JP2019039862A - Building disaster-affected estimation simulation system and method - Google Patents

Building disaster-affected estimation simulation system and method Download PDF

Info

Publication number
JP2019039862A
JP2019039862A JP2017163314A JP2017163314A JP2019039862A JP 2019039862 A JP2019039862 A JP 2019039862A JP 2017163314 A JP2017163314 A JP 2017163314A JP 2017163314 A JP2017163314 A JP 2017163314A JP 2019039862 A JP2019039862 A JP 2019039862A
Authority
JP
Japan
Prior art keywords
building
earthquake
damage
acceleration
ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017163314A
Other languages
Japanese (ja)
Inventor
祐志 高田
Yushi Takada
祐志 高田
▲高▼橋 正樹
正樹 ▲高▼橋
Masaki Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Keio University
Azbil Corp
Original Assignee
Keio University
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keio University, Azbil Corp filed Critical Keio University
Priority to JP2017163314A priority Critical patent/JP2019039862A/en
Publication of JP2019039862A publication Critical patent/JP2019039862A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Geophysics And Detection Of Objects (AREA)

Abstract

To provide a building disaster-affected estimation simulation system that simulates a disaster-affected level of buildings due to earthquakes on the basis of earthquake data about known earthquakes.SOLUTION: A building disaster-affected estimation simulation system 1 comprises: a design building model generation unit 31 that generates a design building model mathematizing a motion of a building 2 being an estimation simulation object due to earthquakes; a known earthquake data acquisition unit 32 that acquires earthquake data about known earthquakes; a distance azimuth setting unit 33 that sets a distance to a location and azimuth where the known earthquake occurs, from the building 2; a ground acceleration calculation unit 34 that calculates ground acceleration in accordance with the distance and azimuth; an earthquake response analysis unit 35 that inputs the ground acceleration calculated by the ground acceleration calculation unit 34 into the design building model, and conducts an earthquake response analysis; and a disaster-affected information calculation unit 36 that calculates disaster-affected information on the building 2, using an earthquake response analysis result and the ground acceleration.SELECTED DRAWING: Figure 1

Description

本発明は、建物被災推定シミュレーションシステムおよび方法に関し、特に地震による建物の被災度の推定をシミュレーションする建物被災推定シミュレーションシステムおよび方法に関する。   The present invention relates to a building damage estimation simulation system and method, and more particularly to a building damage estimation simulation system and method for simulating the estimation of the damage level of a building due to an earthquake.

近年、日本国内において大規模な地震の発生が相次ぎ、地震によるビルなどの建物の損傷の度合い(以下、「被災度」という。)を推定する技術が注目されている。例えば、特許文献1には、地震が発生すると、推定対象の建物の設計構造に関するパラメータから導出された設計建物のモデルに、地震センサで測定された地動加速度を入力して、地震終了後、即座に建物の被災度の推定結果を提示する技術が開示されている。   In recent years, large-scale earthquakes have occurred one after another in Japan, and technology for estimating the degree of damage to buildings such as buildings due to earthquakes (hereinafter referred to as “damage level”) has attracted attention. For example, in Patent Document 1, when an earthquake occurs, the ground acceleration measured by the earthquake sensor is input to the model of the design building derived from the parameters related to the design structure of the building to be estimated. Discloses a technique for presenting an estimation result of the damage level of a building.

特許文献1に開示された技術では、推定対象の建物に設置された地震センサが、東西方向、南北方向、および鉛直方向の地動加速度を計測する。そして、これら3方向成分の地動加速度を用いた地震の応答解析が行われて、建物の各階の最大加速度、および最大変位、ならびに各階間の最大層間変位角を、南北方向、東西方向、および鉛直方向の各方向成分について算出している。   In the technique disclosed in Patent Document 1, an earthquake sensor installed in a building to be estimated measures ground acceleration in the east-west direction, the north-south direction, and the vertical direction. Then, an earthquake response analysis using the ground motion acceleration of these three directional components is performed, and the maximum acceleration and maximum displacement of each floor of the building and the maximum interlayer displacement angle between each floor are determined in the north-south direction, east-west direction, and vertical direction. Calculation is made for each direction component of the direction.

しかし、特許文献1に開示された技術は、実際に発生した地震のデータに基づいて、建物の被災度を推定するものであり、過去に発生した地震に相当する規模の地震が任意の位置で発生した場合の、建物の被災度の推定シミュレーションを行うことはできなかった。   However, the technique disclosed in Patent Document 1 estimates the damage level of a building based on data of an actually occurring earthquake, and an earthquake having a magnitude corresponding to an earthquake that occurred in the past can be detected at an arbitrary position. When it occurred, it was not possible to perform a simulation to estimate the damage level of the building.

特開2016−197014号公報Japanese Patent Laid-Open No. 2006-197014

本発明は、既知の地震に関する地震データに基づいて、地震による建物の被災度の推定をシミュレーションする建物被災推定シミュレーションシステムを提供することを目的とする。   An object of this invention is to provide the building damage estimation simulation system which simulates the estimation of the damage degree of the building by an earthquake based on the earthquake data regarding a known earthquake.

上述した課題を解決するために、本発明に係る建物被災推定シミュレーションシステムは、推定シミュレーション対象の建物の設計図書から抽出された構造設計パラメータの値に基づいて、前記建物の地震による動きを数式化した設計建物モデルを生成する設計建物モデル生成回路と、既知の地震に関する地震データを取得する既知地震データ取得回路と、前記建物から前記既知の地震が発生した位置までの距離と方位とを設定する位置設定回路と、前記地震データに基づいて、前記距離と前記方位とに応じた地動加速度を算出する地動加速度算出回路と、前記地動加速度算出回路によって算出された前記地動加速度を前記設計建物モデルに入力して、前記設計建物モデルの地震応答解析を行う地震応答解析回路と、前記地震応答解析結果および前記地動加速度を用いて前記建物の被災情報を算出する、被災情報算出回路とを備えることを特徴とする。   In order to solve the above-described problem, the building damage estimation simulation system according to the present invention formulates the movement of the building due to the earthquake based on the value of the structural design parameter extracted from the design book of the estimation simulation target building. A design building model generation circuit that generates the designed building model, a known earthquake data acquisition circuit that acquires earthquake data related to a known earthquake, and a distance and direction from the building to the position where the known earthquake occurred A position setting circuit; a ground acceleration calculation circuit that calculates a ground acceleration according to the distance and the direction based on the earthquake data; and the ground acceleration calculated by the ground acceleration calculation circuit in the design building model. The seismic response analysis circuit that performs the seismic response analysis of the designed building model and the seismic response analysis result Calculates the disaster information of the building using the fine the ground acceleration, characterized in that it comprises a disaster information calculating circuit.

また、本発明に係る建物被災推定シミュレーションシステムにおいて、前記地動加速度算出回路は、前記地震データから、前記方位に対応する地動加速度データを抽出し、前記距離に応じて前記地動加速度データの値を減衰させて前記地動加速度を算出してもよい。   In the building damage estimation simulation system according to the present invention, the ground acceleration calculation circuit extracts ground motion acceleration data corresponding to the direction from the earthquake data, and attenuates the value of the ground acceleration data according to the distance. Then, the ground motion acceleration may be calculated.

また、本発明に係る建物被災推定シミュレーションシステムにおいて、前記地震応答解析回路による前記地震応答解析結果は、前記建物の各階の変位、加速度、および速度を含み、前記被災情報算出回路が算出する前記被災情報は、前記建物の各階の震度、長周期地震動、最大変位、および最大加速度と、各階間の最大変位角とを含んでいてもよい。   In the building damage estimation simulation system according to the present invention, the earthquake response analysis result by the earthquake response analysis circuit includes displacement, acceleration, and speed of each floor of the building, and the damage information calculation circuit calculates the damage The information may include seismic intensity, long-period ground motion, maximum displacement, and maximum acceleration of each floor of the building, and a maximum displacement angle between the floors.

また、本発明に係る建物被災推定シミュレーションシステムにおいて、前記被災情報算出回路が算出した前記被災情報から、前記建物の被災度を推定する被災度推定回路をさらに備えていてもよい。   The building damage estimation simulation system according to the present invention may further include a damage degree estimation circuit that estimates the damage degree of the building from the damage information calculated by the damage information calculation circuit.

また、本発明に係る建物被災推定シミュレーションシステムにおいて、前記被災度推定回路が推定した被災度を提示する被災度提示回路をさらに備えていてもよい。   The building damage estimation simulation system according to the present invention may further include a damage degree presentation circuit that presents the damage degree estimated by the damage degree estimation circuit.

また、本発明に係る建物被災推定シミュレーション方法は、推定シミュレーション対象の建物の設計図書から抽出された構造設計パラメータの値に基づいて、前記建物の地震による動きを数式化した設計建物モデルを生成する設計建物モデル生成ステップと、既知の地震に関する地震データを取得する既知地震データ取得ステップと、前記建物から前記既知の地震が発生した位置までの距離と方位とを設定する位置設定ステップと、前記地震データに基づいて、前記距離と前記方位とに応じた地動加速度を算出する地動加速度算出ステップと、前記地動加速度算出ステップで算出した前記地動加速度を前記設計建物モデルに入力して、前記設計建物モデルの地震応答解析を行う地震応答解析ステップと、前記地震応答解析結果および前記地動加速度を用いて前記建物の被災情報を算出する、被災情報算出ステップと、を備えることを特徴とする。   Further, the building damage estimation simulation method according to the present invention generates a design building model that formulates the movement of the building due to an earthquake based on the value of the structural design parameter extracted from the design book of the building to be estimated simulation. A design building model generation step, a known earthquake data acquisition step for acquiring earthquake data relating to a known earthquake, a position setting step for setting a distance and direction from the building to the position where the known earthquake occurred, and the earthquake Based on the data, a ground acceleration calculation step for calculating a ground acceleration according to the distance and the azimuth, and the ground acceleration calculated in the ground acceleration calculation step are input to the design building model, and the design building model An earthquake response analysis step for performing an earthquake response analysis of the earthquake, the earthquake response analysis result and the ground motion Calculates the disaster information of the building using the velocity, characterized in that it and a disaster information calculation step.

本発明によれば、既知の地震に関する地震データに基づいて、推定シミュレーション対象の建物から既知の地震に相当する規模の地震が発生した位置までの距離と方位とに応じた地動加速度を算出し、設計建物モデルに入力して地震応答解析を行うため、任意の位置に発生した既知の地震に相当する規模の地震に対する建物の被災度を推定シミュレーションすることができる。   According to the present invention, based on the earthquake data related to a known earthquake, the ground acceleration is calculated according to the distance and direction from the estimated simulation target building to the position where the earthquake corresponding to the known earthquake has occurred, Since the earthquake response analysis is performed by inputting into the design building model, it is possible to estimate and simulate the damage degree of the building against an earthquake of a magnitude corresponding to a known earthquake occurring at an arbitrary position.

図1は、本発明の実施の形態に係る建物被災推定シミュレーションシステムの構成例を示すブロック図である。FIG. 1 is a block diagram showing a configuration example of a building damage estimation simulation system according to an embodiment of the present invention. 図2は、本発明の実施の形態に係る建物被災推定シミュレーションシステムにおける動作を説明するフローチャートである。FIG. 2 is a flowchart for explaining the operation in the building damage estimation simulation system according to the embodiment of the present invention. 図3は、本発明の実施の形態における被災度のうち、建物の各階間の最大変位角と、各階の最大変位と、各階の最大加速度の表示例を示す図である。FIG. 3 is a diagram showing a display example of the maximum displacement angle between the floors of the building, the maximum displacement of each floor, and the maximum acceleration of each floor among the degree of damage in the embodiment of the present invention. 図4は、本発明の実施の形態における被災度のうち、建物の各階の長周期地震動階級の表示例を示す図である。FIG. 4 is a diagram showing a display example of the long-period seismic motion class of each floor of the building in the degree of damage according to the embodiment of the present invention. 図5は、本発明の実施の形態における被災度の別の表示例を示す図である。FIG. 5 is a diagram showing another display example of the degree of damage in the embodiment of the present invention. 図6は、本発明の実施の形態に係る被災度推定シミュレーション装置を実現するコンピュータの構成例を示すブロック図である。FIG. 6 is a block diagram illustrating a configuration example of a computer that realizes the disaster level estimation simulation apparatus according to the embodiment of the present invention.

以下、本発明の好適な実施の形態について、図1から図6を参照して詳細に説明する。また、以下の説明において、「既知の地震」は「過去に発生した地震」である場合について説明する。各図について共通する構成要素には、同一の符号が付されている。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of the invention will be described in detail with reference to FIGS. In the following description, a case where the “known earthquake” is “an earthquake that occurred in the past” will be described. Constituent elements common to the drawings are given the same reference numerals.

<実施の形態>
図1は、本発明の実施の形態に係る建物被災推定シミュレーションシステム1の構成例を示すブロック図である。本実施の形態に係る建物被災推定シミュレーションシステム1は、建物2と、被災度推定シミュレーション装置3と、ユーザ端末4とを有し、被災度推定シミュレーション装置3とユーザ端末4は、インターネットなどのネットワークNWを介して接続されている。
<Embodiment>
FIG. 1 is a block diagram showing a configuration example of a building damage estimation simulation system 1 according to an embodiment of the present invention. The building damage estimation simulation system 1 according to the present embodiment includes a building 2, a damage degree estimation simulation apparatus 3, and a user terminal 4. The damage degree estimation simulation apparatus 3 and the user terminal 4 are connected to a network such as the Internet. Connected via NW.

建物2は、地震による被災状況の推定シミュレーションを行う対象の建築物である。本実施の形態では、建物2は、6階建ての鉄筋コンクリート構造である場合について説明する。   The building 2 is a target building for which an estimation simulation of a damage situation caused by an earthquake is performed. In the present embodiment, the case where the building 2 has a six-story reinforced concrete structure will be described.

被災度推定シミュレーション装置3は、建物2の地震による被災度の推定シミュレーションに必要な処理を行う装置であり、推定シミュレーションの対象である建物2の設計建物モデルを生成する設計建物モデル生成部31と、過去の地震に関する地震データを取得する過去地震データ取得部32と、建物2から過去の地震に相当する規模の地震が発生した位置までの距離と方位とを設定する距離方位設定部33と、地震データに基づいて、設定された距離と方位とに応じた地動加速度zを算出する地動加速度算出部34と、地震応答解析の結果と地動加速度zとを用いて、建物2の被災情報を算出する被災情報算出部36と、被災情報に基づいて建物2の被災度を推定する被災度推定部36と、被災度のシミュレーション結果を表示する表示部38とを備える。被災度推定シミュレーション装置3に含まれる上記構成それぞれの説明については後述する。   The damage level estimation simulation device 3 is a device that performs processing necessary for the estimation simulation of the damage level due to the earthquake of the building 2, and includes a design building model generation unit 31 that generates a design building model of the building 2 that is the target of the estimation simulation. A past earthquake data acquisition unit 32 that acquires earthquake data related to past earthquakes, a distance direction setting unit 33 that sets the distance and direction from the building 2 to a position where an earthquake of a magnitude corresponding to a past earthquake has occurred, Based on the earthquake data, the damage information of the building 2 is calculated using the ground acceleration calculation unit 34 for calculating the ground acceleration z according to the set distance and direction, and the result of the earthquake response analysis and the ground acceleration z. The damage information calculation unit 36 that performs damage, the damage level estimation unit 36 that estimates the damage level of the building 2 based on the damage information, and a table that displays the simulation result of the damage level And a part 38. The description of each of the above-described configurations included in the damage degree estimation simulation device 3 will be described later.

ユーザ端末4は、入力部41と、表示部42とを有する。ユーザ端末4は、ユーザから、入力部41を介して、例えば、後述の過去の地震に相当する規模の地震の発生位置などの設定を受け付けると、建物2からの距離と方位の情報をネットワークNWを介して被災度推定シミュレーション装置3(距離方位設定部33)に送信する。また、表示部42には、被災度推定シミュレーション装置3からネットワークNWを介して送信される、建物2の被災度の推定シミュレーション結果などが表示される。   The user terminal 4 includes an input unit 41 and a display unit 42. When the user terminal 4 receives a setting such as an earthquake occurrence position corresponding to a past earthquake, which will be described later, from the user via the input unit 41, for example, the user terminal 4 transmits the distance and direction information from the building 2 to the network NW. Is transmitted to the damage degree estimation simulation device 3 (distance direction setting unit 33). In addition, the display unit 42 displays, for example, an estimation simulation result of the damage level of the building 2 transmitted from the damage level estimation simulation apparatus 3 via the network NW.

次に、本実施の形態における建物被災推定シミュレーションシステム1の動作を、図2のフローチャートを用いて説明する。まず、設計建物モデル生成部31は、建物2の地震による動きを数式化した設計建物モデルを生成する(ステップS11)。より詳細には、設計建物モデル生成部31は、建物2の設計図書から地震による建物2の応答解析に必要な構造設計パラメータを抽出し、設計建物モデルを導出する。   Next, operation | movement of the building damage estimation simulation system 1 in this Embodiment is demonstrated using the flowchart of FIG. First, the design building model generation unit 31 generates a design building model that formulates the movement of the building 2 due to the earthquake (step S11). More specifically, the design building model generation unit 31 extracts structural design parameters necessary for response analysis of the building 2 due to the earthquake from the design book of the building 2 and derives a design building model.

構造設計パラメータは、建物2の減衰定数、各階の質量、各階の剛性がある。これらの減衰定数、各階の質量、各階の剛性から、設計建物モデルの状態方程式が得られる。
dX/dt=A×X+B×U+D×z ・・・(1)
The structural design parameters include the attenuation constant of the building 2, the mass of each floor, and the rigidity of each floor. From these attenuation constants, the mass of each floor, and the rigidity of each floor, the equation of state of the design building model is obtained.
dX / dt = A × X + B × U + D × z (1)

ここで、Xは状態変数である。状態変数Xには、建物2の各階の変位、各階の速度、制振装置(図示しない)の変位などが含まれる。Uは、制振装置を制御する制御器(図示しない)への制御入力(制御装置および制御器がない場合にはU=0)、zは地動加速度を示す。なお、A、B、およびDは、定数行列である。   Here, X is a state variable. The state variable X includes the displacement of each floor of the building 2, the speed of each floor, the displacement of a vibration control device (not shown), and the like. U is a control input to a controller (not shown) that controls the vibration damping device (U = 0 when there is no controller and controller), and z is the ground motion acceleration. A, B, and D are constant matrices.

次に、過去地震データ取得部32は、過去に発生した地震の地動加速度データなどを含む地震データを記憶部(図示しない)から読み出す(ステップS12)。より詳細には、例えば、ユーザによって、ユーザ端末4の表示部42に表示された過去の地震リストなどで構成される選択画面から、推定シミュレーションに採用する過去の地震の入力を受け付ける構成を採用してもよい。入力された過去の地震を示す情報は、ユーザ端末4からネットワークNWを介して過去地震データ取得部32に送信される。なお、過去の地震に関する地震データは、ネットワークNWを介して外部からダウンロードする構成を採用してもよい。   Next, the past earthquake data acquisition unit 32 reads earthquake data including ground motion acceleration data of earthquakes that have occurred in the past from a storage unit (not shown) (step S12). More specifically, for example, a configuration is adopted in which a user receives an input of past earthquakes to be used for estimation simulation from a selection screen configured by a past earthquake list or the like displayed on the display unit 42 of the user terminal 4. May be. The input information indicating past earthquakes is transmitted from the user terminal 4 to the past earthquake data acquisition unit 32 via the network NW. In addition, you may employ | adopt the structure which downloads the earthquake data regarding the past earthquake from the outside via the network NW.

過去地震データ取得部32によって取得される、過去に発生した地震の地震データに含まれる地動加速度データには、東西方向EWの地動加速度データ、南北方向NSの地動加速度データ、および鉛直方向UDの地動加速度データなどが含まれる。   The ground acceleration data included in the earthquake data of past earthquakes acquired by the past earthquake data acquisition unit 32 includes the ground acceleration data in the east-west direction EW, the ground acceleration data in the north-south direction NS, and the ground motion in the vertical direction UD. Includes acceleration data.

次に、距離方位設定部33は、推定シミュレーション対象の建物2から過去の地震に相当する規模の地震が発生した位置までの距離と方位とを取得する(ステップS13)。距離方位設定部33は、取得した距離と方位の情報を記憶部に記憶する。   Next, the distance azimuth setting unit 33 acquires the distance and azimuth from the building 2 to be estimated simulation to the position where an earthquake of a magnitude corresponding to a past earthquake has occurred (step S13). The distance azimuth setting unit 33 stores the acquired distance and azimuth information in the storage unit.

例えば、東京都千代田区にある建物2から南方向に20km離れた位置で、2011年3月11日の東日本大震災における宮城県大崎市で観測された地震に相当する規模の地震が発生した場合の建物2の被災度の推定シミュレーションを行う場合、距離は「20km」、方位は「南」と設定される。これらの情報は、ユーザによって任意に決定されることができ、ユーザ端末4からネットワークNWを介して距離方位設定部33に送信される。   For example, when an earthquake of a magnitude equivalent to that observed in Osaki City, Miyagi Prefecture in the Great East Japan Earthquake on March 11, 2011 occurred at a location 20 km south of Building 2 in Chiyoda-ku, Tokyo When the simulation for estimating the damage level of the building 2 is performed, the distance is set to “20 km” and the direction is set to “south”. These pieces of information can be arbitrarily determined by the user, and are transmitted from the user terminal 4 to the distance / azimuth setting unit 33 via the network NW.

次に、地動加速度算出部34は、距離方位設定部33によって取得された、建物2から過去の地震に相当する規模の地震の発生位置までの距離と方位とに基づいて、過去の地震データを用いて地動加速度zを算出する(ステップS14)。   Next, the ground acceleration calculation unit 34 obtains past earthquake data based on the distance and direction from the building 2 to the occurrence position of the earthquake corresponding to the past earthquake acquired by the distance / azimuth setting unit 33. Using this, the ground motion acceleration z is calculated (step S14).

より詳細には、地動加速度算出部34は、ユーザにより設定された、建物2から過去の地震に相当する規模の地震が発生する方位に基づいて、その方位に対応する地動加速度データを、過去の地震データから抽出する。地動加速度算出部34は、抽出した地動加速度データを距離に応じて減衰させることで地動加速度zを算出する。地動加速度算出部34は、算出した地動加速度zを記憶部に記憶する。   More specifically, the ground acceleration calculation unit 34 calculates the ground acceleration data corresponding to the direction based on the direction set by the user in which an earthquake of a magnitude corresponding to the past earthquake occurs from the building 2. Extract from earthquake data. The ground acceleration calculation unit 34 calculates the ground acceleration z by attenuating the extracted ground acceleration data according to the distance. The ground motion acceleration calculation unit 34 stores the calculated ground motion acceleration z in the storage unit.

次に、地震応答解析部35は、地動加速度算出部34が算出した過去の地震データに基づく建物2における地動加速度zと、制振装置の制御システムで演算された制御入力Uとを設計建物モデルに入力し、設計建物モデルにおける、過去の地震に相当する規模の地震に対する応答解析を行う(ステップS15)。この地震応答解析により、地震応答解析部35は、建物2の各階の変位と速度とを求める。   Next, the earthquake response analysis unit 35 designs the ground motion acceleration z in the building 2 based on the past earthquake data calculated by the ground motion acceleration calculation unit 34 and the control input U calculated by the control system of the vibration control device. And a response analysis for an earthquake of a magnitude corresponding to a past earthquake in the design building model is performed (step S15). By this earthquake response analysis, the earthquake response analysis unit 35 obtains the displacement and speed of each floor of the building 2.

また、地震応答解析部35は、各階の速度を微分することにより、各階の加速度を求める。また、地震応答解析部35は、東西方向EW、南北方向NS、および鉛直方向UDそれぞれについての建物2の各階の変位、速度、および加速度を求める。   Moreover, the earthquake response analysis part 35 calculates | requires the acceleration of each floor by differentiating the speed of each floor. Moreover, the earthquake response analysis part 35 calculates | requires the displacement, speed, and acceleration of each floor of the building 2 about the east-west direction EW, the north-south direction NS, and the vertical direction UD, respectively.

具体的には、地震応答解析部35は、以下の式(2)に示す4次のルンゲクッタ法を用いて地震に対する応答解析を行う。
X1=X
b1=dt×(A×X1+B×U+D×z)
X2=X+b1/2
b2=dt×(A×X2+B×U+D×z)
X3=X+b2/2
b3=dt×(A×X3+B×U+D×z)
X4=X+b3
b4=dt×(A×X4+B×U+D×z)
Y=X+(b1+2×b2+2×b3+b4)/6 ・・・(2)
Specifically, the earthquake response analysis unit 35 performs a response analysis for an earthquake using a fourth-order Runge-Kutta method represented by the following equation (2).
X1 = X
b1 = dt × (A × X1 + B × U + D × z)
X2 = X + b1 / 2
b2 = dt × (A × X2 + B × U + D × z)
X3 = X + b2 / 2
b3 = dt × (A × X3 + B × U + D × z)
X4 = X + b3
b4 = dt × (A × X4 + B × U + D × z)
Y = X + (b1 + 2 × b2 + 2 × b3 + b4) / 6 (2)

ここで、dtはサンプリング時間を表す。次に、被災情報算出部36は、過去の地震に相当する規模の地震の発生中は、現在時刻から一定時間ΔT1だけ遡った地震応答解析部35の地震応答解析結果(各階の変位、各階の速度、各階の加速度)と地動加速度z(東西方向EW、南北方向NS、鉛直方向UDそれぞれの地動加速度z)とを用いて、被災情報を算出する(ステップS16)。算出された被災情報は、記憶部に記憶される。   Here, dt represents the sampling time. Next, during the occurrence of an earthquake of a magnitude corresponding to a past earthquake, the damage information calculation unit 36 receives the seismic response analysis result (displacement of each floor, the displacement of each floor) from the current time by a certain time ΔT1. The damage information is calculated using the speed, the acceleration of each floor) and the ground acceleration z (the ground acceleration z in each of the east-west direction EW, the north-south direction NS, and the vertical direction UD) (step S16). The calculated disaster information is stored in the storage unit.

被災情報としては、建物2の基礎地盤面に相当する位置での震度、各階の計測震度、各階の長周期地震動、各階の最大加速度、各階の最大速度、各階の最大変位、各階間の最大層間変位角がある。   As damage information, the seismic intensity at the position corresponding to the foundation ground surface of building 2, seismic intensity measured on each floor, long-period ground motion on each floor, maximum acceleration on each floor, maximum speed on each floor, maximum displacement on each floor, maximum interlayer between floors There is a displacement angle.

建物2の基礎地盤面に相当する位置での震度は、地動加速度算出部34によって算出された地動加速度zから算出することができる。各階の計測震度は、各階の加速度から算出することができる。各階の長周期地震動は、地動加速度zを積分して得た地動速度と各階の速度から求めた絶対速度応答に基づいて算出することができる。各階間の最大層間変位角は、各階間の最大層間変位を階高で割ることで算出することができる。   The seismic intensity at the position corresponding to the foundation ground surface of the building 2 can be calculated from the ground acceleration z calculated by the ground acceleration calculation unit 34. The measured seismic intensity of each floor can be calculated from the acceleration of each floor. The long-period ground motion of each floor can be calculated based on the ground motion speed obtained by integrating the ground motion acceleration z and the absolute speed response obtained from the speed of each floor. The maximum interlayer displacement angle between each floor can be calculated by dividing the maximum interlayer displacement between each floor by the floor height.

次に、被災度推定部37は、設計建物モデルに入力された地動加速度zが、所定の地震終了判定閾値未満である場合は、過去の地震に相当する地震は止んだと判断し(ステップS17;YES)、被災情報算出部36が算出した全データを用いて、建物2の被災度を推定する(ステップS18)。   Next, when the ground motion acceleration z input to the design building model is less than the predetermined earthquake end determination threshold, the damage level estimation unit 37 determines that the earthquake corresponding to the past earthquake has stopped (step S17). YES), the damage level of the building 2 is estimated using all the data calculated by the damage information calculation unit 36 (step S18).

より具体的には、被災度推定部37は、被災情報算出部36が算出した、被災情報に含まれる、各階の最大加速度、各階の最大変位、各階間の最大層間変位角の各種データをそれぞれ集計する。例えば、被災度推定部37は、集計した各階の最大加速度、各階の最大変位、各階間の最大層間変位角を、東西方向EW、南北方向NS、および鉛直方向UDのそれぞれについて求める。   More specifically, the damage degree estimation unit 37 calculates various data of the maximum acceleration of each floor, the maximum displacement of each floor, and the maximum interlayer displacement angle between the floors included in the disaster information calculated by the disaster information calculation unit 36, respectively. Tally. For example, the damage level estimation unit 37 calculates the aggregated maximum acceleration of each floor, the maximum displacement of each floor, and the maximum interlayer displacement angle between the floors for each of the east-west direction EW, the north-south direction NS, and the vertical direction UD.

また、被災度推定部37は、各階間の最大層間変位角の値が、例えば、0.005[rad]以上0.01[rad]未満の場合には、建物2におけるその階の損傷は、「小破」と推定する。また、各階間の最大層間変位角の値が0.01[rad]以上0.015[rad]未満の場合には、その階間の損傷は「中破」と推定し、0.015[rad]以上である場合には、その階間の損傷は「大破」と推定する。このように、「小破」、「中破」、および「大破」の3つの異なるレベルで建物2の各階間の損傷を推定する。   In addition, the damage level estimation unit 37, when the value of the maximum interlayer displacement angle between each floor is, for example, 0.005 [rad] or more and less than 0.01 [rad], the damage of the floor in the building 2 is Presumed to be a “small break”. Further, when the value of the maximum interlayer displacement angle between each floor is 0.01 [rad] or more and less than 0.015 [rad], the damage between the floors is estimated as “destructive”, and 0.015 [rad ] If this is the case, the damage between the floors is presumed to be “Great Damage”. In this way, damage between each floor of the building 2 is estimated at three different levels: “small break”, “medium break”, and “great break”.

また、被災度推定部37は、被災情報算出部36が算出した建物2の各階における長周期地震動に基づいて、各階の長周期地震動階級(階級1から階級4)を推定する。例えば、絶対速度応答の値が100cm/s以上の場合には長周期地震動階級4となる。このように各階ごとに長周期地震動の階級を表示することで、各階ごとに周期が長い揺れによる地震時の、人の行動の困難さの程度の推定結果が示される。   Further, the damage degree estimation unit 37 estimates the long-period ground motion class (class 1 to class 4) of each floor based on the long-period ground motion on each floor of the building 2 calculated by the disaster information calculation unit 36. For example, when the absolute velocity response value is 100 cm / s or more, the long-period ground motion class 4 is obtained. By displaying the class of long-period ground motion for each floor in this way, the estimation result of the degree of difficulty of human action during an earthquake due to a long-period shaking is shown for each floor.

次に、被災度推定部37は、ステップS18で推定した建物2の被災度を、ネットワークNWを介して、ユーザ端末4に送信する。送信された建物2の被災度は、ユーザ端末4の表示部42に表示される(ステップS19)。このとき、被災情報算出部36が算出した、建物2の基礎地盤面に相当する位置での震度と、地動加速度算出部34が算出して設計建物モデルに入力された地動加速度zについてもユーザ端末4に送信する。さらに、被災度推定シミュレーション装置3の表示部38に、被災度推定部37による建物2の被災度などを表示することもできる。   Next, the damage level estimation unit 37 transmits the damage level of the building 2 estimated in step S18 to the user terminal 4 via the network NW. The transmitted damage level of the building 2 is displayed on the display unit 42 of the user terminal 4 (step S19). At this time, the user terminal also calculates the seismic intensity at the position corresponding to the foundation ground surface of the building 2 calculated by the disaster information calculation unit 36 and the ground acceleration z calculated by the ground acceleration calculation unit 34 and input to the design building model. 4 to send. Further, the damage level of the building 2 by the damage level estimation unit 37 can be displayed on the display unit 38 of the damage level estimation simulation device 3.

図3は、ユーザ端末4の表示部42に表示される、各階間の最大変位角と、各階の最大変位と、各階の最大加速度の表示例を示す図である。図3に示すように、建物2の各階間の最大変位角と、各階の最大変位と、各階の最大加速度において、それぞれ東西方向EW、南北方向NS、および鉛直方向UDの3つの方向成分のデータが表示されている。   FIG. 3 is a diagram illustrating a display example of the maximum displacement angle between each floor, the maximum displacement of each floor, and the maximum acceleration of each floor displayed on the display unit 42 of the user terminal 4. As shown in FIG. 3, in the maximum displacement angle between each floor of the building 2, the maximum displacement of each floor, and the maximum acceleration of each floor, data of three directional components of the east-west direction EW, the north-south direction NS, and the vertical direction UD, respectively. Is displayed.

図3に示すように、表示部42に表示されている東西方向EWの各階間の最大変位角は、いずれの階間においても「小破」未満である。また、南北方向NSの各階間の最大変位角は、いずれの階間においても「中破」となっている。また、鉛直方向UDの各階間の最大変位角は、1階〜2階、2階〜3階、および5階〜6階については「中破」であり、3階〜4階と4階〜5階が「大破」となっている。   As shown in FIG. 3, the maximum displacement angle between the floors in the east-west direction EW displayed on the display unit 42 is less than “small break” between any floors. In addition, the maximum displacement angle between the floors in the north-south direction NS is “destructive” in any floor. In addition, the maximum displacement angle between each floor in the vertical direction UD is “medium break” for the first floor to the second floor, the second floor to the third floor, and the fifth floor to the sixth floor, and the third floor to the fourth floor and the fourth floor to The 5th floor is a “wreck”.

図4は、ユーザ端末4の表示部42に表示される、建物2の長周期地震動階級の表示例を示す図である。図4では、1階から6階までのすべての階において長周期地震動階級は階級4である被災度を表示している。   FIG. 4 is a diagram illustrating a display example of the long-period ground motion class of the building 2 displayed on the display unit 42 of the user terminal 4. In FIG. 4, the degree of damage in which the long-period ground motion class is class 4 in all the floors from the first floor to the sixth floor is displayed.

図5は、ユーザ端末4の表示部42に表示される被災度の、別の表示例を示す図である。図5に示すように、表示部42には、被災情報算出部36によって算出された基礎地盤面に相当する位置での震度に基づいて「震度6強相当」と表示され、長周期地震動階級については6階で「階級4」と表示され、また、3階〜4階間の最大変位角の値に基づいて、3階〜4階は「大破の恐れあり」と表示されている。   FIG. 5 is a diagram illustrating another display example of the degree of damage displayed on the display unit 42 of the user terminal 4. As shown in FIG. 5, the display unit 42 displays “equivalent seismic intensity 6 strong” based on the seismic intensity at the position corresponding to the foundation ground surface calculated by the disaster information calculation unit 36, and the long-period seismic ground motion class is displayed. Is displayed as "Class 4" on the 6th floor, and based on the value of the maximum displacement angle between the 3rd floor and the 4th floor, the 3rd floor to the 4th floor are displayed as "Potential for damage".

以上説明したように、本実施の形態に係る建物被災推定シミュレーションシステム1では、過去の地震に関する地震データに基づいて、推定シミュレーション対象の建物2から過去に発生した地震に相当する規模の地震が発生した位置までの距離と方位とに応じた地動加速度zを算出する。さらに、算出された地動加速度zを入力した設計建物モデルに基づいて地震応答解析が行われる。したがって、任意の位置に発生した過去の地震に相当する規模の地震に対する建物2の被災度を推定シミュレーションすることができる。   As described above, in the building damage estimation simulation system 1 according to the present embodiment, an earthquake of a scale corresponding to an earthquake that occurred in the past from the estimation simulation target building 2 occurs based on the earthquake data related to the past earthquake. The ground acceleration z corresponding to the distance to the position and the direction is calculated. Furthermore, an earthquake response analysis is performed based on the designed building model to which the calculated ground motion acceleration z is input. Accordingly, it is possible to estimate and simulate the damage level of the building 2 against an earthquake having a magnitude corresponding to a past earthquake that has occurred at an arbitrary position.

また、過去の地震に相当する規模の地震の発生場所を、建物2からの距離と方位とに基づいて設定することができるため、例えば、南海トラフ地震など、所定の位置での発生が予測されている地震について、実際に地震が発生する前に、建物2の被災度を推定シミュレーションすることが可能となる。   In addition, since the location of an earthquake of a magnitude corresponding to a past earthquake can be set based on the distance and direction from the building 2, for example, an occurrence at a predetermined position such as a Nankai Trough earthquake is predicted. It is possible to estimate and simulate the damage level of the building 2 before the actual earthquake occurs.

本実施の形態で説明した被災度推定シミュレーション装置3は、図6に示すように、バス301を介して接続されるCPU302、記憶装置303、I/F304、および表示装置305を備えるコンピュータと、これらのハードウェア資源を制御するプログラムによって実現することができる。CPU302は、記憶装置303に格納されたプログラムに従って本実施の形態で説明した処理を実行する。   As illustrated in FIG. 6, the disaster degree estimation simulation apparatus 3 described in the present embodiment includes a CPU 302, a storage device 303, an I / F 304, and a display device 305 connected via a bus 301, and these It can be realized by a program that controls the hardware resources. The CPU 302 executes the processing described in this embodiment in accordance with a program stored in the storage device 303.

以上、本発明の建物被災推定シミュレーションシステムにおける実施の形態について説明したが、本発明は説明した実施の形態に限定されるものではなく、請求項に記載した発明の範囲において当業者が想定し得る各種の変形を行うことが可能である。   The embodiment of the building damage estimation simulation system of the present invention has been described above. However, the present invention is not limited to the described embodiment, and a person skilled in the art can assume within the scope of the invention described in the claims. Various modifications can be made.

例えば、本実施の形態では、被災度の推定シミュレーションの対象である建物2は、鉄筋コンクリート構造の6階建てのビルである場合について説明した。しかし、被災度を推定する対象は、人工的に制作されて設置された工作物、例えば、ダム、鉄塔、ガスタンク、橋梁、堤防などの建造物、マンション、家屋などの建築物であってもよい。   For example, in the present embodiment, the case has been described in which the building 2 that is the target of the damage estimation simulation is a six-story building having a reinforced concrete structure. However, the target of estimating the degree of damage may be an artificially produced and installed work, for example, a structure such as a dam, a steel tower, a gas tank, a bridge or a dike, a building such as a condominium or a house. .

1…建物被災推定シミュレーションシステム、2…建物、3…被災度推定シミュレーション装置、31…設計建物モデル生成部、32…過去地震データ取得部、33…距離方位設定部、34…地動加速度算出部、35…地震応答解析部、36…被災情報算出部、37…被災度推定部、38…表示部、4…ユーザ端末、41…入力部、42…表示部。   DESCRIPTION OF SYMBOLS 1 ... Building damage estimation simulation system, 2 ... Building, 3 ... Damage degree estimation simulation apparatus, 31 ... Design building model production | generation part, 32 ... Past earthquake data acquisition part, 33 ... Distance direction setting part, 34 ... Ground motion acceleration calculation part, 35 ... Earthquake response analysis part, 36 ... Damage information calculation part, 37 ... Damage degree estimation part, 38 ... Display part, 4 ... User terminal, 41 ... Input part, 42 ... Display part.

Claims (6)

推定シミュレーション対象の建物の設計図書から抽出された構造設計パラメータの値に基づいて、前記建物の地震による動きを数式化した設計建物モデルを生成する設計建物モデル生成回路と、
既知の地震に関する地震データを取得する既知地震データ取得回路と、
前記建物から前記既知の地震が発生した位置までの距離と方位とを設定する位置設定回路と、
前記地震データに基づいて、前記距離と前記方位とに応じた地動加速度を算出する地動加速度算出回路と、
前記地動加速度算出回路によって算出された前記地動加速度を前記設計建物モデルに入力して、前記設計建物モデルの地震応答解析を行う地震応答解析回路と、
前記地震応答解析結果および前記地動加速度を用いて前記建物の被災情報を算出する、被災情報算出回路と、
を備えることを特徴とする建物被災推定シミュレーションシステム。
A design building model generation circuit that generates a design building model that formulates the movement of the building due to the earthquake based on the value of the structural design parameter extracted from the design book of the estimation simulation target building;
A known earthquake data acquisition circuit for acquiring earthquake data relating to known earthquakes;
A position setting circuit for setting a distance and a direction from the building to the position where the known earthquake occurred,
A ground acceleration calculation circuit that calculates a ground acceleration according to the distance and the direction based on the earthquake data;
An earthquake response analysis circuit that inputs the ground motion acceleration calculated by the ground motion acceleration calculation circuit to the design building model and performs an earthquake response analysis of the design building model;
A damage information calculation circuit for calculating the damage information of the building using the earthquake response analysis result and the ground motion acceleration;
A building damage estimation simulation system characterized by comprising:
前記地動加速度算出回路は、前記地震データから、前記方位に対応する地動加速度データを抽出し、前記距離に応じて前記地動加速度データの値を減衰させて前記地動加速度を算出することを特徴とする請求項1に記載の建物被災推定シミュレーションシステム。   The ground motion acceleration calculation circuit extracts ground motion acceleration data corresponding to the direction from the earthquake data, and calculates the ground motion acceleration by attenuating the value of the ground motion acceleration data according to the distance. The building damage estimation simulation system according to claim 1. 前記地震応答解析回路による前記地震応答解析結果は、前記建物の各階の変位、加速度、および速度を含み、
前記被災情報算出回路が算出する前記被災情報は、前記建物の各階の震度、長周期地震動、最大変位、および最大加速度と、各階間の最大変位角とを含むことを特徴とする請求項1又は請求項2に記載の建物被災推定シミュレーションシステム。
The earthquake response analysis result by the earthquake response analysis circuit includes displacement, acceleration, and speed of each floor of the building,
The disaster information calculated by the disaster information calculation circuit includes seismic intensity, long-period ground motion, maximum displacement, and maximum acceleration of each floor of the building, and a maximum displacement angle between the floors. The building damage estimation simulation system according to claim 2.
前記被災情報算出回路が算出した前記被災情報から、前記建物の被災度を推定する被災度推定回路をさらに備えることを特徴とする請求項1から3のうちのいずれか1項に記載の建物被災推定シミュレーションシステム。   The building damage according to any one of claims 1 to 3, further comprising a damage degree estimation circuit that estimates a damage degree of the building from the damage information calculated by the damage information calculation circuit. Estimation simulation system. 前記被災度推定回路が推定した被災度を提示する被災度提示回路をさらに備えることを特徴とする請求項4に記載の建物被災推定シミュレーションシステム。   The building damage estimation simulation system according to claim 4, further comprising a damage degree presentation circuit that presents a damage degree estimated by the damage degree estimation circuit. 推定シミュレーション対象の建物の設計図書から抽出された構造設計パラメータの値に基づいて、前記建物の地震による動きを数式化した設計建物モデルを生成する設計建物モデル生成ステップと、
既知の地震に関する地震データを取得する既知地震データ取得ステップと、
前記建物から前記既知の地震が発生した位置までの距離と方位とを設定する位置設定ステップと、
前記地震データに基づいて、前記距離と前記方位とに応じた地動加速度を算出する地動加速度算出ステップと、
前記地動加速度算出ステップで算出した前記地動加速度を前記設計建物モデルに入力して、前記設計建物モデルの地震応答解析を行う地震応答解析ステップと、
前記地震応答解析結果および前記地動加速度を用いて前記建物の被災情報を算出する、被災情報算出ステップと、
を備えることを特徴とする建物被災推定シミュレーション方法。
A design building model generation step for generating a design building model that formulates the movement of the building due to the earthquake based on the value of the structural design parameter extracted from the design book of the estimation simulation target building;
A known earthquake data acquisition step for acquiring earthquake data relating to a known earthquake;
A position setting step for setting a distance and a direction from the building to the position where the known earthquake occurred,
A ground acceleration calculation step for calculating a ground acceleration according to the distance and the direction based on the earthquake data;
An earthquake response analysis step of inputting the ground acceleration calculated in the ground acceleration calculation step into the design building model and performing an earthquake response analysis of the design building model;
Damage information calculation step for calculating the damage information of the building using the earthquake response analysis result and the ground acceleration, and
A building damage estimation simulation method characterized by comprising:
JP2017163314A 2017-08-28 2017-08-28 Building disaster-affected estimation simulation system and method Pending JP2019039862A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017163314A JP2019039862A (en) 2017-08-28 2017-08-28 Building disaster-affected estimation simulation system and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017163314A JP2019039862A (en) 2017-08-28 2017-08-28 Building disaster-affected estimation simulation system and method

Publications (1)

Publication Number Publication Date
JP2019039862A true JP2019039862A (en) 2019-03-14

Family

ID=65725556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017163314A Pending JP2019039862A (en) 2017-08-28 2017-08-28 Building disaster-affected estimation simulation system and method

Country Status (1)

Country Link
JP (1) JP2019039862A (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001033347A (en) * 1999-07-21 2001-02-09 Sekisui Chem Co Ltd Construction judgement system for base isolation building
JP2002014013A (en) * 2000-06-27 2002-01-18 Structural Quality Assurance Inc Total countermeasure system for ensuring safety of building receiving effect of sudden external force such as earthquake
US20130046475A1 (en) * 2011-08-19 2013-02-21 Pei-Yang Lin System and method for on-site instant seismic analysis
JP2015068801A (en) * 2013-09-30 2015-04-13 株式会社地層科学研究所 Method and system for predicting earthquake damage of building
JP2016017848A (en) * 2014-07-08 2016-02-01 株式会社Nttファシリティーズ Structure verification system, structure verification device, and structure verification program
JP2016197014A (en) * 2015-04-02 2016-11-24 アズビル株式会社 Building damage intensity estimating system, and method
JP2017040607A (en) * 2015-08-21 2017-02-23 三菱電機ビルテクノサービス株式会社 Long-period ground motion prediction system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001033347A (en) * 1999-07-21 2001-02-09 Sekisui Chem Co Ltd Construction judgement system for base isolation building
JP2002014013A (en) * 2000-06-27 2002-01-18 Structural Quality Assurance Inc Total countermeasure system for ensuring safety of building receiving effect of sudden external force such as earthquake
US20130046475A1 (en) * 2011-08-19 2013-02-21 Pei-Yang Lin System and method for on-site instant seismic analysis
JP2015068801A (en) * 2013-09-30 2015-04-13 株式会社地層科学研究所 Method and system for predicting earthquake damage of building
JP2016017848A (en) * 2014-07-08 2016-02-01 株式会社Nttファシリティーズ Structure verification system, structure verification device, and structure verification program
JP2016197014A (en) * 2015-04-02 2016-11-24 アズビル株式会社 Building damage intensity estimating system, and method
JP2017040607A (en) * 2015-08-21 2017-02-23 三菱電機ビルテクノサービス株式会社 Long-period ground motion prediction system

Similar Documents

Publication Publication Date Title
de Felice et al. Methods and challenges for the seismic assessment of historic masonry structures
Bažant et al. Mechanics of progressive collapse: Learning from World Trade Center and building demolitions
JP6549877B2 (en) Building disaster estimation system and method
JP6671607B2 (en) Structure impact prediction system
JP6963275B2 (en) Building damage estimation system and method
JP2016197014A (en) Building damage intensity estimating system, and method
Roffel et al. Results from a full-scale study on the condition assessment of pendulum tuned mass dampers
Ahmad et al. Seismic vulnerability of the Himalayan half-dressed rubble stone masonry structures, experimental and analytical studies
JP5210058B2 (en) Earthquake damage prediction device and earthquake damage prediction program
Xu et al. Simulation of earthquake-induced hazards of falling exterior non-structural components and its application to emergency shelter design
JP4385948B2 (en) Real-time earthquake response waveform estimation method using real-time earthquake information
JP6441869B2 (en) Building earthquake resistance evaluation system and building earthquake resistance evaluation method
JP2009293934A (en) Earthquake damage determination apparatus, earthquake damage determination method, and earthquake discrimination program
JP6672133B2 (en) Building with earthquake damage assessment function
JP2019039862A (en) Building disaster-affected estimation simulation system and method
JP6295402B2 (en) A habitability evaluation system for building vibration
Attalla et al. Near-source behavior of buildings under pulse-type earthquakes
Minas et al. Spectral shape proxies and simplified fragility analysis of mid-rise reinforced concrete buildings
Yeow et al. Predicting the maximum total sliding displacement of contents in earthquakes
JP6850615B2 (en) Seismic retrofit design support device, seismic retrofit design method, and program
Fengxin et al. Influence of near-fault velocity pulse on the seismic response of reinforced concrete frame
Persson et al. Analysis of wind-induced vibrations in high-rise buildings
Takewaki et al. New experimental system for base-isolated structures with various dampers and limit aspect ratio
Lee et al. Investigation of modelling methods for buildings with non-structural elements
JP4868364B2 (en) Building design support equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200630

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210706

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220111