculated theoretical maximum acceleration, Find the regression equation to the theoretical maximum acceleration,
The theoretical maximum acceleration of the ground at the specific position calculated by using a distance attenuation formula for the assumed earthquake is substituted into the obtained regression equation and the maximum building acceleration applied to the specific building by the assumed earthquake or the assumption A method for predicting earthquake damage of a building, characterized by deriving and predicting a building responsiveness generated in the specific building by an earthquake.
現実の地震が発生したときにこの現実の地震により前記建造物に加わる建造物加速度を前記建造物の高さ方向複数個所で測定し、測定された高さ方向複数個所の加速度情報から建造物応答度として建造物の層間変形角を導き、この層間変形角の理論最大加速度への回帰式を求め、前記想定地震について算出された前記特定位置の地盤の理論最大加速度を、求められた回帰式に代入して前記想定地震による前記建造物の層間変形角を導き出して予測する、ことを特徴とする請求項1記載の建造物の地震被害予測方法。   When an actual earthquake occurs, the building acceleration applied to the building by the actual earthquake is measured at a plurality of height direction locations of the building, and the building response is obtained from the measured acceleration information at the plurality of height direction locations. Deriving the interlaminar deformation angle of the building as a degree, obtaining a regression equation to the theoretical maximum acceleration of this interlaminar deformation angle, and calculating the theoretical maximum acceleration of the ground at the specific position calculated for the assumed earthquake to the obtained regression equation The earthquake damage prediction method for a building according to claim 1, wherein the prediction is performed by substituting and predicting an interlayer deformation angle of the building due to the assumed earthquake. 所定の震源地で所定のマグニチュードの想定地震が発生した場合の特定位置に設けられている特定建造物の被害を予測する建造物の地震被害予測システムであって、
前記特定建造物に設けられた加速度センサと、現実の地震が発生したときにこの加速度センサにより測定された前記特定建造物の建造物加速度を用い、前記想定地震により前記特定建造物に加わる建造物最大加速度又は前記想定地震により前記特定建造物に生じる建造物応答度を予測する予測装置と、を備え、
前記予測装置は、距離減衰式により算出された、前記現実の地震により前記特定位置の地盤に加わる理論最大加速度と、測定された建造物最大加速度又は測定された建造物加速度から導かれた前記特定建造物に生じる建造物応答度とを回帰分析することにより建造物最大加速度又は建造物応答度の理論最大加速度への回帰式を求める回帰分析手段と、震源地及びマグニチュードを特定して想定地震を仮定する地震想定手段と、この地震想定手段により仮定された前記想定地震により前記特定位置の地盤に加わる理論最大加速度を距離減衰式によって算出し、算出された前記理論最大加速度を前記回帰式に代入して前記想定地震により前記特定建造物に加わる建造物最大加速度又は前記想定地震により前記特定建造物に生じる建造物応答度を導き出す予測手段と、を有することを特徴とする建造物の地震被害予測システム。
An earthquake damage prediction system for a building that predicts damage to a specific building provided at a specific location when an assumed earthquake of a predetermined magnitude occurs at a predetermined epicenter,
A building that is added to the specific building by the assumed earthquake using the acceleration sensor provided in the specific building and the building acceleration of the specific building measured by the acceleration sensor when an actual earthquake occurs A prediction device that predicts a building response that occurs in the specific building due to maximum acceleration or the assumed earthquake, and
The prediction device calculates the specific maximum value calculated from the theoretical maximum acceleration applied to the ground at the specific position by the actual earthquake and the measured maximum building acceleration or the measured building acceleration calculated by a distance attenuation formula. Regression analysis means to obtain the regression formula to the theoretical maximum acceleration of the building maximum acceleration or building response by regression analysis of the building responsiveness generated in the building, and the hypothesis and magnitude The assumed earthquake assumption means, and the theoretical maximum acceleration applied to the ground at the specific position by the assumed earthquake assumed by the earthquake assumption means is calculated by a distance attenuation equation, and the calculated theoretical maximum acceleration is substituted into the regression equation. The maximum building acceleration applied to the specific building due to the assumed earthquake or the building responsiveness generated in the specific building due to the assumed earthquake is derived. Earthquake damage prediction system of the building, characterized in that it comprises a predicting means for issuing a.
前記加速度センサは前記特定建造物の高さ方向複数個所に設けられている、ことを特徴とする請求項3記載の建造物の地震被害予測システム。   4. The earthquake damage prediction system for a building according to claim 3, wherein the acceleration sensor is provided at a plurality of locations in the height direction of the specific building. 前記回帰分析手段は、複数の加速度センサにより測定されたそれぞれの加速度情報から建造物応答度として特定建造物の層間変形角を導き、この層間変形角の理論最大加速度への回帰式を求め、前記予測手段は、算出された前記理論最大加速度を前記回帰式に代入して前記想定地震による層間変形角を導き出す、ことを特徴とする請求項4記載の建造物の地震被害予測システム。   The regression analysis means derives an interlayer deformation angle of a specific building as a building responsiveness from each acceleration information measured by a plurality of acceleration sensors, obtains a regression equation to the theoretical maximum acceleration of the interlayer deformation angle, 5. The earthquake damage prediction system for a building according to claim 4, wherein the prediction means substitutes the calculated theoretical maximum acceleration into the regression equation to derive an interlayer deformation angle due to the assumed earthquake.
JP2013205980A 2013-09-30 2013-09-30 Method and system for predicting earthquake damage in buildings Active JP5791680B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013205980A JP5791680B2 (en) 2013-09-30 2013-09-30 Method and system for predicting earthquake damage in buildings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013205980A JP5791680B2 (en) 2013-09-30 2013-09-30 Method and system for predicting earthquake damage in buildings

Publications (2)

Publication Number Publication Date
JP2015068801A JP2015068801A (en) 2015-04-13
JP5791680B2 true JP5791680B2 (en) 2015-10-07

Family

ID=52835578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013205980A Active JP5791680B2 (en) 2013-09-30 2013-09-30 Method and system for predicting earthquake damage in buildings

Country Status (1)

Country Link
JP (1) JP5791680B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105043699A (en) * 2015-06-29 2015-11-11 浪潮电子信息产业股份有限公司 Vibration and impact testing method and device for internal and external parameters of server case
CN105160821A (en) * 2015-08-03 2015-12-16 福建星网锐捷通讯股份有限公司 Earthquake alarming method of building intercom system and building intercom system
JP6991703B2 (en) * 2016-10-14 2022-01-12 旭化成ホームズ株式会社 Damage degree judgment device and damage degree judgment system
JP6773324B2 (en) * 2016-12-20 2020-10-21 ビイック株式会社 Interlayer displacement analysis method and interlaminar displacement analysis device using a residential earthquake history meter
JP6462964B1 (en) * 2017-03-24 2019-01-30 株式会社Zweispace Japan Seismic observation system, seismic observation program and seismic observation method
JP2019039862A (en) * 2017-08-28 2019-03-14 アズビル株式会社 Building disaster-affected estimation simulation system and method
JP2019207128A (en) * 2018-05-28 2019-12-05 清水建設株式会社 Building damage detection device, building damage detection model learning device, building damage detection method, building damage detection model learning method, and program
TWI676967B (en) * 2018-06-19 2019-11-11 三聯科技股份有限公司 Earthquake instant warning method
JP7438852B2 (en) * 2020-06-04 2024-02-27 清水建設株式会社 Seismic motion evaluation model generation method, seismic motion evaluation model generation device, seismic motion evaluation method, and seismic motion evaluation device
JP7512090B2 (en) * 2020-06-04 2024-07-08 清水建設株式会社 Earthquake motion evaluation model generation method, earthquake motion evaluation model generation device, earthquake motion evaluation method, and earthquake motion evaluation device
JP7512091B2 (en) * 2020-06-04 2024-07-08 清水建設株式会社 Earthquake motion evaluation model generation method, earthquake motion evaluation model generation device, earthquake motion evaluation method, and earthquake motion evaluation device

Also Published As

Publication number Publication date
JP2015068801A (en) 2015-04-13

Similar Documents

Publication Publication Date Title
JP5791680B2 (en) Method and system for predicting earthquake damage in buildings
CN105765582B (en) Method and system for assessing risk of high energy earth fractures created by underground mining
JP6423219B2 (en) Safety diagnosis system for structures
Michel et al. Seismic vulnerability assessment to slight damage based on experimental modal parameters
US8605544B1 (en) Hybrid seismic sensor network
Chiauzzi et al. Building damage scenarios based on exploitation of Housner intensity derived from finite faults ground motion simulations
CN108415052A (en) Danger old building based on Big Dipper location technology monitors system and method
US20160011325A1 (en) Earthquake prediction device
JP2016019369A (en) Structure verification system, structure verification device and structure verification program
CN110929565A (en) Risk monitoring method and device based on machine learning, storage medium and electronic equipment
Gasparin et al. Assessment of the upper-ocean observing system in the equatorial Pacific: The role of Argo in resolving intraseasonal to interannual variability
Alarcón et al. Structural health monitoring of South America's first 6-Story experimental light-frame timber-building by using a low-cost RaspberryShake seismic instrumentation
Scaini et al. Near‐real‐time damage estimation for buildings based on strong‐motion recordings: An application to target areas in northeastern Italy
JP2016018389A (en) Comprehensive monitoring device, and comprehensive monitoring program
JP5495684B2 (en) Elevator earthquake damage prediction device
KR20170091455A (en) Inter-floor noise measuring system using mobile device
Dost et al. Scaling of peak ground acceleration and peak ground velocity recorded in the Netherlands
CN117890465A (en) Anti-slide pile landslide post-earthquake damage identification method and electronic equipment
JP6389663B2 (en) Structure verification system, structure verification device, structure verification program
JP2016017848A (en) Structure verification system, structure verification device, and structure verification program
JP4995161B2 (en) Deterioration diagnosis system for wooden buildings
JP5615672B2 (en) Elevator earthquake outage prediction system
CN115935742A (en) Finite difference-based heterogeneous slope seismic displacement probability analysis method and system
JP6642232B2 (en) Earthquake damage estimation system, structure with earthquake damage estimation system, and earthquake damage estimation program
JP2020112445A (en) Earthquake information processing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150527

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20150527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150803

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20150724

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150804

R150 Certificate of patent or registration of utility model

Ref document number: 5791680

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250