JP5788057B1 - Synchronous machine controller - Google Patents

Synchronous machine controller Download PDF

Info

Publication number
JP5788057B1
JP5788057B1 JP2014092239A JP2014092239A JP5788057B1 JP 5788057 B1 JP5788057 B1 JP 5788057B1 JP 2014092239 A JP2014092239 A JP 2014092239A JP 2014092239 A JP2014092239 A JP 2014092239A JP 5788057 B1 JP5788057 B1 JP 5788057B1
Authority
JP
Japan
Prior art keywords
temperature
magnetic flux
synchronous machine
permanent magnet
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014092239A
Other languages
Japanese (ja)
Other versions
JP2015211569A (en
Inventor
貴彦 小林
貴彦 小林
史朗 高木
史朗 高木
雅宏 家澤
雅宏 家澤
安西 清治
清治 安西
和田 典之
典之 和田
大樹 松浦
大樹 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2014092239A priority Critical patent/JP5788057B1/en
Application granted granted Critical
Publication of JP5788057B1 publication Critical patent/JP5788057B1/en
Publication of JP2015211569A publication Critical patent/JP2015211569A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Control Of Ac Motors In General (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

【課題】界磁として永久磁石を有する同期機を駆動しながら、永久磁石に直接温度検出器を取り付けることなく、永久磁石の温度を高い精度で推定することが可能な同期機制御装置を提供する。【解決手段】同期機1の回転速度と電圧指令と電流指令とに基づいて同期機1の電機子鎖交磁束を推定する磁束推定器6、および永久磁石の温度を推定する磁石温度推定手段7を備え、磁石温度推定手段7が、電流指令と磁束推定器6の出力とを入力し、永久磁石の温度が所定の温度T1の条件下における電流指令と、磁束推定器6によって推定された電機子鎖交磁束推定値と、永久磁石の温度が所定の温度T1を基準に所定の温度T1とは異なる温度T2まで変化した時の電機子鎖交磁束の変化量とに基づいて永久磁石の温度を推定する。【選択図】図1Provided is a synchronous machine control device capable of estimating the temperature of a permanent magnet with high accuracy while driving a synchronous machine having a permanent magnet as a field without directly attaching a temperature detector to the permanent magnet. . A magnetic flux estimator 6 for estimating an armature flux linkage of the synchronous machine 1 based on a rotational speed, a voltage command and a current command of the synchronous machine 1, and a magnet temperature estimating means 7 for estimating the temperature of a permanent magnet. The magnet temperature estimation means 7 inputs the current command and the output of the magnetic flux estimator 6, and the electric current command under the condition that the temperature of the permanent magnet is a predetermined temperature T 1 and the electric machine estimated by the magnetic flux estimator 6. The temperature of the permanent magnet based on the estimated value of the interlinkage magnetic flux and the amount of change in the armature linkage magnetic flux when the temperature of the permanent magnet changes to a temperature T2 different from the predetermined temperature T1 based on the predetermined temperature T1. Is estimated. [Selection] Figure 1

Description

この発明は、界磁として永久磁石を有する同期機の制御装置である同期機制御装置に関するものである。   The present invention relates to a synchronous machine control device that is a control device for a synchronous machine having a permanent magnet as a field.

周知のように、界磁として永久磁石を有する同期機をインバータ等の電力変換手段を有する同期機制御装置にて制御する際、同期機の電機子巻線への通電や同期機自身の鉄損等に起因する温度上昇に伴って、界磁の永久磁石の磁化の強さ、すなわち、磁束が減少する「減磁」と呼ばれる現象が発生し、更に許容温度を超えると温度が常温に下がっても磁束が減磁発生前の状態に戻らない「不可逆減磁」と呼ばれる現象が発生する。
このため、界磁として永久磁石を有する同期機を制御する際、少なくとも永久磁石の温度を不可逆減磁が発生する許容温度以下に抑制するように制御する必要がある。
しかし、同期機の構造上のスペースの問題や周囲をケースで防護している等の理由により、温度検出器を永久磁石に直接取り付けることは困難であり、さらに、界磁として永久磁石を有する同期電動機の多くは回転子側の内部に永久磁石を有することが多く、温度検出器を取りつけることへの更なる大きな障害要因となっている。そのため、主に許容温度以下に抑制できるように制御するために、何らかの方法で永久磁石の温度、あるいは永久磁石の温度と相関のある磁束を間接的に測定、あるいは推定する技術が求められている。
As is well known, when a synchronous machine having a permanent magnet as a field is controlled by a synchronous machine control device having a power conversion means such as an inverter, energization to the armature winding of the synchronous machine or iron loss of the synchronous machine itself is known. As the temperature rises due to, etc., the strength of magnetization of the field permanent magnet, that is, a phenomenon called `` demagnetization '' in which the magnetic flux decreases, and when the temperature exceeds the allowable temperature, the temperature drops to room temperature. However, a phenomenon called “irreversible demagnetization” occurs in which the magnetic flux does not return to the state before demagnetization occurs.
For this reason, when controlling a synchronous machine having a permanent magnet as a field, it is necessary to control at least the temperature of the permanent magnet to be equal to or lower than an allowable temperature at which irreversible demagnetization occurs.
However, it is difficult to attach the temperature detector directly to the permanent magnet because of the space problem in the structure of the synchronous machine and the surroundings being protected by a case. Many electric motors often have a permanent magnet inside the rotor, which is an even greater obstacle to mounting the temperature detector. For this reason, in order to perform control so that the temperature can be mainly suppressed to an allowable temperature or lower, a technique for indirectly measuring or estimating the temperature of the permanent magnet or the magnetic flux correlated with the temperature of the permanent magnet by some method is required. .

このような課題の解決を図った同期機制御装置の一例として、回転二軸座標(d−q軸)変換を用いた制御において、永久磁石に減磁が生じていないときのq軸電圧操作量をマップとして保持しておき、同期機を比例積分(PI)制御によって電流制御している際のPI制御部出力であるq軸電圧操作量と、前記マップにより保持された(永久磁石に減磁が生じていない時の)q軸電圧操作量と、回転角速度ωとに基づいて減磁量を演算するようにした従来の装置がある。(例えば特許文献1)   As an example of a synchronous machine control device that solves such a problem, a q-axis voltage manipulated variable when demagnetization has not occurred in a permanent magnet in control using rotational biaxial coordinate (dq axis) conversion. Is stored as a map, and the q-axis voltage manipulated variable, which is an output of the PI controller when the synchronous machine is current-controlled by proportional integral (PI) control, and the map (demagnetized in the permanent magnet). There is a conventional apparatus in which the amount of demagnetization is calculated based on the q-axis voltage manipulated variable (when there is no occurrence) and the rotational angular velocity ω. (For example, Patent Document 1)

また、同様な制御装置の他の例として、電機子巻線(ステータ巻線)への通電時に、先ず、基準界磁電流マップに格納されている複数の電源電圧毎のマップデータの中から、電圧検出器から出力されるバッテリの端子電圧に対応するマップデータを選択し、選択したマップデータに含まれる複数の所定基準磁石温度毎のマップデータの中から、トルクセンサにより検出されるトルクおよび角度演算部から出力される回転数、及びq軸電流(後述する本願発明においては界磁電流を意味する)に対応するマップデータを選択し、選択したマップデータに対応する所定基準磁石温度を磁石温度の推定値として設定する磁石温度推定部を有するようにした従来の装置がある。(例えば特許文献2)   As another example of a similar control device, when energizing the armature winding (stator winding), first, among the map data for each of the plurality of power supply voltages stored in the reference field current map, The map data corresponding to the battery terminal voltage output from the voltage detector is selected, and the torque and angle detected by the torque sensor from the map data for each of a plurality of predetermined reference magnet temperatures included in the selected map data. Map data corresponding to the rotation speed and q-axis current (which means field current in the present invention described later) output from the calculation unit is selected, and a predetermined reference magnet temperature corresponding to the selected map data is selected as the magnet temperature. There is a conventional apparatus that has a magnet temperature estimation unit that is set as an estimated value. (For example, Patent Document 2)

また、同様な制御装置の他の例として、回転速度および電流・電圧を測定するステップST1と、回転速度および電流・電圧の前記測定値に基づいて、巻線の温度を推定するステップST3と、前記巻線温度の推定値に基づいて、前記巻線の抵抗を推定するステップST4と、前記巻線温度の推定値に基づいて、回転子磁石部の温度を推定するステップST5と、前記巻線温度の推定値に基づいて、誘起電圧の正常値を推定するステップST6と、前記巻線抵抗の推定値に基づいて、誘起電圧の実際の値を推定するステップST7と、前2ステップにおいて推定した誘起電圧係数の正常値と実際の値を比較して、その差が所定の閾値を超えているときに減磁が生じていると判断するステップST8を順次実施して回転子磁石部の減磁状態を判定するようにした従来の装置がある。(例えば特許文献3)   As another example of a similar control device, step ST1 for measuring the rotational speed and current / voltage, step ST3 for estimating the temperature of the winding based on the measured values of the rotational speed and current / voltage, Step ST4 for estimating the resistance of the winding based on the estimated value of the winding temperature, Step ST5 for estimating the temperature of the rotor magnet unit based on the estimated value of the winding temperature, and the winding Estimated in the previous two steps, step ST6 for estimating the normal value of the induced voltage based on the estimated value of temperature, step ST7 for estimating the actual value of the induced voltage based on the estimated value of the winding resistance. A normal value and an actual value of the induced voltage coefficient are compared, and when the difference exceeds a predetermined threshold value, it is determined that demagnetization has occurred, and the demagnetization of the rotor magnet unit is sequentially performed. Judge state There are conventional devices to so that. (For example, Patent Document 3)

特許第4223880号公報Japanese Patent No. 4223880 特許第4652176号公報Japanese Patent No. 4652176 特開2005−192325号公報JP 2005-192325 A 特許第4672236号公報Japanese Patent No. 4672236 特許第5291184号公報Japanese Patent No. 5291184

特許文献1に示された従来の装置においては、減磁の発生の有無は判断できるものの磁石温度を求める方法については開示されておらず、減磁状態から磁石温度を換算する何らかの方法が別途必要となるといった課題があった。特に、「不可逆減磁」の有無を判定するためには、磁石温度の把握が必要である。   In the conventional apparatus shown in Patent Document 1, although it is possible to determine whether or not demagnetization has occurred, a method for obtaining the magnet temperature is not disclosed, and some method for converting the magnet temperature from the demagnetized state is separately required. There was a problem of becoming. In particular, in order to determine the presence / absence of “irreversible demagnetization”, it is necessary to grasp the magnet temperature.

特許文献2に示された従来の装置においては、トルク、回転数および電源電圧を含む多くのパラメータについて、磁石温度を変更しながら計測して磁石温度推定用の多くのマップデータを作成するため、これらのマップデータの作成に大きな労力を必要とするといった課題があった。   In the conventional apparatus shown in Patent Document 2, in order to create a lot of map data for estimating the magnet temperature by measuring while changing the magnet temperature for many parameters including the torque, the rotation speed, and the power supply voltage, There has been a problem that a great effort is required to create these map data.

特許文献3に示された従来の装置においては、特許文献3の永久磁石電動機の減磁検出方法においては、電機子巻線の温度上昇と回転子永久磁石の温度上昇との比を予め実験により求めておき、電機子巻線の温度に基づいて永久磁石の温度を推定しているが、電機子巻線と永久磁石とでは熱時定数が大きく異なり、さらに、電動機の運転条件や冷却性能等他の要因も影響するため、電機子巻線の温度上昇に対する回転子永久磁石の温度上昇を一義的に求めることは難しく、様々な条件に対して電機子巻線の温度に基づいて、磁石温度を精度良く推測することは容易ではないといった課題があった。   In the conventional apparatus shown in Patent Document 3, in the demagnetization detection method of the permanent magnet motor of Patent Document 3, the ratio between the temperature increase of the armature winding and the temperature increase of the rotor permanent magnet is experimentally determined in advance. The temperature of the permanent magnet is estimated based on the temperature of the armature winding, but the thermal time constant differs greatly between the armature winding and the permanent magnet. Since other factors also affect, it is difficult to uniquely determine the temperature rise of the rotor permanent magnet with respect to the temperature rise of the armature winding, and the magnet temperature based on the temperature of the armature winding for various conditions There is a problem that it is not easy to accurately estimate the value.

この発明は、従来の同期機制御装置における前述のような課題を解決するためになされたものであり、界磁として永久磁石を有する同期機を駆動しながら、永久磁石に直接温度検出器を取り付けることなく、永久磁石の温度を高い精度で推定することが可能な同期機制御装置を提供することを目的としている。   The present invention has been made to solve the above-described problems in the conventional synchronous machine control device, and a temperature detector is directly attached to a permanent magnet while driving a synchronous machine having a permanent magnet as a field. An object of the present invention is to provide a synchronous machine control device capable of estimating the temperature of a permanent magnet with high accuracy.

この発明に係る同期機制御装置は、界磁として永久磁石を有する同期機に電圧指令に基づいて電圧を出力する電力変換手段、
前記同期機の電機子電流を検出する電流検出手段、
前記同期機の回転子位置を推定あるいは検出する位置検出手段、
電流指令と前記回転子位置に基づいて回転直交二軸(d−q軸)座標上へ座標変換した前記電機子電流とに基づいて該回転直交二軸(d−q軸)座標上で電流制御を行うことにより前記電圧指令を生成する電流制御器、
前記回転子位置の変化から算出される前記同期機の回転速度と前記電圧指令と前記電流指令とに基づいて前記同期機の電機子鎖交磁束を推定する磁束推定器、および
前記永久磁石の温度を推定する磁石温度推定手段を備え、
前記磁石温度推定手段は、前記永久磁石の温度が所定の温度T1の条件下における前記電流指令と前記電機子鎖交磁束との相関を示す第1の磁束マップと、前記電流指令と前記永久磁石の温度が温度T1を基準に、温度T1とは異なる温度T2まで変化した時の前記電機子鎖交磁束の変化量との相関を示す磁束変化マップとを備え、
前記磁束推定器にて推定される前記電機子鎖交磁束の推定値と第1の磁束マップと磁束変化マップとに基づいて前記永久磁石の温度を推定するものである。
The synchronous machine control device according to the present invention is a power conversion means for outputting a voltage based on a voltage command to a synchronous machine having a permanent magnet as a field,
Current detecting means for detecting an armature current of the synchronous machine;
Position detecting means for estimating or detecting the rotor position of the synchronous machine;
Current control on the rotation orthogonal two-axis (dq axis) coordinates based on the current command and the armature current coordinate-converted on the rotation orthogonal two-axis (dq axis) coordinates based on the rotor position. A current controller that generates the voltage command by performing
A magnetic flux estimator that estimates an armature linkage magnetic flux of the synchronous machine based on a rotation speed of the synchronous machine calculated from a change in the rotor position, the voltage command, and the current command, and a temperature of the permanent magnet A magnet temperature estimating means for estimating
The magnet temperature estimation means includes a first magnetic flux map indicating a correlation between the current command and the armature linkage magnetic flux under a condition where the temperature of the permanent magnet is a predetermined temperature T1, and the current command and the permanent magnet. The magnetic flux change map showing the correlation with the change amount of the armature linkage magnetic flux when the temperature of the armature is changed to a temperature T2 different from the temperature T1 with respect to the temperature T1,
The temperature of the permanent magnet is estimated based on the estimated value of the armature flux linkage estimated by the magnetic flux estimator, the first magnetic flux map, and the magnetic flux change map .

この発明は、界磁として永久磁石を有する同期機に電圧指令に基づいて電圧を出力する電力変換手段、前記同期機の電機子電流を検出する電流検出手段、前記同期機の回転子位置を推定あるいは検出する位置検出手段、電流指令と前記回転子位置に基づいて回転直交二軸(d−q軸)座標上へ座標変換した前記電機子電流とに基づいて該回転直交二軸(d−q軸)座標上で電流制御を行うことにより前記電圧指令を生成する電流制御器、前記回転子位置の変化から算出される前記同期機の回転速度と前記電圧指令と前記電流指令とに基づいて前記同期機の電機子鎖交磁束を推定する磁束推定器、および前記永久磁石の温度を推定する磁石温度推定手段を備え、前記磁石温度推定手段は、前記永久磁石の温度が所定の温度T1の条件下における前記電流指令と前記電機子鎖交磁束との相関を示す第1の磁束マップと、前記電流指令と前記永久磁石の温度が温度T1を基準に、温度T1とは異なる温度T2まで変化した時の前記電機子鎖交磁束の変化量との相関を示す磁束変化マップとを備え、前記磁束推定器にて推定される前記電機子鎖交磁束の推定値と第1の磁束マップと磁束変化マップとに基づいて前記永久磁石の温度を推定するので、電流指令に応じて異なる磁石温度変化に対する電機子鎖交磁束の変化を把握しながら磁石温度を推定することから、永久磁石に直接温度検出器を取り付けることなく、変化する電流(負荷)条件下で永久磁石の温度を精度良く推定できるといった従来にない顕著な効果を奏することができるものである。 The present invention relates to power conversion means for outputting a voltage based on a voltage command to a synchronous machine having a permanent magnet as a field, current detection means for detecting an armature current of the synchronous machine, and estimating a rotor position of the synchronous machine Alternatively , based on the position detection means to detect, the current command and the armature current coordinate-converted on the rotation orthogonal biaxial (dq axis) coordinates based on the rotor position, the rotation orthogonal biaxial (dq A current controller that generates the voltage command by performing current control on the (axis) coordinate, and based on the rotation speed of the synchronous machine calculated from the change in the rotor position, the voltage command, and the current command. A magnetic flux estimator for estimating an armature interlinkage magnetic flux of a synchronous machine; and a magnet temperature estimating means for estimating a temperature of the permanent magnet, wherein the magnet temperature estimating means has a condition that the temperature of the permanent magnet is a predetermined temperature T1. Before A first magnetic flux map showing a correlation between a current command and the armature interlinkage magnetic flux, and the temperature when the temperature of the current command and the permanent magnet changes to a temperature T2 different from the temperature T1 based on the temperature T1. A magnetic flux change map indicating a correlation with the change amount of the armature interlinkage magnetic flux, and the estimated value of the armature interlinkage magnetic flux estimated by the magnetic flux estimator, the first magnetic flux map, and the magnetic flux change map . Since the temperature of the permanent magnet is estimated based on the current command, the temperature of the armature is estimated while grasping the change of the armature linkage magnetic flux with respect to the change of the magnet temperature that differs according to the current command. Therefore, it is possible to obtain a remarkable effect that is not possible in the past, such that the temperature of the permanent magnet can be accurately estimated under changing current (load) conditions.

この発明の実施の形態1を示す図で、同期機制御装置及び同期機1を含めた同期機システムの全体を示す図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows Embodiment 1 of this invention, and is a figure which shows the whole synchronous machine system including the synchronous machine control apparatus and the synchronous machine 1. FIG. この発明の実施の形態1を示す図で、同期機制御装置の他の実施態様及び同期機1を含めた同期機システムの全体を示す図である。It is a figure which shows Embodiment 1 of this invention, and is a figure which shows the whole synchronous machine system containing the other embodiment of a synchronous machine control apparatus, and the synchronous machine 1. FIG. この発明の実施の形態1を示す図で、磁石温度推定手段7の構成の一例を示す構成図である。It is a figure which shows Embodiment 1 of this invention, and is a block diagram which shows an example of a structure of the magnet temperature estimation means 7. FIG. この発明の実施の形態1を示す図で、磁石温度推定手段7を構成する第1の磁束マップ71の概念図である。FIG. 5 is a diagram showing the first embodiment of the present invention, and is a conceptual diagram of a first magnetic flux map 71 constituting the magnet temperature estimating means 7. この発明の実施の形態1を示す図で、磁石温度推定手段7を構成する磁束変化マップ70の概念図である。FIG. 5 is a diagram showing the first embodiment of the present invention and a conceptual diagram of a magnetic flux change map 70 constituting the magnet temperature estimating means 7. この発明の実施の形態1を示す図で、複数のd−q軸上の電流Id、Iqの条件下での磁石温度上昇10℃に対するd軸磁束の減磁割合の一例を表で示す図である。FIG. 5 is a diagram illustrating the first embodiment of the present invention, and is a diagram illustrating an example of a demagnetization ratio of a d-axis magnetic flux with respect to a magnet temperature increase of 10 ° C. under a plurality of currents Id and Iq on a dq axis. is there. この発明の実施の形態2を示す図で、磁石温度推定手段7aの構成の一例を示す構成図である。It is a figure which shows Embodiment 2 of this invention, and is a block diagram which shows an example of a structure of the magnet temperature estimation means 7a. この発明の実施の形態2を示す図で、磁石温度推定手段7aを構成する第2の磁束マップ72の概念図である。It is a figure which shows Embodiment 2 of this invention, and is a conceptual diagram of the 2nd magnetic flux map 72 which comprises the magnet temperature estimation means 7a. この発明の実施の形態3を示す図で、磁石温度推定手段7bの構成の一例を示す構成図である。It is a figure which shows Embodiment 3 of this invention, and is a block diagram which shows an example of a structure of the magnet temperature estimation means 7b. この発明の実施の形態3を示す図で、ある一定のd−q軸上の電流Id、Iqの条件下での磁石温度とd軸磁束との相関の一例を示す概念図である。It is a figure which shows Embodiment 3 of this invention, and is a conceptual diagram which shows an example of the correlation with the magnet temperature and d-axis magnetic flux on the conditions of the electric current Id and Iq on a fixed dq axis. この発明の実施の形態4を示す図で、同期機制御装置及び同期機1を含めた同期機システムの全体を示す図である。It is a figure which shows Embodiment 4 of this invention, and is a figure which shows the whole synchronous machine system including the synchronous machine control apparatus and the synchronous machine 1. FIG. この発明の実施の形態5を示す図で、同期機制御装置及び同期機1を含めた同期機システムの全体を示す図である。It is a figure which shows Embodiment 5 of this invention, and is a figure which shows the whole synchronous machine system including the synchronous machine control apparatus and the synchronous machine 1. FIG. この発明の実施の形態6を示す図で、同期機制御装置及び同期機1を含めた同期機システムの全体を示す図である。It is a figure which shows Embodiment 6 of this invention, and is a figure which shows the whole synchronous machine system containing the synchronous machine control apparatus and the synchronous machine 1. FIG.

実施の形態1.
この発明の実施の形態1に係る同期機制御装置を図1に基づいて説明する。
本発明における同期機制御装置は、図1に図示しない上位のシステムから電流指令(本発明では、後述の回転直交二軸(d−q軸)座標上(以下d−q軸上と略記)の電流指令Id*、Iq*に相当)、あるいはさらにその上位のシステムからトルク指令が与えられることを想定している。該上位のシステムの一例として、電気自動車(EV)または内燃機関とモータの両方を備えるハイブリッド自動車の車両、さらには鉄道車両のような電気車を駆動する用途に本発明が適用される場合は、ドライバー(操縦者)からのアクセル(ノッチ)やブレーキの入力量と車速や種々の入力量に応じて電流指令あるいはトルク指令を決定する車両制御装置などがあり、その他、ファクトリーオートメーション(FA)、昇降機用途においても電流指令を種々の要因に基づいて生成する上位のシステムがある。
また、この発明の同期機制御装置において推定する、同期機1の界磁を形成する永久磁石の温度推定値Tmagを前記上位のシステムに伝達して、該推定値を上位のシステムの制御に利用しても良い。ただし、本発明において前記電流指令を与える上位のシステムは限定されないため、上位のシステムの説明は前記例示にとどめる。
図1は、実施の形態1に係る同期機制御装置を説明するための、同期機1を含めて示すシステム構成図である。なお、本発明における同期機1は、界磁として永久磁石を有するものである。
Embodiment 1 FIG.
A synchronous machine control device according to Embodiment 1 of the present invention will be described with reference to FIG.
The synchronous machine control device according to the present invention has a current command (in the present invention, on the rotation orthogonal two-axis (dq axis) coordinates (hereinafter abbreviated as dq axis) from a host system not shown in FIG. It is assumed that the torque command is given from the current command Id *, Iq *) or higher system. As an example of the host system, when the present invention is applied to an electric vehicle (EV) or a hybrid vehicle vehicle including both an internal combustion engine and a motor, and further to an electric vehicle such as a railway vehicle, There are vehicle control devices that determine the current command or torque command according to the input amount of the accelerator (notch) and brake from the driver (operator), the vehicle speed, and various input amounts, etc. In addition, factory automation (FA), elevator There are host systems that generate current commands based on various factors in applications.
Further, the estimated temperature value Tmag of the permanent magnet that forms the field of the synchronous machine 1 estimated by the synchronous machine control device of the present invention is transmitted to the higher system, and the estimated value is used for controlling the higher system. You may do it. However, in the present invention, the host system that gives the current command is not limited, and the description of the host system is limited to the above example.
FIG. 1 is a system configuration diagram including the synchronous machine 1 for explaining the synchronous machine control device according to the first embodiment. In addition, the synchronous machine 1 in this invention has a permanent magnet as a field.

以下、実施の形態1に係る、同期機1を駆動する同期機制御装置の構成および、構成要素の機能について説明する。
まず、実施の形態1において同期機1を駆動するために必要な構成について、電力変換手段2の出力側から順に、電力変換手段2の入力側となる電圧指令の生成までの流れを説明する。
Hereinafter, the configuration of the synchronous machine control device for driving the synchronous machine 1 according to the first embodiment and the function of the components will be described.
First, regarding the configuration necessary for driving the synchronous machine 1 in the first embodiment, the flow from the output side of the power conversion means 2 to the generation of the voltage command on the input side of the power conversion means 2 will be described.

本発明の実施の形態1における同期機1を駆動する同期機制御装置の構成において、電源23から供給される電力を多相交流電力へ変換し、多相交流電圧を出力する周知のPWM(パルス幅変調)インバータをはじめとする電力変換手段2と同期機1の電機子巻線とが接続され、後述の構成による電流制御器5により得られる電圧指令、厳密には、電流制御器5から出力される電圧指令を、後述の構成による位置検出手段4で得られる同期機1の回転子位置θに基づいて座標変換器21bにて座標変換することで得られる多相交流電圧指令に基づいて電力変換手段2は同期機1に多相電圧を出力し、同期機1を駆動する。その結果、同期機1の電機子巻線に出力電流が発生する。この電機子巻線に発生する出力電流を以下、電機子電流と表記する。
なお、本発明の実施の形態1の電源23に関し、直流電圧を出力する電源あるいはバッテリなどの電池、または、単相あるいは三相の交流電源から周知のコンバータによって直流電圧を得るものを含めて電源23とする。
In the configuration of the synchronous machine control device that drives the synchronous machine 1 according to the first embodiment of the present invention, a well-known PWM (pulse) that converts electric power supplied from the power source 23 into multiphase AC power and outputs a multiphase AC voltage. Width modulation) A voltage command obtained by a current controller 5 having a configuration described later, strictly speaking, an output from the current controller 5 is connected to the power conversion means 2 including an inverter and the armature winding of the synchronous machine 1. The electric power based on the multiphase AC voltage command obtained by converting the coordinate command by the coordinate converter 21b based on the rotor position θ of the synchronous machine 1 obtained by the position detecting means 4 having the configuration described later. The conversion means 2 outputs a multiphase voltage to the synchronous machine 1 and drives the synchronous machine 1. As a result, an output current is generated in the armature winding of the synchronous machine 1. The output current generated in the armature winding is hereinafter referred to as an armature current.
The power supply 23 according to the first embodiment of the present invention includes a power supply that outputs a DC voltage, a battery such as a battery, or a power supply that obtains a DC voltage from a single-phase or three-phase AC power supply by a known converter. 23.

同期機1の出力電流である電機子電流は電流センサをはじめとする電流検出手段3によって検出される。なお、電流検出手段3は、同期機1が三相回転機の場合、同期機1の三相の電機子電流iu、iv、iwの内、全相の電機子電流を検出する構成、あるいは、1つの相(例えばw相)の電機子電流iwについては、検出した2つの相の電機子電流iu、ivを用いて三相平衡状態のiw=−iu−ivの関係から求めるようにして、2つの相の電機子電流を検出する構成でも良い。さらに、各相の電機子電流を直接検出する方法以外に、周知の技術である、電源13と電力変換手段2との間を流れるDCリンク電流に基づいて電機子電流を検出する方法でも良い。   The armature current that is the output current of the synchronous machine 1 is detected by the current detection means 3 including a current sensor. In addition, when the synchronous machine 1 is a three-phase rotating machine, the current detection means 3 detects the armature current of all phases among the three-phase armature currents iu, iv, iw of the synchronous machine 1, or The armature current iw of one phase (for example, w phase) is obtained from the relationship of iw = −iu−iv in a three-phase equilibrium state using the detected armature currents iu and iv of the two phases. A configuration for detecting two-phase armature currents may be used. Further, in addition to the method of directly detecting the armature current of each phase, a method of detecting the armature current based on a DC link current flowing between the power supply 13 and the power conversion means 2, which is a well-known technique, may be used.

位置検出手段4は、周知のレゾルバやエンコーダ等を用いて同期機1の回転子位置θを検出する、あるいは電圧指令や電機子電流等を用いて演算により推定する。ここで、同期機1の回転子位置θとは、一般的に、u相電機子巻線を基準に取った軸に対する永久磁石のN極方向の角度を指す。また、同期機1の回転速度(電気角周波数ωとする)で回転する回転直交二軸座標(以下d−q軸と表記)を定義し、慣例同様、d軸を前記永久磁石のN極方向、すなわち、界磁磁束方向に定め、q軸はd軸に対して90°進んだ直交方向に定める。以下の説明もこの座標軸の定義に従う。   The position detection means 4 detects the rotor position θ of the synchronous machine 1 using a known resolver, encoder, or the like, or estimates by calculation using a voltage command, an armature current, or the like. Here, the rotor position θ of the synchronous machine 1 generally indicates an angle in the N-pole direction of the permanent magnet with respect to the axis taken with reference to the u-phase armature winding. Further, a rotation orthogonal biaxial coordinate (hereinafter referred to as dq axis) that rotates at the rotational speed (electrical angular frequency ω) of the synchronous machine 1 is defined, and the d axis is in the N-pole direction of the permanent magnet as usual. That is, it is determined in the field magnetic flux direction, and the q axis is determined in the orthogonal direction advanced by 90 ° with respect to the d axis. The following description also follows the definition of this coordinate axis.

図1における位置検出手段4は、周知のレゾルバやエンコーダ等を用いて同期機1の回転子位置θを検出する例を示しているが、周知の適応オブザーバ等を適用して電圧指令や電機子電流等から回転子位置θを推定しても良い。
図2は、実施の形態1において、図1とは異なり推定演算により回転子位置θを得る位置検出手段4aを備えた同期機制御装置と同期機1とを含めて示すシステム構成図である。位置検出手段4aの構成は、例えば、特許文献4、5に示されている構成で実現可能であることから、本文では省略する。
The position detection means 4 in FIG. 1 shows an example in which the rotor position θ of the synchronous machine 1 is detected using a known resolver, encoder, etc., but a voltage command or armature is applied by applying a known adaptive observer or the like. The rotor position θ may be estimated from the current or the like.
FIG. 2 is a system configuration diagram including the synchronous machine control device including the position detector 4a for obtaining the rotor position θ by the estimation calculation and the synchronous machine 1, unlike FIG. The configuration of the position detection means 4a can be realized by the configuration shown in Patent Documents 4 and 5, for example, and is therefore omitted in the text.

なお、図1と図2の差異は、位置検出手段4(4a)に係る箇所のみであり、その他の構成は同一である。
後述の実施の形態において、図1の周知のレゾルバやエンコーダ等を用いて同期機1の回転子位置θを検出する例に基づいて説明するが、図2の周知の適応オブザーバ等を適用して電圧指令や電機子電流等から回転子位置θを推定する方式にも適用できることは言うまでもない。
Note that the difference between FIG. 1 and FIG. 2 is only the portion related to the position detection means 4 (4a), and the other configurations are the same.
In the embodiment described later, description will be made based on an example in which the rotor position θ of the synchronous machine 1 is detected using the known resolver, encoder, etc. of FIG. 1, but the known adaptive observer of FIG. Needless to say, the present invention can also be applied to a method of estimating the rotor position θ from a voltage command, an armature current, or the like.

座標変換器21aは、同期機1の電機子電流iu、iv、iwを回転子位置θに基づいて(1)式の演算によりd−q軸上の電流Id、Iqへ変換する。
The coordinate converter 21a converts the armature currents iu, iv, and iw of the synchronous machine 1 into currents Id and Iq on the dq axis based on the rotor position θ by the calculation of equation (1).

電流制御器5は、d−q軸上の電流Id、Iqを所望の電流指令Id*、Iq*に一致させるようにd−q軸上の電圧指令Vd*、Vq*を出力する。電流制御器5においては、d−q軸上の電流指令Id*、Iq*とd−q軸上の電流Id、Iqとの偏差に基づいて(2)式の比例積分制御(PI制御)を行い、d−q軸上の電圧指令(電流フィードバック制御指令)Vd*、Vq*を生成する。
ここで、Kpdは電流制御d軸比例ゲイン、Kidは電流制御d軸積分ゲイン、Kpqは電流制御q軸比例ゲイン、Kiqは電流制御q軸積分ゲイン、s:ラプラス演算子である。なお、ラプラス演算子sの逆数1/sは1回の時間積分を意味する。
また、電流制御器5において、インダクタンス値、抵抗値などのモータパラメータと回転速度ωを用いて電圧フィードフォワード項を演算し、前記電流フィードバック制御指令に加算する周知の電圧非干渉制御を適用して、電圧指令をd−q軸上の電圧指令Vd*、Vq*を求めても良い。
The current controller 5 outputs the voltage commands Vd * and Vq * on the dq axis so that the currents Id and Iq on the dq axis match the desired current commands Id * and Iq *. The current controller 5 performs proportional integral control (PI control) of equation (2) based on the deviation between the current command Id *, Iq * on the dq axis and the current Id, Iq on the dq axis. To generate voltage commands (current feedback control commands) Vd * and Vq * on the dq axis.
Here, Kpd is a current control d-axis proportional gain, Kid is a current control d-axis integral gain, Kpq is a current control q-axis proportional gain, Kiq is a current control q-axis integral gain, and s is a Laplace operator. The inverse 1 / s of the Laplace operator s means one time integration.
In addition, the current controller 5 calculates a voltage feedforward term using motor parameters such as an inductance value and a resistance value and the rotational speed ω, and applies a known voltage non-interference control that is added to the current feedback control command. The voltage commands Vd * and Vq * on the dq axis may be obtained as voltage commands.

電圧フィードフォワード制御を行うためには、図1(図2)の電流制御器5の入力として記載されていない、回転速度ωを電流制御器5へ入力する必要があり、位置検出手段4(または4a)で検出した回転子位置θを用いて微分演算を行い、回転速度ωを得る。
電流制御器5から出力されるd−q軸上の電圧指令Vd*、Vq*は、座標変換器21bにおいて(3)式の演算により、回転子位置θに基づいて電圧指令vu*、vv*、vw*に変換された上で、電力変換手段2に出力される。
電力変換手段2は前記の通り、電圧指令vu*、vv*、vw*に基づいて周知のPWM(パルス幅変調)方式等により同期機1に電圧vu、vv、vwを出力する。
以上が、実施の形態1において同期機1を駆動するために必要な構成である。
In order to perform the voltage feedforward control, it is necessary to input the rotational speed ω, which is not described as the input of the current controller 5 in FIG. 1 (FIG. 2), to the current controller 5, and the position detection means 4 (or A differential operation is performed using the rotor position θ detected in 4a) to obtain a rotational speed ω.
The voltage commands Vd * and Vq * on the dq axes output from the current controller 5 are converted into voltage commands vu * and vv * based on the rotor position θ by the calculation of the expression (3) in the coordinate converter 21b. , Vw * and output to the power conversion means 2.
As described above, the power conversion means 2 outputs the voltages vu, vv, vw to the synchronous machine 1 by a known PWM (pulse width modulation) method or the like based on the voltage commands vu *, vv *, vw *.
The above is the configuration necessary for driving the synchronous machine 1 in the first embodiment.

次に、本発明の特徴である同期機1の界磁を形成する永久磁石の温度推定に必要な構成である磁束推定器6と磁石温度推定手段7について説明する。
磁束推定器6は、前記回転速度ω、d−q軸上の電圧指令Vd*、Vq*、d−q軸上の電流指令Id*、Iq*(Id*、Iq*の代わりにd−q軸上の電流Id、Iqを用いても良い)に基づいて電機子鎖交磁束Φに係る状態量を推定する。なお,電機子鎖交磁束Φとは、永久磁石磁束Φmと前記電機子電流が生成する磁束(電機子反作用磁束)Φaとの合成磁束を指す。
Next, the magnetic flux estimator 6 and the magnet temperature estimator 7 which are the components necessary for estimating the temperature of the permanent magnet forming the field of the synchronous machine 1, which is a feature of the present invention, will be described.
The magnetic flux estimator 6 uses the rotational speed ω, the voltage commands Vd * and Vq * on the dq axes, and the current commands Id * and Iq * on the dq axes (dq instead of Id * and Iq *). The state quantity related to the armature linkage magnetic flux Φ is estimated based on the currents Id and Iq on the axis). The armature interlinkage magnetic flux Φ refers to a combined magnetic flux of a permanent magnet magnetic flux Φm and a magnetic flux (armature reaction magnetic flux) Φa generated by the armature current.

電機子鎖交磁束Φに係る状態量を推定する好適な一手法として、d−q軸上の電圧Vd、Vqと電機子鎖交磁束Φのd軸成分Φd(以下d軸磁束と表記)、同q軸成分Φq(以下q軸磁束と表記)との関係式である(4)式の演算によってΦd、Φq、必要に応じて(5)式の演算によって電機子鎖交磁束Φの絶対値|Φ|を求める方法がある。
ここで、Ld:d軸方向のインダクタンス(以下、d軸インダクタンスと表記)、Lq:q軸方向のインダクタンス(以下、q軸インダクタンスと表記)、R:抵抗(同期機1の電機子巻線の抵抗が主であり、同期機1と電力変換手段2との間の配線抵抗の影響が無視できないぐらい大きい場合は、該配線抵抗も考慮した抵抗値とする)である。なお、ラプラス演算子sは1回の時間微分を意味するが、定常状態では微分項を考慮しなくても良い。
As a suitable method for estimating the state quantity related to the armature linkage magnetic flux Φ, the voltages Vd and Vq on the dq axis and the d axis component Φd of the armature linkage flux Φ (hereinafter referred to as d axis magnetic flux), The absolute value of the armature linkage flux Φ by the calculation of equation (4), which is a relational expression with the q-axis component Φq (hereinafter referred to as q-axis magnetic flux), and if necessary, the calculation of equation (5). There is a method for obtaining | Φ |.
Here, Ld: inductance in the d-axis direction (hereinafter referred to as d-axis inductance), Lq: inductance in the q-axis direction (hereinafter referred to as q-axis inductance), R: resistance (the armature winding of the synchronous machine 1) When the resistance is mainly and the influence of the wiring resistance between the synchronous machine 1 and the power conversion means 2 is so large that it cannot be ignored, the wiring resistance is also taken into consideration). The Laplace operator s means one time differentiation, but it is not necessary to consider the derivative term in the steady state.

実施の形態1における図1、図2の構成では、d−q軸上の電圧Vd、Vqの実際の値が不明であるため、d−q軸上の電圧Vd、Vqの代わりにd−q軸上の電圧指令Vd*、Vq*を用いて(6)式の演算により、電機子鎖交磁束Φの推定値Φeのd軸成分Φde(以下d軸磁束推定値と表記)、同q軸成分Φqe(以下q軸磁束推定値と表記)、必要に応じて(7)式の演算によって電機子鎖交磁束Φの推定値Φeの絶対値|Φe|を求める。
その際、同期機1の駆動開始前(停止状態)において、q軸電圧指令Vq*が0であり、Φde=0となることから、同期機1の駆動開始におけるΦdeの初期値として、所定の永久磁石磁束の値(Φm0とする)を与えておく。
In the configuration of FIGS. 1 and 2 in the first embodiment, since the actual values of the voltages Vd and Vq on the dq axis are unknown, dq is substituted for the voltages Vd and Vq on the dq axis. By using the voltage commands Vd * and Vq * on the axis and calculating the equation (6), the d-axis component Φde of the estimated value Φe of the armature linkage magnetic flux Φ (hereinafter referred to as the estimated d-axis magnetic flux), the q-axis The absolute value | Φe | of the estimated value Φe of the armature flux linkage Φ is obtained by the calculation of the component Φqe (hereinafter referred to as the q-axis magnetic flux estimated value) and the equation (7) as necessary.
At that time, since the q-axis voltage command Vq * is 0 and Φde = 0 before the start of driving of the synchronous machine 1 (stopped state), a predetermined value is used as an initial value of Φde at the start of driving of the synchronous machine 1. A permanent magnet magnetic flux value (Φm0) is given.

図1(図2)の磁束推定器6の入力の中に、位置検出手段4(または4a)で検出した回転子位置θが含まれているが、これは、前記回転子位置θを用いて微分演算を行うことで回転速度ωを得る処理を磁束推定器6の処理の中に含めていることを想定したものであり、当該処理を別の構成部で行うならば、必ずしも磁束推定器6の入力として回転子位置θを含める必要はない。
(6)式の演算において、電流の変化が緩やかであると仮定して(5)式におけるラプラス演算子sを含む項は無視しても良い。
The rotor position θ detected by the position detector 4 (or 4a) is included in the input of the magnetic flux estimator 6 in FIG. 1 (FIG. 2). This is based on the rotor position θ. It is assumed that the process of obtaining the rotational speed ω by performing the differential operation is included in the process of the magnetic flux estimator 6, and if the process is performed by another component, the magnetic flux estimator 6 is not necessarily required. Does not need to include the rotor position θ.
In the calculation of the equation (6), it is possible to ignore the term including the Laplace operator s in the equation (5) on the assumption that the change in current is gentle.

図3は、実施の形態1に係る同期機制御装置における磁石温度推定手段7の構成の一例を示す構成図である。
この発明の実施の形態1による同期機制御装置の特徴に一つである磁石温度推定手段7は、図3に示すように、第1の磁束マップ71と磁束変化マップ70と磁石温度換算部79とで構成し、d−q軸上の電流指令Id*、Iq*で同期機1を駆動した時に、磁束推定器6で推定するd軸磁束推定値Φdeと第1の磁束マップ71と磁束変化マップ70とに基づいて同期機1の永久磁石温度推定値Tmagを出力する。
FIG. 3 is a configuration diagram showing an example of the configuration of the magnet temperature estimation means 7 in the synchronous machine control device according to the first embodiment.
As shown in FIG. 3, the magnet temperature estimation means 7, which is one of the features of the synchronous machine control device according to Embodiment 1 of the present invention, includes a first magnetic flux map 71, a magnetic flux change map 70, and a magnet temperature conversion unit 79. When the synchronous machine 1 is driven with the current commands Id * and Iq * on the dq axes, the estimated d-axis magnetic flux Φde estimated by the magnetic flux estimator 6, the first magnetic flux map 71, and the magnetic flux change Based on the map 70, the estimated permanent magnet temperature Tmag of the synchronous machine 1 is output.

図4は、第1の磁束マップ71の概念図であり、同期機1を全運転領域で駆動するために必要なd−q軸上の電流指令Id*、Iq*の範囲(図4では、d軸電流指令Id*の範囲を-100[A]〜0[A]、q軸電流指令Iq*の範囲を-100[A]〜+100[A]を想定、以下の図も同様)全てにおいて、同期機1の永久磁石が温度T1の状態におけるd−q軸上の電流指令Id*、Iq*と電機子鎖交磁束Φのd軸成分(Φd1とする)との相関を、実機実験的あるいは周知の磁界解析のツールなどを用いて求めてマッピングしたものである。
(相関マッピングの際は、電流指令Id*、Iq*の代わりにd−q軸上の電流Id、Iqに対する関連付けでも良く、以下のマッピングにおいても同様である。)
第1の磁束マップ71に基づいて、d−q軸上の電流指令Id*、Iq*を、同期機1の永久磁石が温度T1の条件下における電機子鎖交磁束Φのd軸成分Φd1へ換算し出力する。
マッピングした電流指令条件と同期機1の駆動時に与えられた電流指令とが一致しなければ、線形補間や近似の手法を用いて推定値を出力する。(その他のマップも同様な手法を用いる。)
FIG. 4 is a conceptual diagram of the first magnetic flux map 71, and ranges of current commands Id * and Iq * on the dq axes necessary for driving the synchronous machine 1 in the entire operation region (in FIG. Assuming the range of d-axis current command Id * is -100 [A] to 0 [A] and the range of q-axis current command Iq * is -100 [A] to +100 [A]. , The correlation between the current commands Id * and Iq * on the dq axes when the permanent magnet of the synchronous machine 1 is at the temperature T1 and the d-axis component of the armature flux linkage Φ (referred to as Φd1) This is obtained by mapping using a known or well-known magnetic field analysis tool.
(At the time of correlation mapping, association with the currents Id and Iq on the dq axis may be used instead of the current commands Id * and Iq *, and the same applies to the following mappings.)
Based on the first magnetic flux map 71, the current commands Id * and Iq * on the dq axes are transferred to the d-axis component Φd1 of the armature linkage flux Φ under the condition that the permanent magnet of the synchronous machine 1 is at the temperature T1. Convert and output.
If the mapped current command condition does not match the current command given when the synchronous machine 1 is driven, an estimated value is output using linear interpolation or approximation. (Similar methods are used for other maps.)

図5は、磁束変化マップの概念図であり、同期機1を全運転領域で駆動するために必要なd−q軸上の電流指令Id*、Iq*の範囲全てにおいて、d−q軸上の電流指令Id*、Iq*が一定であるとの前提で、同期機1の永久磁石が温度T1から温度T1とは異なる温度T2までΔT0分変化した時のd−q軸上の電流指令Id*、Iq*と電機子鎖交磁束Φのd軸成分の変化量(ΔΦd0とする)との相関を、実機実験的あるいは周知の磁界解析のツールなどを用いて求めてマッピングしたものである。   FIG. 5 is a conceptual diagram of the magnetic flux change map. In the range of current commands Id * and Iq * on the dq axes necessary for driving the synchronous machine 1 in the entire operation region, Current command Id on the dq axis when the permanent magnet of the synchronous machine 1 changes from temperature T1 to temperature T2 different from temperature T1 by ΔT0 on the premise that the current commands Id * and Iq * are constant. The correlation between *, Iq * and the amount of change of the d-axis component of the armature flux linkage Φ (referred to as ΔΦd0) is obtained and mapped using actual machine experiments or a well-known magnetic field analysis tool.

磁束変化マップ70に基づいて、d−q軸上の電流指令Id*、Iq*を、同期機1の永久磁石が温度T1から温度T1とは異なる温度T2までΔT0分変化した時の電機子鎖交磁束Φのd軸成分の変化量ΔΦd0へ換算し出力する。なお、温度T1、T2は同期機1の駆動によって変化し得る(同期機1の界磁を形成する)永久磁石の温度変化範囲のそれぞれ上下限に設定することが望ましい。なお、本発明において温度T1、T2の大小関係は問わない。   Based on the magnetic flux change map 70, the armature chain when the current command Id * and Iq * on the dq axis is changed by ΔT0 from the temperature T1 to the temperature T2 different from the temperature T1 by the permanent magnet of the synchronous machine 1 It is converted into a change amount ΔΦd0 of the d-axis component of the magnetic flux Φ and output. The temperatures T1 and T2 are preferably set to the upper and lower limits of the temperature change range of the permanent magnet that can be changed by driving the synchronous machine 1 (forming the field of the synchronous machine 1). In the present invention, the magnitude relationship between the temperatures T1 and T2 does not matter.

磁石温度換算部79は、d−q軸上の電流指令Id*、Iq*で同期機1を駆動した時に、磁束推定器6で推定する(温度T1の時の)d軸磁束推定値Φdeと第1の磁束マップ71から得られる電機子鎖交磁束Φのd軸成分Φd1と磁束変化マップ70から得られる電機子鎖交磁束Φのd軸成分の変化量ΔΦd0とから(8)式に基づいて同期機1の永久磁石温度推定値Tmagを出力する。
以上の構成で、d−q軸上の電流指令Id*、Iq*で同期機1を駆動した時の同期機1の永久磁石の温度を推定できる。
The magnet temperature conversion unit 79 estimates the d-axis magnetic flux estimated value Φde (at the temperature T1) estimated by the magnetic flux estimator 6 when the synchronous machine 1 is driven with the current commands Id * and Iq * on the dq axes. From the d-axis component Φd1 of the armature linkage flux Φ obtained from the first magnetic flux map 71 and the change amount ΔΦd0 of the d-axis component of the armature linkage flux Φ obtained from the flux change map 70, based on the equation (8). The estimated permanent magnet temperature Tmag of the synchronous machine 1 is output.
With the above configuration, the temperature of the permanent magnet of the synchronous machine 1 when the synchronous machine 1 is driven with the current commands Id * and Iq * on the dq axes can be estimated.

前記の構成では、d軸磁束推定値Φdeを用いて永久磁石の温度を推定する方式を示したが、d軸磁束推定値Φdeの代わりに電機子鎖交磁束Φの推定値Φeの絶対値|Φe|を用いて推定することも可能である。   In the above-described configuration, the method of estimating the temperature of the permanent magnet using the estimated d-axis magnetic flux Φde is shown, but the absolute value of the estimated value Φe of the armature linkage flux Φ instead of the estimated d-axis magnetic flux Φde It is also possible to estimate using Φe |.

この場合、第1の磁束マップ71aは、同期機1を全運転領域で駆動するために必要なd−q軸上の電流指令Id*、Iq*の範囲全てにおいて、同期機1の永久磁石が温度T1の状態におけるd−q軸上の電流指令Id*、Iq*と電機子鎖交磁束Φの絶対値(|Φ1|とする)との相関を、実機実験的あるいは周知の磁界解析のツールなどを用いて求めてマッピングしておく。この第1の磁束マップ71aに基づいて、d−q軸上の電流指令Id*、Iq*を、同期機1の永久磁石が温度T1の条件下における電機子鎖交磁束Φの絶対値|Φ1|へ換算し出力する。   In this case, the first magnetic flux map 71a indicates that the permanent magnet of the synchronous machine 1 is in the entire range of the current commands Id * and Iq * on the dq axes necessary for driving the synchronous machine 1 in the entire operation region. The correlation between the current commands Id * and Iq * on the dq axes in the state of temperature T1 and the absolute value of the armature linkage magnetic flux Φ (referred to as | Φ1 |) Etc. are used to find and map them. Based on the first magnetic flux map 71a, the current commands Id * and Iq * on the dq axes are calculated based on the absolute value | Φ1 of the armature linkage magnetic flux Φ under the condition that the permanent magnet of the synchronous machine 1 is at the temperature T1. Convert to | and output.

また、磁束変化マップ70aは、同期機1を全運転領域で駆動するために必要なd−q軸上の電流指令Id*、Iq*の範囲全てにおいて、d−q軸上の電流指令Id*、Iq*が一定であるとの前提で、同期機1の永久磁石が温度T1から温度T2までΔT0分変化した時のd−q軸上の電流指令Id*、Iq*と電機子鎖交磁束Φの絶対値の変化量(|ΔΦ0|とする)との相関を、実機実験的あるいは周知の磁界解析のツールなどを用いて求めてマッピングしておく。この磁束変化マップ70aに基づいて、d−q軸上の電流指令Id*、Iq*を、同期機1の永久磁石が温度T1から温度T2までΔT0分変化した時の電機子鎖交磁束Φの絶対値の変化量|
ΔΦ0|へ換算し出力する。
In addition, the magnetic flux change map 70a shows the current command Id * on the dq axis in the entire range of the current command Id * and Iq * on the dq axis necessary for driving the synchronous machine 1 in the entire operation region. Assuming that Iq * is constant, current commands Id * and Iq * on the dq axis and armature flux linkage when the permanent magnet of synchronous machine 1 changes from temperature T1 to temperature T2 by ΔT0 The correlation with the amount of change of the absolute value of Φ (referred to as | ΔΦ0 |) is obtained and mapped using actual machine experiments or a well-known magnetic field analysis tool. Based on the magnetic flux change map 70a, the current command Id *, Iq * on the dq axis is changed to the armature interlinkage magnetic flux Φ when the permanent magnet of the synchronous machine 1 is changed by ΔT0 from the temperature T1 to the temperature T2. Absolute change |
Convert to ΔΦ0 | and output.

これらの出力値を用いれば、d−q軸上の電流指令Id*、Iq*で同期機1を駆動した時に、磁束推定器6で推定する電機子鎖交磁束推定値Φeの絶対値|Φe|と第1の磁束マップ71aから得られる電機子鎖交磁束Φの絶対値|Φ1|と磁束変化マップ70aから得られる電機子鎖交磁束Φの絶対値の変化量|ΔΦ0|とから、前記同様に同期機1の永久磁石温度推定値Tmagを出力することができる。   If these output values are used, the absolute value of the armature flux linkage estimated value Φe estimated by the magnetic flux estimator 6 when the synchronous machine 1 is driven by the current commands Id * and Iq * on the dq axes | Φe And the absolute value | Φ1 | of the armature linkage magnetic flux Φ obtained from the first magnetic flux map 71a and the change amount | ΔΦ0 | of the absolute value of the armature linkage magnetic flux Φ obtained from the magnetic flux change map 70a Similarly, the permanent magnet temperature estimated value Tmag of the synchronous machine 1 can be output.

次に、前記方法によって同期機1の永久磁石温度を推定する原理について説明する。
d−q軸上の電流Id、Iqとd軸磁束Φd、q軸磁束Φqとの関係式は、d軸インダクタンスLd、q軸インダクタンスLq、永久磁石磁束Φmを用いて表すと(9)式となる。
仮に、d軸電流Idかつd軸インダクタンスLdが一定とした時、永久磁石の温度変化により、永久磁石磁束Φmが変化すると該変化はd軸磁束Φdにあらわれる。したがって、所定のd−q軸上の電流Id、Iq条件下におけるd軸磁束Φdと永久磁石の温度Tmとの相関が分かれば永久磁石の温度Tmを推定できる。
ただし、永久磁石磁束Φm、すなわちd軸磁束Φdと永久磁石の温度Tmとの相関は電機子電流の大きさに依存して変化する同期機1の磁気飽和状態によって異なる。
Next, the principle of estimating the permanent magnet temperature of the synchronous machine 1 by the above method will be described.
The relational expression between the currents Id and Iq on the dq axis and the d-axis magnetic flux Φd and the q-axis magnetic flux Φq is expressed by using the d-axis inductance Ld, the q-axis inductance Lq, and the permanent magnet magnetic flux Φm as follows: Become.
If the d-axis current Id and the d-axis inductance Ld are constant, if the permanent magnet magnetic flux Φm changes due to a temperature change of the permanent magnet, the change appears in the d-axis magnetic flux Φd. Therefore, if the correlation between the d-axis magnetic flux Φd under the current Id and Iq conditions on the predetermined dq axis and the temperature Tm of the permanent magnet is known, the temperature Tm of the permanent magnet can be estimated.
However, the correlation between the permanent magnet magnetic flux Φm, that is, the d-axis magnetic flux Φd and the temperature Tm of the permanent magnet differs depending on the magnetic saturation state of the synchronous machine 1 that changes depending on the magnitude of the armature current.

例えば、モータに組み込まれていない単体の状態で磁石温度上昇10℃に対して1%の割合で減磁する特性を有する永久磁石が同期機1の界磁として組み込まれた場合に、磁気飽和が緩和されている状態(q軸電流Iqの絶対値が小さい、軽負荷条件など)では、単体の状態と同様に温度上昇10℃に対して概ね1%の割合でd軸磁束Φdの減磁が発生する。
ただし、q軸電流の絶対値が大きい磁気飽和状態では、温度上昇10℃に対して0.6〜1.0%の割合で減磁が発生するといったように、磁石温度変化に対するd軸磁束Φdの変化は電流条件に対しては一様ではない。(該変化量は、q軸電流Iqのみではなく、d軸電流Idにも依存する。)
For example, when a permanent magnet having a characteristic of demagnetizing at a rate of 1% with respect to a magnet temperature increase of 10 ° C. in a single state not incorporated in the motor is incorporated as a field magnet of the synchronous machine 1, magnetic saturation is caused. In the relaxed state (the absolute value of the q-axis current Iq is small, light load conditions, etc.), the demagnetization of the d-axis magnetic flux Φd is approximately 1% with respect to a temperature increase of 10 ° C. as in the case of the single unit. Occur.
However, in the magnetic saturation state where the absolute value of the q-axis current is large, the demagnetization occurs at a rate of 0.6 to 1.0% with respect to the temperature increase of 10 ° C. Is not uniform for current conditions. (The amount of change depends not only on the q-axis current Iq but also on the d-axis current Id.)

図6は、複数のd−q軸上の電流Id、Iqの条件下での磁石温度上昇10℃に対するd軸磁束Φdの減磁割合の一例を示す表である。
また、実際には永久磁石の温度変化により、永久磁石磁束Φmが変化して磁気飽和状態も僅かに変わるため、d−q軸上の電流Id、Iqが一定の条件下においても、永久磁石の温度が変わるとd軸インダクタンスLd、q軸インダクタンスLqの値にも変化が生じる。
FIG. 6 is a table showing an example of the demagnetization ratio of the d-axis magnetic flux Φd with respect to a magnet temperature increase of 10 ° C. under conditions of currents Id and Iq on a plurality of dq axes.
In practice, the permanent magnet magnetic flux Φm changes and the magnetic saturation state slightly changes due to the temperature change of the permanent magnet. Therefore, even if the currents Id and Iq on the dq axis are constant, When the temperature changes, the values of the d-axis inductance Ld and the q-axis inductance Lq also change.

よって、永久磁石の温度Tmが変化すると、d軸インダクタンスLd、永久磁石磁束Φmともに変化し、さらに、磁石温度変化に対する該変化の大きさはd−q軸電流Id、Iq(すなわち負荷条件)によって異なる。
すなわち、(6)式からd軸磁束推定値Φdeを求めた際、d軸インダクタンスLdとd軸電流Idとに起因する電機子反作用磁束(Ld・Id)と永久磁石磁束Φmとに分離することは困難であり、永久磁石温度Tmと永久磁石磁束Φmとの直接的な相関を求めることは容易ではない。
Therefore, when the temperature Tm of the permanent magnet changes, both the d-axis inductance Ld and the permanent magnet magnetic flux Φm change, and the magnitude of the change with respect to the magnet temperature change depends on the dq-axis current Id and Iq (that is, the load condition). Different.
That is, when the estimated d-axis magnetic flux Φde is obtained from the equation (6), it is separated into the armature reaction magnetic flux (Ld · Id) and the permanent magnet magnetic flux Φm caused by the d-axis inductance Ld and the d-axis current Id. It is difficult to obtain a direct correlation between the permanent magnet temperature Tm and the permanent magnet magnetic flux Φm.

このことから、永久磁石の温度を精度良く推定するためには、永久磁石の温度Tmとd軸磁束Φdとの相関を、様々なd−q軸上の電流Id、Iq条件毎に把握する必要がある。
そこで、この発明の実施の形態1では、磁石状態推定手段7において、第1の磁束マップ71と磁束変化マップ70と磁石温度換算部79とで構成し、d−q軸上の電流指令Id*、Iq*で同期機1を駆動した時に、磁束推定器6で推定するd軸磁束推定値Φdeと第1の磁束マップ71と磁束変化マップ70とに基づいて同期機1の永久磁石温度推定値Tmagを出力する構成とした。
Therefore, in order to accurately estimate the temperature of the permanent magnet, it is necessary to grasp the correlation between the temperature Tm of the permanent magnet and the d-axis magnetic flux Φd for each of the current Id and Iq conditions on various dq axes. There is.
Therefore, in the first embodiment of the present invention, the magnet state estimating means 7 includes the first magnetic flux map 71, the magnetic flux change map 70, and the magnet temperature conversion unit 79, and the current command Id * on the dq axis. , Iq *, when the synchronous machine 1 is driven, the estimated permanent magnet temperature of the synchronous machine 1 based on the d-axis magnetic flux estimated value Φde estimated by the magnetic flux estimator 6, the first magnetic flux map 71, and the magnetic flux change map 70. Tmag is output.

本発明の実施の形態1の永久磁石温度推定において、界磁磁束と同一方向であるd軸磁束推定値Φdeに基づいて永久磁石温度推定を行うと、(9)式からわかるように磁石温度変化に対する磁束変化がd軸側に表れるため、磁石温度変化に対する磁束変化の感度を向上させる事ができ、永久磁石の温度推定精度が向上する。
ただし、(5)式と(9)式との関係からわかるように、永久磁石の温度変化に起因する変化は電機子鎖交磁束の絶対値|Φ|にもあらわれるため、前記の通り、電機子鎖交磁束のd軸成分の代わりに絶対値|Φ|を用いて永久磁石の温度を推定できることは言うまでもない。
In the permanent magnet temperature estimation according to the first embodiment of the present invention, when the permanent magnet temperature is estimated based on the d-axis magnetic flux estimated value Φde that is in the same direction as the field magnetic flux, the change in the magnet temperature can be seen from equation (9). Therefore, the sensitivity of the magnetic flux change with respect to the magnet temperature change can be improved, and the temperature estimation accuracy of the permanent magnet is improved.
However, as can be seen from the relationship between the equations (5) and (9), the change caused by the temperature change of the permanent magnet also appears in the absolute value | Φ | of the armature interlinkage magnetic flux. It goes without saying that the temperature of the permanent magnet can be estimated using the absolute value | Φ | instead of the d-axis component of the interlinkage magnetic flux.

以上が、実施の形態1における同期機制御装置の説明である。
この実施の形態1によれば、電流指令(同期機の磁気飽和状態)に応じて異なる磁石温度変化に対する電機子鎖交磁束の変化を正確に把握しながら磁石温度を推定することから、永久磁石に直接温度検出器を取り付けることなく、あらゆる電流(負荷)条件で永久磁石の温度を精度良く推定できる効果がある。
また、界磁磁束と同一方向であるd軸成分の電機子鎖交磁束に基づいて永久磁石温度推定を行うと、磁石温度変化に対する磁束変化の感度を向上させる事ができ、永久磁石の温度推定精度が向上する効果も得られる。
The above is the description of the synchronous machine control device according to the first embodiment.
According to the first embodiment, the magnet temperature is estimated while accurately grasping the change in the armature linkage magnetic flux with respect to the change in the magnet temperature depending on the current command (magnetic saturation state of the synchronous machine). There is an effect that the temperature of the permanent magnet can be accurately estimated under any current (load) conditions without directly attaching a temperature detector to the.
Further, if the permanent magnet temperature estimation is performed based on the d-axis component armature linkage magnetic flux in the same direction as the field magnetic flux, the sensitivity of the magnetic flux change to the magnet temperature change can be improved, and the temperature of the permanent magnet can be estimated. The effect of improving accuracy is also obtained.

実施の形態2.
次に、この発明の実施の形態2に係る同期機制御装置について説明する。
実施の形態2におけるシステム構成図は図1と同様となるが、磁石温度推定手段7が、以下に示す磁石温度推定手段7aの構成に置き換わる点が実施の形態1と異なる。
以下、実施の形態1と異なる磁石温度推定手段7aの構成を中心に説明し、他の同一部分については、適宜説明を省略する。
Embodiment 2. FIG.
Next, a synchronous machine control device according to Embodiment 2 of the present invention will be described.
The system configuration diagram in the second embodiment is the same as that in FIG. 1, but is different from the first embodiment in that the magnet temperature estimating means 7 is replaced with the magnet temperature estimating means 7a described below.
Hereinafter, the configuration of the magnet temperature estimating means 7a different from that of the first embodiment will be mainly described, and description of other identical portions will be appropriately omitted.

図7は、実施の形態2に係る同期機制御装置における磁石温度推定手段7aの構成の一例を示す構成図である。
この発明の実施の形態2による同期機制御装置の特徴の一つである磁石状態推定手段7aは、図7に示すように、第1の磁束マップ71と第2の磁束マップ72と磁石温度換算部79aとで構成し、d−q軸上の電流指令Id*、Iq*で同期機1を駆動した時に、磁束推定器6で推定するd軸磁束推定値Φdeと第1の磁束マップ71と第2の磁束マップ72とに基づいて同期機1の永久磁石温度推定値Tmagを出力する。
なお、第1の磁束マップ71については、実施の形態1の図4に示したものと同じ構成であり、説明を省略する。
FIG. 7 is a configuration diagram showing an example of the configuration of the magnet temperature estimation means 7a in the synchronous machine control device according to the second embodiment.
As shown in FIG. 7, the magnet state estimating means 7a, which is one of the features of the synchronous machine control device according to Embodiment 2 of the present invention, is converted into a first magnetic flux map 71, a second magnetic flux map 72, and a magnet temperature conversion. Unit 79a, and when the synchronous machine 1 is driven by the current commands Id * and Iq * on the dq axes, the estimated d-axis magnetic flux Φde estimated by the magnetic flux estimator 6 and the first magnetic flux map 71 Based on the second magnetic flux map 72, the permanent magnet temperature estimated value Tmag of the synchronous machine 1 is output.
Note that the first magnetic flux map 71 has the same configuration as that shown in FIG. 4 of the first embodiment, and a description thereof will be omitted.

前述の実施の形態1では、磁石状態推定手段7において、「同期機1の永久磁石が温度T1の状態におけるd−q軸上の電流指令Id*、Iq*と電機子鎖交磁束Φのd軸成分Φd1との相関」と「同期機1の永久磁石が温度T1からT2までΔT0分変化した時のd−q軸上の電流指令Id*、Iq*と電機子鎖交磁束Φのd軸成分の変化量ΔΦd0との相関」との2つの相関情報から、永久磁石の温度を精度良く推定するために必要な、様々なd−q軸上の電流Id、Iq条件での永久磁石の温度Tmとd軸磁束Φdとの相関を求めている。   In the first embodiment described above, the magnet state estimating means 7 determines that “the current commands Id * and Iq * on the dq axes and the armature linkage flux Φ d when the permanent magnet of the synchronous machine 1 is at the temperature T1. “Correlation with shaft component Φd1” and “d-axis of current commands Id * and Iq * on dq axis and armature linkage flux Φ when permanent magnet of synchronous machine 1 changes from temperature T1 to T2 by ΔT0 The temperature of the permanent magnet under the various current Id and Iq conditions on the dq axis necessary for accurately estimating the temperature of the permanent magnet from the two correlation information “correlation with the component variation ΔΦd0” The correlation between Tm and d-axis magnetic flux Φd is obtained.

それに対し、ここで説明する実施の形態2では、磁石状態推定手段7aにおいて、「同期機1の永久磁石が温度T1の状態におけるd−q軸上の電流指令Id*、Iq*と電機子鎖交磁束Φのd軸成分Φd1との相関(実施の形態1と同じ)」と「同期機1の永久磁石が温度T2の状態におけるd−q軸上の電流指令Id*、Iq*と電機子鎖交磁束Φのd軸成分(Φd2とする)との相関」との2つの相関情報から、永久磁石の温度を精度良く推定するために必要な、様々なd−q軸上の電流Id、Iq条件での永久磁石の温度Tmとd軸磁束Φdとの相関を求めている点が実施の形態1と異なる。   On the other hand, in the second embodiment described here, the magnet state estimating means 7a “in the state where the permanent magnet of the synchronous machine 1 is at the temperature T1, the current commands Id * and Iq * on the dq axes and the armature chain Correlation with d-axis component Φd1 of magnetic flux Φ (same as in the first embodiment) ”and“ current commands Id * and Iq * on the dq axes when the permanent magnet of the synchronous machine 1 is at temperature T2 and the armature The current Id on the various dq axes necessary for accurately estimating the temperature of the permanent magnet from the two correlation information of “correlation with the d-axis component of the flux linkage Φ (referred to as Φd2)” The difference from the first embodiment is that the correlation between the temperature Tm of the permanent magnet and the d-axis magnetic flux Φd under the Iq condition is obtained.

図8は、第2の磁束マップ72の概念図であり、同期機1を全運転領域で駆動するために必要なd−q軸上の電流指令Id*、Iq*の範囲全てにおいて、同期機1の永久磁石が温度T1の状態におけるd−q軸上の電流指令Id*、Iq*と電機子鎖交磁束Φのd軸成分Φd2との相関を、実機実験的あるいは周知の磁界解析のツールなどを用いて求めてマッピングしたものである。   FIG. 8 is a conceptual diagram of the second magnetic flux map 72. In the entire range of current commands Id * and Iq * on the dq axes necessary for driving the synchronous machine 1 in the entire operation region, the synchronous machine is shown. The correlation between the current command Id * and Iq * on the dq axis and the d-axis component Φd2 of the armature flux linkage Φ when the permanent magnet of 1 is at the temperature T1 is experimentally used or a well-known magnetic field analysis tool. It is obtained by mapping using the above.

第2の磁束マップ72に基づいて、d−q軸上の電流指令Id*、Iq*を、同期機1の永久磁石が温度T2の条件下における電機子鎖交磁束Φのd軸成分Φd2へ換算し出力する。
磁石温度換算部79aは、d−q軸上の電流指令Id*、Iq*で同期機1を駆動した時に、磁束推定器6で推定するd軸磁束推定値Φdeと第1の磁束マップ71から得られる電機子鎖交磁束Φのd軸成分Φd1と第2の磁束マップ72から得られる電機子鎖交磁束Φのd軸成分Φd2とから(10)式に基づいて同期機1の永久磁石温度推定値Tmagを出力する。
以上の構成で、d−q軸上の電流指令Id*、Iq*で同期機1を駆動した時の同期機1の永久磁石の温度を推定できる。
Based on the second magnetic flux map 72, the current commands Id * and Iq * on the dq axes are transferred to the d-axis component Φd2 of the armature linkage flux Φ under the condition that the permanent magnet of the synchronous machine 1 is at the temperature T2. Convert and output.
The magnet temperature conversion unit 79a uses the d-axis magnetic flux estimated value Φde estimated by the magnetic flux estimator 6 and the first magnetic flux map 71 when the synchronous machine 1 is driven with the current commands Id * and Iq * on the dq axes. The permanent magnet temperature of the synchronous machine 1 based on the equation (10) from the d-axis component Φd1 of the armature linkage flux Φ obtained and the d-axis component Φd2 of the armature linkage flux Φ obtained from the second magnetic flux map 72. The estimated value Tmag is output.
With the above configuration, the temperature of the permanent magnet of the synchronous machine 1 when the synchronous machine 1 is driven with the current commands Id * and Iq * on the dq axes can be estimated.

また、発明の実施の形態2においても、d軸磁束推定値Φdeの代わりに電機子鎖交磁束Φの推定値Φeの絶対値|Φe|を用いて推定することも可能である。
この場合、第2の磁束マップ72aは、同期機1を全運転領域で駆動するために必要なd−q軸上の電流指令Id*、Iq*の範囲全てにおいて、同期機1の永久磁石が温度T2の状態におけるd−q軸上の電流指令Id*、Iq*と電機子鎖交磁束Φの絶対値(|Φ2|とする)との相関を、実機実験的あるいは周知の磁界解析のツールなどを用いて求めてマッピングしておく。この第2の磁束マップ72aに基づいて、d−q軸上の電流指令Id*、Iq*を、同期機1の永久磁石が温度T2の条件下における電機子鎖交磁束Φの絶対値|Φ2|へ換算し出力する。
In the second embodiment of the invention, it is also possible to estimate using the absolute value | Φe | of the estimated value Φe of the armature linkage magnetic flux Φ instead of the d-axis magnetic flux estimated value Φde.
In this case, the second magnetic flux map 72a indicates that the permanent magnet of the synchronous machine 1 is in the entire range of the current commands Id * and Iq * on the dq axes necessary for driving the synchronous machine 1 in the entire operation region. The correlation between the current commands Id * and Iq * on the dq axes at the temperature T2 and the absolute value of the armature linkage flux Φ (referred to as | Φ2 |) Etc. are used to find and map them. Based on the second magnetic flux map 72a, the current commands Id * and Iq * on the dq axes are calculated based on the absolute value | Φ2 of the armature linkage magnetic flux Φ under the condition that the permanent magnet of the synchronous machine 1 is at the temperature T2. Convert to | and output.

これらの出力値を用いれば、d−q軸上の電流指令Id*、Iq*で同期機1を駆動した時に、磁束推定器6で推定する電機子鎖交磁束推定値Φeの絶対値|Φe|と第1の磁束マップ71aから得られる電機子鎖交磁束Φの絶対値|Φ1|と第2の磁束マップ72aから得られる電機子鎖交磁束Φの絶対値|Φ2|とから、前記同様に同期機1の永久磁石温度推定値Tmagを出力することができる。   If these output values are used, the absolute value of the armature flux linkage estimated value Φe estimated by the magnetic flux estimator 6 when the synchronous machine 1 is driven by the current commands Id * and Iq * on the dq axes | Φe And the absolute value | Φ1 | of the armature linkage magnetic flux Φ obtained from the first magnetic flux map 71a and the absolute value | Φ2 | of the armature linkage magnetic flux Φ obtained from the second magnetic flux map 72a. The estimated permanent magnet temperature Tmag of the synchronous machine 1 can be output to

以上が、実施の形態2における同期機制御装置の説明である。
この実施の形態2によれば、実施の形態1と同様に、電流指令(同期機の磁気飽和状態)に応じて異なる磁石温度変化に対する電機子鎖交磁束の変化を正確に把握しながら磁石温度を推定することから、永久磁石に直接温度検出器を取り付けることなく、あらゆる電流(負荷)条件で永久磁石の温度を精度良く推定できる効果がある。
The above is the description of the synchronous machine control device according to the second embodiment.
According to the second embodiment, as in the first embodiment, the magnet temperature can be accurately determined while accurately grasping the change in the armature linkage magnetic flux with respect to the change in the magnet temperature depending on the current command (magnetic saturation state of the synchronous machine). Therefore, the temperature of the permanent magnet can be accurately estimated under all current (load) conditions without directly attaching a temperature detector to the permanent magnet.

実施の形態3.
次に、この発明の実施の形態3に係る同期機制御装置について説明する。
実施の形態3におけるシステム構成図は図1と同様となるが、磁石温度推定手段7が、以下に示す磁石温度推定手段7bの構成に置き換わる点が実施の形態1、2と異なる。
以下、実施の形態1、2と異なる磁石温度推定手段7bの構成を中心に説明し、他の同一部分については、適宜説明を省略する。
Embodiment 3 FIG.
Next, a synchronous machine control device according to Embodiment 3 of the present invention will be described.
The system configuration diagram in the third embodiment is the same as that in FIG. 1, but is different from the first and second embodiments in that the magnet temperature estimating means 7 is replaced with the magnet temperature estimating means 7b described below.
Hereinafter, the configuration of the magnet temperature estimating means 7b different from Embodiments 1 and 2 will be mainly described, and description of other identical portions will be omitted as appropriate.

図9は、実施の形態2に係る同期機制御装置における磁石温度推定手段7bの構成の一例を示す構成図である。
この発明の実施の形態3による同期機制御装置の特徴の一つである磁石状態推定手段7bは、第1の磁束マップ71、第2の磁束マップ72に加え、前記永久磁石の温度が温度T1、T2とは異なる温度の条件下における、d−q軸上の電流指令Id*、Iq*と電機子鎖交磁束Φのd軸成分との相関を示す磁束マップを有することが特徴である。
FIG. 9 is a configuration diagram showing an example of the configuration of the magnet temperature estimation means 7b in the synchronous machine control device according to the second embodiment.
The magnet state estimation means 7b, which is one of the features of the synchronous machine control device according to Embodiment 3 of the present invention, has a temperature T1 of the permanent magnet in addition to the first magnetic flux map 71 and the second magnetic flux map 72. , T2 is characterized by having a magnetic flux map indicating the correlation between the current commands Id * and Iq * on the dq axis and the d-axis component of the armature flux linkage Φ under a temperature condition different from T2.

図9において、第3の磁束マップ73は、前記永久磁石の温度が温度T1、T2とは異なる温度T3において、第1の磁束マップ71、第2の磁束マップ72同様に、同期機1を全運転領域で駆動するために必要なd−q軸上の電流指令Id*、Iq*の範囲全てのd−q軸上の電流指令Id*、Iq*と電機子鎖交磁束Φのd軸成分(Φd3とする)との相関を、実機実験的あるいは周知の磁界解析のツールなどを用いて求めてマッピングしたものである。   In FIG. 9, the third magnetic flux map 73 is the same as the first magnetic flux map 71 and the second magnetic flux map 72 at the temperature T3 where the temperature of the permanent magnet is different from the temperatures T1 and T2. Current command Id * and Iq * on all dq axes and d-axis component of armature linkage flux Φ on dq axes necessary for driving in the operation range The correlation with (Φd3) is obtained and mapped using an actual machine experiment or a well-known magnetic field analysis tool.

さらに加えて、温度T1、T2、T3とは異なる温度の条件下における、d−q軸上の電流指令Id*、Iq*と電機子鎖交磁束Φのd軸成分との相関を示す磁束マップを有するような構成としても良いが、マップ数が多大となると作成に大きな労力を必要とするため、マップ数は必要最低限にとどめる。   In addition, a magnetic flux map showing the correlation between the current commands Id * and Iq * on the dq axis and the d-axis component of the armature flux linkage Φ under conditions of temperatures different from the temperatures T1, T2, and T3. However, if the number of maps becomes large, a large amount of labor is required for creation, so the number of maps is kept to the minimum necessary.

先述の通り、q軸電流の絶対値が大きい磁気飽和状態では、磁石温度変化に対するd軸磁束Φdの変化は電流条件に対しては一様ではなく、また、同期機1の駆動によって変化し得る(同期機1の界磁を形成する)永久磁石の温度変化範囲が大きい場合、電流条件を固定としても、磁石温度変化に対するd軸磁束Φdの変化は電流条件に対しては一様ではなくことがある。概ね、永久磁石の温度が高くなるに従い、磁石温度変化に対するd軸磁束Φdの変化が大きくなる傾向にあり、該現象を鑑み、前記磁束マップを3温度条件以上について求めることで、このような現象に対しても永久磁石の温度を精度良く推定できるようにする。   As described above, in the magnetic saturation state in which the absolute value of the q-axis current is large, the change of the d-axis magnetic flux Φd with respect to the magnet temperature change is not uniform with respect to the current condition, and can be changed by driving the synchronous machine 1. When the temperature change range of the permanent magnet (which forms the field of the synchronous machine 1) is large, the change of the d-axis magnetic flux Φd with respect to the magnet temperature change is not uniform with respect to the current condition even if the current condition is fixed. There is. In general, as the temperature of the permanent magnet increases, the change of the d-axis magnetic flux Φd with respect to the magnet temperature tends to increase. In view of this phenomenon, such a phenomenon is obtained by obtaining the magnetic flux map for three or more temperature conditions. The temperature of the permanent magnet can be accurately estimated.

図10は、ある一定のd−q軸上の電流Id、Iqの条件下での磁石温度Tmとd軸磁束との相関の一例を示す概念図である。該図の例では、同期機1の駆動によって変化し得る(同期機1の界磁を形成する)永久磁石の温度変化範囲がT1〜T3であり、かつ、温度T2近傍で磁石温度変化に対するd軸磁束Φdの変化(割合)が変わる特性を持つような同期機1を示している。このようなケースでは、温度T1、T2、T3の3つの磁石温度条件下における、d−q軸上の電流指令Id*、Iq*と電機子鎖交磁束Φのd軸成分との相関を示す磁束マップを有するような構成が望ましい。   FIG. 10 is a conceptual diagram showing an example of the correlation between the magnet temperature Tm and the d-axis magnetic flux under the conditions of currents Id and Iq on a certain dq axis. In the example of the figure, the temperature change range of the permanent magnet that can be changed by driving the synchronous machine 1 (forming the field of the synchronous machine 1) is T1 to T3, and d with respect to the magnet temperature change in the vicinity of the temperature T2. 1 shows a synchronous machine 1 having a characteristic in which the change (ratio) of the axial magnetic flux Φd changes. In such a case, the correlation between the current commands Id * and Iq * on the dq axis and the d-axis component of the armature flux linkage Φ under the three magnet temperature conditions of temperatures T1, T2, and T3 is shown. A configuration having a magnetic flux map is desirable.

以上が、実施の形態3における同期機制御装置の説明である。
この実施の形態3によれば、各々異なる永久磁石温度の条件下における電流指令に対する磁束マップを複数備えることで、同期機1の駆動によって変化し得る永久磁石の温度変化範囲が大きい場合においても、電流指令に応じて異なる磁石温度変化に対する電機子鎖交磁束の変化をより正確に補正することができることから、永久磁石の温度推定精度が向上する効果がある。
The above is the description of the synchronous machine control device according to the third embodiment.
According to the third embodiment, by providing a plurality of magnetic flux maps for current commands under different permanent magnet temperature conditions, even when the temperature change range of the permanent magnet that can be changed by driving the synchronous machine 1 is large, Since it is possible to more accurately correct the change in the armature linkage magnetic flux with respect to different magnet temperature changes according to the current command, there is an effect of improving the temperature estimation accuracy of the permanent magnet.

実施の形態4.
次に、この発明の実施の形態4に係る同期機制御装置について説明する。
図11は、実施の形態4に係る同期機制御装置を説明するための、同期機1を含めて示すシステム構成図である。
Embodiment 4 FIG.
Next, a synchronous machine control device according to Embodiment 4 of the present invention will be described.
FIG. 11 is a system configuration diagram including the synchronous machine 1 for explaining the synchronous machine control device according to the fourth embodiment.

この発明の実施の形態4による同期機制御装置は、図11に示すように、同期機1の電機子巻線温度を検出する温度検出手段8を追加し、磁束推定器6aにおいて、前記回転速度と前記電圧指令と前記電流指令と前記電機子巻線温度とに基づいて同期機1の電機子鎖交磁束を推定するようにしたものである。   As shown in FIG. 11, the synchronous machine control apparatus according to Embodiment 4 of the present invention adds temperature detecting means 8 for detecting the armature winding temperature of the synchronous machine 1, and the magnetic flux estimator 6a uses the rotational speed. The armature linkage magnetic flux of the synchronous machine 1 is estimated based on the voltage command, the current command, and the armature winding temperature.

以下、実施の形態1から3と異なる磁束推定器6aと新たに追加した温度検出手段8の構成を中心に説明し、他の同一部分については、適宜説明を省略する。
磁束推定器6aは、回転速度ω、d−q軸上の電圧指令Vd*、Vq*、d−q軸上の電流指令Id*、Iq*に基づいて(6)式の演算により、d軸磁束推定値Φde、q軸磁束推定値Φqeを求める。その際、新たに抵抗Rの温度変化を考慮する点が実施の形態1〜3と異なる。
In the following, description will be made centering on the configuration of the magnetic flux estimator 6a different from the first to third embodiments and the newly added temperature detecting means 8, and description of other identical parts will be omitted as appropriate.
The magnetic flux estimator 6a calculates the d axis by calculating the equation (6) based on the rotational speed ω, the voltage commands Vd * and Vq * on the dq axes, and the current commands Id * and Iq * on the dq axes. The magnetic flux estimated value Φde and the q-axis magnetic flux estimated value Φqe are obtained. In that case, the point which newly considers the temperature change of resistance R differs from Embodiment 1-3.

同期機1の抵抗Rの主成分である電機子巻線の抵抗は、電機子巻線温度Taによって抵抗値が変化する温度特性を有する。抵抗Rの温度変化に伴うq軸電圧指令Vq*の変化が、d軸磁束推定値Φdeに対して影響を及ぼさないレベルであれば、抵抗Rの温度変化を考慮しなくても良いが、電機子巻線の抵抗が大きい場合、d軸磁束推定値Φdeに誤差が生じ易くなる。   The resistance of the armature winding that is the main component of the resistance R of the synchronous machine 1 has a temperature characteristic in which the resistance value varies depending on the armature winding temperature Ta. If the change in the q-axis voltage command Vq * due to the temperature change of the resistor R is at a level that does not affect the estimated d-axis magnetic flux Φde, the temperature change of the resistor R may not be considered. When the resistance of the child winding is large, an error is likely to occur in the d-axis magnetic flux estimated value Φde.

したがって、電機子巻線の抵抗が大きい場合に、抵抗Rの温度変化分を補正して(6)式の演算を行い、誤差の小さいd軸磁束推定値Φdeが得られるようにするため、電機子巻線温度Taを温度検出手段8にて推定し、推定した該温度に基づいて抵抗(値)Rの温度補正を施す。
温度検出手段8は、周知の温度センサ等を用い、電機子巻線温度Taと抵抗Rとの相関を予め求めておくことで、抵抗(値)Rの温度補正を行う。
Accordingly, when the resistance of the armature winding is large, the temperature change of the resistance R is corrected and the calculation of the equation (6) is performed so that the d-axis magnetic flux estimated value Φde with a small error can be obtained. The child winding temperature Ta is estimated by the temperature detecting means 8, and the temperature of the resistance (value) R is corrected based on the estimated temperature.
The temperature detection means 8 performs a temperature correction of the resistance (value) R by obtaining a correlation between the armature winding temperature Ta and the resistance R in advance using a known temperature sensor or the like.

以上が、実施の形態4における同期機制御装置の説明である。
この実施の形態4によれば、電機子巻線温度を検出し、該温度を同期機1の電機子鎖交磁束推定動作に反映させることで、電機子鎖交磁束の推定精度が向上し、その結果、永久磁石の温度推定精度が向上する効果がある。
The above is the description of the synchronous machine control device according to the fourth embodiment.
According to the fourth embodiment, by detecting the armature winding temperature and reflecting the temperature in the armature linkage magnetic flux estimation operation of the synchronous machine 1, the estimation accuracy of the armature linkage flux is improved. As a result, the temperature estimation accuracy of the permanent magnet is improved.

実施の形態5.
次に、この発明の実施の形態5に係る同期機制御装置について説明する。
図12は、実施の形態5に係る同期機制御装置を説明するための、同期機1を含めて示すシステム構成図である。
Embodiment 5 FIG.
Next, a synchronous machine control device according to Embodiment 5 of the present invention will be described.
FIG. 12 is a system configuration diagram including the synchronous machine 1 for explaining the synchronous machine control device according to the fifth embodiment.

この発明の実施の形態5による同期機制御装置は、図12に示すように、磁石温度推定手段7で推定する永久磁石温度推定値Tmagに基づいてd−q軸上の電流指令を制限する電流指令制限手段9を追加したものである。
図12のd−q軸上の電流指令において、便宜上、電流指令制限手段9の入力側の制限前の該指令をId0*、Iq0*、制限後の電流指令制限手段9の出力側の該指令をId*、Iq*としている。
以下、新たに追加した電流指令制限手段9の構成を中心に説明し、他の同一部分については、適宜説明を省略する。
As shown in FIG. 12, the synchronous machine control device according to Embodiment 5 of the present invention limits the current command on the dq axis based on the permanent magnet temperature estimated value Tmag estimated by the magnet temperature estimating means 7. Command restriction means 9 is added.
In the current command on the dq axes in FIG. 12, for convenience, the command before limitation on the input side of the current command limiting unit 9 is Id0 *, Iq0 *, and the command on the output side of the current command limiting unit 9 after limitation. Are Id * and Iq *.
Hereinafter, a description will be given centering on the configuration of the newly added current command limiting means 9, and description of other identical parts will be omitted as appropriate.

同期機1の永久磁石の温度Tmを推定する目的の1つに、不可逆減磁が発生する許容温度以下に抑制する点がある。
同期機1の電機子電流(実効値)が増加すると、同期機1で発生する熱(電機子巻線の抵抗で発生する熱など)によって永久磁石を含む同期機1の全体の温度も上昇し、永久磁石の減磁がより進行する。さらに許容温度を超えると温度が常温に下がっても磁束が減磁発生前の状態に戻らない不可逆減磁に至る可能性がある。
One of the purposes for estimating the temperature Tm of the permanent magnet of the synchronous machine 1 is to suppress the temperature below an allowable temperature at which irreversible demagnetization occurs.
When the armature current (effective value) of the synchronous machine 1 increases, the overall temperature of the synchronous machine 1 including the permanent magnet also increases due to heat generated in the synchronous machine 1 (heat generated by the resistance of the armature winding, etc.). The demagnetization of the permanent magnet further proceeds. Furthermore, when the temperature exceeds the allowable temperature, there is a possibility of irreversible demagnetization in which the magnetic flux does not return to the state before demagnetization occurs even when the temperature falls to room temperature.

そこで、同期機1の温度が上昇した際、電流指令制限手段9においてd−q軸上の電流指令を永久磁石温度推定値Tmagに応じて制限し、電機子電流(実効値)を小さくすることで、さらなる温度上昇を抑制するような構成とする。
永久磁石温度推定値Tmagと電流指令制限値との相関は、鉄損と関係がある同期機1の回転速度などの駆動条件、同期機1の熱容量や冷却性能に応じて設定する。
Thus, when the temperature of the synchronous machine 1 rises, the current command limiting means 9 limits the current command on the dq axes in accordance with the permanent magnet temperature estimated value Tmag to reduce the armature current (effective value). Thus, the temperature is further suppressed.
The correlation between the estimated permanent magnet temperature value Tmag and the current command limit value is set according to the driving conditions such as the rotational speed of the synchronous machine 1 that are related to the iron loss, the heat capacity of the synchronous machine 1 and the cooling performance.

簡便な方法としては、(11)式に示されるように、前記Id*とIq*の二乗和平方根が永久磁石温度推定値Tmagの関数として表わされる電流制限値(Ilimとする)以下となるようにd−q軸上の電流指令Id*とIq*とを調整すれば良い。
As a simple method, as shown in the equation (11), the square sum of squares of Id * and Iq * is less than or equal to the current limit value (Ilim) expressed as a function of the estimated permanent magnet temperature Tmag. The current commands Id * and Iq * on the dq axis may be adjusted.

以上が、実施の形態5における同期機制御装置の説明である。
この実施の形態5によれば、同期機1の界磁を形成する永久磁石の温度上昇時に電流指令を制限することから、その結果磁石温度上昇を引き起こす電機子電流(実効値)を小さくでき、永久磁石の不可逆減磁を防止することができる効果がある。
The above is the description of the synchronous machine control device according to the fifth embodiment.
According to the fifth embodiment, since the current command is limited when the temperature of the permanent magnet forming the field of the synchronous machine 1 is increased, the armature current (effective value) that causes the magnet temperature increase can be reduced as a result. There is an effect of preventing irreversible demagnetization of the permanent magnet.

実施の形態6.
次に、この発明の実施の形態6に係る同期機制御装置について説明する。
図13は、実施の形態6に係る同期機制御装置を説明するための、同期機1を含めて示すシステム構成図である。
この発明の実施の形態6による同期機制御装置は、図13に示すように、磁石温度推定手段7で推定する永久磁石温度推定値Tmagに基づいて同期機1に対するトルク指令を制限するトルク指令制限手段10と、前記制限されたトルク指令に基づいて前記電流指令を生成する電流指令生成手段11とを追加したものである。
Embodiment 6 FIG.
Next, a synchronous machine control device according to Embodiment 6 of the present invention will be described.
FIG. 13 is a system configuration diagram including the synchronous machine 1 for explaining the synchronous machine control device according to the sixth embodiment.
As shown in FIG. 13, the synchronous machine control device according to Embodiment 6 of the present invention restricts the torque command to the synchronous machine 1 based on the permanent magnet temperature estimated value Tmag estimated by the magnet temperature estimating means 7. Means 10 and current command generation means 11 for generating the current command based on the limited torque command are added.

図13の同期機1に対するトルク指令において、便宜上、トルク指令制限手段10の入力側の制限前の該指令をτ0*、制限後の電流指令制限手段9の出力側の該指令をτ*としている。
以下、新たに追加したトルク指令制限手段10、電流指令生成手段11の構成を中心に説明し、他の同一部分については、適宜説明を省略する。
In the torque command for the synchronous machine 1 in FIG. 13, for convenience, the command before limiting on the input side of the torque command limiting means 10 is τ0 *, and the command on the output side of the current command limiting means 9 after limiting is τ *. .
Hereinafter, description will be made centering on the configuration of the newly added torque command limiting means 10 and current command generating means 11, and description of other identical parts will be omitted as appropriate.

先述の実施の形態5では、同期機1の温度が上昇した際、電流指令制限手段9においてd−q軸上の電流指令を永久磁石温度推定値Tmagに応じて制限し、電機子電流(実効値)を小さくすることで、さらなる温度上昇を抑制するような構成とした。
これに対して、この発明の実施の形態6では、トルク指令制限手段10において同期機1に対するトルク指令を永久磁石温度推定値Tmagに応じて制限し、電機子電流(実効値)を小さくすることで、さらなる温度上昇を抑制するような構成とする。
In the above-described fifth embodiment, when the temperature of the synchronous machine 1 rises, the current command on the dq axis is limited by the current command limiting means 9 according to the estimated permanent magnet temperature Tmag, and the armature current (effective By reducing the value), a further temperature rise is suppressed.
On the other hand, in the sixth embodiment of the present invention, the torque command limiting means 10 limits the torque command for the synchronous machine 1 in accordance with the estimated permanent magnet temperature Tmag, thereby reducing the armature current (effective value). Thus, the temperature is further suppressed.

トルク指令制限手段10は、先述の実施の形態1に示したような上位のシステムにおける(制限前の)トルク指令τ0*を永久磁石温度推定値Tmagに応じて制限し、(制限後の)トルク指令τ*を出力する。
永久磁石温度推定値Tmagとトルク指令制限値との相関は、鉄損と関係がある同期機1の回転速度などの駆動条件、同期機1の熱容量や冷却性能に応じて設定する。
The torque command limiting means 10 limits the torque command τ0 * (before limitation) in the host system as shown in the above-described first embodiment in accordance with the estimated permanent magnet temperature Tmag, and the torque (after limitation). Outputs command τ *.
The correlation between the estimated permanent magnet temperature value Tmag and the torque command limit value is set according to the driving conditions such as the rotational speed of the synchronous machine 1 that are related to the iron loss, the heat capacity and the cooling performance of the synchronous machine 1.

例えば、永久磁石温度推定値Tmagがある域値を超えると永久磁石温度が不可逆減磁に至る温度に漸近したと判断してトルク指令を下げる、極端には「0」にするなどの処理を施した上で、(制限後の)トルク指令τ*を出力するといった形態にする。また、永久磁石温度推定値Tmagが上昇するに従いトルク指令の制限値を段階的に逓減するような形態としても良い。   For example, when the estimated permanent magnet temperature Tmag exceeds a certain threshold, it is judged that the permanent magnet temperature has approached the temperature that will cause irreversible demagnetization, and the torque command is lowered, or in the extreme, it is set to “0”. After that, the torque command τ * (after limitation) is output. Further, the torque command limit value may be gradually decreased as the permanent magnet temperature estimated value Tmag increases.

図13における電流指令生成手段11は、(制限後の)トルク指令をτ*に基づいて、制御指令であるd−q軸上の電流指令Id*、Iq*を生成する。本発明のような界磁として永久磁石を有する同期機1の場合、同一のトルクを発生させることの可能なd軸電流Idとq
軸電流Iqとの組み合わせが無数に存在することが知られており、(制限後の)トルク指令τ*に対し、所望の条件(例えば、効率最大条件、電流最小条件など)に合致する適切な
d−q軸上の電流指令Id*、Iq*を出力すれば良いが、より効果的に同期機1の温度上昇を抑制し、不可逆減磁を防止するためには、同一トルクに対する電流が最小となる条件となるようにId*、Iq*を選択すればより好適となる。
The current command generation means 11 in FIG. 13 generates current commands Id * and Iq * on the dq axes, which are control commands, based on the torque command (after limitation) τ *. In the case of the synchronous machine 1 having a permanent magnet as a field as in the present invention, d-axis currents Id and q that can generate the same torque.
It is known that there are an infinite number of combinations with the shaft current Iq, and it is appropriate to meet the desired conditions (for example, maximum efficiency conditions, minimum current conditions, etc.) for the torque command τ * (after limitation). It is sufficient to output current commands Id * and Iq * on the dq axis, but in order to more effectively suppress the temperature rise of the synchronous machine 1 and prevent irreversible demagnetization, the current for the same torque is minimized. It is more preferable to select Id * and Iq * so as to satisfy the following conditions.

また、同期機1の種々のトルクに対応するd−q軸上の電流指令Id*、Iq*の最適値を事前に測定してマップ化しておき、運転中に(制限後の)トルク指令τ*を該マップに随時参照して、τ*に応じたd−q軸上の電流指令Id*、Iq*を得る方法でも良い。   Further, the optimum values of the current commands Id * and Iq * on the dq axes corresponding to various torques of the synchronous machine 1 are measured and mapped in advance, and the torque command τ during operation (after limitation) is mapped. A method of obtaining current commands Id * and Iq * on the dq axes according to τ * by referring to * as needed in the map may be used.

以上が、実施の形態6における同期機制御装置の説明である。
この実施の形態6によれば、同期機1の界磁を形成する永久磁石の温度上昇時にトルク指令を制限することから、その結果磁石温度上昇を引き起こす電機子電流(実効値)を小さくでき、永久磁石の不可逆減磁を防止することができる効果がある。
The above is the description of the synchronous machine control device according to the sixth embodiment.
According to the sixth embodiment, since the torque command is limited when the temperature of the permanent magnet forming the field of the synchronous machine 1 rises, the armature current (effective value) that causes the magnet temperature rise can be reduced as a result. There is an effect of preventing irreversible demagnetization of the permanent magnet.

本発明には、前述の記載から明白なように、例えば以下のような特徴がある。
特徴A1:実施の形態1(図1から図6)等に例示のように、界磁として永久磁石を有する同期機1に対して、電圧指令に基づいて電圧を出力する電力変換手段2と、同期機1の電機子電流を検出する電流検出手段3と、同期機1の回転子位置を推定あるいは検出する位置検出手段4と、電流指令と前記回転子位置に基づいて回転直交二軸(d−q軸)座標上へ座標変換した前記電機子電流とに基づいて該回転直交二軸座標上で電流制御を行うことにより前記電圧指令を生成する電流制御器5と、前記回転子位置の変化から算出される同期機1の回転速度と前記電圧指令と前記電流指令とに基づいて同期機1の電機子鎖交磁束を推定する磁束推定器6と、前記永久磁石の温度を推定する磁石温度推定手段7とを備え同期機制御装置であって、磁石温度推定手段7は、前記永久磁石の温度が所定の温度T1の条件下における前記電流指令と前記電機子鎖交磁束との相関を示す第1の磁束マップ71と、前記電流指令と前記永久磁石の温度が温度T1を基準に、温度T1とは異なる温度T2まで変化した時の前記電機子鎖交磁束変化量との相関を示す磁束変化マップ70とを備え、磁束推定器6にて推定される前記電機子鎖交磁束推定値と第1の磁束マップ71と磁束変化マップ70とに基づいて前記永久磁石の温度を推定する同期機制御装置であり、電流指令(同期機の磁気飽和状態)に応じて異なる磁石温度変化に対する電機子鎖交磁束の変化を正確に把握しながら磁石温度を推定することから、永久磁石に直接温度検出器を取り付けることなく、あらゆる電流(負荷)条件で永久磁石の温度を精度良く推定できる。
特徴A2:実施の形態1(図1から図6)等に例示のように、特徴A1の同期機制御装置において、磁束推定器6で推定する同期機1の電機子鎖交磁束は界磁磁束と同一方向であるd軸成分の電機子鎖交磁束であり、磁石温度推定手段7は、前記永久磁石の温度が所定の温度T1の条件下における前記電流指令と前記電機子鎖交磁束のd軸成分との相関を示す第1の磁束マップ71と、前記電流指令と前記永久磁石の温度が温度T1とは異なる温度T2まで変化した時の前記電機子鎖交磁束のd軸成分の変化量との相関を示す第2の磁束変化マップ70とを備え、磁束推定器6にて推定される前記電機子鎖交磁束推定値のd軸成分と第1の磁束マップ71と磁束変化マップ70とに基づいて前記永久磁石の温度を推定する同期機制御装置であり、界磁磁束と同一方向であるd軸成分の電機子鎖交磁束に基づいて永久磁石温度推定を行うことで、磁石温度変化に対する磁束変化の感度を向上させる事ができ、永久磁石の温度推定精度が向上する。
特徴A3:実施の形態2(図7および図8)等に例示のように、界磁として永久磁石を有する同期機1に対して、電圧指令に基づいて電圧を出力する電力変換手段2と、同期機1の電機子電流を検出する電流検出手段3と、同期機1の回転子位置を推定あるいは検出する位置検出手段4と、電流指令と前記回転子位置に基づいて回転直交二軸(d−q軸)座標上へ座標変換した前記電機子電流とに基づいて該回転直交二軸座標上で電流制御を行うことにより前記電圧指令を生成する電流制御器5と、前記回転子位置の変化から算出される同期機1の回転速度と前記電圧指令と前記電流指令とに基づいて同期機1の電機子鎖交磁束を推定する磁束推定器6と、前記永久磁石の温度を推定する磁石温度推定手段7aとを備えた同期機制御装置であって、磁石温度推定手段7aは、前記永久磁石の温度が所定の温度T1の条件下における前記電流指令と前記電機子鎖交磁束との相関を示す第1の磁束マップ71と、前記永久磁石の温度が温度T1とは異なる温度T2の条件下における前記電流指令と前記電機子鎖交磁束との相関を示す第2の磁束マップ72とを備え、磁束推定器6にて推定される前記電機子鎖交磁束推定値と第1の磁束マップ71と第2の磁束マップ72とに基づいて前記永久磁石の温度を推定する同期機制御装置であり、電流指令(同期機の磁気飽和状態)に応じて異なる磁石温度変化に対する電機子鎖交磁束の変化を正確に把握しながら磁石温度を推定することから、永久磁石に直接温度検出器を取り付けることなく、あらゆる電流(負荷)条件で永久磁石の温度を精度良く推定できる。
特徴A4:実施の形態3(図9および図10)等に例示のように、特徴A3の同期機制御装置において、磁石温度推定手段7bは、第1の磁束マップ71、第2の磁束マップ72に加え、前記永久磁石の温度が温度T1、T2とは異なる温度の条件下における前記電流指令と前記電機子鎖交磁束との相関を示す磁束マップを複数備え、磁束推定器6にて推定される前記電機子鎖交磁束推定値と第1の磁束マップ71と第2の磁束マップ72を含む前記複数の磁束マップとに基づいて前記永久磁石の温度を推定する同期機制御装置であり、各々異なる永久磁石温度の条件下における電流指令に対する磁束マップを複数備えることで、同期機1の駆動によって変化し得る永久磁石の温度変化範囲が大きい場合においても、電流指令に応じて異なる磁石温度変化に対する電機子鎖交磁束の変化をより正確に補正することができることから、永久磁石の温度推定精度が向上する。
特徴A5:実施の形態4(図11)等に例示のように、特徴A1からA4の何れか一の同期機制御装置において、同期機1の電機子巻線温度を検出する温度検出手段8を備え、磁束推定器6aは、前記回転速度と前記電圧指令と前記電流指令と前記電機子巻線温度とに基づいて同期機1の電機子鎖交磁束を推定する同期機制御装置であり、電機子巻線温度を検出し、該温度を同期機1の電機子鎖交磁束推定動作に反映させることで、電機子鎖交磁束の推定精度が向上し、その結果、永久磁石の温度推定精度が向上する。
特徴A6:実施の形態5(図12)等に例示のように、特徴A1からA5の何れか一の同期機制御装置において、推定した前記永久磁石の温度に応じて前記電流指令を制限する電流指令制限手段9を備えた同期機制御装置であり、同期機1の界磁を形成する永久磁石の温度上昇時に電流指令を制限することから、その結果磁石温度上昇を引き起こす電機子電流(実効値)を小さくでき、永久磁石の不可逆減磁を防止することができる。
特徴A7:実施の形態6(図13)等に例示のように、特徴A1からA5の何れか一の同期機制御装置において、推定した前記永久磁石の温度に応じて同期機1に対するトルク指令を制限するトルク指令制限手段10と前記制限されたトルク指令に基づいて前記電流指令を生成する電流指令生成手段11とを備えた同期機制御装置であり、同期機1の界磁を形成する永久磁石の温度上昇時にトルク指令を制限することから、その結果磁石温度上昇を引き起こす電機子電流(実効値)を小さくでき、永久磁石の不可逆減磁を防止することができる。
特徴B1:実施の形態1から6(図1から13)等に例示のように、界磁として永久磁石を有する同期機に電圧指令に基づいて電圧を出力する電力変換手段、前記同期機の電機子電流を検出する電流検出手段、前記同期機の回転子位置を推定あるいは検出する位置検出手段、電流指令と前記電流検出手段の出力と前記位置検出手段の出力とに基づいて前記電圧指令を生成し前記電力変換手段を介して前記電機子電流を制御する電流制御器、前記同期機の回転速度と前記電圧指令と前記電流指令とに基づいて前記同期機の電機子鎖交磁束を推定する磁束推定器、および前記永久磁石の温度を推定する磁石温度推定手段を備え、前記磁石温度推定手段が、前記電流指令と前記磁束推定器の出力とを入力し、前記永久磁石の温度が所定の温度T1の条件下における前記電流指令と、前記磁束推定器によって推定された電機子鎖交磁束推定値と、前記永久磁石の温度が前記所定の温度T1を基準に前記所定の温度T1とは異なる温度T2まで変化した時の前記電機子鎖交磁束の変化量とに基づいて前記永久磁石の温度を推定するので、電流指令に応じて異なる磁石温度変化に対する電機子鎖交磁束の変化を把握しながら磁石温度を推定することから、永久磁石に直接温度検出器を取り付けることなく、変化する電流(負荷)条件下で永久磁石の温度を精度良く推定できるといった従来にない顕著な効果を奏することができる。
As apparent from the above description, the present invention has the following features, for example.
Feature A1: As illustrated in the first embodiment (FIGS. 1 to 6), etc., power conversion means 2 that outputs a voltage based on a voltage command to a synchronous machine 1 having a permanent magnet as a field, Current detection means 3 for detecting the armature current of the synchronous machine 1, position detection means 4 for estimating or detecting the rotor position of the synchronous machine 1, and rotation orthogonal biaxial (d) based on the current command and the rotor position A current controller 5 that generates the voltage command by performing current control on the rotation orthogonal two-axis coordinate based on the armature current coordinate-converted on the -q axis), and a change in the rotor position The magnetic flux estimator 6 for estimating the armature linkage magnetic flux of the synchronous machine 1 based on the rotation speed of the synchronous machine 1 calculated from the voltage command and the current command, and the magnet temperature for estimating the temperature of the permanent magnet A synchronous machine control device comprising an estimation means 7, The stone temperature estimating means 7 includes a first magnetic flux map 71 showing a correlation between the current command and the armature linkage flux under the condition that the temperature of the permanent magnet is a predetermined temperature T1, and the current command and the permanent magnet. The magnetic flux estimator 6 is provided with a magnetic flux change map 70 showing a correlation with the armature interlinkage magnetic flux change amount when the magnet temperature changes to a temperature T2 different from the temperature T1 on the basis of the temperature T1. Is a synchronous machine control device that estimates the temperature of the permanent magnet based on the estimated armature flux linkage value, the first magnetic flux map 71, and the magnetic flux change map 70, and a current command (magnetic saturation state of the synchronous machine). ), The magnet temperature is estimated while accurately grasping the change in the armature linkage magnetic flux for different magnet temperature changes, so it is permanent under any current (load) conditions without attaching a temperature detector directly to the permanent magnet. Magnet temperature It can be estimated with high accuracy.
Feature A2: As exemplified in the first embodiment (FIGS. 1 to 6) and the like, in the synchronous machine control device of feature A1, the armature linkage magnetic flux of the synchronous machine 1 estimated by the magnetic flux estimator 6 is the field magnetic flux. And the magnet temperature estimating means 7 has the current command and d of the armature linkage flux under the condition that the temperature of the permanent magnet is a predetermined temperature T1. A first magnetic flux map 71 showing a correlation with the axis component, and a change amount of the d-axis component of the armature linkage magnetic flux when the temperature of the current command and the permanent magnet is changed to a temperature T2 different from the temperature T1. A second magnetic flux change map 70 showing a correlation with the d-axis component of the armature flux linkage estimated value estimated by the magnetic flux estimator 6, the first magnetic flux map 71, and the magnetic flux change map 70 Is a synchronous machine control device for estimating the temperature of the permanent magnet based on By estimating the permanent magnet temperature based on the armature linkage magnetic flux of the d-axis component that is in the same direction as the bundle, the sensitivity of the magnetic flux change to the magnet temperature change can be improved, and the temperature estimation accuracy of the permanent magnet is improved. To do.
Feature A3: as exemplified in the second embodiment (FIGS. 7 and 8), etc., to the synchronous machine 1 having a permanent magnet as a field, power conversion means 2 that outputs a voltage based on a voltage command; Current detection means 3 for detecting the armature current of the synchronous machine 1, position detection means 4 for estimating or detecting the rotor position of the synchronous machine 1, and rotation orthogonal biaxial (d) based on the current command and the rotor position A current controller 5 that generates the voltage command by performing current control on the rotation orthogonal two-axis coordinate based on the armature current coordinate-converted on the -q axis), and a change in the rotor position The magnetic flux estimator 6 for estimating the armature linkage magnetic flux of the synchronous machine 1 based on the rotation speed of the synchronous machine 1 calculated from the voltage command and the current command, and the magnet temperature for estimating the temperature of the permanent magnet A synchronous machine control device comprising an estimation means 7a The magnet temperature estimating means 7a includes a first magnetic flux map 71 indicating a correlation between the current command and the armature linkage magnetic flux under the condition that the temperature of the permanent magnet is a predetermined temperature T1, and the permanent magnet A second magnetic flux map 72 showing a correlation between the current command and the armature flux linkage under the condition of a temperature T2 that is different from the temperature T1, and the armature estimated by the magnetic flux estimator 6; A synchronous machine control device that estimates the temperature of the permanent magnet based on an estimated value of linkage flux, a first magnetic flux map 71, and a second magnetic flux map 72, and according to a current command (magnetic saturation state of the synchronous machine) Since the magnet temperature is estimated while accurately grasping the change in the armature flux linkage for different magnet temperature changes, the temperature of the permanent magnet can be measured under any current (load) conditions without attaching a temperature detector directly to the permanent magnet. Accurately It can be constant.
Feature A4: As illustrated in the third embodiment (FIGS. 9 and 10), etc., in the synchronous machine control device of feature A3, the magnet temperature estimating means 7b includes the first magnetic flux map 71 and the second magnetic flux map 72. In addition, a plurality of magnetic flux maps showing the correlation between the current command and the armature interlinkage magnetic flux under the condition that the temperature of the permanent magnet is different from the temperatures T1 and T2 are estimated by the magnetic flux estimator 6. A synchronous machine control device that estimates the temperature of the permanent magnet based on the armature flux linkage estimated value and the plurality of magnetic flux maps including the first magnetic flux map 71 and the second magnetic flux map 72, By providing a plurality of magnetic flux maps for current commands under conditions of different permanent magnet temperatures, even when the temperature change range of the permanent magnets that can be changed by driving the synchronous machine 1 is large, the magnet temperatures differ according to the current commands. Since the change of the armature linkage magnetic flux with respect to the degree change can be corrected more accurately, the temperature estimation accuracy of the permanent magnet is improved.
Feature A5: As exemplified in the fourth embodiment (FIG. 11) and the like, in the synchronous machine control device of any one of the characteristics A1 to A4, the temperature detecting means 8 for detecting the armature winding temperature of the synchronous machine 1 is provided. The magnetic flux estimator 6a is a synchronous machine control device that estimates an armature linkage flux of the synchronous machine 1 based on the rotation speed, the voltage command, the current command, and the armature winding temperature. By detecting the armature winding temperature and reflecting this temperature in the armature flux linkage estimation operation of the synchronous machine 1, the armature flux linkage estimation accuracy is improved. As a result, the temperature estimation accuracy of the permanent magnet is improved. improves.
Feature A6: current that limits the current command according to the estimated temperature of the permanent magnet in the synchronous machine control device of any one of features A1 to A5, as exemplified in the fifth embodiment (FIG. 12) This is a synchronous machine control device provided with a command limiting means 9 and limits the current command when the temperature of the permanent magnet forming the field of the synchronous machine 1 rises. As a result, the armature current (effective value) that causes the magnet temperature to rise ) Can be reduced, and irreversible demagnetization of the permanent magnet can be prevented.
Feature A7: As exemplified in the sixth embodiment (FIG. 13) and the like, in the synchronous machine control device according to any one of the characteristics A1 to A5, a torque command to the synchronous machine 1 is issued according to the estimated temperature of the permanent magnet. A synchronous machine control device comprising a torque command limiting means 10 for limiting and a current command generating means 11 for generating the current command based on the limited torque command, and a permanent magnet that forms a field of the synchronous machine 1 Since the torque command is limited when the temperature rises, the armature current (effective value) that causes the magnet temperature rise can be reduced as a result, and the irreversible demagnetization of the permanent magnet can be prevented.
Feature B1: As exemplified in Embodiments 1 to 6 (FIGS. 1 to 13), etc., power conversion means for outputting a voltage based on a voltage command to a synchronous machine having a permanent magnet as a field, and the electric machine of the synchronous machine Current detection means for detecting a child current, position detection means for estimating or detecting a rotor position of the synchronous machine, and generating the voltage command based on a current command, an output of the current detection means, and an output of the position detection means A current controller for controlling the armature current via the power conversion means, and a magnetic flux for estimating the armature linkage flux of the synchronous machine based on the rotational speed of the synchronous machine, the voltage command, and the current command. An estimator; and a magnet temperature estimating means for estimating the temperature of the permanent magnet, wherein the magnet temperature estimating means inputs the current command and the output of the magnetic flux estimator, and the temperature of the permanent magnet is a predetermined temperature. Article T1 The current command below, the armature flux linkage estimated value estimated by the magnetic flux estimator, and the temperature of the permanent magnet is changed to a temperature T2 different from the predetermined temperature T1 based on the predetermined temperature T1. Since the temperature of the permanent magnet is estimated based on the amount of change in the armature linkage flux when the magnet temperature is changed, the magnet temperature is determined while grasping the change in the armature linkage flux for different magnet temperature changes according to the current command. As a result of the estimation, it is possible to obtain an unprecedented remarkable effect that the temperature of the permanent magnet can be accurately estimated under changing current (load) conditions without directly attaching the temperature detector to the permanent magnet.

なお、本発明は、その発明の範囲内において、各実施の形態を適宜、変形、省略することができ、また、各実施の形態を必要に応じて組み合わせることもできる。
なお、各図中、同一符合は同一または相当部分を示し、実施の形態2から6については、先述の実施の形態と同一部分については説明を割愛し、先述の実施の形態と異なる点を主体として説明してある。
In the present invention, each embodiment can be appropriately modified or omitted within the scope of the invention, and the embodiments can be combined as necessary.
In each figure, the same reference numerals indicate the same or corresponding parts, and in the second to sixth embodiments, the description of the same parts as those in the previous embodiment is omitted, and the points different from the previous embodiments are mainly described. It is described as.

1 永久磁石同期機、 2 電力変換手段、
3 電流検出手段、 4、4a 位置検出手段、
5 電流制御器、 6、6a 磁束推定器、
7,7a,7b 磁石温度推定手段、 8 温度検出手段、
9 電流指令制限手段、 10 トルク指令制限手段、
11 電流指令生成手段、 21a,21b 座標変換器、
22 加減算器、 23 電源、
70 磁束変化マップ、 71 第1の磁束マップ、
72 第2の磁束マップ、 73 第3の磁束マップ、
79,79a,79b 磁石温度換算部。
1 permanent magnet synchronous machine, 2 power conversion means,
3 current detection means, 4, 4a position detection means,
5 Current controller 6, 6a Magnetic flux estimator,
7, 7a, 7b Magnet temperature estimation means, 8 Temperature detection means,
9 current command limiting means, 10 torque command limiting means,
11 current command generation means, 21a, 21b coordinate converter,
22 adder / subtractor, 23 power supply,
70 magnetic flux change map, 71 first magnetic flux map,
72 second magnetic flux map, 73 third magnetic flux map,
79, 79a, 79b Magnet temperature conversion section.

Claims (7)

界磁として永久磁石を有する同期機に電圧指令に基づいて電圧を出力する電力変換手段、
前記同期機の電機子電流を検出する電流検出手段、
前記同期機の回転子位置を推定あるいは検出する位置検出手段、
電流指令と前記回転子位置に基づいて回転直交二軸(d−q軸)座標上へ座標変換した前記電機子電流とに基づいて該回転直交二軸(d−q軸)座標上で電流制御を行うことにより前記電圧指令を生成する電流制御器、
前記回転子位置の変化から算出される前記同期機の回転速度と前記電圧指令と前記電流指令とに基づいて前記同期機の電機子鎖交磁束を推定する磁束推定器、および
前記永久磁石の温度を推定する磁石温度推定手段を備え、
前記磁石温度推定手段は、前記永久磁石の温度が所定の温度T1の条件下における前記電流指令と前記電機子鎖交磁束との相関を示す第1の磁束マップと、前記電流指令と前記永久磁石の温度が温度T1を基準に、温度T1とは異なる温度T2まで変化した時の前記電機子鎖交磁束の変化量との相関を示す磁束変化マップとを備え、
前記磁束推定器にて推定される前記電機子鎖交磁束の推定値と第1の磁束マップと磁束変化マップとに基づいて前記永久磁石の温度を推定する
ことを特徴とする同期機制御装置。
Power conversion means for outputting a voltage based on a voltage command to a synchronous machine having a permanent magnet as a field,
Current detecting means for detecting an armature current of the synchronous machine;
Position detecting means for estimating or detecting the rotor position of the synchronous machine;
Current control on the rotation orthogonal two-axis (dq axis) coordinates based on the current command and the armature current coordinate-converted on the rotation orthogonal two-axis (dq axis) coordinates based on the rotor position. A current controller that generates the voltage command by performing
A magnetic flux estimator that estimates an armature linkage magnetic flux of the synchronous machine based on a rotation speed of the synchronous machine calculated from a change in the rotor position, the voltage command, and the current command, and a temperature of the permanent magnet A magnet temperature estimating means for estimating
The magnet temperature estimation means includes a first magnetic flux map indicating a correlation between the current command and the armature linkage magnetic flux under a condition where the temperature of the permanent magnet is a predetermined temperature T1, and the current command and the permanent magnet. The magnetic flux change map showing the correlation with the change amount of the armature linkage magnetic flux when the temperature of the armature is changed to a temperature T2 different from the temperature T1 with respect to the temperature T1,
A synchronous machine control device, wherein the temperature of the permanent magnet is estimated based on an estimated value of the armature flux linkage estimated by the magnetic flux estimator, a first magnetic flux map, and a magnetic flux change map .
界磁として永久磁石を有する同期機に電圧指令に基づいて電圧を出力する電力変換手段、
前記同期機の電機子電流を検出する電流検出手段、
前記同期機の回転子位置を推定あるいは検出する位置検出手段、
電流指令と前記回転子位置に基づいて回転直交二軸(d−q軸)座標上へ座標変換した前記電機子電流とに基づいて該回転直交二軸(d−q軸)座標上で電流制御を行うことにより前記電圧指令を生成する電流制御器、
前記回転子位置の変化から算出される前記同期機の回転速度と前記電圧指令と前記電流指令とに基づいて前記同期機の電機子鎖交磁束を推定する磁束推定器、および
前記永久磁石の温度を推定する磁石温度推定手段を備え、
前記磁束推定器で推定する前記同期機の電機子鎖交磁束は、界磁磁束と同一方向であるd軸成分の電機子鎖交磁束であり、
前記磁石温度推定手段は、前記永久磁石の温度が所定の温度T1の条件下における前記電流指令と前記電機子鎖交磁束のd軸成分との相関を示す第1の磁束マップと、前記電流指令と前記永久磁石の温度が温度T1とは異なる温度T2まで変化した時の前記電機子鎖交磁束のd軸成分の変化量との相関を示す磁束変化マップとを備え、
前記磁束推定器によって推定される前記電機子鎖交磁束の推定値のd軸成分と前記第1の磁束マップと前記磁束変化マップとに基づいて前記永久磁石の温度を前記磁石温度推定手段が推定する
ことを特徴とする同期機制御装置。
Power conversion means for outputting a voltage based on a voltage command to a synchronous machine having a permanent magnet as a field,
Current detecting means for detecting an armature current of the synchronous machine;
Position detecting means for estimating or detecting the rotor position of the synchronous machine;
Current control on the rotation orthogonal two-axis (dq axis) coordinates based on the current command and the armature current coordinate-converted on the rotation orthogonal two-axis (dq axis) coordinates based on the rotor position. A current controller that generates the voltage command by performing
A magnetic flux estimator for estimating an armature linkage magnetic flux of the synchronous machine based on the rotational speed of the synchronous machine calculated from the change of the rotor position, the voltage command, and the current command; and
A magnet temperature estimating means for estimating the temperature of the permanent magnet;
The armature linkage flux of the synchronous machine estimated by the flux estimator is an armature linkage flux of the d-axis component that is in the same direction as the field flux,
The magnet temperature estimation means includes a first magnetic flux map indicating a correlation between the current command and a d-axis component of the armature linkage magnetic flux when the temperature of the permanent magnet is a predetermined temperature T1, and the current command And a magnetic flux change map showing a correlation between a change amount of the d-axis component of the armature linkage magnetic flux when the temperature of the permanent magnet changes to a temperature T2 different from the temperature T1,
The magnet temperature estimating means estimates the temperature of the permanent magnet based on the d-axis component of the estimated value of the armature linkage flux estimated by the magnetic flux estimator, the first magnetic flux map, and the magnetic flux change map. A synchronous machine control device characterized by:
界磁として永久磁石を有する同期機に電圧指令に基づいて電圧を出力する電力変換手段、
前記同期機の電機子電流を検出する電流検出手段、
前記同期機の回転子位置を推定あるいは検出する位置検出手段、
電流指令と前記回転子位置に基づいて回転直交二軸(d−q軸)座標上へ座標変換した前記電機子電流とに基づいて前記回転直交二軸(d−q軸)座標上で電流制御を行うことにより前記電圧指令を生成する電流制御器、
前記回転子位置の変化から算出される前記同期機の回転速度と前記電圧指令と前記電流指令とに基づいて前記同期機の電機子鎖交磁束を推定する磁束推定器、および
前記永久磁石の温度を推定する磁石温度推定手段を備え、
前記磁石温度推定手段は、前記永久磁石の温度が所定の温度T1の条件下における前記電流指令と前記電機子鎖交磁束との相関を示す第1の磁束マップと、前記永久磁石の温度が温度T1とは異なる温度T2の条件下における前記電流指令と前記電機子鎖交磁束との相関を示す第2の磁束マップとを備え、
前記磁石温度推定手段は、前記電流指令と前記磁束推定器の出力とを入力し、前記磁束推定器によって推定される電機子鎖交磁束推定値と前記第1の磁束マップと前記第2の磁束マップとに基づいて前記永久磁石の温度を推定する
ことを特徴とする同期機制御装置。
Power conversion means for outputting a voltage based on a voltage command to a synchronous machine having a permanent magnet as a field,
Current detecting means for detecting an armature current of the synchronous machine;
Position detecting means for estimating or detecting the rotor position of the synchronous machine;
Current control on the rotation orthogonal two-axis (dq axis) coordinates based on the current command and the armature current coordinate-converted onto the rotation orthogonal two-axis (dq axis) coordinates based on the rotor position. A current controller that generates the voltage command by performing
A magnetic flux estimator for estimating an armature linkage magnetic flux of the synchronous machine based on the rotational speed of the synchronous machine calculated from the change of the rotor position, the voltage command, and the current command; and
A magnet temperature estimating means for estimating the temperature of the permanent magnet;
The magnet temperature estimation means includes a first magnetic flux map indicating a correlation between the current command and the armature linkage magnetic flux under a condition where the temperature of the permanent magnet is a predetermined temperature T1, and the temperature of the permanent magnet is a temperature. A second magnetic flux map showing a correlation between the current command and the armature flux linkage under a condition of a temperature T2 different from T1,
The magnet temperature estimation means receives the current command and the output of the magnetic flux estimator, and estimates the armature flux linkage estimated value, the first magnetic flux map, and the second magnetic flux estimated by the magnetic flux estimator. A synchronous machine control device, wherein the temperature of the permanent magnet is estimated based on a map .
請求項3に記載の同期機制御装置において、
前記磁石温度推定手段は、前記第1の磁束マップ、前記第2の磁束マップに加え、前記永久磁石の温度が温度T1、T2とは異なる温度の条件下における前記電流指令と前記電機子鎖交磁束との相関を示す複数の磁束マップを備え、
前記磁束推定器によって推定される前記電機子鎖交磁束推定値と、前記第1の磁束マップおよび前記第2の磁束マップを含む前記複数の磁束マップとに基づいて前記永久磁石の温度を前記磁石温度推定手段が推定する
ことを特徴とする同期機制御装置。
In the synchronous machine control device according to claim 3,
In addition to the first magnetic flux map and the second magnetic flux map, the magnet temperature estimation means includes the current command and the armature linkage under the condition that the temperature of the permanent magnet is different from the temperatures T1 and T2. With multiple magnetic flux maps showing correlation with magnetic flux,
The temperature of the permanent magnet is determined based on the armature flux linkage estimated value estimated by the magnetic flux estimator and the plurality of magnetic flux maps including the first magnetic flux map and the second magnetic flux map. A synchronous machine control device characterized in that the temperature estimation means estimates .
請求項1からの何れか一に記載の同期機制御装置において、
前記同期機の電機子巻線の温度を検出する温度検出手段を備え、
前記磁束推定器は、前記回転速度と前記電圧指令と前記電流指令と前記電機子巻線の温度とに基づいて前記電機子鎖交磁束を推定す
ことを特徴とする同期機制御装置。
In the synchronous machine control device according to any one of claims 1 to 4,
Comprising temperature detecting means for detecting the temperature of the armature winding of the synchronous machine;
Magnetic flux estimator, the said rotational speed and said voltage command and the current command based on the temperature of the armature winding, characterized that you estimate the armature flux linkage synchronous machine control device.
請求項1から5の何れか一に記載の同期機制御装置において、
前記磁束推定器が推定した前記永久磁石の温度に応じて前記電流指令を制限する電流指令制限手段を備えている
ことを特徴とする同期機制御装置。
In the synchronous machine control device according to any one of claims 1 to 5,
A synchronous machine control device, comprising: current command limiting means for limiting the current command according to the temperature of the permanent magnet estimated by the magnetic flux estimator .
請求項1からの何れか一に記載の同期機制御装置において、
前記磁束推定器が推定した前記永久磁石の温度に応じて前記同期機に対するトルク指令を制限するトルク指令制限手段、および
前記トルク指令制限手段によって制限されたトルク指令に基づいて前記電流指令を生成する電流指令生成手段を備えている
ことを特徴とする同期機制御装置。
In the synchronous machine control device according to any one of claims 1 to 5 ,
Torque command limiting means for limiting a torque command to the synchronous machine according to the temperature of the permanent magnet estimated by the magnetic flux estimator ; and
A synchronous machine control device comprising: current command generation means for generating the current command based on a torque command limited by the torque command limiting means .
JP2014092239A 2014-04-28 2014-04-28 Synchronous machine controller Expired - Fee Related JP5788057B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014092239A JP5788057B1 (en) 2014-04-28 2014-04-28 Synchronous machine controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014092239A JP5788057B1 (en) 2014-04-28 2014-04-28 Synchronous machine controller

Publications (2)

Publication Number Publication Date
JP5788057B1 true JP5788057B1 (en) 2015-09-30
JP2015211569A JP2015211569A (en) 2015-11-24

Family

ID=54207185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014092239A Expired - Fee Related JP5788057B1 (en) 2014-04-28 2014-04-28 Synchronous machine controller

Country Status (1)

Country Link
JP (1) JP5788057B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020194695A1 (en) * 2019-03-28 2020-10-01 三菱電機株式会社 Drive device and air conditioning device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7052373B2 (en) * 2018-01-23 2022-04-12 株式会社デンソー AC motor control device
DE102018124105A1 (en) * 2018-09-28 2020-04-02 Valeo Siemens Eautomotive Germany Gmbh Method for determining a correction value describing an angle difference between an assumed and an actual position of a d-axis, control device and inverter
JP7309274B2 (en) * 2019-07-31 2023-07-18 ダイハツ工業株式会社 Magnet temperature estimation method
WO2023209803A1 (en) * 2022-04-26 2023-11-02 三菱電機株式会社 Device for controlling ac rotary machine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020194695A1 (en) * 2019-03-28 2020-10-01 三菱電機株式会社 Drive device and air conditioning device
JPWO2020194695A1 (en) * 2019-03-28 2021-11-04 三菱電機株式会社 Drive and air conditioner
CN113615025A (en) * 2019-03-28 2021-11-05 三菱电机株式会社 Drive device and air conditioner
JP7004869B2 (en) 2019-03-28 2022-01-21 三菱電機株式会社 Drive and air conditioner
CN113615025B (en) * 2019-03-28 2023-10-20 三菱电机株式会社 Driving device and air conditioning device
US11863101B2 (en) 2019-03-28 2024-01-02 Mitsubishi Electric Corporation Driving apparatus and air-conditioning apparatus

Also Published As

Publication number Publication date
JP2015211569A (en) 2015-11-24

Similar Documents

Publication Publication Date Title
JP6218976B2 (en) Synchronous machine control device and permanent magnet temperature estimation method for synchronous machine
JP5420006B2 (en) Synchronous machine controller
US9054630B2 (en) Synchronous machine controller
JP5781235B2 (en) Synchronous machine controller
US8829830B2 (en) Synchronous machine control apparatus
JP5281339B2 (en) Synchronous motor drive system and control device used therefor
US20090179602A1 (en) Rotary electric machine control device, rotary electric machine control method, and rotary electric machine control program
JP4263582B2 (en) Brushless motor control device
JP2009136085A (en) Controller of ac motor
JP5788057B1 (en) Synchronous machine controller
JP6115392B2 (en) Motor control device
JP2010200430A (en) Drive controller for motors
JP2015116021A (en) Control device for permanent magnet synchronous motor
JP6396869B2 (en) Motor control device
JP4652176B2 (en) Control device for permanent magnet type rotating electrical machine
JP2018057077A (en) Motor control device and drive system
KR20090055070A (en) Control system of permanent magnet synchronous motor and method thereof
WO2021186842A1 (en) Synchronous machine control device, synchronous machine control method, and electric vehicle
JP4053511B2 (en) Vector controller for wound field synchronous machine
JP5726273B2 (en) Synchronous machine control device having permanent magnet state estimation function and method thereof
JP5050387B2 (en) Motor control device
JP4884342B2 (en) Induction motor control device
JP6183194B2 (en) Motor control device
JP2004120834A (en) Controller of dc brushless motor
JP5332305B2 (en) Control device for permanent magnet type synchronous motor

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150630

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150728

R151 Written notification of patent or utility model registration

Ref document number: 5788057

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees