WO2023209803A1 - Device for controlling ac rotary machine - Google Patents

Device for controlling ac rotary machine Download PDF

Info

Publication number
WO2023209803A1
WO2023209803A1 PCT/JP2022/018875 JP2022018875W WO2023209803A1 WO 2023209803 A1 WO2023209803 A1 WO 2023209803A1 JP 2022018875 W JP2022018875 W JP 2022018875W WO 2023209803 A1 WO2023209803 A1 WO 2023209803A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
demagnetization
axis
setting
flux linkage
Prior art date
Application number
PCT/JP2022/018875
Other languages
French (fr)
Japanese (ja)
Inventor
英明 徳永
雄也 久野
晃 古川
亮 中村
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/018875 priority Critical patent/WO2023209803A1/en
Publication of WO2023209803A1 publication Critical patent/WO2023209803A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation

Definitions

  • This application relates to a control device for an AC rotating machine.
  • the motor drive device disclosed in Patent Document 1 has the following characteristics: rotational angular velocity, magnetic flux linkage by permanent magnets when no demagnetization occurs, d-axis inductance, d-axis current value, armature winding resistance value, and q-axis Based on the current value, calculate the standard q-axis voltage value when no demagnetization occurs, and compare the standard q-axis voltage value and the actual q-axis voltage value to estimate the amount of demagnetization. ing.
  • Patent Document 1 requires the use of d-axis inductance.
  • the d-axis inductance varies due to magnetic saturation. Therefore, when the setting accuracy of the d-axis inductance deteriorates, the calculation accuracy of the reference q-axis voltage value deteriorates, and the accuracy of demagnetization determination deteriorates.
  • the stator is provided with two or more sets of armature windings, the mutual inductance between the sets also needs to be set accurately.
  • the rotor is provided with a field winding, the inductance of the field winding must also be set accurately. That is, in the technique of Patent Document 1, an erroneous determination occurs unless the inductance characteristics of the AC rotating machine are set accurately.
  • an object of the present application is to provide a control device for an AC rotating machine that can determine demagnetization of a rotor magnet without using the inductance characteristics of the AC rotating machine.
  • the control device for an AC rotating machine controls an AC rotating machine that has a rotor provided with magnets and a stator provided with m sets of armature windings (m is a natural number of 1 or more) to a power converter.
  • a control device for an AC rotating machine that is controlled via a a rotation detection unit that detects a rotational angular velocity in electrical angle of the rotor; a voltage command value calculation unit that calculates a voltage command value for each group; a switching control unit that applies voltage to the armature winding by turning on and off a switching element included in the power converter based on the voltage command value for each set; Based on m sets of the voltage command values, m sets of current values of the armature windings, resistance values of the armature windings, and the rotational angular velocity, the interlinkage magnetic flux interlinking with the armature windings is determined.
  • the voltage equation can be calculated using the inductance characteristics of the AC rotating machine without directly estimating the armature linkage flux due to the magnet and the armature reaction flux due to the d-axis current. It is possible to indirectly estimate armature flux linkage based on m sets of voltage command values, m sets of armature winding current values, armature winding resistance values, and rotational angular velocity. can. Therefore, the armature flux linkage can be estimated without using the inductance characteristics of the AC rotating machine. Based on the comparison result between the estimated value of the armature flux linkage and the demagnetization determination value, it is possible to determine whether demagnetization of the magnet has occurred.
  • FIG. 1 is a schematic configuration diagram of an AC rotating machine and a control device for the AC rotating machine according to Embodiment 1.
  • FIG. 1 is a schematic block diagram of a control device according to Embodiment 1.
  • FIG. 1 is a hardware configuration diagram of a control device according to Embodiment 1.
  • FIG. 5 is a time chart illustrating ringing behavior according to the first embodiment.
  • FIG. 2 is a schematic block diagram of a control device including a winding temperature acquisition unit according to Embodiment 1.
  • FIG. 3 is a diagram illustrating a range of variation in magnetic flux linkage when using a fixed resistance value according to the first embodiment.
  • FIG. 3 is a diagram illustrating a variation range of magnetic flux linkage when using a variable resistance value according to the first embodiment.
  • FIG. 3 is a diagram illustrating demagnetization determination when using one estimated value and one determination value according to the first embodiment.
  • FIG. 3 is a diagram illustrating demagnetization determination when one estimated value and two determination values are used according to the first embodiment.
  • FIG. 3 is a diagram illustrating demagnetization determination when two estimated values and one determination value are used according to the first embodiment.
  • FIG. 3 is a diagram illustrating demagnetization determination when two estimated values and two determination values are used according to the first embodiment.
  • FIG. 3 is a diagram illustrating operating points at which estimated values vary according to the first embodiment.
  • FIG. 1 is a schematic configuration diagram of an AC rotating machine 1, a power converter, and a control device 30 according to the present embodiment.
  • the AC rotating machine 1 includes a stator 18 and a rotor 14.
  • the stator 18 includes a first set of three-phase armature windings Cu1, Cv1, and Cw1 of U1 phase, V1 phase, and W1 phase, and a second set of three-phase armature windings of U2 phase, V2 phase, and W2 phase. Child windings Cu2, Cv2, and Cw2 are provided.
  • the three-phase armature windings of each set may be star-connected or delta-connected.
  • the rotor 14 is provided with magnets.
  • the rotor 14 is provided with a field winding 7. Further, the rotor 14 is also provided with permanent magnets 12 . Demagnetization of the permanent magnet 12 is determined by the demagnetization determination described later.
  • the rotor 14 is provided with a rotation sensor 15 that detects the rotation angle (rotation angle) of the rotor 14.
  • the output signal of the rotation sensor 15 is input to the control device 30.
  • various sensors such as a Hall element, a resolver, or an encoder are used.
  • the rotation sensor 15 may not be provided, and the rotation angle (magnetic pole position) may be estimated based on current information etc. obtained by superimposing a harmonic component on a current command value, which will be described later (so-called sensorless method).
  • Inverter A first set of inverters 4a and a second set of inverters 4b are provided as power converters.
  • the first set of inverters 4a performs power conversion between the DC power supply 2 and the first set of three-phase armature windings.
  • the second set of inverters 4b performs power conversion between the DC power supply 2 and the second set of three-phase armature windings.
  • a high potential side switching element SP1 connected to the high potential side of the DC power supply 2 and a low potential side switching element SN1 connected to the low potential side of the DC power supply 2 are connected in series.
  • Three sets of series circuits (legs) are provided, one for each of the three phases. The connection point of the two switching elements in the series circuit of each phase is connected to the winding of the corresponding phase.
  • the U1 phase high potential side switching element SPu1 and the U1 phase low potential side switching element SNu1 are connected in series, and the connection point of the two switching elements is the U1 phase switching element SPu1. It is connected to armature winding Cu1.
  • the V1 phase high potential side switching element SPv1 and the V1 phase low potential side switching element SNv1 are connected in series, and the connection point between the two switching elements is the V1 phase armature winding Cv1. It is connected to the.
  • the W1 high potential side switching element SPw1 and the W1 phase low potential side switching element SNw1 are connected in series, and the connection point of the two switching elements is connected to the W1 phase armature winding Cw1. It is connected.
  • a high potential side switching element SP2 connected to the high potential side of the DC power supply 2 and a low potential side switching element SN2 connected to the low potential side of the DC power supply 2 are connected in series.
  • Three sets of series circuits (legs) are provided, one for each of the three phases. The connection point of the two switching elements in the series circuit of each phase is connected to the winding of the corresponding phase.
  • the U2 phase high potential side switching element SPu2 and the U2 phase low potential side switching element SNu2 are connected in series, and the connection point of the two switching elements is the U2 phase switching element SPu2. It is connected to armature winding Cu2.
  • the V2 phase high potential side switching element SPv2 and the V2 phase low potential side switching element SNv2 are connected in series, and the connection point between the two switching elements is the V2 phase armature winding Cv2. It is connected to the.
  • the W2 high potential side switching element SPw2 and the W2 phase low potential side switching element SNw2 are connected in series, and the connection point of the two switching elements is connected to the W2 phase armature winding Cw2. It is connected.
  • the first set of inverters 4a and the second set of inverters 4b are connected to one DC power supply 2.
  • One smoothing capacitor 3 is connected to the DC power supply 2 in parallel. Note that a smoothing capacitor may be provided in each of the first set and the second set of inverters 4a and 4b.
  • an IGBT Insulated Gate Bipolar Transistor
  • MOSFET Metal Oxide Semiconductor Field Effect Transistor
  • bipolar transistor with diodes connected in anti-parallel, etc.
  • the gate terminal of each switching element is connected to the control device 30 via a gate drive circuit or the like.
  • Each switching element of the first set of inverters 4a is turned on or off by a switching signal for the first set output from the control device 30.
  • Each switching element of the second set of inverters 4b is turned on or off by a switching signal for the second set output from the control device 30.
  • the DC power supply 2 outputs a DC voltage Vdc to the first and second sets of inverters 4a and 4b.
  • the DC power source 2 may be any device that outputs a DC voltage Vdc, such as a battery, a DC-DC converter, a diode rectifier, a PWM rectifier, or the like.
  • a first set of armature current sensors 5a and a second set of armature current sensors 5b are provided for detecting currents flowing through the armature windings of each phase of the first and second sets.
  • the first and second sets of armature current sensors 5a and 5b are current sensors such as shunt resistors or Hall elements.
  • the output signals of the first set and the second set of armature current sensors 5a, 5b are input to the control device 30.
  • each set of armature current sensors 5a, 5b is provided on an electric wire that connects a series circuit of switching elements of each phase and a winding of each phase.
  • each set of armature current sensors 5a, 5b may be connected in series to a series circuit of switching elements of each phase.
  • each set of current sensors is provided on a wire connecting each set of inverters 4a, 4b and the DC power supply 2, and the current in each phase winding of each set is may be detected.
  • converter 9 is provided as a power converter.
  • Converter 9 has a switching element and performs power conversion between DC power supply 2 and field winding 7 .
  • the converter 9 has a high potential side switching element SP connected to the high potential side of the DC power supply 2 and a low potential side switching element SN connected to the low potential side of the DC power supply 2 connected in series. It is an H-bridge circuit with two sets of connected series circuits.
  • the connection point between the switching element SP1 on the high potential side and the switching element SN1 on the low potential side in the first series circuit 28 is connected to one end of the field winding 7, and the high potential in the second series circuit 29 is connected to one end of the field winding 7.
  • a connection point between the switching element SP2 on the side and the switching element SN2 on the low potential side is connected to the other end of the field winding 7.
  • each switching element of the converter 9 As the switching element of the converter 9, an IGBT with diodes connected in anti-parallel, a bipolar transistor with diodes connected in anti-parallel, a MOSFET, etc. are used.
  • the gate terminal of each switching element is connected to the control device 30 via a gate drive circuit or the like. Therefore, each switching element is turned on or off by a switching signal output from the control device 30.
  • the converter 9 may be replaced with another one, such as by replacing the switching element SN1 on the low potential side of the first series circuit 28 with a diode, or replacing the switching element SP2 on the high potential side of the second series circuit 29 with a diode. It may also be configured as follows.
  • the field current sensor 6 is a current detection circuit that detects a field current value If, which is a current flowing through the field winding 7.
  • field current sensor 6 is provided on an electric wire that connects field winding 7 and converter 9.
  • the field current sensor 6 may be provided at another location where the field current value If can be detected.
  • the output signal of the field current sensor 6 is input to the control device 30.
  • the field current sensor 6 is a current sensor such as a Hall element or a shunt resistor.
  • Control device 30 The control device 30 controls the AC rotating machine 1 via a power converter (in this example, a first set and a second set of inverters 4a, 4b, and a converter 9). As shown in FIG. 2, the control device 30 has functions such as a rotation detection section 31, a current detection section 32, a voltage command value calculation section 33, a switching control section 34, a magnetic flux linkage estimation section 35, and a demagnetization determination section 36. It has a department. Each function of the control device 30 is realized by a processing circuit included in the control device 30. Specifically, as shown in FIG.
  • the control device 30 includes, as a processing circuit, an arithmetic processing device 90 (computer) such as a CPU (Central Processing Unit), a storage device 91 that exchanges data with the arithmetic processing device 90, It includes an input circuit 92 that inputs external signals to the arithmetic processing device 90, an output circuit 93 that outputs signals from the arithmetic processing device 90 to the outside, and a communication circuit 94 that performs data communication with an external device.
  • arithmetic processing device 90 such as a CPU (Central Processing Unit)
  • a storage device 91 that exchanges data with the arithmetic processing device 90
  • It includes an input circuit 92 that inputs external signals to the arithmetic processing device 90, an output circuit 93 that outputs signals from the arithmetic processing device 90 to the outside, and a communication circuit 94 that performs data communication with an external device.
  • the arithmetic processing unit 90 includes an ASIC (Application Specific Integrated Circuit), an IC (Integrated Circuit), a DSP (Digital Signal Processor), an FPGA (Field Programmable Gate Array), various logic circuits, and various signal processing circuits. You can. Further, a plurality of arithmetic processing units 90 of the same type or different types may be provided, and each process may be shared and executed.
  • a RAM Random Access Memory
  • ROM Read Only Memory
  • the input circuit 92 is an A/D to which various sensors such as the rotation sensor 15, each set of armature current sensors 5a and 5b, and the field current sensor 6 are connected, and inputs the output signals of these sensors to the arithmetic processing unit 90. Equipped with converters, etc.
  • the output circuit 93 is connected to electrical loads such as a gate drive circuit that turns on and off the switching elements of the first and second sets of inverters 4a and 4b and the converter 9, and receives control signals from the arithmetic processing unit 90 to these electrical loads. It is equipped with a drive circuit etc. that outputs.
  • the communication circuit 94 communicates with external devices.
  • Each function of each of the control units 31 to 36 provided in the control device 30 is performed by the arithmetic processing device 90 executing software (program) stored in a storage device 91 such as a ROM, and the storage device 91 and input circuit 92. , and other hardware of the control device 30 such as the output circuit 93. Note that various setting data used by each of the control units 31 to 36 and the like are stored in a storage device 91 such as a ROM as part of software (program). Each function of the control device 30 will be described in detail below.
  • Rotation detection section 31 The rotation detection unit 31 detects the magnetic pole position ⁇ of the rotor in electrical angle (rotation angle ⁇ of the rotor) and the rotational angular velocity ⁇ . In the present embodiment, the rotation detection unit 31 detects the magnetic pole position ⁇ (rotation angle ⁇ ) and rotational angular velocity ⁇ in electrical angle based on the output signal of the rotation sensor 15. Note that the electrical angle is the angle obtained by multiplying the mechanical angle of the rotor 14 by the number of pole pairs of the magnet.
  • the magnetic pole position ⁇ is set to the direction of the north pole of the magnets (in this example, electromagnets and permanent magnets) provided on the rotor.
  • the magnetic pole position ⁇ (rotation angle ⁇ ) is the position (angle) of the magnetic pole (N pole) in electrical angle with reference to the armature winding of the U1 phase of the first set.
  • the rotation detection unit 31 is configured to estimate the rotation angle (magnetic pole position) without using a rotation sensor, based on current information etc. obtained by superimposing harmonic components on the current command value. (so-called sensorless method).
  • the current detection unit 32 detects winding currents Ius1, Ivs1, and Iws1 flowing through the first set of three-phase armature windings based on the output signal of the first set of armature current sensors 5a. Further, the current detection unit 32 detects winding currents Ius2, Ivs2, and Iws2 flowing through the second set of three-phase armature windings based on the output signal of the second set of armature current sensors 5b. Note that for each set, two-phase winding currents may be detected, and the remaining one-phase winding current may be calculated based on the detected values of the two-phase winding currents.
  • the current detection unit 32 detects a field current value Ifs, which is the current flowing through the field winding 7, based on the output signal of the field current sensor 6.
  • Voltage command value calculation unit 33 The voltage command value calculation unit 33 calculates the voltage command value for each group.
  • the voltage command value calculation unit 33 calculates the d-axis current command value Ido and the q-axis current command value Iqo for each set using various known methods. For example, the voltage command value calculation unit 33 calculates the d-axis and q-axis current command values Ido and Iqo based on the torque command value, rotational angular velocity ⁇ , etc. using known vector control for each set. Let the first set of d-axis and q-axis current command values be Ido1 and Iqo1, and the second set of d-axis and q-axis current command values as Ido2 and Iqo2. The torque command value may be calculated within the control device 30 or may be transmitted from an external control device.
  • the d-axis is defined in the direction of the north pole of the magnet, and the q-axis is defined in the direction 90 electrical degrees ahead of the d-axis.
  • the voltage command value calculation unit 33 performs known three-phase two-phase conversion and rotational coordinate conversion on the three-phase current detection values Ius, Ivs, and Iws for each set based on the magnetic pole position ⁇ , and converts the three-phase current detection values Ius, Ivs, and Iws into the d-axis
  • the current detection value Ids and the q-axis current detection value Iqs are converted. Let the first set of d-axis and q-axis current detection values be Ids1 and Iqs1, and the second set of d-axis and q-axis current detection values be Ids2 and Iqs2.
  • the voltage command value calculation unit 33 performs known current feedback control for each set based on the d-axis and q-axis current command values Ido, Iqo, and the d-axis and q-axis current detection values Ids, Iqs, A d-axis voltage command value Vdo and a q-axis voltage command value Vqo are calculated.
  • the first set of voltage command values for the d-axis and q-axis are Vdo1 and Vqo1
  • the second set of voltage command values for the d-axis and q-axis are Vdo2 and Vqo2.
  • the voltage command value calculation unit 33 calculates the d-axis voltage command value Vdo and the q-axis voltage command value by known feedforward control based on the d-axis and q-axis current command values Ido and Iqo. Vqo may also be calculated.
  • the voltage command value calculation unit 33 performs known fixed coordinate transformation and two-phase three-phase transformation on the d-axis and q-axis voltage command values Vdo and Vqo for each set based on the magnetic pole position ⁇ .
  • Three-phase voltage command values Vuo, Vvo, and Vwo are calculated.
  • the voltage command values for the three phases in the first set are Vuo1, Vvo1, and Vwo1
  • the voltage command values for the three phases in the second set are Vuo2, Vvo2, and Vwo2.
  • Known modulation such as space vector modulation or two-phase modulation may be applied to each set of three-phase voltage command values.
  • the voltage command values for each set of three phases may be calculated using other known control methods such as V/f control.
  • V/f control When V/f control is performed, a current detection value is not required, so a current sensor may not be provided.
  • Switching control section 34 The switching control unit 34 applies voltage to the armature windings by turning on and off switching elements included in each group of inverters based on the voltage command value for each group. In this embodiment, the switching control unit 34 generates, for each group, a switching signal that turns on and off a plurality of switching elements included in each group of inverters based on three-phase voltage command values Vuo, Vvo, and Vwo. .
  • the switching control unit 34 uses known carrier comparison PWM or space vector PWM.
  • the switching control unit 34 compares the carrier wave with each of the three-phase voltage command values Vuo, Vvo, and Vwo for each group, and based on the comparison results, the switching control unit 34 compares the carrier wave with each of the three-phase voltage command values Vuo, Vvo, and Vwo, Generates a switching signal to turn on and off.
  • the switching control unit 34 When space vector PWM is used, the switching control unit 34 generates a voltage command vector from the three-phase voltage command values Vuo, Vvo, and Vwo, and calculates the seven basic voltage vectors in the PWM cycle based on the voltage command vector. The output time allocation is determined, and based on the output time allocation of the seven basic voltage vectors, a switching signal is generated to turn on and off each switching element in a PWM cycle.
  • the switching control unit 34 turns on and off the switching elements included in the converter 9 and applies a voltage to the field winding 7 .
  • the switching control unit 34 sets the field current command value Ifo based on the torque command value, rotational angular velocity ⁇ , etc., so that the field current detected value Ifs approaches the field current command value Ifo. , changes the field voltage command value Vfo, and turns on/off the plurality of switching elements of the converter 9 by PWM control based on the field voltage command value Vfo. Note that when feedforward control or control using an estimated value of the field current is performed, the field current detection value Ifs may not be used.
  • is the rotational angular velocity in electrical angle
  • Ra is the resistance value of the armature winding
  • s is the Laplace operator
  • Ld is the d-axis self-inductance
  • Lq is the q-axis self-inductance.
  • Md is the d-axis mutual inductance between the armature winding sets
  • Mq is the q-axis mutual inductance between the armature winding sets
  • Lmd is the d-axis mutual inductance between the armature winding sets.
  • the armature interlinkage magnetic flux ⁇ a interlinking with the armature winding is determined by the field winding interlinkage magnetic flux ⁇ f according to the field current value If caused by the field winding. and the interlinkage magnetic flux ⁇ f0 due to the permanent magnet.
  • the conditions under which the dq-axis current can be stably controlled to a desired value are as follows. Therefore, by determining the field current during magnetic flux estimation control in consideration of the voltage saturation condition of equation (3), the dq-axis current can be output as the command value, and the magnetic flux can be accurately estimated.
  • equation (1) becomes as follows.
  • armature flux linkage ⁇ a can be expressed by the following equation.
  • FIG. 4 shows waveforms of ringing caused by two sets of armature windings.
  • the current detection values of the first set of armature windings and the second set of armature windings may ring in mutually opposite phases around the current command value of each set. This is due to mutual interference of armature windings between sets.
  • the current detection value may differ from one armature winding to another due to sensor error. Similarly, a difference may occur in the voltage command value calculated based on the detected current value that includes sensor error.
  • the armature linkage magnetic flux ⁇ a can be calculated by using the average value of the voltage command values of all sets and the average value of the current values of all sets. It is possible to make each variable used for more constant, and also to reduce the influence of sensor errors for each armature winding, so it is possible to reduce the calculation error of armature linkage magnetic flux ⁇ a. .
  • the average value of the q-axis voltage value Vqave and the average value of the d-axis current value Idave used for calculating the armature flux linkage ⁇ a , and the average value Iqave of the q-axis current value are given by equations (6) to (8).
  • the armature magnetic flux linkage ⁇ a is calculated by Equation (9), which is a modification of Equation (5), using each average value.
  • the second term in the numerator of formula (9) is the armature reaction magnetic flux generated by the d-axis current value Id.
  • Armature reaction flux is a variable term that varies depending on magnetic saturation characteristics. That is, in order to accurately calculate the armature reaction magnetic flux, map data showing changes in the d-axis inductance Ld and the d-axis mutual inductance Md is required, and if the accuracy of these inductances deteriorates, the equation (9 ), the calculation accuracy of the armature flux linkage ⁇ a deteriorates, and the accuracy of demagnetization determination deteriorates.
  • equation (9) is modified as shown in the following equation.
  • ⁇ d is the d-axis armature flux linkage that interlinks with the armature winding, which is the sum of the armature flux linkage ⁇ a and the armature reaction flux due to the d-axis current. That is, equation (9) has been transformed into an equation for calculating the d-axis armature flux linkage ⁇ d.
  • the armature interlinkage magnetic flux ⁇ a varies due to demagnetization
  • the d-axis inductance Ld and the d-axis mutual inductance Md vary due to magnetic saturation.
  • the demagnetization determination value Th ⁇ can also be set using the right side of equation (10). That is, in a steady state at a certain operating point when no demagnetization occurs, the demagnetization determination value can be set based on the d-axis armature linkage flux ⁇ d calculated from the right side of equation (10). A method for setting the demagnetization determination value will be described later.
  • the flux linkage estimating unit 35 determines whether the armature windings are adjusted based on the m sets of voltage command values, the m sets of armature winding current values, the armature winding resistance values Ra, and the rotational angular velocity ⁇ . Estimate the armature flux linkage. A detected current value or a current command value is used as the current value of each set of armature windings.
  • the demagnetization determination unit 36 determines whether demagnetization of the magnet has occurred based on the comparison result between the estimated value of the flux linkage and the demagnetization determination value.
  • the voltage Armature flux linkage can be estimated indirectly using the equation. Therefore, the armature flux linkage can be estimated without providing map data or the like to accurately calculate each inductance Ld, Md. Based on the comparison result between the estimated value of the armature flux linkage and the demagnetization determination value, it is possible to determine whether demagnetization of the magnet has occurred.
  • demagnetization of the permanent magnet 12 provided in the rotor 14 is determined.
  • the demagnetization determination unit 36 transmits the determination result of the demagnetization determination to an external control device or the like.
  • the user can determine whether or not maintenance of the AC rotating machine 1 is necessary based on the determination result of the occurrence of demagnetization.
  • the demagnetization determination unit 36 may determine the degree of demagnetization based on the comparison result between the estimated value of the flux linkage and the demagnetization determination value. For example, the demagnetization determination unit 36 determines that the degree of demagnetization is greater as the degree of decrease in the estimated value of the flux linkage from the demagnetization determination value is greater.
  • the flux linkage estimation unit 35 uses the average value of the m sets of voltage command values as the m sets of voltage command values, and uses the average value of the m sets of current values as the m sets of current values.
  • the flux linkage estimation unit 35 uses the q-axis voltage command value Vqo as the voltage command value, uses the q-axis current value Iq as the current value, and calculates the estimated value of the armature flux linkage.
  • the d-axis armature flux linkage ⁇ d interlinking with the armature winding is estimated as follows.
  • the flux linkage estimation unit 35 calculates the average value Vqoave of the q-axis voltage command values Vqo1 and Vqo2 of the first and second sets, and the q-axis current values of the first and second sets.
  • the d-axis armature linkage flux ⁇ d is estimated based on the average value Iqave of Iq1 and Iq2, the resistance value Ra of the armature winding, and the rotational angular velocity ⁇ .
  • the q-axis current detection value Iqs or the q-axis current command value Iqo of each group is used as the q-axis current value of each group. Note that when one set of armature windings is provided, the right side of equation (12) is used.
  • the fluctuation range of the resistance value is known through preliminary study, and the fixed resistance value Ra is determined by considering the tolerance and detection rate of demagnetization determination. Therefore, the maximum value Ra_max and minimum value Ra_min of the resistance value variation range are obtained in advance and reflected in the estimated value of ⁇ d.
  • the q-axis current value Iq is constant regardless of the resistance value Ra, so the second term in equation (17) is , depends on the magnitude of the resistance value Ra. Therefore, the second term of equation (17) can be expressed as Ra_max ⁇ Iq and Ra_min ⁇ Iq, respectively, using the maximum value Ra_max and minimum value Ra_min of the resistance.
  • Ra_max ⁇ Iq and Ra_min ⁇ Iq indicate the maximum value and minimum value of Ra ⁇ Iq at each operating point.
  • a winding temperature acquisition section 37 that detects or estimates the winding temperature of the armature winding is provided.
  • a temperature sensor is attached to the armature winding, the output signal of the temperature sensor is input to the control device 30, and the winding temperature acquisition section 37 detects the winding temperature.
  • the winding temperature acquisition unit 37 estimates the winding temperature using an estimation model such as a thermal model based on the operating state such as the current value.
  • the flux linkage estimation unit 35 refers to characteristic data in which the relationship between the winding temperature and the resistance value Ra is set in advance, and estimates the resistance value Ra based on the detected or estimated winding temperature. Then, the flux linkage estimation unit 35 estimates ⁇ d using the estimated resistance value Ra. Therefore, by using a highly accurate resistance value Ra, assuming that there is no error in each sensor detection value, it is possible to estimate ⁇ d with higher accuracy than when using a fixed resistance value Ra.
  • the setting accuracy of the demagnetization determination value Th ⁇ becomes higher when the resistance value Ra is made variable. Therefore, if the winding temperature acquisition section 37 is provided to acquire the winding temperature, it is better to use the variable resistance value Ra also for setting the demagnetization determination value Th ⁇ .
  • FIG. 6 shows the graph of ⁇ d at an operating point with rotational angular velocity ⁇ and q-axis current value Iq (or torque command value) when no demagnetization occurs.
  • Ra_max ⁇ Iq and Ra_min ⁇ Iq, and Vqo_max and Vqo_min are the maximum and minimum values of the fluctuation range of Ra ⁇ Iq at a certain operating point and the q-axis voltage command value Vqo obtained in advance verification. It shows the maximum and minimum values of the fluctuation range.
  • ⁇ d_max_ass of the estimated value of ⁇ d and the minimum value ⁇ d_min_ass of the estimated value of ⁇ d based on a combination of these four values are as shown in the following equation.
  • is set to 1.
  • the estimated value of ⁇ d when no demagnetization occurs falls within the range from ⁇ d_min_ass to ⁇ d_max_ass, as shown in the following equation. Therefore, if the estimated value of ⁇ d falls outside the range from ⁇ d_min_ass to ⁇ d_max_ass, it can be determined that demagnetization has occurred.
  • the demagnetization determination unit 36 can determine that demagnetization has occurred when the estimated value of ⁇ d is smaller than the demagnetization determination value Th ⁇ set in advance to ⁇ d_min_ass. In this way, as one index, ⁇ d_max_ass and ⁇ d_min_ass can be used as the demagnetization determination value Th ⁇ .
  • FIG. 7 shows the case where ⁇ d is estimated using the estimated value of the resistance value Ra that is changed according to the winding temperature.
  • the estimated value of ⁇ d fluctuates little with respect to a change in the resistance value Ra.
  • the maximum value ⁇ d_maxerr and the minimum value ⁇ d_minerr of the estimated value of ⁇ d due to the error of each sensor detection value when demagnetization does not occur the fluctuation range is small. Therefore, the fluctuation range is smaller than the maximum value ⁇ d_max and the minimum value ⁇ d_min of the estimated value of ⁇ d when a fixed resistance value Ra is used.
  • the demagnetization determination value Th ⁇ may be set in advance to a value smaller than the minimum value ⁇ d_minerr of the estimated value of ⁇ d taking into account the error of each sensor detection value. That is, the demagnetization determination unit 36 determines that demagnetization has occurred when the estimated value of ⁇ d is smaller than the demagnetization determination value Th ⁇ , which is preset to a value smaller than ⁇ d_minerr. In this way, by estimating ⁇ d using the variable resistance value Ra, it is possible to improve the accuracy of demagnetization determination. Furthermore, it is possible to set a demagnetization determination value Th ⁇ that can determine minute demagnetization.
  • FIG. 8 shows demagnetization determination when using one estimated value of ⁇ d and one demagnetization determination value Th ⁇ .
  • the demagnetization determination unit 36 determines that demagnetization has not occurred when the estimated value of ⁇ d is larger than the demagnetization determination value Th ⁇ .
  • the resistance value Ra used to estimate ⁇ d may be a fixed value or a variable value
  • the resistance value Ra used to set the demagnetization judgment value Th ⁇ may be a fixed value or a variable value
  • Ra for estimating ⁇ d is a fixed value and Ra for setting Th ⁇ is a fixed value
  • the fixed resistance value Ra used for estimating ⁇ d is within the variation range of resistance value. It is preset to an arbitrary value within the range of Ra_min to Ra_max.
  • the demagnetization judgment value Th ⁇ is set in advance to a value that takes into consideration the fluctuation range of the estimated value of ⁇ d due to resistance value fluctuations and errors in each sensor detection value, and is set to a value that will appropriately prevent the occurrence of false positives and false negatives. be done.
  • the demagnetization determination value Th ⁇ is set in advance at each operating point. For example, it is the operating point of the rotational angular velocity ⁇ and the q-axis current command value Iqo.
  • a demagnetization determination value Th ⁇ is preset at each operating point of the rotational angular velocity ⁇ and the q-axis current command value Iqo.
  • the demagnetization determination unit 36 refers to map data in which the relationship between the rotational angular velocity ⁇ , the q-axis current command value Iqo, and the demagnetization determination value Th ⁇ is set in advance, and determines the current rotational angular velocity ⁇ and the current q-axis current command value Iqo.
  • a demagnetization determination value Th ⁇ corresponding to the current value Iq (in this example, the average value Iqave of the q-axis current value) is calculated.
  • the demagnetization determination unit 36 determines the rotational angular velocity ⁇ , the q-axis current value Iq (in this example, Iqave), the q-axis voltage command value Vqoth for setting the determination value, and the q-axis voltage command value Vqoth for setting the determination value. Based on the fixed resistance value Rath, calculate the d-axis armature linkage flux ⁇ dth for setting the judgment value, and subtract the offset value ⁇ from the d-axis armature linkage flux ⁇ dth for setting the judgment value. , the demagnetization determination value Th ⁇ may be set.
  • Vqoth is a q-axis voltage command value for setting a determination value
  • the q-axis voltage command value Vqo when no demagnetization occurs is set in advance.
  • the q-axis voltage command value Vqoth for setting the determination value is set in advance at each operating point.
  • the demagnetization determination unit 36 refers to map data in which the relationship between the rotational angular velocity ⁇ , the q-axis current value Iq, and the q-axis voltage command value Vqoth for setting the determination value is set in advance, and determines the current rotational angular velocity.
  • a q-axis voltage command value Vqoth for determination value setting corresponding to the ⁇ and q-axis current values Iq is calculated.
  • the offset value ⁇ and the fixed resistance value Rath are set so that the occurrence of false positives and false negatives is appropriate, taking into account the fluctuation range of the estimated value of ⁇ d due to fluctuations in resistance value and errors in each sensor detection value. Set in
  • the demagnetization determination value Th ⁇ may be set to a value corresponding to the above-mentioned ⁇ d_min_ass.
  • the demagnetization determination unit 36 uses the preset minimum value Vqo_min of the variation range of the q-axis voltage command value when demagnetization does not occur as the q-axis voltage command value Vqoth for setting the determination value.
  • the demagnetization judgment value Th ⁇ is set using the maximum value Ra_max of a preset resistance value variation range as the fixed resistance value Rath for setting the judgment value.
  • the minimum value Vqo_min of the variation range of the q-axis voltage command value when demagnetization does not occur is preset at each operating point (rotation angular velocity ⁇ and q-axis current value Iq).
  • the demagnetization determination value Th ⁇ is set using equations (23) and (24), and the offset value ⁇ is set to 0.
  • the demagnetization determination value Th ⁇ may be set to a value corresponding to the above-mentioned ⁇ d_max_ass.
  • the demagnetization determination unit 36 uses the preset maximum value Vqo_max of the variation range of the q-axis voltage command value when demagnetization does not occur as the q-axis voltage command value Vqoth for setting the determination value.
  • the demagnetization judgment value Th ⁇ is set using the minimum value Ra_min of a preset resistance value variation range as the fixed resistance value Rath for setting the judgment value.
  • the maximum value Vqo_max of the variation range of the q-axis voltage command value when no demagnetization occurs is set in advance at each operating point (rotation angular velocity ⁇ and q-axis current value Iq).
  • the demagnetization determination value Th ⁇ is set using equations (23) and (24), and the offset value ⁇ is set to 0.
  • the demagnetization determination value Th ⁇ is set in advance to a value that takes into account the fluctuation range of the estimated value of ⁇ d due to the error of each sensor detection value, and makes it appropriate to prevent the occurrence of false positives and false negatives.
  • the demagnetization determination value Th ⁇ may be set in advance to a value smaller than the minimum value ⁇ d_minerr of the estimated value of ⁇ d taking into account the error of each sensor detection value.
  • the demagnetization determination value Th ⁇ is set in advance at each operating point.
  • the demagnetization determination unit 36 determines the rotational angular velocity. ⁇ and q-axis current value Iq (in this example, Iqave), q-axis voltage command value Vqoth for determination value setting, and resistance value Ra estimated according to the winding temperature acquired by the winding temperature acquisition unit 37 Based on this, calculate the d-axis armature linkage magnetic flux ⁇ dth for determination value setting, and subtract the offset value ⁇ from the d-axis armature linkage magnetic flux ⁇ dth for determination value setting to obtain the demagnetization determination value Th ⁇ .
  • Vqoth is a q-axis voltage command value for setting a determination value
  • the q-axis voltage command value Vqo when no demagnetization occurs is set in advance. Similar to equation (23) in (3-1-1), the q-axis voltage command value Vqoth for setting the determination value is set in advance at each operating point.
  • the offset value ⁇ is set so that the estimated value of ⁇ d and the demagnetization determination value Th ⁇ are not too close when no demagnetization occurs. Further, the offset value ⁇ is set in advance to a value that appropriately prevents the occurrence of false positives and false negatives, taking into consideration the fluctuation range of the estimated value of ⁇ d due to the error of each sensor detection value.
  • FIG. 9 shows demagnetization determination when one estimated value of ⁇ d and two demagnetization determination values Th ⁇ are used.
  • the demagnetization determination unit 36 uses a larger demagnetization determination value Th ⁇ H and a smaller demagnetization determination value Th ⁇ L that is smaller than the larger demagnetization determination value Th ⁇ H. By using the two demagnetization determination values Th ⁇ H and Th ⁇ L, it is possible to individually adjust the occurrence of false positives and false negatives.
  • the resistance value Ra used to estimate ⁇ d may be a fixed value or a variable value
  • the resistance value Ra used to set the demagnetization judgment value Th ⁇ may be a fixed value or a variable value
  • the smaller demagnetization determination value Th ⁇ L is set corresponding to the maximum value Ra_max of the resistance value variation range.
  • the demagnetization determination unit 36 sets the smaller demagnetization determination value Th ⁇ L using the following equation.
  • the demagnetization determination unit 36 adds the offset value ⁇ H to the smaller demagnetization determination value Th ⁇ L to set the larger demagnetization determination value Th ⁇ H.
  • the offset value ⁇ H is set in advance to a value that appropriately prevents the occurrence of false positives and false negatives, taking into account the fluctuation range of the estimated value of ⁇ d due to the error of each sensor detection value.
  • the other parameters are the same as those described above, so their explanation will be omitted.
  • the larger demagnetization determination value Th ⁇ H is set corresponding to the minimum value Ra_min of the resistance value variation range.
  • the demagnetization determination unit 36 sets the larger demagnetization determination value Th ⁇ H using the following equation.
  • the demagnetization determination unit 36 subtracts the offset value ⁇ L from the larger demagnetization determination value Th ⁇ H to set the smaller demagnetization determination value Th ⁇ L.
  • the offset value ⁇ L is set in advance to a value that appropriately prevents the occurrence of false positives and false negatives, taking into account the range of variation in the estimated value of ⁇ d due to errors in each sensor detection value.
  • the other parameters are the same as those described above, so their explanation will be omitted.
  • the smaller demagnetization judgment value Th ⁇ L is set to correspond to the maximum value Ra_max of the resistance value variation range
  • the larger demagnetization judgment value Th ⁇ H is set to correspond to the minimum value Ra_min of the resistance value variation range. is set.
  • equation (27) and equation (29) are used.
  • Th ⁇ H and Th ⁇ L are preset to values that will appropriately prevent the occurrence of false positives and false negatives, taking into account the range of variation in the estimated value of ⁇ d due to the error of each sensor detection value.
  • Th ⁇ L may be set to correspond to the minimum value ⁇ d_minerr of the estimated value of ⁇ d considering the error of each sensor detection value.
  • Th ⁇ H may be set in accordance with the maximum value ⁇ d_maxerr of the estimated value of ⁇ d considering the error of each sensor detection value.
  • Th ⁇ H and Th ⁇ L are set in advance at each operating point.
  • the demagnetization determination section 36 determines the d-axis armature chain for determination value setting based on the resistance value Ra estimated according to the winding temperature acquired by the winding temperature acquisition section 37. Calculate the alternating magnetic flux ⁇ dth, subtract the offset value ⁇ L from the d-axis armature linkage magnetic flux ⁇ dth for setting the judgment value, set Th ⁇ L, and set it to the d-axis armature linkage magnetic flux ⁇ dth for the judgment value setting. Th ⁇ H is set by adding the offset value ⁇ H.
  • the offset value ⁇ L is set in consideration of the fluctuation range of the estimated value of ⁇ d due to the error of each sensor detection value and the occurrence of false negatives.
  • the offset value ⁇ H is set in consideration of the fluctuation range of the estimated value of ⁇ d due to the error of each sensor detection value and the occurrence of false positives. By adjusting ⁇ L and ⁇ H, the occurrence of false positives and false negatives can be adjusted individually. ⁇ L may be set to zero, or ⁇ H may be set to zero.
  • FIG. 10 shows demagnetization determination when two estimated values of ⁇ d and one demagnetization determination value Th ⁇ are used.
  • the region in which demagnetization may not occur is an error region that mainly occurs between the actual resistance value and the fixed resistance value, and is the fluctuation range of the estimated value of ⁇ d when demagnetization does not occur.
  • the demagnetization possibility region is a variation range of the estimated value of ⁇ d that may change depending on the degree of demagnetization.
  • the flux linkage estimation unit 35 estimates an estimated value ⁇ dH of the armature flux linkage on the d-axis on the larger side, and an estimated value ⁇ dL for the armature flux linkage on the d-axis on the smaller side.
  • the demagnetization determination unit 36 determines that demagnetization has not occurred when the estimated value ⁇ dL of the smaller interlinkage magnetic flux is larger than the demagnetization determination value Th ⁇ .
  • the demagnetization determination unit 36 determines that demagnetization has occurred when the demagnetization determination value Th ⁇ is between the estimated value ⁇ dL of the smaller magnetic flux linkage and the estimated value ⁇ dH of the larger magnetic flux linkage. It may be determined that demagnetization has occurred, or it may be determined that demagnetization has not occurred. For example, if the occurrence of false positives is suppressed, it is determined that demagnetization has not occurred.
  • the demagnetization determination unit 36 determines that demagnetization has occurred when the estimated value ⁇ dH of the larger interlinkage magnetic flux is smaller than the demagnetization determination value Th ⁇ .
  • the resistance value Ra used to estimate ⁇ d may be a fixed value or a variable value
  • the resistance value Ra used to set the demagnetization judgment value Th ⁇ may be a fixed value or a variable value
  • the flux linkage estimator 35 estimates the estimated value ⁇ dH of the armature flux linkage on the larger side d-axis using the minimum value Ra_min of the preset resistance value variation range.
  • the flux linkage estimating unit 35 estimates the armature flux linkage of the smaller d-axis using the maximum value Ra_max of the preset resistance value variation range. Estimate the value ⁇ dL.
  • the demagnetization determination value Th ⁇ is set in advance to a value that appropriately prevents the occurrence of false positives and false negatives, taking into account the fluctuation range of the estimated value of ⁇ d due to the error of each sensor detection value. Similar to (3-1-1), the demagnetization determination value Th ⁇ is set in advance at each operating point.
  • ⁇ dH estimated using Ra_min must be less than the demagnetization judgment value Th ⁇ . For example, it can be determined that demagnetization has occurred reliably, and the occurrence of false negatives can be suppressed.
  • ⁇ dL estimated using Ra_max may exceed the demagnetization judgment value Th ⁇ . For example, it can be reliably determined that there is no demagnetization, and the occurrence of false positives can be suppressed.
  • ⁇ Pattern 2> where it is not possible to determine whether or not demagnetization has occurred, in order to suppress the occurrence of false positives as much as possible, it is sufficient to perform demagnetization judgment by comparing only ⁇ dH with Th ⁇ , thereby reducing the occurrence of false negatives. If suppressed as much as possible, only ⁇ dL may be compared with Th ⁇ to determine demagnetization.
  • Ra for estimating ⁇ dH and ⁇ dL is a variable value
  • Ra for setting Th ⁇ is a fixed value If Ra for estimation is a variable value, the accuracy of the estimated value of ⁇ d is high. Since there is no need to provide a plurality of estimated values of ⁇ d, the explanation will be omitted.
  • FIG. 11 shows demagnetization determination when two estimated values of ⁇ d and two demagnetization determination values Th ⁇ are used.
  • the flux linkage estimating unit 35 estimates an estimated value ⁇ dH of the armature flux linkage on the d-axis on the larger side and an estimated value ⁇ dL of the armature flux linkage on the d-axis on the smaller side. Further, the demagnetization determination unit 36 uses a larger demagnetization determination value Th ⁇ H and a smaller demagnetization determination value Th ⁇ L.
  • the demagnetization determining unit 36 determines whether the demagnetization is performed when the estimated value ⁇ dH of the larger magnetic flux linkage and the estimated value ⁇ dL of the smaller magnetic flux linkage are larger than the demagnetization judgment value Th ⁇ H of the larger side. It is determined that this has not occurred.
  • the estimated value ⁇ dH of the larger side magnetic flux linkage is larger than the larger side demagnetization judgment value Th ⁇ H
  • the estimated value ⁇ dL of the smaller side magnetic flux linkage is the estimation of the smaller side magnetic flux linkage.
  • the demagnetization determination unit 36 determines that demagnetization has occurred when the larger demagnetization determination value Th ⁇ H is used for the demagnetization determination.
  • the demagnetization determination unit 36 may determine that demagnetization has not occurred. It is determined that this has not occurred.
  • the estimated value ⁇ dH of the larger side magnetic flux linkage is larger than the larger side demagnetization judgment value Th ⁇ H
  • the estimated value ⁇ dL of the smaller side magnetic flux linkage is the estimation of the smaller side magnetic flux linkage.
  • the demagnetization determination unit 36 may determine that demagnetization has occurred, or may determine that demagnetization has occurred, when using the larger demagnetization determination value Th ⁇ H for demagnetization determination.
  • the demagnetization determination unit 36 uses the smaller demagnetization determination value Th ⁇ L for demagnetization determination, it may determine that demagnetization has occurred, or the demagnetization determination unit 36 may determine that demagnetization has occurred. It may be determined that this has not occurred.
  • the estimated value ⁇ dH of the larger side magnetic flux linkage and the estimated value ⁇ dL of the smaller side magnetic flux linkage are the same as the estimated value ⁇ dL of the smaller side magnetic flux linkage and the estimated value ⁇ dH of the larger side magnetic flux linkage.
  • the demagnetization determination unit 36 uses the larger demagnetization determination value Th ⁇ H for the demagnetization determination, the demagnetization determination unit 36 determines that demagnetization has occurred, or the demagnetization determination unit 36 When the smaller demagnetization determination value Th ⁇ L is used for demagnetization determination, it is determined that demagnetization has not occurred.
  • the estimated value of magnetic flux linkage on the larger side ⁇ dH is between the estimated value of magnetic flux linkage on the smaller side ⁇ dL and the estimated value of magnetic flux linkage on the larger side ⁇ dH, and
  • the demagnetization determination unit 36 determines whether the demagnetization is Alternatively, if the demagnetization determination unit 36 uses the smaller demagnetization determination value Th ⁇ L for demagnetization determination, it may determine that demagnetization has occurred, or it may determine that demagnetization has occurred. It may be determined that the
  • the demagnetization determination unit 36 determines whether the larger side flux linkage ⁇ dH and the smaller side estimated value ⁇ dL are smaller than the smaller side demagnetization determination value Th ⁇ L. It is determined that this has occurred.
  • the resistance value Ra used to estimate ⁇ d may be a fixed value or a variable value
  • the resistance value Ra used to set the demagnetization judgment value Th ⁇ may be a fixed value or a variable value
  • the smaller demagnetization judgment value Th ⁇ L is set corresponding to the maximum value Ra_max of the resistance value variation range
  • the larger demagnetization determination value Th ⁇ H is set by adding an offset value ⁇ H to the smaller demagnetization determination value Th ⁇ L.
  • the demagnetization determination unit 36 determines that the estimated value ⁇ dL of the smaller side flux linkage is If it is smaller than the magnetic determination value Th ⁇ L, it can be uniquely determined that demagnetization has occurred with certainty.
  • the larger demagnetization judgment value Th ⁇ H is set corresponding to the minimum value Ra_min of the resistance value fluctuation range.
  • the smaller demagnetization determination value Th ⁇ L may be set by subtracting the offset value ⁇ L from the larger demagnetization determination value Th ⁇ H.
  • the demagnetization determination unit 36 determines that the estimated value ⁇ dH of the larger side flux linkage is larger.
  • the value is larger than the demagnetization determination value Th ⁇ H on the side, it can be uniquely determined that demagnetization has not occurred.
  • the smaller demagnetization judgment value Th ⁇ L is set corresponding to the maximum value Ra_max of the resistance value fluctuation range.
  • the larger demagnetization determination value Th ⁇ H may be set corresponding to the minimum value Ra_min of the resistance value variation range.
  • the estimated value ⁇ dL of the smaller interlinkage flux is the smaller demagnetization judgment value Th ⁇ L. If it is less than , it can be uniquely determined that demagnetization has definitely occurred. In addition, in ⁇ Pattern 2> and ⁇ Pattern 3> for which the judgment result was indeterminate, if the estimated value ⁇ dH of the larger interlinkage flux exceeds the larger demagnetization judgment value Th ⁇ H, It can be uniquely determined that no magnetism is generated.
  • the demagnetization determination unit 36 may correct the demagnetization determination value Th ⁇ based on the rotational angular velocity ⁇ so that it is not easily determined that demagnetization has occurred.
  • the demagnetization determination unit 36 decreases the demagnetization determination value Th ⁇ when the rotational angular velocity ⁇ is in a preset low rotation range.
  • the demagnetization determination unit 36 sets a value obtained by multiplying each demagnetization determination value Th ⁇ calculated by equations (23), (24), etc. by a correction coefficient as the corrected demagnetization determination value Th ⁇ . do.
  • the correction coefficient is set to less than 1 when the rotation angular velocity ⁇ is in the low rotation region, and is set to 1 when the rotation angular velocity ⁇ is neither in the low rotation region nor in the high rotation region.
  • the demagnetization determination unit 36 increases the demagnetization determination value Th ⁇ when the rotational angular velocity ⁇ is in a preset high rotation region. For example, the demagnetization determination unit 36 sets a value obtained by multiplying each demagnetization determination value Th ⁇ calculated by equations (23), (24), etc. by a correction coefficient as the corrected demagnetization determination value Th ⁇ . do.
  • the correction coefficient When the rotation angular velocity ⁇ is in a high rotation region, the correction coefficient is set to be larger than 1, and when the rotation angular velocity ⁇ is not in a high rotation region or a low rotation region, the correction coefficient is set to 1. Note that either the correction in the low rotation region or the correction in the high rotation region may be performed.
  • the demagnetization determination unit 36 determines whether or not to perform the demagnetization determination based on the rotational angular velocity ⁇ , the voltage command value, and the current value, and when it is determined that the demagnetization determination is to be performed, demagnetization has occurred. If it is determined that demagnetization determination is not to be performed, it is not determined whether demagnetization has occurred.
  • the estimated value of ⁇ d may vary periodically.
  • the estimated value of ⁇ d may not be constant and may oscillate around the demagnetization determination value Th ⁇ . Since the accuracy of demagnetization determination decreases at such an operating point, it is better not to perform demagnetization determination. Therefore, by setting in advance the operating point at which the accuracy of demagnetization determination decreases as the operating point at which demagnetization determination is not performed, the accuracy of demagnetization determination can be improved.
  • the accuracy of demagnetization determination can be improved by setting in advance the operating point at which the accuracy of demagnetization determination is improved as the operating point at which demagnetization determination is executed.
  • the demagnetization determination section 36 may change the demagnetization determination value Th ⁇ based on the field current value If.
  • the armature linkage magnetic flux ⁇ a changes according to the field current value If
  • the armature linkage flux ⁇ a of the d-axis changes according to the field current value If.
  • the magnetic flux ⁇ d changes according to the armature linkage magnetic flux ⁇ a, which changes according to the field current value If.
  • the q-axis current command value Iqo is set based on the rotational angular velocity ⁇ and the torque command value
  • the field current command value Ifo is set based on the rotational angular velocity ⁇ and the torque command value.
  • the q-axis current value Iq, the field current value If, and the rotational angular velocity ⁇ uniquely correspond to each other
  • the q-axis voltage command value Vqo also depends on the q-axis current value Iq and the field current value If. and the rotational angular velocity ⁇ .
  • the q-axis voltage command value Vqoth for judgment value setting which is preset for each operating point of the rotational angular velocity ⁇ and the q-axis current value Iq (or torque command value), also depends on the q-axis current value Iq and the field.
  • the current value If and the rotational angular velocity ⁇ uniquely correspond to each other. That is, the field current value If and the q-axis voltage command value Vqoth for setting the determination value uniquely correspond to each other via the reference parameters of the rotational angular velocity ⁇ and the q-axis current value Iq (or torque command value). Therefore, even if the field current value If changes, the accuracy of demagnetization determination can be maintained.
  • the demagnetization determination section 36 corrects the demagnetization determination value Th ⁇ based on the field current value If.
  • the reference field current value If0 when setting the q-axis voltage command value Vqoth for judgment value setting is set in advance for each operating point of the rotational angular velocity ⁇ and the q-axis current value Iq (or torque command value). It is set.
  • the demagnetization determination value Th ⁇ is corrected by adding it to the determination value Th ⁇ .
  • the field current value If is the field current detection value Ifs or the field current command value Ifo.
  • the rotor 14 was provided with the permanent magnets 12 and the field windings 7. However, the rotor 14 may not be provided with the field winding 7 but may be provided with the permanent magnets 12.
  • two sets of armature windings were provided.
  • one or more sets of armature windings may be provided.
  • each set was provided with three-phase armature windings.
  • each set may be provided with armature windings of multiple phases other than three phases (for example, two phases, four phases).

Abstract

Provided is a device for controlling an AC rotary machine which makes it possible to determine demagnetization of a rotor magnet without using the impedance characteristics of the AC rotary machine. The control device (30) for an AC rotary machine uses m sets of voltage command values (Vqo), the voltage values (Iq) of m sets of armature windings, the resistance value (Ra) of the armature windings, and a rotational angular velocity (ω) as a basis to estimate interlinkage flux linked to the armature windings and determines whether demagnetization of a magnet is occurring on the basis of the result of comparing the estimated value of interlinkage flux and a demagnetization determination value (Thφ).

Description

交流回転機の制御装置AC rotating machine control device
 本願は、交流回転機の制御装置に関するものである。 This application relates to a control device for an AC rotating machine.
 特許文献1に開示されたモータ駆動装置は、回転角速度、減磁未発生時の永久磁石による鎖交磁束、d軸のインダクタンス、d軸の電流値、電機子巻線の抵抗値、及びq軸の電流値に基づいて、減磁未発生時の基準のq軸の電圧値を算出し、基準のq軸の電圧値と実際のq軸の電圧値とを比較して減磁量を推定している。 The motor drive device disclosed in Patent Document 1 has the following characteristics: rotational angular velocity, magnetic flux linkage by permanent magnets when no demagnetization occurs, d-axis inductance, d-axis current value, armature winding resistance value, and q-axis Based on the current value, calculate the standard q-axis voltage value when no demagnetization occurs, and compare the standard q-axis voltage value and the actual q-axis voltage value to estimate the amount of demagnetization. ing.
特開2005-51892号公報Japanese Patent Application Publication No. 2005-51892
 特許文献1の技術では、d軸のインダクタンスを用いる必要がある。d軸のインダクタンスは、磁気飽和により変動する。よって、d軸のインダクタンスの設定精度が悪化すると、基準のq軸の電圧値の算出精度が悪化し、減磁判定の精度が悪化する。また、固定子に2組以上の電機子巻線が設けられる場合は、組間の相互インダクタンスも精度よく設定する必要がある。また、回転子に界磁巻線が設けられる場合は、界磁巻線のインダクタンスも精度よく設定する必要になる。すなわち、特許文献1の技術では、交流回転機のインダクタンスの特性を精度よく設定しないと、誤判定を生じる。 The technique of Patent Document 1 requires the use of d-axis inductance. The d-axis inductance varies due to magnetic saturation. Therefore, when the setting accuracy of the d-axis inductance deteriorates, the calculation accuracy of the reference q-axis voltage value deteriorates, and the accuracy of demagnetization determination deteriorates. Furthermore, when the stator is provided with two or more sets of armature windings, the mutual inductance between the sets also needs to be set accurately. Further, when the rotor is provided with a field winding, the inductance of the field winding must also be set accurately. That is, in the technique of Patent Document 1, an erroneous determination occurs unless the inductance characteristics of the AC rotating machine are set accurately.
 そこで、本願は、交流回転機のインダクタンスの特性を用いることなく、回転子の磁石の減磁を判定することができる交流回転機の制御装置を提供することを目的とする。 Therefore, an object of the present application is to provide a control device for an AC rotating machine that can determine demagnetization of a rotor magnet without using the inductance characteristics of the AC rotating machine.
 本願に係る交流回転機の制御装置は、磁石を設けた回転子と、m組の電機子巻線(mは1以上の自然数)を設けた固定子とを有する交流回転機を、電力変換器を介して制御する交流回転機の制御装置であって、
 前記回転子の電気角での回転角速度を検出する回転検出部と、
 各組について、電圧指令値を算出する電圧指令値算出部と、
 各組について、前記電圧指令値に基づいて、前記電力変換器が有するスイッチング素子をオンオフして、前記電機子巻線に電圧を印加するスイッチング制御部と、
 m組の前記電圧指令値、m組の前記電機子巻線の電流値、前記電機子巻線の抵抗値、及び前記回転角速度に基づいて、前記電機子巻線に鎖交する鎖交磁束を推定する鎖交磁束推定部と、
 前記鎖交磁束の推定値と減磁判定値との比較結果に基づいて、前記磁石の減磁が発生しているか否かを判定する減磁判定部と、
 を備えたものである。
The control device for an AC rotating machine according to the present application controls an AC rotating machine that has a rotor provided with magnets and a stator provided with m sets of armature windings (m is a natural number of 1 or more) to a power converter. A control device for an AC rotating machine that is controlled via a
a rotation detection unit that detects a rotational angular velocity in electrical angle of the rotor;
a voltage command value calculation unit that calculates a voltage command value for each group;
a switching control unit that applies voltage to the armature winding by turning on and off a switching element included in the power converter based on the voltage command value for each set;
Based on m sets of the voltage command values, m sets of current values of the armature windings, resistance values of the armature windings, and the rotational angular velocity, the interlinkage magnetic flux interlinking with the armature windings is determined. A flux linkage estimator for estimating,
a demagnetization determination unit that determines whether demagnetization of the magnet has occurred based on a comparison result between the estimated value of the flux linkage and the demagnetization determination value;
It is equipped with the following.
 本願に係る交流回転機の制御装置によれば、交流回転機のインダクタンスの特性を用いて、磁石による電機子鎖交磁束及びd軸電流による電機子反作用磁束を直接推定することなく、電圧方程式を利用して、m組の電圧指令値、m組の電機子巻線の電流値、電機子巻線の抵抗値、及び回転角速度に基づいて、電機子鎖交磁束を間接的に推定することができる。よって、交流回転機のインダクタンスの特性を用いることなく、電機子鎖交磁束を推定することができる。そして、電機子鎖交磁束の推定値と減磁判定値との比較結果に基づいて、磁石の減磁の発生の有無を判定できる。 According to the control device for an AC rotating machine according to the present application, the voltage equation can be calculated using the inductance characteristics of the AC rotating machine without directly estimating the armature linkage flux due to the magnet and the armature reaction flux due to the d-axis current. It is possible to indirectly estimate armature flux linkage based on m sets of voltage command values, m sets of armature winding current values, armature winding resistance values, and rotational angular velocity. can. Therefore, the armature flux linkage can be estimated without using the inductance characteristics of the AC rotating machine. Based on the comparison result between the estimated value of the armature flux linkage and the demagnetization determination value, it is possible to determine whether demagnetization of the magnet has occurred.
実施の形態1に係る交流回転機及び交流回転機の制御装置の概略構成図である。1 is a schematic configuration diagram of an AC rotating machine and a control device for the AC rotating machine according to Embodiment 1. FIG. 実施の形態1に係る制御装置の概略ブロック図である。1 is a schematic block diagram of a control device according to Embodiment 1. FIG. 実施の形態1に係る制御装置のハードウェア構成図である。1 is a hardware configuration diagram of a control device according to Embodiment 1. FIG. 実施の形態1に係るリンギングの挙動を説明するタイムチャートである。5 is a time chart illustrating ringing behavior according to the first embodiment. 実施の形態1に係る巻線温度取得部を備える場合の制御装置の概略ブロック図である。FIG. 2 is a schematic block diagram of a control device including a winding temperature acquisition unit according to Embodiment 1. FIG. 実施の形態1に係る固定の抵抗値を用いる場合の鎖交磁束の変動範囲を説明する図である。FIG. 3 is a diagram illustrating a range of variation in magnetic flux linkage when using a fixed resistance value according to the first embodiment. 実施の形態1に係る可変の抵抗値を用いる場合の鎖交磁束の変動範囲を説明する図である。FIG. 3 is a diagram illustrating a variation range of magnetic flux linkage when using a variable resistance value according to the first embodiment. 実施の形態1に係る1つの推定値、1つの判定値を用いる場合の減磁判定を説明する図である。FIG. 3 is a diagram illustrating demagnetization determination when using one estimated value and one determination value according to the first embodiment. 実施の形態1に係る1つの推定値、2つの判定値を用いる場合の減磁判定を説明する図である。FIG. 3 is a diagram illustrating demagnetization determination when one estimated value and two determination values are used according to the first embodiment. 実施の形態1に係る2つの推定値、1つの判定値を用いる場合の減磁判定を説明する図である。FIG. 3 is a diagram illustrating demagnetization determination when two estimated values and one determination value are used according to the first embodiment. 実施の形態1に係る2つの推定値、2つの判定値を用いる場合の減磁判定を説明する図である。FIG. 3 is a diagram illustrating demagnetization determination when two estimated values and two determination values are used according to the first embodiment. 実施の形態1に係る推定値が変動する動作点を説明する図である。FIG. 3 is a diagram illustrating operating points at which estimated values vary according to the first embodiment.
1.実施の形態1
 実施の形態1に係る交流回転機の制御装置30(以下、単に、制御装置30と称す)について図面を参照して説明する。図1は、本実施の形態に係る交流回転機1、電力変換器、及び制御装置30の概略構成図である。
1. Embodiment 1
A control device 30 (hereinafter simply referred to as control device 30) for an AC rotating machine according to Embodiment 1 will be described with reference to the drawings. FIG. 1 is a schematic configuration diagram of an AC rotating machine 1, a power converter, and a control device 30 according to the present embodiment.
1-1.交流回転機1
 交流回転機1は、固定子18と、回転子14と、を備えている。固定子18に、m組の電機子巻線(mは1以上の自然数)が設けられている。本実施の形態では、m=2に設定され、第1の3相の電機子巻線及び第2組の3相の電機子巻線が設けられている。固定子18には、第1組のU1相、V1相、W1相の3相の電機子巻線Cu1、Cv1、Cw1と、第2組のU2相、V2相、W2相の3相の電機子巻線Cu2、Cv2、Cw2とが設けられている。各組の3相の電機子巻線は、スター結線とされてもよいし、デルタ結線とされてもよい。
1-1. AC rotating machine 1
The AC rotating machine 1 includes a stator 18 and a rotor 14. The stator 18 is provided with m sets of armature windings (m is a natural number of 1 or more). In this embodiment, m=2 is set, and a first three-phase armature winding and a second set of three-phase armature windings are provided. The stator 18 includes a first set of three-phase armature windings Cu1, Cv1, and Cw1 of U1 phase, V1 phase, and W1 phase, and a second set of three-phase armature windings of U2 phase, V2 phase, and W2 phase. Child windings Cu2, Cv2, and Cw2 are provided. The three-phase armature windings of each set may be star-connected or delta-connected.
 回転子14には、磁石が設けられている。本実施の形態では、回転子14には、界磁巻線7が設けられている。また、回転子14には、永久磁石12も設けられている。後述する減磁判定により、永久磁石12の減磁が判定される。 The rotor 14 is provided with magnets. In this embodiment, the rotor 14 is provided with a field winding 7. Further, the rotor 14 is also provided with permanent magnets 12 . Demagnetization of the permanent magnet 12 is determined by the demagnetization determination described later.
 回転子14には、回転子14の回転角度(回転角度)を検出する回転センサ15が設けられている。回転センサ15の出力信号は、制御装置30に入力される。回転センサ15には、ホール素子、レゾルバ、又はエンコーダ等の各種のセンサが用いられる。回転センサ15が設けられず、後述する電流指令値に高調波成分を重畳することによって得られる電流情報等に基づいて、回転角度(磁極位置)を推定するように構成されてもよい(いわゆる、センサレス方式)。 The rotor 14 is provided with a rotation sensor 15 that detects the rotation angle (rotation angle) of the rotor 14. The output signal of the rotation sensor 15 is input to the control device 30. As the rotation sensor 15, various sensors such as a Hall element, a resolver, or an encoder are used. The rotation sensor 15 may not be provided, and the rotation angle (magnetic pole position) may be estimated based on current information etc. obtained by superimposing a harmonic component on a current command value, which will be described later (so-called sensorless method).
1-2.インバータ
 電力変換器として、第1組のインバータ4aと第2組のインバータ4bとが設けられている。第1組のインバータ4aは、直流電源2と第1組の3相の電機子巻線との間で電力変換を行う。第2組のインバータ4bは、直流電源2と第2組の3相の電機子巻線との間で電力変換を行う。
1-2. Inverter A first set of inverters 4a and a second set of inverters 4b are provided as power converters. The first set of inverters 4a performs power conversion between the DC power supply 2 and the first set of three-phase armature windings. The second set of inverters 4b performs power conversion between the DC power supply 2 and the second set of three-phase armature windings.
 第1組のインバータ4aは、直流電源2の高電位側に接続される高電位側のスイッチング素子SP1と直流電源2の低電位側に接続される低電位側のスイッチング素子SN1とが直列接続された直列回路(レッグ)を、3相各相に対応して3セット設けている。そして、各相の直列回路における2つのスイッチング素子の接続点が、対応する相の巻線に接続されている。 In the first set of inverters 4a, a high potential side switching element SP1 connected to the high potential side of the DC power supply 2 and a low potential side switching element SN1 connected to the low potential side of the DC power supply 2 are connected in series. Three sets of series circuits (legs) are provided, one for each of the three phases. The connection point of the two switching elements in the series circuit of each phase is connected to the winding of the corresponding phase.
 具体的には、U1相の直列回路では、U1相の高電位側のスイッチング素子SPu1とU1相の低電位側のスイッチング素子SNu1とが直列接続され、2つのスイッチング素子の接続点がU1相の電機子巻線Cu1に接続されている。V1相の直列回路では、V1相の高電位側のスイッチング素子SPv1とV1相の低電位側のスイッチング素子SNv1とが直列接続され、2つのスイッチング素子の接続点がV1相の電機子巻線Cv1に接続されている。W1相の直列回路では、W1の高電位側のスイッチング素子SPw1とW1相の低電位側のスイッチング素子SNw1とが直列接続され、2つのスイッチング素子の接続点がW1相の電機子巻線Cw1に接続されている。 Specifically, in the U1 phase series circuit, the U1 phase high potential side switching element SPu1 and the U1 phase low potential side switching element SNu1 are connected in series, and the connection point of the two switching elements is the U1 phase switching element SPu1. It is connected to armature winding Cu1. In the V1 phase series circuit, the V1 phase high potential side switching element SPv1 and the V1 phase low potential side switching element SNv1 are connected in series, and the connection point between the two switching elements is the V1 phase armature winding Cv1. It is connected to the. In the W1 phase series circuit, the W1 high potential side switching element SPw1 and the W1 phase low potential side switching element SNw1 are connected in series, and the connection point of the two switching elements is connected to the W1 phase armature winding Cw1. It is connected.
 第2組のインバータ4bは、直流電源2の高電位側に接続される高電位側のスイッチング素子SP2と直流電源2の低電位側に接続される低電位側のスイッチング素子SN2とが直列接続された直列回路(レッグ)を、3相各相に対応して3セット設けている。そして、各相の直列回路における2つのスイッチング素子の接続点が、対応する相の巻線に接続されている。 In the second set of inverters 4b, a high potential side switching element SP2 connected to the high potential side of the DC power supply 2 and a low potential side switching element SN2 connected to the low potential side of the DC power supply 2 are connected in series. Three sets of series circuits (legs) are provided, one for each of the three phases. The connection point of the two switching elements in the series circuit of each phase is connected to the winding of the corresponding phase.
 具体的には、U2相の直列回路では、U2相の高電位側のスイッチング素子SPu2とU2相の低電位側のスイッチング素子SNu2とが直列接続され、2つのスイッチング素子の接続点がU2相の電機子巻線Cu2に接続されている。V2相の直列回路では、V2相の高電位側のスイッチング素子SPv2とV2相の低電位側のスイッチング素子SNv2とが直列接続され、2つのスイッチング素子の接続点がV2相の電機子巻線Cv2に接続されている。W2相の直列回路では、W2の高電位側のスイッチング素子SPw2とW2相の低電位側のスイッチング素子SNw2とが直列接続され、2つのスイッチング素子の接続点がW2相の電機子巻線Cw2に接続されている。 Specifically, in the U2 phase series circuit, the U2 phase high potential side switching element SPu2 and the U2 phase low potential side switching element SNu2 are connected in series, and the connection point of the two switching elements is the U2 phase switching element SPu2. It is connected to armature winding Cu2. In the V2 phase series circuit, the V2 phase high potential side switching element SPv2 and the V2 phase low potential side switching element SNv2 are connected in series, and the connection point between the two switching elements is the V2 phase armature winding Cv2. It is connected to the. In the W2 phase series circuit, the W2 high potential side switching element SPw2 and the W2 phase low potential side switching element SNw2 are connected in series, and the connection point of the two switching elements is connected to the W2 phase armature winding Cw2. It is connected.
 第1組のインバータ4a及び第2組のインバータ4bは、1つの直流電源2に接続されている。直流電源2には、1つの平滑コンデンサ3が並列に接続されている。なお、第1組及び第2組のインバータ4a、4bのそれぞれに、平滑コンデンサが設けられてもよい。 The first set of inverters 4a and the second set of inverters 4b are connected to one DC power supply 2. One smoothing capacitor 3 is connected to the DC power supply 2 in parallel. Note that a smoothing capacitor may be provided in each of the first set and the second set of inverters 4a and 4b.
 スイッチング素子には、ダイオードが逆並列接続されたIGBT(Insulated Gate Bipolar Transistor)、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)、ダイオードが逆並列接続されたバイポーラトランジスタ等が用いられる。各スイッチング素子のゲート端子は、ゲート駆動回路等を介して、制御装置30に接続されている。第1組のインバータ4aの各スイッチング素子は、制御装置30から出力された第1組用のスイッチング信号によりオン又はオフされる。第2組のインバータ4bの各スイッチング素子は、制御装置30から出力された第2組用のスイッチング信号によりオン又はオフされる。 As the switching element, an IGBT (Insulated Gate Bipolar Transistor) with diodes connected in anti-parallel, a MOSFET (Metal Oxide Semiconductor Field Effect Transistor), a bipolar transistor with diodes connected in anti-parallel, etc. are used. The gate terminal of each switching element is connected to the control device 30 via a gate drive circuit or the like. Each switching element of the first set of inverters 4a is turned on or off by a switching signal for the first set output from the control device 30. Each switching element of the second set of inverters 4b is turned on or off by a switching signal for the second set output from the control device 30.
 直流電源2は、第1組及び第2組のインバータ4a、4bに直流電圧Vdcを出力する。直流電源2は、バッテリー、DC-DCコンバータ、ダイオード整流器、PWM整流器等、直流電圧Vdcを出力する機器であれば、どのような機器であってもよい。 The DC power supply 2 outputs a DC voltage Vdc to the first and second sets of inverters 4a and 4b. The DC power source 2 may be any device that outputs a DC voltage Vdc, such as a battery, a DC-DC converter, a diode rectifier, a PWM rectifier, or the like.
 第1組及び第2組の各相の電機子巻線に流れる電流を検出するための第1組の電機子電流センサ5a及び第2組の電機子電流センサ5bが設けられている。第1組及び第2組の電機子電流センサ5a、5bは、シャント抵抗又はホール素子等の電流センサとされる。第1組及び第2組の電機子電流センサ5a、5bの出力信号は、制御装置30に入力される。 A first set of armature current sensors 5a and a second set of armature current sensors 5b are provided for detecting currents flowing through the armature windings of each phase of the first and second sets. The first and second sets of armature current sensors 5a and 5b are current sensors such as shunt resistors or Hall elements. The output signals of the first set and the second set of armature current sensors 5a, 5b are input to the control device 30.
 本実施の形態では、各組の電機子電流センサ5a、5bは、各相のスイッチング素子の直列回路と各相の巻線とをつなぐ電線上に備えられている。なお、各組の電機子電流センサ5a、5bは、各相のスイッチング素子の直列回路に直列に接続されてもよい。或いは、各組の電流センサは、各組のインバータ4a、4bと直流電源2と接続する電線上に設けられ、公知の「母線1シャント方式」により、各組の各相の巻線の電流が検出されてもよい。 In this embodiment, each set of armature current sensors 5a, 5b is provided on an electric wire that connects a series circuit of switching elements of each phase and a winding of each phase. Note that each set of armature current sensors 5a, 5b may be connected in series to a series circuit of switching elements of each phase. Alternatively, each set of current sensors is provided on a wire connecting each set of inverters 4a, 4b and the DC power supply 2, and the current in each phase winding of each set is may be detected.
1-3.コンバータ9
 電力変換器として、コンバータ9が設けられている。コンバータ9は、スイッチング素子を有し、直流電源2と界磁巻線7との間で電力変換を行う。本実施の形態では、コンバータ9は、直流電源2の高電位側に接続される高電位側のスイッチング素子SPと直流電源2の低電位側に接続される低電位側のスイッチング素子SNとが直列接続された直列回路を2組設けたHブリッジ回路とされている。第1組の直列回路28における高電位側のスイッチング素子SP1と低電位側のスイッチング素子SN1との接続点が、界磁巻線7の一端に接続され、第2組の直列回路29における高電位側のスイッチング素子SP2と低電位側のスイッチング素子SN2との接続点が、界磁巻線7の他端に接続される。
1-3. converter 9
A converter 9 is provided as a power converter. Converter 9 has a switching element and performs power conversion between DC power supply 2 and field winding 7 . In the present embodiment, the converter 9 has a high potential side switching element SP connected to the high potential side of the DC power supply 2 and a low potential side switching element SN connected to the low potential side of the DC power supply 2 connected in series. It is an H-bridge circuit with two sets of connected series circuits. The connection point between the switching element SP1 on the high potential side and the switching element SN1 on the low potential side in the first series circuit 28 is connected to one end of the field winding 7, and the high potential in the second series circuit 29 is connected to one end of the field winding 7. A connection point between the switching element SP2 on the side and the switching element SN2 on the low potential side is connected to the other end of the field winding 7.
 コンバータ9のスイッチング素子には、ダイオードが逆並列接続されたIGBT、ダイオードが逆並列接続されたバイポーラトランジスタ、MOSFET等が用いられる。各スイッチング素子のゲート端子は、ゲート駆動回路等を介して、制御装置30に接続されている。よって、各スイッチング素子は、制御装置30から出力されるスイッチング信号によりオン又はオフされる。 As the switching element of the converter 9, an IGBT with diodes connected in anti-parallel, a bipolar transistor with diodes connected in anti-parallel, a MOSFET, etc. are used. The gate terminal of each switching element is connected to the control device 30 via a gate drive circuit or the like. Therefore, each switching element is turned on or off by a switching signal output from the control device 30.
 なお、第1組の直列回路28の低電位側のスイッチング素子SN1をダイオードに置き換えたり、第2組の直列回路29の高電位側のスイッチング素子SP2をダイオードに置き換えたりする等、コンバータ9を他の構成としてもよい。 Note that the converter 9 may be replaced with another one, such as by replacing the switching element SN1 on the low potential side of the first series circuit 28 with a diode, or replacing the switching element SP2 on the high potential side of the second series circuit 29 with a diode. It may also be configured as follows.
 界磁電流センサ6は、界磁巻線7を流れる電流である界磁電流値Ifを検出する電流検出回路である。本実施の形態では、界磁電流センサ6は、界磁巻線7とコンバータ9とをつなぐ電線上に設けられている。界磁電流センサ6は、界磁電流値Ifを検出可能な他の個所に設けられてもよい。界磁電流センサ6の出力信号は、制御装置30に入力される。界磁電流センサ6は、ホール素子、シャント抵抗等の電流センサとされている。 The field current sensor 6 is a current detection circuit that detects a field current value If, which is a current flowing through the field winding 7. In this embodiment, field current sensor 6 is provided on an electric wire that connects field winding 7 and converter 9. The field current sensor 6 may be provided at another location where the field current value If can be detected. The output signal of the field current sensor 6 is input to the control device 30. The field current sensor 6 is a current sensor such as a Hall element or a shunt resistor.
1-4.制御装置30
 制御装置30は、電力変換器(本例では、第1組及び第2組のインバータ4a、4b、及びコンバータ9)を介して、交流回転機1を制御する。制御装置30は、図2に示すように、回転検出部31、電流検出部32、電圧指令値算出部33、スイッチング制御部34、鎖交磁束推定部35、及び減磁判定部36等の機能部を備えている。制御装置30の各機能は、制御装置30が備えた処理回路により実現される。具体的には、制御装置30は、図3に示すように、処理回路として、CPU(Central Processing Unit)等の演算処理装置90(コンピュータ)、演算処理装置90とデータのやり取りする記憶装置91、演算処理装置90に外部の信号を入力する入力回路92、演算処理装置90から外部に信号を出力する出力回路93、及び外部装置とデータ通信を行う通信回路94等を備えている。
1-4. Control device 30
The control device 30 controls the AC rotating machine 1 via a power converter (in this example, a first set and a second set of inverters 4a, 4b, and a converter 9). As shown in FIG. 2, the control device 30 has functions such as a rotation detection section 31, a current detection section 32, a voltage command value calculation section 33, a switching control section 34, a magnetic flux linkage estimation section 35, and a demagnetization determination section 36. It has a department. Each function of the control device 30 is realized by a processing circuit included in the control device 30. Specifically, as shown in FIG. 3, the control device 30 includes, as a processing circuit, an arithmetic processing device 90 (computer) such as a CPU (Central Processing Unit), a storage device 91 that exchanges data with the arithmetic processing device 90, It includes an input circuit 92 that inputs external signals to the arithmetic processing device 90, an output circuit 93 that outputs signals from the arithmetic processing device 90 to the outside, and a communication circuit 94 that performs data communication with an external device.
 演算処理装置90として、ASIC(Application Specific Integrated Circuit)、IC(Integrated Circuit)、DSP(Digital Signal Processor)、FPGA(Field Programmable Gate Array)、各種の論理回路、及び各種の信号処理回路等が備えられてもよい。また、演算処理装置90として、同じ種類のもの又は異なる種類のものが複数備えられ、各処理が分担して実行されてもよい。記憶装置91として、演算処理装置90からデータを読み出し及び書き込みが可能に構成されたRAM(Random Access Memory)、及び演算処理装置90からデータを読み出し可能に構成されたROM(Read Only Memory)等が備えられている。入力回路92は、回転センサ15、各組の電機子電流センサ5a、5b、界磁電流センサ6等の各種のセンサが接続され、これらセンサの出力信号を演算処理装置90に入力するA/D変換器等を備えている。出力回路93は、第1組及び第2組のインバータ4a、4b、及びコンバータ9のスイッチング素子をオンオフ駆動するゲート駆動回路等の電気負荷が接続され、これら電気負荷に演算処理装置90から制御信号を出力する駆動回路等を備えている。通信回路94は、外部装置と通信を行う。 The arithmetic processing unit 90 includes an ASIC (Application Specific Integrated Circuit), an IC (Integrated Circuit), a DSP (Digital Signal Processor), an FPGA (Field Programmable Gate Array), various logic circuits, and various signal processing circuits. You can. Further, a plurality of arithmetic processing units 90 of the same type or different types may be provided, and each process may be shared and executed. As the storage device 91, a RAM (Random Access Memory) configured to be able to read and write data from the arithmetic processing unit 90, a ROM (Read Only Memory) configured to be able to read data from the arithmetic processing unit 90, etc. It is equipped. The input circuit 92 is an A/D to which various sensors such as the rotation sensor 15, each set of armature current sensors 5a and 5b, and the field current sensor 6 are connected, and inputs the output signals of these sensors to the arithmetic processing unit 90. Equipped with converters, etc. The output circuit 93 is connected to electrical loads such as a gate drive circuit that turns on and off the switching elements of the first and second sets of inverters 4a and 4b and the converter 9, and receives control signals from the arithmetic processing unit 90 to these electrical loads. It is equipped with a drive circuit etc. that outputs. The communication circuit 94 communicates with external devices.
 そして、制御装置30が備える各制御部31~36等の各機能は、演算処理装置90が、ROM等の記憶装置91に記憶されたソフトウェア(プログラム)を実行し、記憶装置91、入力回路92、及び出力回路93等の制御装置30の他のハードウェアと協働することにより実現される。なお、各制御部31~36等が用いる各種の設定データは、ソフトウェア(プログラム)の一部として、ROM等の記憶装置91に記憶されている。以下、制御装置30の各機能について詳細に説明する。 Each function of each of the control units 31 to 36 provided in the control device 30 is performed by the arithmetic processing device 90 executing software (program) stored in a storage device 91 such as a ROM, and the storage device 91 and input circuit 92. , and other hardware of the control device 30 such as the output circuit 93. Note that various setting data used by each of the control units 31 to 36 and the like are stored in a storage device 91 such as a ROM as part of software (program). Each function of the control device 30 will be described in detail below.
1-4-1.回転検出部31
 回転検出部31は、電気角でのロータの磁極位置θ(ロータの回転角度θ)及び回転角速度ωを検出する。本実施の形態では、回転検出部31は、回転センサ15の出力信号に基づいて、電気角での磁極位置θ(回転角度θ)及び回転角速度ωを検出する。なお、電気角は、回転子14の機械角に磁石の極対数を乗算した角度になる。
1-4-1. Rotation detection section 31
The rotation detection unit 31 detects the magnetic pole position θ of the rotor in electrical angle (rotation angle θ of the rotor) and the rotational angular velocity ω. In the present embodiment, the rotation detection unit 31 detects the magnetic pole position θ (rotation angle θ) and rotational angular velocity ω in electrical angle based on the output signal of the rotation sensor 15. Note that the electrical angle is the angle obtained by multiplying the mechanical angle of the rotor 14 by the number of pole pairs of the magnet.
 磁極位置θは、ロータに設けられた磁石(本例では、電磁石及び永久磁石)のN極の向きに設定される。本実施の形態では、磁極位置θ(回転角度θ)は、第1組のU1相の電機子巻線を基準にした、電気角での磁極(N極)の位置(角度)である。第1組の電機子巻線と第2組の電機子巻線との間に、位相差が設けられる場合は、位相差が考慮されて、各組用の磁極位置θ(回転角度θ)が演算される。 The magnetic pole position θ is set to the direction of the north pole of the magnets (in this example, electromagnets and permanent magnets) provided on the rotor. In this embodiment, the magnetic pole position θ (rotation angle θ) is the position (angle) of the magnetic pole (N pole) in electrical angle with reference to the armature winding of the U1 phase of the first set. When a phase difference is provided between the first set of armature windings and the second set of armature windings, the phase difference is taken into account and the magnetic pole position θ (rotation angle θ) for each set is determined. Calculated.
 なお、回転検出部31は、電流指令値に高調波成分を重畳することによって得られる電流情報等に基づいて、回転センサを用いずに、回転角度(磁極位置)を推定するように構成されてもよい(いわゆる、センサレス方式)。 Note that the rotation detection unit 31 is configured to estimate the rotation angle (magnetic pole position) without using a rotation sensor, based on current information etc. obtained by superimposing harmonic components on the current command value. (so-called sensorless method).
1-4-2.電流検出部32
 電流検出部32は、第1組の電機子電流センサ5aの出力信号に基づいて、第1組の3相の電機子巻線に流れる巻線電流Ius1、Ivs1、Iws1を検出する。また、電流検出部32は、第2組の電機子電流センサ5bの出力信号に基づいて、第2組の3相の電機子巻線に流れる巻線電流Ius2、Ivs2、Iws2を検出する。なお、各組について、2相の巻線電流が検出され、残りの1相の巻線電流が、2相の巻線電流の検出値に基づいて算出されてもよい。
1-4-2. Current detection section 32
The current detection unit 32 detects winding currents Ius1, Ivs1, and Iws1 flowing through the first set of three-phase armature windings based on the output signal of the first set of armature current sensors 5a. Further, the current detection unit 32 detects winding currents Ius2, Ivs2, and Iws2 flowing through the second set of three-phase armature windings based on the output signal of the second set of armature current sensors 5b. Note that for each set, two-phase winding currents may be detected, and the remaining one-phase winding current may be calculated based on the detected values of the two-phase winding currents.
 また、電流検出部32は、界磁電流センサ6の出力信号に基づいて、界磁巻線7に流れる電流である界磁電流値Ifsを検出する。 Furthermore, the current detection unit 32 detects a field current value Ifs, which is the current flowing through the field winding 7, based on the output signal of the field current sensor 6.
1-4-3.電圧指令値算出部33
 電圧指令値算出部33は、各組について、電圧指令値を算出する。
1-4-3. Voltage command value calculation unit 33
The voltage command value calculation unit 33 calculates the voltage command value for each group.
 電圧指令値算出部33は、各組について、公知の各種の方法を用いて、d軸の電流指令値Ido及びq軸の電流指令値Iqoを算出する。例えば、電圧指令値算出部33は、各組について、公知のベクトル制御が用い、トルク指令値及び回転角速度ω等に基づいて、d軸及びq軸の電流指令値Ido、Iqoを算出する。第1組のd軸及びq軸の電流指令値をIdo1、Iqo1とし、第2組のd軸及びq軸の電流指令値をIdo2、Iqo2とする。トルク指令値は、制御装置30の内部で演算されてもよいし、外部の制御装置から伝達されてもよい。d軸は、磁石のN極の方向に定められ、q軸は、d軸より電気角で90度進んだ方向に定められる。 The voltage command value calculation unit 33 calculates the d-axis current command value Ido and the q-axis current command value Iqo for each set using various known methods. For example, the voltage command value calculation unit 33 calculates the d-axis and q-axis current command values Ido and Iqo based on the torque command value, rotational angular velocity ω, etc. using known vector control for each set. Let the first set of d-axis and q-axis current command values be Ido1 and Iqo1, and the second set of d-axis and q-axis current command values as Ido2 and Iqo2. The torque command value may be calculated within the control device 30 or may be transmitted from an external control device. The d-axis is defined in the direction of the north pole of the magnet, and the q-axis is defined in the direction 90 electrical degrees ahead of the d-axis.
 電圧指令値算出部33は、各組について、3相の電流検出値Ius、Ivs、Iwsを、磁極位置θに基づいて、公知の3相2相変換及び回転座標変換を行って、d軸の電流検出値Ids及びq軸の電流検出値Iqsに変換する。第1組のd軸及びq軸の電流検出値をIds1、Iqs1とし、第2組のd軸及びq軸の電流検出値をIds2、Iqs2とする。 The voltage command value calculation unit 33 performs known three-phase two-phase conversion and rotational coordinate conversion on the three-phase current detection values Ius, Ivs, and Iws for each set based on the magnetic pole position θ, and converts the three-phase current detection values Ius, Ivs, and Iws into the d-axis The current detection value Ids and the q-axis current detection value Iqs are converted. Let the first set of d-axis and q-axis current detection values be Ids1 and Iqs1, and the second set of d-axis and q-axis current detection values be Ids2 and Iqs2.
 電圧指令値算出部33は、各組について、d軸及びq軸の電流指令値Ido、Iqo、及びd軸及びq軸の電流検出値Ids、Iqsに基づいて、公知の電流フィードバック制御を行い、d軸の電圧指令値Vdo及びq軸の電圧指令値Vqoを算出する。第1組のd軸及びq軸の電圧指令値をVdo1、Vqo1とし、第2組のd軸及びq軸の電圧指令値をVdo2、Vqo2とする。なお、電圧指令値算出部33は、各組について、d軸及びq軸の電流指令値Ido、Iqoに基づいて、公知のフィードフォワード制御によりd軸の電圧指令値Vdo及びq軸の電圧指令値Vqoを算出してもよい。 The voltage command value calculation unit 33 performs known current feedback control for each set based on the d-axis and q-axis current command values Ido, Iqo, and the d-axis and q-axis current detection values Ids, Iqs, A d-axis voltage command value Vdo and a q-axis voltage command value Vqo are calculated. The first set of voltage command values for the d-axis and q-axis are Vdo1 and Vqo1, and the second set of voltage command values for the d-axis and q-axis are Vdo2 and Vqo2. Note that, for each set, the voltage command value calculation unit 33 calculates the d-axis voltage command value Vdo and the q-axis voltage command value by known feedforward control based on the d-axis and q-axis current command values Ido and Iqo. Vqo may also be calculated.
 そして、電圧指令値算出部33は、各組について、d軸及びq軸の電圧指令値Vdo、Vqoを、磁極位置θに基づいて、公知の固定座標変換及び2相3相変換を行って、3相の電圧指令値Vuo、Vvo、Vwoを算出する。第1組の3相の電圧指令値を、Vuo1、Vvo1、Vwo1とし、第2組の3相の電圧指令値を、Vuo2、Vvo2、Vwo2とする。各組の3相の電圧指令値に対して空間ベクトル変調、2相変調等の公知の変調が加えられてもよい。 Then, the voltage command value calculation unit 33 performs known fixed coordinate transformation and two-phase three-phase transformation on the d-axis and q-axis voltage command values Vdo and Vqo for each set based on the magnetic pole position θ. Three-phase voltage command values Vuo, Vvo, and Vwo are calculated. The voltage command values for the three phases in the first set are Vuo1, Vvo1, and Vwo1, and the voltage command values for the three phases in the second set are Vuo2, Vvo2, and Vwo2. Known modulation such as space vector modulation or two-phase modulation may be applied to each set of three-phase voltage command values.
 なお、V/f制御等の公知の他の制御方法を用いて、各組の3相の電圧指令値が算出されてもよい。V/f制御が行われる場合は、電流検出値が必要ないので、電流センサが設けられなくてもよい。 Note that the voltage command values for each set of three phases may be calculated using other known control methods such as V/f control. When V/f control is performed, a current detection value is not required, so a current sensor may not be provided.
1-4-4.スイッチング制御部34
 スイッチング制御部34は、各組について、電圧指令値に基づいて、各組のインバータが有するスイッチング素子をオンオフして、電機子巻線に電圧を印加する。本実施の形態では、スイッチング制御部34は、各組について、3相の電圧指令値Vuo、Vvo、Vwoに基づいて、各組のインバータが備えた複数のスイッチング素子をオンオフするスイッチング信号を生成する。スイッチング制御部34は、公知のキャリア比較PWM又は空間ベクトルPWMを用いる。
1-4-4. Switching control section 34
The switching control unit 34 applies voltage to the armature windings by turning on and off switching elements included in each group of inverters based on the voltage command value for each group. In this embodiment, the switching control unit 34 generates, for each group, a switching signal that turns on and off a plurality of switching elements included in each group of inverters based on three-phase voltage command values Vuo, Vvo, and Vwo. . The switching control unit 34 uses known carrier comparison PWM or space vector PWM.
 キャリア比較PWMが用いられる場合は、スイッチング制御部34は、各組について、キャリア波と3相の電圧指令値Vuo、Vvo、Vwoのそれぞれとを比較し、比較結果に基づいて、複数のスイッチング素子をオンオフするスイッチング信号を生成する。 When carrier comparison PWM is used, the switching control unit 34 compares the carrier wave with each of the three-phase voltage command values Vuo, Vvo, and Vwo for each group, and based on the comparison results, the switching control unit 34 compares the carrier wave with each of the three-phase voltage command values Vuo, Vvo, and Vwo, Generates a switching signal to turn on and off.
 空間ベクトルPWMが用いられる場合は、スイッチング制御部34は、3相の電圧指令値Vuo、Vvo、Vwoから電圧指令ベクトルを生成し、電圧指令ベクトルに基づいて、PWM周期における7つの基本電圧ベクトルの出力時間配分を決定し、7つの基本電圧ベクトルの出力時間配分に基づいて、PWM周期において各スイッチング素子をオンオフするスイッチング信号を生成する。 When space vector PWM is used, the switching control unit 34 generates a voltage command vector from the three-phase voltage command values Vuo, Vvo, and Vwo, and calculates the seven basic voltage vectors in the PWM cycle based on the voltage command vector. The output time allocation is determined, and based on the output time allocation of the seven basic voltage vectors, a switching signal is generated to turn on and off each switching element in a PWM cycle.
<コンバータ9のオンオフ制御>
 スイッチング制御部34は、コンバータ9が有するスイッチング素子をオンオフして、界磁巻線7に電圧を印加する。本実施の形態では、スイッチング制御部34は、トルク指令値及び回転角速度ω等に基づいて界磁電流指令値Ifoを設定し、界磁電流検出値Ifsが界磁電流指令値Ifoに近づくように、界磁電圧指令値Vfoを変化させ、界磁電圧指令値Vfoに基づいて、PWM制御によりコンバータ9の複数のスイッチング素子をオンオフ制御する。なお、フィードフォワード制御、又は界磁電流の推定値を用いた制御が行われる場合は、界磁電流検出値Ifsが用いられなくてもよい。
<On/off control of converter 9>
The switching control unit 34 turns on and off the switching elements included in the converter 9 and applies a voltage to the field winding 7 . In the present embodiment, the switching control unit 34 sets the field current command value Ifo based on the torque command value, rotational angular velocity ω, etc., so that the field current detected value Ifs approaches the field current command value Ifo. , changes the field voltage command value Vfo, and turns on/off the plurality of switching elements of the converter 9 by PWM control based on the field voltage command value Vfo. Note that when feedforward control or control using an estimated value of the field current is performed, the field current detection value Ifs may not be used.
1-4-5.鎖交磁束推定部35及び減磁判定部36
<鎖交磁束の推定原理>
 まず、本願に係る鎖交磁束の推定原理について説明する。本実施の形態の交流回転機1の電圧方程式を次式に示す。ここで、後述するように、2組のdq軸の電流値の平均値、及び2組のdq軸電圧値の平均値を考慮するため、予め、2組のdq軸の電流値の合計値、及び2組のdq軸の電圧値の合計値を用いる式が導出されている。
Figure JPOXMLDOC01-appb-M000001
1-4-5. Interlinkage flux estimating unit 35 and demagnetization determining unit 36
<Principle of estimating magnetic flux linkage>
First, the principle of estimating flux linkage according to the present application will be explained. The voltage equation of the AC rotating machine 1 of this embodiment is shown in the following equation. Here, as will be described later, in order to consider the average value of the two sets of dq-axis current values and the average value of the two sets of dq-axis voltage values, the total value of the two sets of dq-axis current values, An equation using the sum of the two sets of dq-axis voltage values has been derived.
Figure JPOXMLDOC01-appb-M000001
 ωは、電気角での回転角速度であり、Raは、電機子巻線の抵抗値であり、sは、ラプラス演算子であり、Ldは、d軸の自己インダクタンスであり、Lqは、q軸の自己インダクタンスであり、Mdは、電機子巻線の組間のd軸の相互インダクタンスであり、Mqは、電機子巻線の組間のq軸の相互インダクタンスであり、Lmdは、電機子巻線と界磁巻線の間の相互インダクタンスであり、Rfは、界磁巻線の抵抗値であり、Lfは、界磁巻線のインダクタンスであり、φf0は、永久磁石による鎖交磁束である。なお、各組の電機子巻線のインダクタンスLd、Lq、抵抗値Ra、相互インダクタンスMd、Mqは、同じ値である。 ω is the rotational angular velocity in electrical angle, Ra is the resistance value of the armature winding, s is the Laplace operator, Ld is the d-axis self-inductance, and Lq is the q-axis self-inductance. is the self-inductance of the armature windings, Md is the d-axis mutual inductance between the armature winding sets, Mq is the q-axis mutual inductance between the armature winding sets, and Lmd is the d-axis mutual inductance between the armature winding sets. It is the mutual inductance between the wire and the field winding, Rf is the resistance value of the field winding, Lf is the inductance of the field winding, and φf0 is the flux linkage due to the permanent magnet. . Note that the inductances Ld, Lq, resistance values Ra, and mutual inductances Md, Mq of each set of armature windings are the same.
 本実施の形態では、次式に示すように、電機子巻線に鎖交する電機子鎖交磁束φaは、界磁巻線による界磁電流値Ifに応じた界磁巻線鎖交磁束φfと、永久磁石による鎖交磁束φf0との合計値になる。
Figure JPOXMLDOC01-appb-M000002
In this embodiment, as shown in the following equation, the armature interlinkage magnetic flux φa interlinking with the armature winding is determined by the field winding interlinkage magnetic flux φf according to the field current value If caused by the field winding. and the interlinkage magnetic flux φf0 due to the permanent magnet.
Figure JPOXMLDOC01-appb-M000002
 各電機子巻線に印加できる電圧は直流電圧Vdc以下なので、dq軸電流を安定的に所望の値に制御できる条件は、次式となる。したがって、式(3)の電圧飽和条件を考慮して、磁束推定制御時の界磁電流を決定することで、dq軸電流を指令値通りに出力でき、磁束を精度よく推定できる。
Figure JPOXMLDOC01-appb-M000003
Since the voltage that can be applied to each armature winding is less than the DC voltage Vdc, the conditions under which the dq-axis current can be stably controlled to a desired value are as follows. Therefore, by determining the field current during magnetic flux estimation control in consideration of the voltage saturation condition of equation (3), the dq-axis current can be output as the command value, and the magnetic flux can be accurately estimated.
Figure JPOXMLDOC01-appb-M000003
 定常状態では、式(1)のラプラス演算子sの項が0になるので、式(1)は次式のようになる。
Figure JPOXMLDOC01-appb-M000004
In a steady state, the term of the Laplace operator s in equation (1) becomes 0, so equation (1) becomes as follows.
Figure JPOXMLDOC01-appb-M000004
 式(4)より、電機子鎖交磁束φaは、次式で示すことができる。
Figure JPOXMLDOC01-appb-M000005
From equation (4), armature flux linkage φa can be expressed by the following equation.
Figure JPOXMLDOC01-appb-M000005
 また、2組以上の電機子巻線によるdq軸電流は、それぞれの電機子に流れる電流が干渉することによって、定常状態でもリンギングが発生することがある。例として、図4に2組の電機子巻線によるリンギングの波形を示す。第1組の電機子巻線の電流検出値と第2組の電機子巻線の電流検出値とは、各組の電流指令値を中心に、互いに逆位相でリンギングすることがある。これは、組間の電機子巻線の相互干渉に起因する。 Further, in the dq-axis currents caused by two or more sets of armature windings, ringing may occur even in a steady state due to interference between the currents flowing through the respective armatures. As an example, FIG. 4 shows waveforms of ringing caused by two sets of armature windings. The current detection values of the first set of armature windings and the second set of armature windings may ring in mutually opposite phases around the current command value of each set. This is due to mutual interference of armature windings between sets.
 さらに、電流検出値は、センサ誤差により、電機子巻線ごとに電流検出値に差異が生じることもある。センサ誤差が含まれる電流検出値に基づいて演算される電圧指令値も同様に差異が生じる可能性がある。 Furthermore, the current detection value may differ from one armature winding to another due to sensor error. Similarly, a difference may occur in the voltage command value calculated based on the detected current value that includes sensor error.
 このように、電機子巻線に流れるdq軸の電流値、及び、それらに基づいて算出されるdq軸の電圧指令値に組間の差が発生した場合でも、精度よく減磁判定を行う必要がある。 In this way, even if there are differences between sets in the dq-axis current values flowing through the armature windings and the dq-axis voltage command values calculated based on them, it is necessary to accurately determine demagnetization. There is.
 そこで、電機子鎖交磁束φaの演算には、2組のdq軸の電流値の平均値、及び2組のdq軸の電圧指令値の平均値を用いることが考えられる。式(1)から式(5)では、このことを考え、予め2組の合計値を用いる式が導出されている。 Therefore, it is conceivable to use the average value of the two sets of dq-axis current values and the average value of the two sets of dq-axis voltage command values to calculate the armature flux linkage φa. In equations (1) to (5), equations using two sets of total values are derived in advance with this in mind.
 これにより、2組以上の電機子巻線を有する交流回転機では、全組の電圧指令値の平均値、及び全組の電流値の平均値を用いることで、電機子鎖交磁束φaの演算に使用される各変数を、より一定にすることが可能であり、また、電機子巻線ごとのセンサ誤差による影響も低減できることから、電機子鎖交磁束φaの演算誤差を小さくすることができる。 As a result, in an AC rotating machine having two or more sets of armature windings, the armature linkage magnetic flux φa can be calculated by using the average value of the voltage command values of all sets and the average value of the current values of all sets. It is possible to make each variable used for more constant, and also to reduce the influence of sensor errors for each armature winding, so it is possible to reduce the calculation error of armature linkage magnetic flux φa. .
 本実施の形態では、2組の電機子巻線が設けられているため、電機子鎖交磁束φaの演算に用いられるq軸の電圧値の平均値Vqave、d軸の電流値の平均値Idave、及びq軸の電流値の平均値Iqaveは、式(6)から式(8)で与えられる。電機子鎖交磁束φaは、各平均値を用い、式(5)を変形した式(9)で演算される。
Figure JPOXMLDOC01-appb-M000006
In this embodiment, since two sets of armature windings are provided, the average value of the q-axis voltage value Vqave and the average value of the d-axis current value Idave used for calculating the armature flux linkage φa , and the average value Iqave of the q-axis current value are given by equations (6) to (8). The armature magnetic flux linkage φa is calculated by Equation (9), which is a modification of Equation (5), using each average value.
Figure JPOXMLDOC01-appb-M000006
 式(9)の分子の第2項は、d軸の電流値Idにより生じる電機子反作用磁束である。電機子反作用磁束は、磁気飽和特性によって変化する可変の項である。すなわち、電機子反作用磁束を精度よく算出するには、d軸のインダクタンスLd及びd軸の相互インダクタンスMdの変化を示したマップデータなどが必要であり、これらインダクタンスの精度が悪化すると、式(9)による電機子鎖交磁束φaの演算精度が悪化し、減磁判定の精度が悪化する。 The second term in the numerator of formula (9) is the armature reaction magnetic flux generated by the d-axis current value Id. Armature reaction flux is a variable term that varies depending on magnetic saturation characteristics. That is, in order to accurately calculate the armature reaction magnetic flux, map data showing changes in the d-axis inductance Ld and the d-axis mutual inductance Md is required, and if the accuracy of these inductances deteriorates, the equation (9 ), the calculation accuracy of the armature flux linkage φa deteriorates, and the accuracy of demagnetization determination deteriorates.
 そこで、式(9)を次式に示すように変形する。φdは、電機子鎖交磁束φa及びd軸電流による電機子反作用磁束を合計した、電機子巻線に鎖交するd軸の電機子鎖交磁束である。すなわち、式(9)が、d軸の電機子鎖交磁束φdを演算する式に変形された。式(10)の中央の辺において、電機子鎖交磁束φaは、減磁により変動し、d軸のインダクタンスLd及びd軸の相互インダクタンスMdは、磁気飽和により変動する。よって、式(10)の右辺に示すように、q軸電圧値の平均値Vqave、電機子巻線の抵抗値Ra、q軸の電流値の平均値Iqave、及び回転角速度ωに基づいて、間接的に、d軸の電機子鎖交磁束φdを推定することを考える。
Figure JPOXMLDOC01-appb-M000007
Therefore, equation (9) is modified as shown in the following equation. φd is the d-axis armature flux linkage that interlinks with the armature winding, which is the sum of the armature flux linkage φa and the armature reaction flux due to the d-axis current. That is, equation (9) has been transformed into an equation for calculating the d-axis armature flux linkage φd. In the central side of equation (10), the armature interlinkage magnetic flux φa varies due to demagnetization, and the d-axis inductance Ld and the d-axis mutual inductance Md vary due to magnetic saturation. Therefore, as shown on the right side of equation (10), based on the average value Vqave of the q-axis voltage value, the resistance value Ra of the armature winding, the average value Iqave of the q-axis current value, and the rotational angular velocity ω, Specifically, let us consider estimating the d-axis armature flux linkage φd.
Figure JPOXMLDOC01-appb-M000007
 なお、定常状態では、d軸のインダクタンスLd及びd軸の相互インダクタンスMdの変化が小さいため、式(10)の右辺で算出されるd軸の電機子鎖交磁束φdは一定とみなすことができる。また、抵抗値Raも考慮されているため、温度変化により抵抗値Raが変化する場合にも対応できる。回転角速度ωも考慮されている。よって、式(10)の右辺により、電圧方程式を用いて、d軸の電機子鎖交磁束φdを間接的に推定することができる。 Note that in a steady state, changes in the d-axis inductance Ld and the d-axis mutual inductance Md are small, so the d-axis armature linkage flux φd calculated by the right side of equation (10) can be regarded as constant. . Furthermore, since the resistance value Ra is also taken into consideration, it is possible to cope with the case where the resistance value Ra changes due to temperature change. The rotational angular velocity ω is also taken into account. Therefore, from the right side of equation (10), the d-axis armature flux linkage φd can be estimated indirectly using the voltage equation.
 また、式(10)の右辺を用いて、減磁判定値Thφも設定することができる。すなわち、減磁未発生時のある動作点の定常状態において、式(10)の右辺により算出した、d軸の電機子鎖交磁束φdに基づいて、減磁判定値を設定できる。減磁判定値の設定方法については後述する。 Furthermore, the demagnetization determination value Thφ can also be set using the right side of equation (10). That is, in a steady state at a certain operating point when no demagnetization occurs, the demagnetization determination value can be set based on the d-axis armature linkage flux φd calculated from the right side of equation (10). A method for setting the demagnetization determination value will be described later.
 本実施の形態と異なり、1組の電機子巻線が設けられる場合も、同様に電圧方程式に基づいて、電機子鎖交磁束φa、及びd軸の電機子鎖交磁束φdの演算式を導出できる。d軸の相互インダクタンスMdがゼロになるため、式(9)及び式(10)に、Md=0を代入すると、次式に示すように、1組の電機子巻線用の演算式を得る。よって、1組の場合でも、式(12)の右辺に示すように、2組の場合の式(10)の右辺と同様の式により、d軸の電機子鎖交磁束φdを推定できる。
Figure JPOXMLDOC01-appb-M000008
Unlike this embodiment, even when one set of armature windings is provided, calculation formulas for the armature flux linkage φa and the armature flux linkage φd of the d-axis are similarly derived based on the voltage equation. can. Since the mutual inductance Md on the d-axis becomes zero, by substituting Md=0 into equations (9) and (10), we obtain the calculation equation for one set of armature windings as shown in the following equation. . Therefore, even in the case of one set, the d-axis armature flux linkage φd can be estimated by the same equation as the right side of equation (10) in the case of two sets, as shown on the right side of equation (12).
Figure JPOXMLDOC01-appb-M000008
 本実施の形態と異なり、3組の電機子巻線が設けられる場合も、同様に電圧方程式に基づいて、次式に示すように、電機子鎖交磁束φa、及びd軸の電機子鎖交磁束φdの演算式を導出できる。よって、3組の場合でも、式(14)の右辺に示すように、2組の場合の式(10)の右辺と同様の式により、d軸の電機子鎖交磁束φdを推定できる。4組以上についても同様である。
Figure JPOXMLDOC01-appb-M000009
Unlike this embodiment, even when three sets of armature windings are provided, armature linkage magnetic flux φa and d-axis armature linkage An arithmetic expression for the magnetic flux φd can be derived. Therefore, even in the case of three sets, the d-axis armature flux linkage φd can be estimated by the same equation as the right side of equation (10) in the case of two sets, as shown on the right side of equation (14). The same applies to 4 or more groups.
Figure JPOXMLDOC01-appb-M000009
<鎖交磁束の推定及び減磁判定>
 そこで、鎖交磁束推定部35は、m組の電圧指令値、m組の電機子巻線の電流値、電機子巻線の抵抗値Ra、及び回転角速度ωに基づいて、電機子巻線に鎖交する電機子鎖交磁束を推定する。各組の電機子巻線の電流値として、電流検出値又は電流指令値が用いられる。減磁判定部36は、鎖交磁束の推定値と減磁判定値との比較結果に基づいて、磁石の減磁が発生しているか否かを判定する。
<Estimation of magnetic flux linkage and demagnetization determination>
Therefore, the flux linkage estimating unit 35 determines whether the armature windings are adjusted based on the m sets of voltage command values, the m sets of armature winding current values, the armature winding resistance values Ra, and the rotational angular velocity ω. Estimate the armature flux linkage. A detected current value or a current command value is used as the current value of each set of armature windings. The demagnetization determination unit 36 determines whether demagnetization of the magnet has occurred based on the comparison result between the estimated value of the flux linkage and the demagnetization determination value.
 この構成によれば、d軸のインダクタンス、組間の相互インダクタンス、界磁巻線のインダクタンスを用いて、電機子鎖交磁束φa及びd軸電流による電機子反作用磁束を直接推定することなく、電圧方程式を利用して、電機子鎖交磁束を間接的に推定することができる。よって、マップデータなどを設けて各インダクタンスLd、Mdを精度よく算出することなく、電機子鎖交磁束を推定することができる。そして、電機子鎖交磁束の推定値と減磁判定値との比較結果に基づいて、磁石の減磁の発生の有無を判定できる。 According to this configuration, by using the d-axis inductance, the mutual inductance between pairs, and the inductance of the field winding, the voltage Armature flux linkage can be estimated indirectly using the equation. Therefore, the armature flux linkage can be estimated without providing map data or the like to accurately calculate each inductance Ld, Md. Based on the comparison result between the estimated value of the armature flux linkage and the demagnetization determination value, it is possible to determine whether demagnetization of the magnet has occurred.
 本実施の形態では、回転子14に設けられた永久磁石12の減磁が判定される。 In this embodiment, demagnetization of the permanent magnet 12 provided in the rotor 14 is determined.
 減磁判定部36は、減磁判定の判定結果を、外部の制御装置などに伝達する。ユーザは、減磁発生の判定結果により交流回転機1のメンテナンスの必要性の有無を判断できる。減磁判定部36は、鎖交磁束の推定値と減磁判定値との比較結果に基づいて、減磁の度合いを判定してもよい。例えば、減磁判定部36は、減磁判定値からの鎖交磁束の推定値の低下度合いが大きいほど、減磁の度合いが大きいと判定する。 The demagnetization determination unit 36 transmits the determination result of the demagnetization determination to an external control device or the like. The user can determine whether or not maintenance of the AC rotating machine 1 is necessary based on the determination result of the occurrence of demagnetization. The demagnetization determination unit 36 may determine the degree of demagnetization based on the comparison result between the estimated value of the flux linkage and the demagnetization determination value. For example, the demagnetization determination unit 36 determines that the degree of demagnetization is greater as the degree of decrease in the estimated value of the flux linkage from the demagnetization determination value is greater.
 本実施の形態では、鎖交磁束推定部35は、m組の電圧指令値として、m組の電圧指令値の平均値を用い、m組の電流値として、m組の電流値の平均値を用いる。 In the present embodiment, the flux linkage estimation unit 35 uses the average value of the m sets of voltage command values as the m sets of voltage command values, and uses the average value of the m sets of current values as the m sets of current values. use
 この構成によれば、平均値を用いることで、上述したように、組間の電機子巻線の相互干渉により生じる各組の電流値のリンギングの影響を打ち消すことができ、電機子鎖交磁束の推定精度を向上できる。また、電流センサの誤差が生じた場合でも、誤差の影響を低減できる。 According to this configuration, by using the average value, it is possible to cancel the effect of ringing in the current value of each group caused by mutual interference of the armature windings between the groups, as described above, and the armature linkage magnetic flux The estimation accuracy can be improved. Further, even if an error occurs in the current sensor, the influence of the error can be reduced.
 本実施の形態では、鎖交磁束推定部35は、電圧指令値として、q軸の電圧指令値Vqoを用い、電流値として、q軸の電流値Iqを用い、電機子鎖交磁束の推定値として、電機子巻線に鎖交するd軸の電機子鎖交磁束φdを推定する。 In this embodiment, the flux linkage estimation unit 35 uses the q-axis voltage command value Vqo as the voltage command value, uses the q-axis current value Iq as the current value, and calculates the estimated value of the armature flux linkage. The d-axis armature flux linkage φd interlinking with the armature winding is estimated as follows.
 次式に示すように、鎖交磁束推定部35は、第1組及び第2組のq軸の電圧指令値Vqo1、Vqo2の平均値Vqoave、第1組及び第2組のq軸の電流値Iq1、Iq2の平均値Iqave、電機子巻線の抵抗値Ra、及び回転角速度ωに基づいて、d軸の電機子鎖交磁束φdを推定する。各組のq軸の電流値として、各組のq軸の電流検出値Iqs又はq軸の電流指令値Iqoが用いられる。なお、1組の電機子巻線が設けられる場合は、式(12)の右辺が用いられる。
Figure JPOXMLDOC01-appb-M000010
As shown in the following equation, the flux linkage estimation unit 35 calculates the average value Vqoave of the q-axis voltage command values Vqo1 and Vqo2 of the first and second sets, and the q-axis current values of the first and second sets. The d-axis armature linkage flux φd is estimated based on the average value Iqave of Iq1 and Iq2, the resistance value Ra of the armature winding, and the rotational angular velocity ω. The q-axis current detection value Iqs or the q-axis current command value Iqo of each group is used as the q-axis current value of each group. Note that when one set of armature windings is provided, the right side of equation (12) is used.
Figure JPOXMLDOC01-appb-M000010
(1)抵抗値Raの決定方法
(1-1)φdの推定
 d軸の電機子鎖交磁束φd(以下、単にφdとも称す)の推定について、抵抗値Raに着目して説明する。抵抗値Raは、巻線温度によって変化する。巻線温度に応じて抵抗値Raを可変にするか、固定値にするかによって、減磁判定の方法が異なる。以下では、抵抗値Raを可変にする場合と、固定にする場合のそれぞれについて説明する。
(1) Method for determining resistance value Ra (1-1) Estimation of φd Estimation of the d-axis armature linkage magnetic flux φd (hereinafter also simply referred to as φd) will be explained by focusing on the resistance value Ra. The resistance value Ra changes depending on the winding temperature. The method for determining demagnetization differs depending on whether the resistance value Ra is made variable or fixed according to the winding temperature. In the following, a case where the resistance value Ra is made variable and a case where the resistance value Ra is made fixed will be explained.
(1-1-1)Raを固定値にする場合
 まず、d軸の電機子鎖交磁束φd(以下、単にφdとも称す)の推定に用いられる抵抗値Raが固定値に設定される場合について説明する。この場合は、実際の抵抗値Raと、固定の抵抗値Raとの間には誤差が生じ、φdの推定精度に影響を及ぼす。
(1-1-1) When Ra is set to a fixed value First, regarding the case where the resistance value Ra used for estimating the d-axis armature flux linkage φd (hereinafter also simply referred to as φd) is set to a fixed value. explain. In this case, an error occurs between the actual resistance value Ra and the fixed resistance value Ra, which affects the estimation accuracy of φd.
 よって、事前検討により抵抗値の変動幅を把握しておき、減磁判定の許容度、検知率を考慮して、固定の抵抗値Raを決定する。そこで、抵抗値の変動範囲の最大値Ra_maxと最小値Ra_minを予め取得しておき、φdの推定値に反映させる。 Therefore, the fluctuation range of the resistance value is known through preliminary study, and the fixed resistance value Ra is determined by considering the tolerance and detection rate of demagnetization determination. Therefore, the maximum value Ra_max and minimum value Ra_min of the resistance value variation range are obtained in advance and reflected in the estimated value of φd.
 回転角速度ω及びq軸の電流値Iq(又はトルク指令値)等の同じ動作点において、q軸の電流値Iqは抵抗値Raに関係なく一定であるため、式(17)の第二項は、抵抗値Raの大きさに依存する。そのため、式(17)の第二項は、抵抗の最大値Ra_max及び最小値Ra_minを用いると、それぞれ、Ra_max×Iq及びRa_min×Iqで表すことができる。Ra_max×Iq、Ra_min×Iqは、各動作点におけるRa×Iqの最大値と最小値を示す。 At the same operating point, such as the rotational angular velocity ω and the q-axis current value Iq (or torque command value), the q-axis current value Iq is constant regardless of the resistance value Ra, so the second term in equation (17) is , depends on the magnitude of the resistance value Ra. Therefore, the second term of equation (17) can be expressed as Ra_max×Iq and Ra_min×Iq, respectively, using the maximum value Ra_max and minimum value Ra_min of the resistance. Ra_max×Iq and Ra_min×Iq indicate the maximum value and minimum value of Ra×Iq at each operating point.
 以下では、説明の容易化のために、ω=1とおき、式(17)の分子を考慮する。式(17)の分子から、Vqが大きく、かつ、Ra×Iqが小さいほど、φdの推定値が大きくなる。そのため、RaをRa_minに設定することで、実動作中のφdの推定値は大きくなり、減磁していると判定され難くなり、偽陽性を減らすことができる。なお、偽陽性は、減磁していないものを減磁していると誤判定することである。 In the following, for ease of explanation, let ω=1 and consider the numerator of formula (17). From the numerator of equation (17), the larger Vq and the smaller Ra×Iq, the larger the estimated value of φd. Therefore, by setting Ra to Ra_min, the estimated value of φd during actual operation becomes large, making it difficult to determine that demagnetization has occurred, and false positives can be reduced. Note that a false positive is a misjudgment that something that is not demagnetized is erroneously determined to be demagnetized.
 反対に、Vqが小さく、かつ、Ra×Iqが大きいほど、φdの推定値は小さくなるため、実動作中のφdの推定値を小さめに演算したい場合は、RaをRa_maxに設定することで、実動作中のφdの推定値は小さくなり、減磁していると判定され易くなり、偽陰性を減らすことができる。なお、偽陰性は、減磁しているものを減磁していないと誤判定することである。 On the other hand, the smaller Vq and the larger Ra×Iq, the smaller the estimated value of φd, so if you want to calculate a smaller estimated value of φd during actual operation, by setting Ra to Ra_max, The estimated value of φd during actual operation becomes smaller, making it easier to determine that demagnetization has occurred, and false negatives can be reduced. Note that a false negative is a false determination that a demagnetized object is not demagnetized.
 また、φdの推定値に使用するRaに、Ra_max及びRa_minの両方を用いて2つのφdを推定し、2つのφdの推定値を減磁判定に使用することも考えられる。2つのφdの推定値を用いた場合、減磁判定の自由度を高めることが可能である。2つのφdの推定結果を用いた減磁判定方法は、(2)及び(3)の項で後述する。 It is also conceivable to estimate two φd using both Ra_max and Ra_min as Ra used for the estimated value of φd, and use the two estimated values of φd for the demagnetization determination. When two estimated values of φd are used, it is possible to increase the degree of freedom in determining demagnetization. The demagnetization determination method using the two estimation results of φd will be described later in sections (2) and (3).
(1―1―2)Raを可変値にする場合
 次に、φdの推定に用いられる抵抗値Raが、巻線温度に応じて可変である場合について説明する。この場合は、図5に示すように、電機子巻線の巻線温度を検出又は推定する巻線温度取得部37が設けられる。巻線温度を検出する場合は、電機子巻線に温度センサが取り付けられ、温度センサの出力信号が、制御装置30に入力され、巻線温度取得部37は巻線温度を検出する。巻線温度を推定する場合は、巻線温度取得部37は、電流値等の運転状態に基づき、熱モデルなどの推定モデルを用いて、巻線温度を推定する。そして、鎖交磁束推定部35は、巻線温度と抵抗値Raとの関係が予め設定された特性データを参照し、検出又は推定した巻線温度に基づいて、抵抗値Raを推定する。そして、鎖交磁束推定部35は、推定された抵抗値Raを用いて、φdを推定する。よって、精度の高い抵抗値Raを用いることで、各センサ検出値の誤差がないと仮定した場合、固定の抵抗値Raを用いる場合よりも、精度の高いφdを推定することができる。
(1-1-2) When making Ra a variable value Next, a case where the resistance value Ra used for estimating φd is variable according to the winding temperature will be described. In this case, as shown in FIG. 5, a winding temperature acquisition section 37 that detects or estimates the winding temperature of the armature winding is provided. When detecting the winding temperature, a temperature sensor is attached to the armature winding, the output signal of the temperature sensor is input to the control device 30, and the winding temperature acquisition section 37 detects the winding temperature. When estimating the winding temperature, the winding temperature acquisition unit 37 estimates the winding temperature using an estimation model such as a thermal model based on the operating state such as the current value. Then, the flux linkage estimation unit 35 refers to characteristic data in which the relationship between the winding temperature and the resistance value Ra is set in advance, and estimates the resistance value Ra based on the detected or estimated winding temperature. Then, the flux linkage estimation unit 35 estimates φd using the estimated resistance value Ra. Therefore, by using a highly accurate resistance value Ra, assuming that there is no error in each sensor detection value, it is possible to estimate φd with higher accuracy than when using a fixed resistance value Ra.
(1-2)減磁判定値Thφの設定
 次に、減磁判定値Thφの設定方法について説明する。判定値設定用のd軸の電機子鎖交磁束φdth(以下、判定値設定用のφdthとも称す)の算出も、φdの推定値と同様に、抵抗値Raが固定値又は可変値である場合について説明する。
(1-2) Setting of Demagnetization Judgment Value Thφ Next, a method of setting the demagnetization judgment value Thφ will be explained. Similarly to the estimated value of φd, calculation of the d-axis armature linkage magnetic flux φdth (hereinafter also referred to as φdth for determination value setting) for setting the determination value is performed when the resistance value Ra is a fixed value or a variable value. I will explain about it.
 φdの推定と同様に、抵抗値Raを可変にする方が、減磁判定値Thφの設定精度が高くなる。よって、巻線温度取得部37を設けて巻線温度を取得できるのであれば、減磁判定値Thφの設定にも、可変の抵抗値Raを用いた方がよい。 Similarly to the estimation of φd, the setting accuracy of the demagnetization determination value Thφ becomes higher when the resistance value Ra is made variable. Therefore, if the winding temperature acquisition section 37 is provided to acquire the winding temperature, it is better to use the variable resistance value Ra also for setting the demagnetization determination value Thφ.
(1-2-1)Raを固定値にする場合
 図6に、減磁未発生時の、回転角速度ω及びq軸の電流値Iq(又はトルク指令値)等のある動作点における、φdの推定に用いる各パラメータを図示する。Ra_max×IqとRa_min×Iqと、及び、Vqo_maxとVqo_minとは、事前検証で得られた、ある動作点におけるRa×Iqの変動範囲の最大値と最小値、及びq軸の電圧指令値Vqoの変動範囲の最大値と最小値を示している。これらの4つの値の組合せによる、φdの推定値の最大値φd_max_assと、φdの推定値の最小値φd_min_assとは、次式のようになる。ここで、上述したように、説明の容易化のため、ω=1に設定している。
Figure JPOXMLDOC01-appb-M000011
(1-2-1) When setting Ra to a fixed value Figure 6 shows the graph of φd at an operating point with rotational angular velocity ω and q-axis current value Iq (or torque command value) when no demagnetization occurs. Each parameter used for estimation is illustrated. Ra_max×Iq and Ra_min×Iq, and Vqo_max and Vqo_min are the maximum and minimum values of the fluctuation range of Ra×Iq at a certain operating point and the q-axis voltage command value Vqo obtained in advance verification. It shows the maximum and minimum values of the fluctuation range. The maximum value φd_max_ass of the estimated value of φd and the minimum value φd_min_ass of the estimated value of φd based on a combination of these four values are as shown in the following equation. Here, as described above, for ease of explanation, ω is set to 1.
Figure JPOXMLDOC01-appb-M000011
 しかし、各センサ検出値の誤差が無く、減磁していなければ、ある動作点におけるRaとVqoは比例関係にあり、Raが増加するに従って、Vqが増加する。そのため、Ra×Iqが最大のときはVqも最大となり、反対にRa×Iqが最小のときはVqも最小となる。そのため、φdの推定にRa_minを用いた場合のφdの推定値をφd_minとし、φdの推定にRa_maxを用いた場合のφdの推定値をφd_maxとすると、次式の関係が成り立つ。
Figure JPOXMLDOC01-appb-M000012
However, if there is no error in each sensor detection value and there is no demagnetization, Ra and Vqo at a certain operating point are in a proportional relationship, and as Ra increases, Vq increases. Therefore, when Ra×Iq is maximum, Vq is also maximum, and conversely, when Ra×Iq is minimum, Vq is also minimum. Therefore, if the estimated value of φd when Ra_min is used to estimate φd is φd_min, and the estimated value of φd when Ra_max is used to estimate φd is φd_max, then the following relationship holds true.
Figure JPOXMLDOC01-appb-M000012
 よって、φdの推定にRa_min及びRa_maxのいずれを用いても、減磁未発生時のφdの推定値は、次式に示すように、φd_min_assからφd_max_assの範囲内に収まる。よって、φdの推定値が、φd_min_assからφd_max_assの範囲外になれば、減磁が発生していると判定できる。例えば、減磁判定部36は、φdの推定値が、φd_min_assに予め設定された減磁判定値Thφよりも小さい場合に、減磁が発生したと判定できる。このように、1つの指標として、φd_max_ass及びφd_min_assを減磁判定値Thφとして用いることができる。
Figure JPOXMLDOC01-appb-M000013
Therefore, regardless of whether Ra_min or Ra_max is used to estimate φd, the estimated value of φd when no demagnetization occurs falls within the range from φd_min_ass to φd_max_ass, as shown in the following equation. Therefore, if the estimated value of φd falls outside the range from φd_min_ass to φd_max_ass, it can be determined that demagnetization has occurred. For example, the demagnetization determination unit 36 can determine that demagnetization has occurred when the estimated value of φd is smaller than the demagnetization determination value Thφ set in advance to φd_min_ass. In this way, as one index, φd_max_ass and φd_min_ass can be used as the demagnetization determination value Thφ.
Figure JPOXMLDOC01-appb-M000013
(1-2-2)Raを可変値にする場合
 上述したように巻線温度取得部37により取得した巻線温度に応じて抵抗値Raを可変にする場合を考える。上述したように、各センサ検出値の誤差が無く、減磁していなければ、ある動作点におけるRaとVqoは比例関係にあり、Ra×Iqが最大のときはVqoも最大になり、反対にRa×Iqが最小のときはVqoも最小になる。
(1-2-2) Case where Ra is made a variable value Consider the case where the resistance value Ra is made variable according to the winding temperature acquired by the winding temperature acquisition section 37 as described above. As mentioned above, if there is no error in the detection value of each sensor and there is no demagnetization, Ra and Vqo at a certain operating point are in a proportional relationship, and when Ra × Iq is maximum, Vqo is also maximum, and vice versa. When Ra×Iq is minimum, Vqo is also minimum.
 図7は、巻線温度に応じて変化させた抵抗値Raの推定値を用いてφdを推定した場合である。各センサ検出値の誤差が無い場合は、抵抗値Raの変化に対して、φdの推定値の変動は小さい。減磁未発生時の各センサ検出値の誤差によるφdの推定値の最大値φd_maxerr及び最小値φd_minerrとして図示しているが、変動幅が小さい。よって、固定の抵抗値Raを用いる場合のφdの推定値の最大値φd_max及び最小値φd_minよりも変動幅は小さくなる。減磁判定値Thφは、各センサ検出値の誤差を考慮したφdの推定値の最小値φd_minerrよりも小さい値に予め設定されればよい。すなわち、減磁判定部36は、φdの推定値が、φd_minerrよりも小さい値に予め設定された減磁判定値Thφよりも小さい場合に、減磁が発生したと判定する。このように、可変の抵抗値Raを用いてφdを推定することにより、減磁の判定精度を高めることができる。また、微小な減磁を判定できるような減磁判定値Thφを設定することができる。 FIG. 7 shows the case where φd is estimated using the estimated value of the resistance value Ra that is changed according to the winding temperature. When there is no error in each sensor detection value, the estimated value of φd fluctuates little with respect to a change in the resistance value Ra. Although shown as the maximum value φd_maxerr and the minimum value φd_minerr of the estimated value of φd due to the error of each sensor detection value when demagnetization does not occur, the fluctuation range is small. Therefore, the fluctuation range is smaller than the maximum value φd_max and the minimum value φd_min of the estimated value of φd when a fixed resistance value Ra is used. The demagnetization determination value Thφ may be set in advance to a value smaller than the minimum value φd_minerr of the estimated value of φd taking into account the error of each sensor detection value. That is, the demagnetization determination unit 36 determines that demagnetization has occurred when the estimated value of φd is smaller than the demagnetization determination value Thφ, which is preset to a value smaller than φd_minerr. In this way, by estimating φd using the variable resistance value Ra, it is possible to improve the accuracy of demagnetization determination. Furthermore, it is possible to set a demagnetization determination value Thφ that can determine minute demagnetization.
(2)φdの推定値の個数及びThφの個数
 以上では、1つのφdの推定値、及び1つの減磁判定値Thφを用いて減磁判定を行う方法を説明した。以下では、φdの推定値及び減磁判定値Thφの一方又は双方を複数用いて減磁判定を行う方法について説明する。
(2) Number of estimated values of φd and number of Thφ In the above, a method for making a demagnetization determination using one estimated value of φd and one demagnetization determination value Thφ has been described. In the following, a method of making a demagnetization determination using one or both of the estimated value of φd and the demagnetization determination value Thφ will be described.
(2-1)φdの推定値の個数
 (1-2-2)で説明したように、巻線温度に応じた可変の抵抗値Raを用いる場合は、φdの推定精度が高いため、複数のφdを推定する必要性が低い。以下では、固定の抵抗値Raを用いる場合において、複数のφdを推定する方法について説明する。
(2-1) Number of estimated values of φd As explained in (1-2-2), when using variable resistance value Ra depending on the winding temperature, the estimation accuracy of φd is high, so multiple There is less need to estimate φd. Below, a method for estimating a plurality of φd when using a fixed resistance value Ra will be described.
 (1-1-1)で説明したように、固定の抵抗値Raを用いる場合は、Raとして変動範囲のRa_minとRa_maxとを用いて、2つのφd_max及びφd_minを推定することが考えられる。Ra_minを用いてφd_maxを推定する場合は、φd_maxが大きくなるため、偽陽性を減らすことができる。一方、Ra_maxを用いてφd_minを推定する場合は、φd_minが小さくなるため、偽陰性を減らすことができる。 As explained in (1-1-1), when using a fixed resistance value Ra, it is possible to estimate the two φd_max and φd_min using the variable range Ra_min and Ra_max as Ra. When estimating φd_max using Ra_min, φd_max becomes large, so false positives can be reduced. On the other hand, when estimating φd_min using Ra_max, φd_min becomes smaller, so false negatives can be reduced.
(2-2)Thφの個数
 減磁判定値Thφも、Ra_minに対応したφd_maxとRa_maxに対応したφd_minとに対応させて複数設定することが考えられる。
(2-2) Number of Thφ It is also possible to set a plurality of demagnetization determination values Thφ corresponding to φd_max corresponding to Ra_min and φd_min corresponding to Ra_max.
(3)φdの推定値の個数及びThφの個数と組み合わせ方法
 減磁判定の許容度、検知率を考慮して、φdの推定値の個数及び減磁判定値Thφの個数と組み合わせ方法を設定することで、複数の減磁判定方法が考えられる。
(3) Number of estimated values of φd, number of Thφ, and combination method Set the number of estimated values of φd, number of demagnetization judgment values Thφ, and combination method in consideration of demagnetization judgment tolerance and detection rate. Therefore, a plurality of demagnetization determination methods can be considered.
(3-1)1つのφdの推定値、及び1つのThφを用いる場合
 図8に、1つのφdの推定値、及び1つの減磁判定値Thφを用いる場合の減磁判定を示す。
(3-1) When using one estimated value of φd and one Thφ FIG. 8 shows demagnetization determination when using one estimated value of φd and one demagnetization determination value Thφ.
<パターン1>減磁判定部36は、φdの推定値が、減磁判定値Thφよりも大きい場合に、減磁が発生していないと判定する。
<パターン2>減磁判定部36は、φdの推定値が、減磁判定値Thφよりも小さい場合に、減磁が発生したと判定する。
<Pattern 1> The demagnetization determination unit 36 determines that demagnetization has not occurred when the estimated value of φd is larger than the demagnetization determination value Thφ.
<Pattern 2> The demagnetization determination unit 36 determines that demagnetization has occurred when the estimated value of φd is smaller than the demagnetization determination value Thφ.
 以下で説明するように、φdの推定に用いる抵抗値Raが固定値の場合と、可変値の場合があり、減磁判定値Thφの設定に用いる抵抗値Raが固定値の場合と、可変値の場合がある。 As explained below, the resistance value Ra used to estimate φd may be a fixed value or a variable value, and the resistance value Ra used to set the demagnetization judgment value Thφ may be a fixed value or a variable value. There are cases where
(3-1-1)φdの推定用のRaが固定値、及びThφの設定用のRaが固定値の場合
 例えば、φdの推定に用いられる固定の抵抗値Raは、抵抗値の変動範囲のRa_minからRa_maxの範囲内の任意の値に予め設定される。減磁判定値Thφは、抵抗値の変動及び各センサ検出値の誤差による、φdの推定値の変動幅を考慮し、偽陽性の発生及び偽陰性の発生が適切になるような値に予め設定される。
(3-1-1) When Ra for estimating φd is a fixed value and Ra for setting Thφ is a fixed value For example, the fixed resistance value Ra used for estimating φd is within the variation range of resistance value. It is preset to an arbitrary value within the range of Ra_min to Ra_max. The demagnetization judgment value Thφ is set in advance to a value that takes into consideration the fluctuation range of the estimated value of φd due to resistance value fluctuations and errors in each sensor detection value, and is set to a value that will appropriately prevent the occurrence of false positives and false negatives. be done.
 減磁判定値Thφは、各動作点において予め設定される。例えば、回転角速度ω及びq軸の電流指令値Iqoの動作点とされる。回転角速度ω及びq軸の電流指令値Iqoの各動作点において、減磁判定値Thφが予め設定される。例えば、減磁判定部36は、回転角速度ω、q軸の電流指令値Iqo、及び減磁判定値Thφの関係が予め設定されたマップデータを参照し、現在の回転角速度ω及び現在のq軸の電流値Iq(本例では、q軸の電流値の平均値Iqave)に対応する減磁判定値Thφを算出する。 The demagnetization determination value Thφ is set in advance at each operating point. For example, it is the operating point of the rotational angular velocity ω and the q-axis current command value Iqo. A demagnetization determination value Thφ is preset at each operating point of the rotational angular velocity ω and the q-axis current command value Iqo. For example, the demagnetization determination unit 36 refers to map data in which the relationship between the rotational angular velocity ω, the q-axis current command value Iqo, and the demagnetization determination value Thφ is set in advance, and determines the current rotational angular velocity ω and the current q-axis current command value Iqo. A demagnetization determination value Thφ corresponding to the current value Iq (in this example, the average value Iqave of the q-axis current value) is calculated.
 或いは、次式を用い、減磁判定部36は、回転角速度ω及びq軸の電流値Iq(本例では、Iqave)、判定値設定用のq軸の電圧指令値Vqoth、及び判定値設定用の固定の抵抗値Rathに基づいて、判定値設定用のd軸の電機子鎖交磁束φdthを算出し、判定値設定用のd軸の電機子鎖交磁束φdthからオフセット値Δφを減算して、減磁判定値Thφを設定してもよい。
Figure JPOXMLDOC01-appb-M000014
Alternatively, using the following equation, the demagnetization determination unit 36 determines the rotational angular velocity ω, the q-axis current value Iq (in this example, Iqave), the q-axis voltage command value Vqoth for setting the determination value, and the q-axis voltage command value Vqoth for setting the determination value. Based on the fixed resistance value Rath, calculate the d-axis armature linkage flux φdth for setting the judgment value, and subtract the offset value Δφ from the d-axis armature linkage flux φdth for setting the judgment value. , the demagnetization determination value Thφ may be set.
Figure JPOXMLDOC01-appb-M000014
 ここで、Vqothは、判定値設定用のq軸の電圧指令値であり、減磁未発生時のq軸の電圧指令値Vqoが予め設定される。判定値設定用のq軸の電圧指令値Vqothは、各動作点において予め設定される。例えば、減磁判定部36は、回転角速度ω、q軸の電流値Iq、及び判定値設定用のq軸の電圧指令値Vqothの関係が予め設定されたマップデータを参照し、現在の回転角速度ω及びq軸の電流値Iqに対応する判定値設定用のq軸の電圧指令値Vqothを算出する。オフセット値Δφ及び固定の抵抗値Rathは、抵抗値の変動及び各センサ検出値の誤差によるφdの推定値の変動幅を考慮して、偽陽性の発生及び偽陰性の発生が適切になるように予め設定される。 Here, Vqoth is a q-axis voltage command value for setting a determination value, and the q-axis voltage command value Vqo when no demagnetization occurs is set in advance. The q-axis voltage command value Vqoth for setting the determination value is set in advance at each operating point. For example, the demagnetization determination unit 36 refers to map data in which the relationship between the rotational angular velocity ω, the q-axis current value Iq, and the q-axis voltage command value Vqoth for setting the determination value is set in advance, and determines the current rotational angular velocity. A q-axis voltage command value Vqoth for determination value setting corresponding to the ω and q-axis current values Iq is calculated. The offset value Δφ and the fixed resistance value Rath are set so that the occurrence of false positives and false negatives is appropriate, taking into account the fluctuation range of the estimated value of φd due to fluctuations in resistance value and errors in each sensor detection value. Set in advance.
 或いは、減磁判定値Thφは、上記のφd_min_assに対応する値に設定されてもよい。この場合は、減磁判定部36は、判定値設定用のq軸の電圧指令値Vqothとして、予め設定された減磁未発生時のq軸の電圧指令値の変動範囲の最小値Vqo_minを用い、判定値設定用の固定の抵抗値Rathとして、予め設定された抵抗値の変動範囲の最大値Ra_maxを用い、減磁判定値Thφを設定する。減磁未発生時のq軸の電圧指令値の変動範囲の最小値Vqo_minは、各動作点(回転角速度ω及びq軸の電流値Iq)において予め設定される。この場合は、式(23)及び式(24)を用いて、減磁判定値Thφを設定し、オフセット値Δφは0に設定される。 Alternatively, the demagnetization determination value Thφ may be set to a value corresponding to the above-mentioned φd_min_ass. In this case, the demagnetization determination unit 36 uses the preset minimum value Vqo_min of the variation range of the q-axis voltage command value when demagnetization does not occur as the q-axis voltage command value Vqoth for setting the determination value. , the demagnetization judgment value Thφ is set using the maximum value Ra_max of a preset resistance value variation range as the fixed resistance value Rath for setting the judgment value. The minimum value Vqo_min of the variation range of the q-axis voltage command value when demagnetization does not occur is preset at each operating point (rotation angular velocity ω and q-axis current value Iq). In this case, the demagnetization determination value Thφ is set using equations (23) and (24), and the offset value Δφ is set to 0.
 或いは、減磁判定値Thφは、上記のφd_max_assに対応する値に設定されてもよい。この場合は、減磁判定部36は、判定値設定用のq軸の電圧指令値Vqothとして、予め設定された減磁未発生時のq軸の電圧指令値の変動範囲の最大値Vqo_maxを用い、判定値設定用の固定の抵抗値Rathとして、予め設定された抵抗値の変動範囲の最小値Ra_minを用い、減磁判定値Thφを設定する。減磁未発生時のq軸の電圧指令値の変動範囲の最大値Vqo_maxは、各動作点(回転角速度ω及びq軸の電流値Iq)において予め設定される。この場合は、式(23)及び式(24)を用いて、減磁判定値Thφを設定し、オフセット値Δφは0に設定される。 Alternatively, the demagnetization determination value Thφ may be set to a value corresponding to the above-mentioned φd_max_ass. In this case, the demagnetization determination unit 36 uses the preset maximum value Vqo_max of the variation range of the q-axis voltage command value when demagnetization does not occur as the q-axis voltage command value Vqoth for setting the determination value. , the demagnetization judgment value Thφ is set using the minimum value Ra_min of a preset resistance value variation range as the fixed resistance value Rath for setting the judgment value. The maximum value Vqo_max of the variation range of the q-axis voltage command value when no demagnetization occurs is set in advance at each operating point (rotation angular velocity ω and q-axis current value Iq). In this case, the demagnetization determination value Thφ is set using equations (23) and (24), and the offset value Δφ is set to 0.
(3-1-2)φdの推定用のRaが固定値、及びThφの設定用のRaが可変値の場合
 この場合は、減磁判定値Thφの設定に可変の抵抗値Raを用いることで、抵抗値の変動に対して、減磁判定値Thφが変動しないようにできる。しかし、φdの推定に固定の抵抗値Raが用いられるため、φdの推定値が、抵抗値の変動及び各センサ検出値の誤差により変動する。よって、(3-1-1)と同様に、φdの推定値の変動幅を考慮して、減磁判定値Thφを設定する必要があるため、可変の抵抗値Raを用いる利点があまりない。そのため、説明を省略する。
(3-1-2) When Ra for estimating φd is a fixed value and Ra for setting Thφ is a variable value In this case, by using a variable resistance value Ra for setting the demagnetization judgment value Thφ. , it is possible to prevent the demagnetization determination value Thφ from changing with respect to changes in the resistance value. However, since a fixed resistance value Ra is used to estimate φd, the estimated value of φd fluctuates due to fluctuations in the resistance value and errors in the detected values of each sensor. Therefore, as in (3-1-1), it is necessary to set the demagnetization determination value Thφ in consideration of the fluctuation range of the estimated value of φd, so there is not much advantage in using the variable resistance value Ra. Therefore, the explanation will be omitted.
(3-1-3)φdの推定用のRaが可変値、及びThφの設定用のRaが固定値の場合
 この場合は、上述したように、抵抗値の変動によるφdの推定値の変動が小さくなり、φdの推定精度を向上できる。よって、減磁判定値Thφは、各センサ検出値の誤差による、φdの推定値の変動幅を考慮し、偽陽性の発生及び偽陰性の発生が適切になるような値に予め設定される。例えば、減磁判定値Thφは、各センサ検出値の誤差を考慮したφdの推定値の最小値φd_minerrよりも小さい値に予め設定されればよい。可変の抵抗値Raを用いてφdを推定することにより、減磁の判定精度を高めることができる。また、微小な減磁を判定できるような減磁判定値Thφを設定することができる。(3-1-1)と同様に、減磁判定値Thφは、各動作点において予め設定される。
(3-1-3) When Ra for estimating φd is a variable value and Ra for setting Thφ is a fixed value. In this case, as mentioned above, the fluctuation in the estimated value of φd due to fluctuations in the resistance value This makes it possible to improve the estimation accuracy of φd. Therefore, the demagnetization determination value Thφ is set in advance to a value that takes into account the fluctuation range of the estimated value of φd due to the error of each sensor detection value, and makes it appropriate to prevent the occurrence of false positives and false negatives. For example, the demagnetization determination value Thφ may be set in advance to a value smaller than the minimum value φd_minerr of the estimated value of φd taking into account the error of each sensor detection value. By estimating φd using the variable resistance value Ra, it is possible to improve the accuracy of demagnetization determination. Furthermore, it is possible to set a demagnetization determination value Thφ that can determine minute demagnetization. Similar to (3-1-1), the demagnetization determination value Thφ is set in advance at each operating point.
(3-1-4)φdの推定用のRaが可変値、及びThφの設定用のRaが可変値の場合
 この場合は、例えば、次式を用いて、減磁判定部36は、回転角速度ω及びq軸の電流値Iq(本例では、Iqave)、判定値設定用のq軸の電圧指令値Vqoth、及び巻線温度取得部37により取得した巻線温度に応じて推定した抵抗値Raに基づいて、判定値設定用のd軸の電機子鎖交磁束φdthを算出し、判定値設定用のd軸の電機子鎖交磁束φdthからオフセット値Δφを減算して、減磁判定値Thφを設定する。
Figure JPOXMLDOC01-appb-M000015
(3-1-4) When Ra for estimating φd is a variable value and Ra for setting Thφ is a variable value In this case, for example, using the following equation, the demagnetization determination unit 36 determines the rotational angular velocity. ω and q-axis current value Iq (in this example, Iqave), q-axis voltage command value Vqoth for determination value setting, and resistance value Ra estimated according to the winding temperature acquired by the winding temperature acquisition unit 37 Based on this, calculate the d-axis armature linkage magnetic flux φdth for determination value setting, and subtract the offset value Δφ from the d-axis armature linkage magnetic flux φdth for determination value setting to obtain the demagnetization determination value Thφ. Set.
Figure JPOXMLDOC01-appb-M000015
 ここで、Vqothは、判定値設定用のq軸の電圧指令値であり、減磁未発生時のq軸の電圧指令値Vqoが予め設定される。(3-1-1)の式(23)と同様に、判定値設定用のq軸の電圧指令値Vqothは、各動作点において予め設定される。オフセット値Δφは、減磁未発生時にφdの推定値と減磁判定値Thφが近接しすぎないように設定される。また、オフセット値Δφは、各センサ検出値の誤差によるφdの推定値の変動幅も考慮して、偽陽性の発生及び偽陰性の発生が適切になるような値に予め設定される。 Here, Vqoth is a q-axis voltage command value for setting a determination value, and the q-axis voltage command value Vqo when no demagnetization occurs is set in advance. Similar to equation (23) in (3-1-1), the q-axis voltage command value Vqoth for setting the determination value is set in advance at each operating point. The offset value Δφ is set so that the estimated value of φd and the demagnetization determination value Thφ are not too close when no demagnetization occurs. Further, the offset value Δφ is set in advance to a value that appropriately prevents the occurrence of false positives and false negatives, taking into consideration the fluctuation range of the estimated value of φd due to the error of each sensor detection value.
(3-2)1つのφdの推定値、及び2つのThφを用いる場合
 図9に、1つのφdの推定値、及び2つの減磁判定値Thφを用いる場合の減磁判定を示す。
(3-2) When one estimated value of φd and two Thφ are used FIG. 9 shows demagnetization determination when one estimated value of φd and two demagnetization determination values Thφ are used.
 減磁判定部36は、大きい側の減磁判定値ThφHと、大きい側の減磁判定値ThφHよりも小さい、小さい側の減磁判定値ThφLを用いる。2つの減磁判定値ThφH、ThφLを用いることで、偽陽性の発生及び偽陰性の発生を個別に調整できる。 The demagnetization determination unit 36 uses a larger demagnetization determination value ThφH and a smaller demagnetization determination value ThφL that is smaller than the larger demagnetization determination value ThφH. By using the two demagnetization determination values ThφH and ThφL, it is possible to individually adjust the occurrence of false positives and false negatives.
<パターン1>減磁判定部36は、φdの推定値が、大きい側の減磁判定値ThφHよりも大きい場合に、減磁が発生していないと判定する。
<パターン2>減磁判定部36は、φdの推定値が、小さい側の減磁判定値ThφLから大きい側の減磁判定値ThφHの間になった場合は、減磁が発生したと判定してもよいし、減磁が発生していないと判定してもよい。例えば、偽陽性の発生を抑制した場合は、減磁が発生していないと判定される。偽陰性の発生を抑制した場合は、減磁が発生したと判定される。
<パターン3>減磁判定部36は、φdの推定値が、小さい側の減磁判定値ThφLよりも小さい場合に、減磁が発生したと判定する。
<Pattern 1> The demagnetization determination unit 36 determines that demagnetization has not occurred when the estimated value of φd is larger than the larger demagnetization determination value ThφH.
<Pattern 2> The demagnetization determination unit 36 determines that demagnetization has occurred when the estimated value of φd falls between the smaller demagnetization determination value ThφL and the larger demagnetization determination value ThφH. Alternatively, it may be determined that demagnetization has not occurred. For example, if the occurrence of false positives is suppressed, it is determined that demagnetization has not occurred. If the occurrence of false negatives is suppressed, it is determined that demagnetization has occurred.
<Pattern 3> The demagnetization determination unit 36 determines that demagnetization has occurred when the estimated value of φd is smaller than the smaller demagnetization determination value ThφL.
 以下で説明するように、φdの推定に用いる抵抗値Raが固定値の場合と、可変値の場合があり、減磁判定値Thφの設定に用いる抵抗値Raが固定値の場合と、可変値の場合がある。 As explained below, the resistance value Ra used to estimate φd may be a fixed value or a variable value, and the resistance value Ra used to set the demagnetization judgment value Thφ may be a fixed value or a variable value. There are cases where
(3-2-1)φdの推定用のRaが固定値、及びThφH、ThφLの設定用のRaが固定値の場合
 1つの減磁判定値の場合の(3-1-1)と異なる点は、2つの減磁判定値を設けることにより、減磁検知レベルに合わせて、減磁判定値を変化させ、減磁判定の自由度を高めることができる。
(3-2-1) When Ra for estimating φd is a fixed value and Ra for setting ThφH and ThφL is a fixed value Points different from (3-1-1) in the case of one demagnetization judgment value By providing two demagnetization determination values, the demagnetization determination value can be changed in accordance with the demagnetization detection level, and the degree of freedom in demagnetization determination can be increased.
 例えば、小さい側の減磁判定値ThφLが、抵抗値の変動範囲の最大値Ra_maxに対応して設定される。例えば、次式を用い、減磁判定部36は、小さい側の減磁判定値ThφLを設定する。減磁判定部36は、小さい側の減磁判定値ThφLにオフセット値ΔφHを加算して、大きい側の減磁判定値ThφHを設定する。ここで、オフセット値ΔφHは、各センサ検出値の誤差によるφdの推定値の変動幅も考慮して、偽陽性の発生及び偽陰性の発生が適切になるような値に予め設定される。他のパラメータは、上述したものと同様であるので説明を省略する。
Figure JPOXMLDOC01-appb-M000016
For example, the smaller demagnetization determination value ThφL is set corresponding to the maximum value Ra_max of the resistance value variation range. For example, the demagnetization determination unit 36 sets the smaller demagnetization determination value ThφL using the following equation. The demagnetization determination unit 36 adds the offset value ΔφH to the smaller demagnetization determination value ThφL to set the larger demagnetization determination value ThφH. Here, the offset value ΔφH is set in advance to a value that appropriately prevents the occurrence of false positives and false negatives, taking into account the fluctuation range of the estimated value of φd due to the error of each sensor detection value. The other parameters are the same as those described above, so their explanation will be omitted.
Figure JPOXMLDOC01-appb-M000016
 或いは、大きい側の減磁判定値ThφHが、抵抗値の変動範囲の最小値Ra_minに対応して設定される。例えば、次式を用い、減磁判定部36は、大きい側の減磁判定値ThφHを設定する。減磁判定部36は、大きい側の減磁判定値ThφHからオフセット値ΔφLを減算して、小さい側の減磁判定値ThφLを設定する。ここで、オフセット値ΔφLは、各センサ検出値の誤差によるφdの推定値の変動幅も考慮して、偽陽性の発生及び偽陰性の発生が適切になるような値に予め設定される。他のパラメータは、上述したものと同様であるので説明を省略する。
Figure JPOXMLDOC01-appb-M000017
Alternatively, the larger demagnetization determination value ThφH is set corresponding to the minimum value Ra_min of the resistance value variation range. For example, the demagnetization determination unit 36 sets the larger demagnetization determination value ThφH using the following equation. The demagnetization determination unit 36 subtracts the offset value ΔφL from the larger demagnetization determination value ThφH to set the smaller demagnetization determination value ThφL. Here, the offset value ΔφL is set in advance to a value that appropriately prevents the occurrence of false positives and false negatives, taking into account the range of variation in the estimated value of φd due to errors in each sensor detection value. The other parameters are the same as those described above, so their explanation will be omitted.
Figure JPOXMLDOC01-appb-M000017
 或いは、小さい側の減磁判定値ThφLが、抵抗値の変動範囲の最大値Ra_maxに対応して設定され、大きい側の減磁判定値ThφHが、抵抗値の変動範囲の最小値Ra_minに対応して設定される。例えば、式(27)及び式(29)が用いられる。 Alternatively, the smaller demagnetization judgment value ThφL is set to correspond to the maximum value Ra_max of the resistance value variation range, and the larger demagnetization judgment value ThφH is set to correspond to the minimum value Ra_min of the resistance value variation range. is set. For example, equation (27) and equation (29) are used.
(3-2-2)φdの推定用のRaが可変値、及びThφH、ThφLの設定用のRaが固定値の場合
 この場合は、(3-1-3)で説明したように、抵抗値の変動によるφdの推定値の変動が小さくなり、φdの推定精度を向上できる。よって、ThφH、ThφLは、各センサ検出値の誤差による、φdの推定値の変動幅を考慮し、偽陽性の発生及び偽陰性の発生が適切になるような値に予め設定される。例えば、ThφLは、各センサ検出値の誤差を考慮したφdの推定値の最小値φd_minerrに対応して設定されればよい。ThφHは、各センサ検出値の誤差を考慮したφdの推定値の最大値φd_maxerrに対応して設定されればよい。(3-1-1)と同様に、ThφH、ThφLは、各動作点において予め設定される。
(3-2-2) When Ra for estimating φd is a variable value and Ra for setting ThφH and ThφL is a fixed value In this case, as explained in (3-1-3), the resistance value The fluctuation of the estimated value of φd due to the fluctuation of φd is reduced, and the estimation accuracy of φd can be improved. Therefore, ThφH and ThφL are preset to values that will appropriately prevent the occurrence of false positives and false negatives, taking into account the range of variation in the estimated value of φd due to the error of each sensor detection value. For example, ThφL may be set to correspond to the minimum value φd_minerr of the estimated value of φd considering the error of each sensor detection value. ThφH may be set in accordance with the maximum value φd_maxerr of the estimated value of φd considering the error of each sensor detection value. Similarly to (3-1-1), ThφH and ThφL are set in advance at each operating point.
(3-2-3)φdの推定用のRaが可変値、及びThφH、ThφLの設定用のRaが可変値の場合
 この場合は、例えば、(3-1-4)の式(25)と同様の次式を用いて、減磁判定部36は、巻線温度取得部37により取得した巻線温度に応じて推定した抵抗値Raに基づいて、判定値設定用のd軸の電機子鎖交磁束φdthを算出し、判定値設定用のd軸の電機子鎖交磁束φdthからオフセット値ΔφLを減算して、ThφLを設定し、判定値設定用のd軸の電機子鎖交磁束φdthにオフセット値ΔφHを加算して、ThφHを設定する。
Figure JPOXMLDOC01-appb-M000018
(3-2-3) When Ra for estimating φd is a variable value and Ra for setting ThφH and ThφL is a variable value In this case, for example, equation (25) in (3-1-4) Using the same following equation, the demagnetization determination section 36 determines the d-axis armature chain for determination value setting based on the resistance value Ra estimated according to the winding temperature acquired by the winding temperature acquisition section 37. Calculate the alternating magnetic flux φdth, subtract the offset value ΔφL from the d-axis armature linkage magnetic flux φdth for setting the judgment value, set ThφL, and set it to the d-axis armature linkage magnetic flux φdth for the judgment value setting. ThφH is set by adding the offset value ΔφH.
Figure JPOXMLDOC01-appb-M000018
 式(31)の各パラメータは、式(25)と同様であるので説明を省略する。オフセット値ΔφLは、各センサ検出値の誤差によるφdの推定値の変動幅、及び偽陰性の発生を考慮して設定される。オフセット値ΔφHは、各センサ検出値の誤差によるφdの推定値の変動幅、及び偽陽性の発生を考慮して設定される。ΔφL及びΔφHを調整することで、偽陽性の発生及び偽陰性の発生を個別に調整できる。ΔφLが0に設定されてもよく、又はΔφHが0に設定されてもよい。 Each parameter in equation (31) is the same as equation (25), so the explanation will be omitted. The offset value ΔφL is set in consideration of the fluctuation range of the estimated value of φd due to the error of each sensor detection value and the occurrence of false negatives. The offset value ΔφH is set in consideration of the fluctuation range of the estimated value of φd due to the error of each sensor detection value and the occurrence of false positives. By adjusting ΔφL and ΔφH, the occurrence of false positives and false negatives can be adjusted individually. ΔφL may be set to zero, or ΔφH may be set to zero.
(3-3)2つのφdの推定値、及び1つのThφを用いる場合
 図10に、2つのφdの推定値、及び1つの減磁判定値Thφを用いる場合の減磁判定を示す。ここで、減磁未発生可能性領域は、主に実際の抵抗値と固定の抵抗値との間に発生する誤差領域であり、減磁未発生時のφdの推定値の変動幅である。減磁発生可能性領域は、減磁の度合いによって変化する可能性があるφdの推定値の変動幅である。
(3-3) When two estimated values of φd and one Thφ are used FIG. 10 shows demagnetization determination when two estimated values of φd and one demagnetization determination value Thφ are used. Here, the region in which demagnetization may not occur is an error region that mainly occurs between the actual resistance value and the fixed resistance value, and is the fluctuation range of the estimated value of φd when demagnetization does not occur. The demagnetization possibility region is a variation range of the estimated value of φd that may change depending on the degree of demagnetization.
 鎖交磁束推定部35は、大きい側のd軸の電機子鎖交磁束の推定値φdHと、小さい側のd軸の電機子鎖交磁束の推定値φdLとを推定する。 The flux linkage estimation unit 35 estimates an estimated value φdH of the armature flux linkage on the d-axis on the larger side, and an estimated value φdL for the armature flux linkage on the d-axis on the smaller side.
<パターン1>減磁判定部36は、小さい側の鎖交磁束の推定値φdLが、減磁判定値Thφよりも大きい場合に、減磁が発生していないと判定する。
<パターン2>減磁判定部36は、減磁判定値Thφが、小さい側の鎖交磁束の推定値φdLと大きい側の鎖交磁束の推定値φdHとの間にある場合、減磁が発生したと判定してもよいし、減磁が発生していないと判定してもよい。例えば、偽陽性の発生を抑制した場合は、減磁が発生していないと判定される。偽陰性の発生を抑制した場合は、減磁が発生したと判定される。
<パターン3>減磁判定部36は、大きい側の鎖交磁束の推定値φdHが、減磁判定値Thφよりも小さい場合に、減磁が発生したと判定する。
<Pattern 1> The demagnetization determination unit 36 determines that demagnetization has not occurred when the estimated value φdL of the smaller interlinkage magnetic flux is larger than the demagnetization determination value Thφ.
<Pattern 2> The demagnetization determination unit 36 determines that demagnetization has occurred when the demagnetization determination value Thφ is between the estimated value φdL of the smaller magnetic flux linkage and the estimated value φdH of the larger magnetic flux linkage. It may be determined that demagnetization has occurred, or it may be determined that demagnetization has not occurred. For example, if the occurrence of false positives is suppressed, it is determined that demagnetization has not occurred. If the occurrence of false negatives is suppressed, it is determined that demagnetization has occurred.
<Pattern 3> The demagnetization determination unit 36 determines that demagnetization has occurred when the estimated value φdH of the larger interlinkage magnetic flux is smaller than the demagnetization determination value Thφ.
 以下で説明するように、φdの推定に用いる抵抗値Raが固定値の場合と、可変値の場合があり、減磁判定値Thφの設定に用いる抵抗値Raが固定値の場合と、可変値の場合がある。 As explained below, the resistance value Ra used to estimate φd may be a fixed value or a variable value, and the resistance value Ra used to set the demagnetization judgment value Thφ may be a fixed value or a variable value. There are cases where
(3-3-1)φdH、φdLの推定用のRaが固定値、及びThφの設定用のRaが固定値の場合
 例えば、式(17)に対応する次式を用い、鎖交磁束推定部35は、予め設定された抵抗値の変動範囲の最小値Ra_minを用いて、大きい側のd軸の電機子鎖交磁束の推定値φdHを推定する。
Figure JPOXMLDOC01-appb-M000019
(3-3-1) When Ra for estimating φdH and φdL is a fixed value, and Ra for setting Thφ is a fixed value. For example, using the following equation corresponding to equation (17), the flux linkage estimator 35 estimates the estimated value φdH of the armature flux linkage on the larger side d-axis using the minimum value Ra_min of the preset resistance value variation range.
Figure JPOXMLDOC01-appb-M000019
 式(17)に対応する次式を用い、鎖交磁束推定部35は、予め設定された抵抗値の変動範囲の最大値Ra_maxを用いて、小さい側のd軸の電機子鎖交磁束の推定値φdLを推定する。
Figure JPOXMLDOC01-appb-M000020
Using the following equation corresponding to equation (17), the flux linkage estimating unit 35 estimates the armature flux linkage of the smaller d-axis using the maximum value Ra_max of the preset resistance value variation range. Estimate the value φdL.
Figure JPOXMLDOC01-appb-M000020
 この構成によれば、抵抗値の変動範囲の最小値Ra_minを用いて推定されたφdHが、Thφを下回れば、抵抗値の変動を考慮して、減磁が発生したと精度よく判定できる。抵抗値の変動範囲の最大値Ra_maxを用いて推定されたφdLが、Thφを上回れば、抵抗値の変動を考慮して、減磁が発生していないと精度よく判定できる。減磁判定値Thφは、各センサ検出値の誤差によるφdの推定値の変動幅を考慮し、偽陽性の発生及び偽陰性の発生が適切になるような値に予め設定される。(3-1-1)と同様に、減磁判定値Thφは、各動作点において予め設定される。 According to this configuration, if φdH estimated using the minimum value Ra_min of the resistance value variation range is less than Thφ, it can be accurately determined that demagnetization has occurred, taking into account the resistance value variation. If φdL estimated using the maximum value Ra_max of the resistance value fluctuation range exceeds Thφ, it can be accurately determined that demagnetization has not occurred, taking into account the resistance value fluctuation. The demagnetization determination value Thφ is set in advance to a value that appropriately prevents the occurrence of false positives and false negatives, taking into account the fluctuation range of the estimated value of φd due to the error of each sensor detection value. Similar to (3-1-1), the demagnetization determination value Thφ is set in advance at each operating point.
 或いは、減磁判定値Thφが、抵抗値の変動範囲の最大値Ra_max(φd_min)又はφd_minerrに対応して設定された場合は、Ra_minを用いて推定されたφdHが、減磁判定値Thφを下回れば、確実に減磁したと判定でき、偽陰性の発生を抑制できる。 Alternatively, if the demagnetization judgment value Thφ is set corresponding to the maximum value Ra_max (φd_min) or φd_minerr of the resistance value fluctuation range, φdH estimated using Ra_min must be less than the demagnetization judgment value Thφ. For example, it can be determined that demagnetization has occurred reliably, and the occurrence of false negatives can be suppressed.
 或いは、減磁判定値Thφが、抵抗値の変動範囲の最小値Ra_min(φd_max)又はφd_maxerrに対応して設定された場合は、Ra_maxを用いて推定されたφdLが、減磁判定値Thφを上回れば、確実に減磁していないと判定でき、偽陽性の発生を抑制できる。 Alternatively, if the demagnetization judgment value Thφ is set corresponding to the minimum value Ra_min (φd_max) or φd_maxerr of the resistance value variation range, φdL estimated using Ra_max may exceed the demagnetization judgment value Thφ. For example, it can be reliably determined that there is no demagnetization, and the occurrence of false positives can be suppressed.
 また、減磁発生の有無を確定できない<パターン2>の領域において、偽陽性の発生を極力抑制する場合は、φdHのみをThφと比較して減磁判定を行えばよく、偽陰性の発生を極力抑制する場合は、φdLのみをThφと比較して減磁判定を行えばよい。 In addition, in the area of <Pattern 2> where it is not possible to determine whether or not demagnetization has occurred, in order to suppress the occurrence of false positives as much as possible, it is sufficient to perform demagnetization judgment by comparing only φdH with Thφ, thereby reducing the occurrence of false negatives. If suppressed as much as possible, only φdL may be compared with Thφ to determine demagnetization.
(3-3-2)φdH、φdLの推定用のRaが可変値、及びThφの設定用のRaが固定値の場合
 推定用のRaが可変値の場合は、φdの推定値の精度が高くなり、φdの推定値を複数設ける必要がないため、説明を省略する。
(3-3-2) When Ra for estimating φdH and φdL is a variable value, and Ra for setting Thφ is a fixed value If Ra for estimation is a variable value, the accuracy of the estimated value of φd is high. Since there is no need to provide a plurality of estimated values of φd, the explanation will be omitted.
(3-3-3)φdH、φdLの推定用のRaが可変値、及びThφの設定用のRaが可変値の場合
 同様に、推定用のRaが可変値の場合は、φdの推定値の精度が高くなり、φdの推定値を複数設ける必要がないため、説明を省略する。
(3-3-3) When Ra for estimating φdH and φdL is a variable value, and Ra for setting Thφ is a variable value Similarly, when Ra for estimating is a variable value, the estimated value of φd Since the accuracy is increased and there is no need to provide a plurality of estimated values of φd, a description thereof will be omitted.
(3-4)2つのφdの推定値、及び2つのThφを用いる場合
 図11に、2つのφdの推定値、及び2つの減磁判定値Thφを用いる場合の減磁判定を示す。鎖交磁束推定部35は、大きい側のd軸の電機子鎖交磁束の推定値φdHと、小さい側のd軸の電機子鎖交磁束の推定値φdLとを推定する。また、減磁判定部36は、大きい側の減磁判定値ThφHと、小さい側の減磁判定値ThφLとを用いる。
(3-4) When two estimated values of φd and two Thφ are used FIG. 11 shows demagnetization determination when two estimated values of φd and two demagnetization determination values Thφ are used. The flux linkage estimating unit 35 estimates an estimated value φdH of the armature flux linkage on the d-axis on the larger side and an estimated value φdL of the armature flux linkage on the d-axis on the smaller side. Further, the demagnetization determination unit 36 uses a larger demagnetization determination value ThφH and a smaller demagnetization determination value ThφL.
<パターン1>減磁判定部36は、大きい側の鎖交磁束の推定値φdH及び小さい側の鎖交磁束の推定値φdLが、大きい側の減磁判定値ThφHよりも大きい場合に、減磁が発生していないと判定する。 <Pattern 1> The demagnetization determining unit 36 determines whether the demagnetization is performed when the estimated value φdH of the larger magnetic flux linkage and the estimated value φdL of the smaller magnetic flux linkage are larger than the demagnetization judgment value ThφH of the larger side. It is determined that this has not occurred.
<パターン2>大きい側の鎖交磁束の推定値φdHが、大きい側の減磁判定値ThφHよりも大きく、且つ、小さい側の鎖交磁束の推定値φdLが、小さい側の鎖交磁束の推定値φdLと大きい側の鎖交磁束の推定値φdHとの間にある場合において、減磁判定部36は、大きい側の減磁判定値ThφHを減磁判定に用いる場合は、減磁が発生したと判定してもよいし、減磁が発生していないと判定してもよい、或いは、減磁判定部36は、小さい側の減磁判定値ThφLを減磁判定に用いる場合は、減磁が発生していないと判定する。 <Pattern 2> The estimated value φdH of the larger side magnetic flux linkage is larger than the larger side demagnetization judgment value ThφH, and the estimated value φdL of the smaller side magnetic flux linkage is the estimation of the smaller side magnetic flux linkage. When the value is between the value φdL and the estimated value φdH of the larger interlinkage flux, the demagnetization determination unit 36 determines that demagnetization has occurred when the larger demagnetization determination value ThφH is used for the demagnetization determination. Alternatively, if the demagnetization determination unit 36 uses the smaller demagnetization determination value ThφL for the demagnetization determination, the demagnetization determination unit 36 may determine that demagnetization has not occurred. It is determined that this has not occurred.
<パターン3>大きい側の鎖交磁束の推定値φdHが、大きい側の減磁判定値ThφHよりも大きく、且つ、小さい側の鎖交磁束の推定値φdLが、小さい側の鎖交磁束の推定値φdLよりも小さい場合において、減磁判定部36は、大きい側の減磁判定値ThφHを減磁判定に用いる場合は、減磁が発生したと判定してもよいし、減磁が発生していないと判定してもよい、或いは、減磁判定部36は、小さい側の減磁判定値ThφLを減磁判定に用いる場合は、減磁が発生したと判定してもよいし、減磁が発生していないと判定してもよい。 <Pattern 3> The estimated value φdH of the larger side magnetic flux linkage is larger than the larger side demagnetization judgment value ThφH, and the estimated value φdL of the smaller side magnetic flux linkage is the estimation of the smaller side magnetic flux linkage. When the value is smaller than the value φdL, the demagnetization determination unit 36 may determine that demagnetization has occurred, or may determine that demagnetization has occurred, when using the larger demagnetization determination value ThφH for demagnetization determination. Alternatively, if the demagnetization determination unit 36 uses the smaller demagnetization determination value ThφL for demagnetization determination, it may determine that demagnetization has occurred, or the demagnetization determination unit 36 may determine that demagnetization has occurred. It may be determined that this has not occurred.
<パターン4>大きい側の鎖交磁束の推定値φdH及び小さい側の鎖交磁束の推定値φdLが、小さい側の鎖交磁束の推定値φdLと大きい側の鎖交磁束の推定値φdHとの間にある場合において、減磁判定部36は、大きい側の減磁判定値ThφHを減磁判定に用いる場合は、減磁が発生していると判定し、或いは、減磁判定部36は、小さい側の減磁判定値ThφLを減磁判定に用いる場合は、減磁が発生していないと判定する。 <Pattern 4> The estimated value φdH of the larger side magnetic flux linkage and the estimated value φdL of the smaller side magnetic flux linkage are the same as the estimated value φdL of the smaller side magnetic flux linkage and the estimated value φdH of the larger side magnetic flux linkage. In the case where the demagnetization determination unit 36 uses the larger demagnetization determination value ThφH for the demagnetization determination, the demagnetization determination unit 36 determines that demagnetization has occurred, or the demagnetization determination unit 36 When the smaller demagnetization determination value ThφL is used for demagnetization determination, it is determined that demagnetization has not occurred.
<パターン5>大きい側の鎖交磁束の推定値φdHが、小さい側の鎖交磁束の推定値φdLと大きい側の鎖交磁束の推定値φdHとの間にあり、且つ、小さい側の鎖交磁束の推定値φdLが、小さい側の鎖交磁束の推定値φdLよりも小さい場合において、減磁判定部36は、大きい側の減磁判定値ThφHを減磁判定に用いる場合は、減磁が発生したと判定し、或いは、減磁判定部36は、小さい側の減磁判定値ThφLを減磁判定に用いる場合は、減磁が発生したと判定してもよいし、減磁が発生していないと判定してもよい。 <Pattern 5> The estimated value of magnetic flux linkage on the larger side φdH is between the estimated value of magnetic flux linkage on the smaller side φdL and the estimated value of magnetic flux linkage on the larger side φdH, and When the estimated value φdL of the magnetic flux is smaller than the estimated value φdL of the smaller interlinkage magnetic flux, the demagnetization determination unit 36 determines whether the demagnetization is Alternatively, if the demagnetization determination unit 36 uses the smaller demagnetization determination value ThφL for demagnetization determination, it may determine that demagnetization has occurred, or it may determine that demagnetization has occurred. It may be determined that the
<パターン6>減磁判定部36は、大きい側の鎖交磁束の推定値φdH及び小さい側の鎖交磁束の推定値φdLが、小さい側の減磁判定値ThφLよりも小さい場合に、減磁が発生したと判定する。 <Pattern 6> The demagnetization determination unit 36 determines whether the larger side flux linkage φdH and the smaller side estimated value φdL are smaller than the smaller side demagnetization determination value ThφL. It is determined that this has occurred.
 以下で説明するように、φdの推定に用いる抵抗値Raが固定値の場合と、可変値の場合があり、減磁判定値Thφの設定に用いる抵抗値Raが固定値の場合と、可変値の場合がある。 As explained below, the resistance value Ra used to estimate φd may be a fixed value or a variable value, and the resistance value Ra used to set the demagnetization judgment value Thφ may be a fixed value or a variable value. There are cases where
(3-4-1)φdH、φdLの推定用のRaが固定値、及びThφH、ThφLの設定用のRaが固定値の場合
 (3-3-1)と同様に、式(34)を用い、鎖交磁束推定部35は、予め設定された抵抗値の変動範囲の最小値Ra_minを用いて、大きい側のd軸の電機子鎖交磁束の推定値φdHを推定する。また、式(35)を用い、鎖交磁束推定部35は、予め設定された抵抗値の変動範囲の最大値Ra_maxを用いて、小さい側のd軸の電機子鎖交磁束の推定値φdLを推定する。
(3-4-1) When Ra for estimating φdH and φdL is a fixed value, and Ra for setting ThφH and ThφL is a fixed value. Similar to (3-3-1), using equation (34) The magnetic flux linkage estimating unit 35 estimates the estimated value φdH of the armature magnetic flux linkage on the larger d-axis using the preset minimum value Ra_min of the resistance value variation range. Further, using equation (35), the flux linkage estimating unit 35 calculates the estimated value φdL of the armature flux linkage on the smaller d-axis using the maximum value Ra_max of the preset resistance value variation range. presume.
 (3-2-1)と同様に、式(27)及び式(28)を用いて、小さい側の減磁判定値ThφLが、抵抗値の変動範囲の最大値Ra_maxに対応して設定され、大きい側の減磁判定値ThφHが、小さい側の減磁判定値ThφLにオフセット値ΔφHを加算して設定される。 Similarly to (3-2-1), using equations (27) and (28), the smaller demagnetization judgment value ThφL is set corresponding to the maximum value Ra_max of the resistance value variation range, The larger demagnetization determination value ThφH is set by adding an offset value ΔφH to the smaller demagnetization determination value ThφL.
 このようにThφH、ThφLを設定する場合は、不定であった<パターン3>及び<パターン5>において、減磁判定部36は、小さい側の鎖交磁束の推定値φdLが、小さい側の減磁判定値ThφLよりも小さい場合に、確実に減磁が発生していると一意に判定することができる。 When setting ThφH and ThφL in this way, in <Pattern 3> and <Pattern 5>, which were undefined, the demagnetization determination unit 36 determines that the estimated value φdL of the smaller side flux linkage is If it is smaller than the magnetic determination value ThφL, it can be uniquely determined that demagnetization has occurred with certainty.
 或いは、(3-2-1)と同様に、式(29)及び式(30)を用いて、大きい側の減磁判定値ThφHが、抵抗値の変動範囲の最小値Ra_minに対応して設定され、小さい側の減磁判定値ThφLが、大きい側の減磁判定値ThφHからオフセット値ΔφLを減算して設定されてもよい。 Alternatively, similarly to (3-2-1), using equations (29) and (30), the larger demagnetization judgment value ThφH is set corresponding to the minimum value Ra_min of the resistance value fluctuation range. The smaller demagnetization determination value ThφL may be set by subtracting the offset value ΔφL from the larger demagnetization determination value ThφH.
 このようにThφH、ThφLを設定する場合は、判定結果が不定であった<パターン2>及び<パターン3>において、減磁判定部36は、大きい側の鎖交磁束の推定値φdHが、大きい側の減磁判定値ThφHよりも大きい場合に、確実に減磁が発生していないと一意に判定することができる。 When setting ThφH and ThφL in this way, in <Pattern 2> and <Pattern 3> where the determination result was indeterminate, the demagnetization determination unit 36 determines that the estimated value φdH of the larger side flux linkage is larger. When the value is larger than the demagnetization determination value ThφH on the side, it can be uniquely determined that demagnetization has not occurred.
 或いは、(3-2-1)と同様に、式(27)及び式(28)を用いて、小さい側の減磁判定値ThφLが、抵抗値の変動範囲の最大値Ra_maxに対応して設定され、式(29)及び式(30)を用いて、大きい側の減磁判定値ThφHが、抵抗値の変動範囲の最小値Ra_minに対応して設定されてもよい。 Alternatively, similarly to (3-2-1), using equations (27) and (28), the smaller demagnetization judgment value ThφL is set corresponding to the maximum value Ra_max of the resistance value fluctuation range. Then, using equations (29) and (30), the larger demagnetization determination value ThφH may be set corresponding to the minimum value Ra_min of the resistance value variation range.
 このようにThφH、ThφLを設定する場合は、判定結果が不定であった<パターン3>及び<パターン5>において、小さい側の鎖交磁束の推定値φdLが、小さい側の減磁判定値ThφLを下回っている場合に、確実に減磁が発生していると一意に判定することができる。また、判定結果が不定であった<パターン2>及び<パターン3>において、大きい側の鎖交磁束の推定値φdHが、大きい側の減磁判定値ThφHを上回っている場合に、確実に減磁が発生していないと一意に判定することができる。 When setting ThφH and ThφL in this way, in <Pattern 3> and <Pattern 5> where the judgment result was indeterminate, the estimated value φdL of the smaller interlinkage flux is the smaller demagnetization judgment value ThφL. If it is less than , it can be uniquely determined that demagnetization has definitely occurred. In addition, in <Pattern 2> and <Pattern 3> for which the judgment result was indeterminate, if the estimated value φdH of the larger interlinkage flux exceeds the larger demagnetization judgment value ThφH, It can be uniquely determined that no magnetism is generated.
<回転角速度ωによるThφの補正>
 式(17)及び式(23)等を用いて説明したように、φdの推定値は、回転角速度ωに反比例して変化され、減磁判定値Thφは回転角速度ωに反比例して変化される。そのため、回転角速度ωの低い領域では、わずかな回転角速度ωの変動であっても、φdの推定値及び減磁判定値Thφが大きく変動する。よって、低回転領域では、予期しないようなφdの推定値及び減磁判定値Thφが算出され、減磁が発生したと誤判定されることが考えられる。よって、減磁が発生したと容易に判定されないように、減磁判定部36は、回転角速度ωに基づいて、減磁判定値Thφを補正してもよい。減磁判定部36は、回転角速度ωが予め設定した低回転領域である場合に、減磁判定値Thφを減少補正する。例えば、減磁判定部36は、式(23)及び式(24)等により算出された各減磁判定値Thφに対して補正係数を乗算した値を、補正後の減磁判定値Thφとして設定する。回転角速度ωが低回転領域である場合に、補正係数が1未満に設定され、回転角速度ωが低回転領域及び高回転領域でない場合に、補正係数が1に設定される。
<Correction of Thφ by rotational angular velocity ω>
As explained using Equation (17), Equation (23), etc., the estimated value of φd is changed in inverse proportion to the rotational angular velocity ω, and the demagnetization judgment value Thφ is changed in inverse proportion to the rotational angular velocity ω. . Therefore, in a region where the rotational angular velocity ω is low, even a slight variation in the rotational angular velocity ω causes a large variation in the estimated value of φd and the demagnetization determination value Thφ. Therefore, in the low rotation region, unexpected estimated values of φd and demagnetization determination value Thφ may be calculated, and it may be erroneously determined that demagnetization has occurred. Therefore, the demagnetization determination unit 36 may correct the demagnetization determination value Thφ based on the rotational angular velocity ω so that it is not easily determined that demagnetization has occurred. The demagnetization determination unit 36 decreases the demagnetization determination value Thφ when the rotational angular velocity ω is in a preset low rotation range. For example, the demagnetization determination unit 36 sets a value obtained by multiplying each demagnetization determination value Thφ calculated by equations (23), (24), etc. by a correction coefficient as the corrected demagnetization determination value Thφ. do. The correction coefficient is set to less than 1 when the rotation angular velocity ω is in the low rotation region, and is set to 1 when the rotation angular velocity ω is neither in the low rotation region nor in the high rotation region.
 一方、回転角速度ωが高い高回転領域では、最大出力トルクが低くなるため、q軸の電流値Iqが小さくなり易く、φdの推定値及び減磁判定値Thφが小さくなり、それらの変動量が小さくなることが多い。このような高回転領域で偽陰性を減らすために、減磁判定部36は、回転角速度ωが予め設定した高回転領域である場合に、減磁判定値Thφを増加補正する。例えば、減磁判定部36は、式(23)及び式(24)等により算出された各減磁判定値Thφに対して補正係数を乗算した値を、補正後の減磁判定値Thφとして設定する。回転角速度ωが高回転領域である場合に、補正係数が1より大きく設定され、回転角速度ωが高回転領域及び低回転領域でない場合に、補正係数が1に設定される。なお、低回転領域の補正及び高回転領域の補正の一方が実行されてもよい。 On the other hand, in the high rotation range where the rotational angular velocity ω is high, the maximum output torque is low, so the q-axis current value Iq tends to be small, the estimated value of φd and the demagnetization judgment value Thφ are small, and the amount of variation thereof is Often smaller. In order to reduce false negatives in such a high rotation region, the demagnetization determination unit 36 increases the demagnetization determination value Thφ when the rotational angular velocity ω is in a preset high rotation region. For example, the demagnetization determination unit 36 sets a value obtained by multiplying each demagnetization determination value Thφ calculated by equations (23), (24), etc. by a correction coefficient as the corrected demagnetization determination value Thφ. do. When the rotation angular velocity ω is in a high rotation region, the correction coefficient is set to be larger than 1, and when the rotation angular velocity ω is not in a high rotation region or a low rotation region, the correction coefficient is set to 1. Note that either the correction in the low rotation region or the correction in the high rotation region may be performed.
<動作点に応じた減磁判定の実行、不実行の切り替え>
 減磁判定部36は、回転角速度ω、電圧指令値、及び電流値に基づいて、減磁判定を実行するか否かを判定し、減磁判定を実行すると判定した場合に、減磁が発生しているか否かを判定し、減磁判定を実行しないと判定した場合に、減磁が発生しているか否かを判定しない。
<Switching between execution and non-execution of demagnetization judgment according to the operating point>
The demagnetization determination unit 36 determines whether or not to perform the demagnetization determination based on the rotational angular velocity ω, the voltage command value, and the current value, and when it is determined that the demagnetization determination is to be performed, demagnetization has occurred. If it is determined that demagnetization determination is not to be performed, it is not determined whether demagnetization has occurred.
 図12に示すように、例えば、ある動作点において、φdの推定値が、周期的に変動する場合がある。この動作点では、φdの推定値が一定にならず、減磁判定値Thφを中心に振動する可能性がある。このような動作点は、減磁判定の精度が低下するため、減磁判定を実行しない方がよい。よって、減磁判定の精度が低下する動作点を、予め減磁判定を実行しない動作点として設定することにより、減磁判定の精度を向上させることができる。φdの推定値が大きくなる動作点では、減磁判定値Thφとの差が大きくなるため、誤判定の可能性が低下し、減磁判定の精度が向上する。よって、減磁判定の精度が向上する動作点を、予め減磁判定を実行する動作点として設定することにより、減磁判定の精度を向上させることができる。 As shown in FIG. 12, for example, at a certain operating point, the estimated value of φd may vary periodically. At this operating point, the estimated value of φd may not be constant and may oscillate around the demagnetization determination value Thφ. Since the accuracy of demagnetization determination decreases at such an operating point, it is better not to perform demagnetization determination. Therefore, by setting in advance the operating point at which the accuracy of demagnetization determination decreases as the operating point at which demagnetization determination is not performed, the accuracy of demagnetization determination can be improved. At the operating point where the estimated value of φd becomes large, the difference from the demagnetization determination value Thφ increases, so the possibility of erroneous determination decreases and the accuracy of demagnetization determination improves. Therefore, the accuracy of demagnetization determination can be improved by setting in advance the operating point at which the accuracy of demagnetization determination is improved as the operating point at which demagnetization determination is executed.
<界磁電流値Ifによる減磁判定値Thφの変化>
 減磁判定部36は、界磁電流値Ifに基づいて、減磁判定値Thφを変化させてもよい。本実施の形態では、式(2)に示すように、電機子鎖交磁束φaは、界磁電流値Ifに応じて変化し、式(10)に示すように、d軸の電機子鎖交磁束φdは、界磁電流値Ifに応じて変化する電機子鎖交磁束φaに応じて変化する。
<Change in demagnetization judgment value Thφ due to field current value If>
The demagnetization determination section 36 may change the demagnetization determination value Thφ based on the field current value If. In this embodiment, as shown in equation (2), the armature linkage magnetic flux φa changes according to the field current value If, and as shown in equation (10), the armature linkage flux φa of the d-axis changes according to the field current value If. The magnetic flux φd changes according to the armature linkage magnetic flux φa, which changes according to the field current value If.
 式(10)からわかるように、界磁電流値Ifが変化し、d軸の電機子鎖交磁束φdが変化すると、d軸の電圧指令値Vqo及びd軸の電流値Iqが自動的に変化するため、d軸の電圧指令値Vqo及びd軸の電流値Iqの変化に応じて、φdの推定値、及び減磁判定値Thφも自動的に変化する。そのため、基本的に、界磁電流値Ifが変化しても、減磁判定の精度を維持できる。 As can be seen from equation (10), when the field current value If changes and the d-axis armature linkage flux φd changes, the d-axis voltage command value Vqo and the d-axis current value Iq automatically change. Therefore, the estimated value of φd and the demagnetization determination value Thφ also change automatically according to changes in the d-axis voltage command value Vqo and the d-axis current value Iq. Therefore, basically, even if the field current value If changes, the accuracy of demagnetization determination can be maintained.
 詳細には、本実施の形態では、q軸の電流指令値Iqoは、回転角速度ω及びトルク指令値に基づいて設定され、界磁電流指令値Ifoは、回転角速度ω及びトルク指令値に基づいて設定される。そのため、q軸の電流値Iqと界磁電流値Ifと回転角速度ωとは相互に一意に対応しており、q軸の電圧指令値Vqoも、q軸の電流値Iqと界磁電流値Ifと回転角速度ωと相互に一意に対応する。よって、回転角速度ω及びq軸の電流値Iq(又はトルク指令値)の動作点ごとに予め設定される判定値設定用のq軸の電圧指令値Vqothも、q軸の電流値Iqと界磁電流値Ifと回転角速度ωと相互に一意に対応する。すなわち、界磁電流値Ifと判定値設定用のq軸の電圧指令値Vqothとが、回転角速度ω及びq軸の電流値Iq(又はトルク指令値)の参照パラメータを介して一意に対応する。よって、界磁電流値Ifが変化しても、減磁判定の精度を維持できる。 Specifically, in this embodiment, the q-axis current command value Iqo is set based on the rotational angular velocity ω and the torque command value, and the field current command value Ifo is set based on the rotational angular velocity ω and the torque command value. Set. Therefore, the q-axis current value Iq, the field current value If, and the rotational angular velocity ω uniquely correspond to each other, and the q-axis voltage command value Vqo also depends on the q-axis current value Iq and the field current value If. and the rotational angular velocity ω. Therefore, the q-axis voltage command value Vqoth for judgment value setting, which is preset for each operating point of the rotational angular velocity ω and the q-axis current value Iq (or torque command value), also depends on the q-axis current value Iq and the field. The current value If and the rotational angular velocity ω uniquely correspond to each other. That is, the field current value If and the q-axis voltage command value Vqoth for setting the determination value uniquely correspond to each other via the reference parameters of the rotational angular velocity ω and the q-axis current value Iq (or torque command value). Therefore, even if the field current value If changes, the accuracy of demagnetization determination can be maintained.
 しかし、本実施の形態と異なり、界磁電流値Ifと判定値設定用のq軸の電圧指令値Vqothとが、参照パラメータを介して一意に対応しない場合は、判定精度を維持するために、界磁電流値Ifの変化に応じて、減磁判定値Thφを変化させる必要がある。 However, unlike this embodiment, if the field current value If and the q-axis voltage command value Vqoth for setting the determination value do not uniquely correspond to each other via the reference parameter, in order to maintain the determination accuracy, It is necessary to change the demagnetization determination value Thφ in accordance with the change in the field current value If.
 そのため、減磁判定部36は、界磁電流値Ifに基づいて、減磁判定値Thφを補正する。例えば、判定値設定用のq軸の電圧指令値Vqothを設定した時の基準の界磁電流値If0が、回転角速度ω及びq軸の電流値Iq(又はトルク指令値)の動作点ごとに予め設定されている。次式に示すように、減磁判定部36は、現在の界磁電流値Ifから現在の動作点に対応する基準の界磁電流値If0を減算した界磁電流値の変動量ΔIf(=If-If0)に、界磁巻線のインダクタンスLfを乗算した値を、式(23)及び式(24)等により判定値設定用のq軸の電圧指令値Vqothを用いて設定した基準の減磁判定値Thφに加算して、減磁判定値Thφを補正する。ここで、界磁電流値Ifは、界磁電流検出値Ifs又は界磁電流指令値Ifoである。
Figure JPOXMLDOC01-appb-M000021
Therefore, the demagnetization determination section 36 corrects the demagnetization determination value Thφ based on the field current value If. For example, the reference field current value If0 when setting the q-axis voltage command value Vqoth for judgment value setting is set in advance for each operating point of the rotational angular velocity ω and the q-axis current value Iq (or torque command value). It is set. As shown in the following equation, the demagnetization determination unit 36 determines the amount of variation ΔIf (= If -If0) multiplied by the inductance Lf of the field winding, and the reference demagnetization is set using the q-axis voltage command value Vqoth for setting the judgment value according to equations (23) and (24), etc. The demagnetization determination value Thφ is corrected by adding it to the determination value Thφ. Here, the field current value If is the field current detection value Ifs or the field current command value Ifo.
Figure JPOXMLDOC01-appb-M000021
<その他の実施の形態>
 上記の実施の形態では、回転子14に、永久磁石12と界磁巻線7が設けられていた。しかし、回転子14に、界磁巻線7が設けられず、永久磁石12が設けられてもよい。
<Other embodiments>
In the above embodiment, the rotor 14 was provided with the permanent magnets 12 and the field windings 7. However, the rotor 14 may not be provided with the field winding 7 but may be provided with the permanent magnets 12.
 上記の各実施の形態では、2組の電機子巻線が設けられていた。しかし、1組又は3組以上の電機子巻線が設けられてもよい。 In each of the above embodiments, two sets of armature windings were provided. However, one or more sets of armature windings may be provided.
 上記の各実施の形態では、各組に3相の電機子巻線が設けられていた。しかし、各組に3相以外の複数相(例えば、2相、4相)の電機子巻線が設けられてもよい。 In each of the above embodiments, each set was provided with three-phase armature windings. However, each set may be provided with armature windings of multiple phases other than three phases (for example, two phases, four phases).
 本願は、例示的な実施の形態が記載されているが、実施の形態に記載された様々な特徴、態様、及び機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。従って、例示されていない無数の変形例が、本願明細書に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合が含まれるものとする。 Although this application describes exemplary embodiments, the various features, aspects, and functions described in the embodiments are not limited to the application of particular embodiments, and may be used alone or It is applicable to the embodiments in various combinations. Accordingly, countless variations not illustrated are envisioned within the scope of the technology disclosed herein. For example, this includes cases in which at least one component is modified, added, or omitted.
1 交流回転機、7 界磁巻線、12 永久磁石、30 交流回転機の制御装置、31 回転検出部、32 電流検出部、33 電圧指令値算出部、34 スイッチング制御部、35 鎖交磁束推定部、36 減磁判定部、37 巻線温度取得部、Iq q軸の電流値、Ra 抵抗値、Ra_max 抵抗値の変動範囲の最大値、Ra_min 抵抗値の変動範囲の最小値、Rath 判定値設定用の抵抗値、Thφ 減磁判定値、ThφH 大きい側の減磁判定値、ThφL 小さい側の減磁判定値、Vqo q軸の電圧指令値、Vqo_max q軸の電圧指令値の変動範囲の最大値、Vqo_min q軸の電圧指令値の変動範囲の最小値、Vqoth 判定値設定用のq軸の電圧指令値、φd d軸の電機子鎖交磁束の推定値、φdH 大きい側のd軸の電機子鎖交磁束の推定値、φdL 小さい側のd軸の電機子鎖交磁束の推定値、φdth 判定値設定用のd軸の電機子鎖交磁束、ω 回転角速度 1 AC rotating machine, 7 Field winding, 12 Permanent magnet, 30 AC rotating machine control device, 31 Rotation detection unit, 32 Current detection unit, 33 Voltage command value calculation unit, 34 Switching control unit, 35 Interlinkage magnetic flux estimation Section, 36 Demagnetization judgment section, 37 Winding temperature acquisition section, Iq q-axis current value, Ra resistance value, Ra_max maximum value of resistance value variation range, Ra_min minimum value of resistance value variation range, Rath judgment value setting resistance value, Thφ demagnetization judgment value, ThφH large side demagnetization judgment value, ThφL small side demagnetization judgment value, Vqo q-axis voltage command value, Vqo_max maximum value of the variation range of q-axis voltage command value , Vqo_min: Minimum value of the variation range of the voltage command value on the q-axis, Vqoth: Voltage command value on the q-axis for setting the judgment value, φd: Estimated value of armature linkage flux on the d-axis, φdH: Armature on the larger side of the d-axis Estimated value of magnetic flux linkage, φdL Estimated value of armature magnetic flux linkage on the smaller d-axis, φdth Armature magnetic flux linkage on the d-axis for setting the judgment value, ω Rotational angular velocity

Claims (23)

  1.  磁石を設けた回転子と、m組の電機子巻線(mは1以上の自然数)を設けた固定子とを有する交流回転機を、電力変換器を介して制御する交流回転機の制御装置であって、
     前記回転子の電気角での回転角速度を検出する回転検出部と、
     各組について、電圧指令値を算出する電圧指令値算出部と、
     各組について、前記電圧指令値に基づいて、前記電力変換器が有するスイッチング素子をオンオフして、前記電機子巻線に電圧を印加するスイッチング制御部と、
     m組の前記電圧指令値、m組の前記電機子巻線の電流値、前記電機子巻線の抵抗値、及び前記回転角速度に基づいて、前記電機子巻線に鎖交する鎖交磁束を推定する鎖交磁束推定部と、
     前記鎖交磁束の推定値と減磁判定値との比較結果に基づいて、前記磁石の減磁が発生しているか否かを判定する減磁判定部と、
     を備えた交流回転機の制御装置。
    A control device for an AC rotating machine that controls, via a power converter, an AC rotating machine that has a rotor provided with magnets and a stator provided with m sets of armature windings (m is a natural number of 1 or more). And,
    a rotation detection unit that detects a rotational angular velocity in electrical angle of the rotor;
    a voltage command value calculation unit that calculates a voltage command value for each group;
    a switching control unit that applies voltage to the armature winding by turning on and off a switching element included in the power converter based on the voltage command value for each set;
    Based on m sets of the voltage command values, m sets of current values of the armature windings, resistance values of the armature windings, and the rotational angular velocity, the interlinkage magnetic flux interlinking with the armature windings is determined. A flux linkage estimator to estimate;
    a demagnetization determination unit that determines whether demagnetization of the magnet has occurred based on a comparison result between the estimated value of the flux linkage and the demagnetization determination value;
    A control device for AC rotating machines equipped with
  2.  mは、2以上の自然数であり、
     前記鎖交磁束推定部は、m組の前記電圧指令値として、m組の前記電圧指令値の平均値を用い、m組の前記電流値として、m組の前記電流値の平均値を用いる請求項1に記載の交流回転機の制御装置。
    m is a natural number of 2 or more,
    The flux linkage estimator uses an average value of the m sets of the voltage command values as the m sets of the voltage command values, and uses an average value of the m sets of the current values as the m sets of the current values. 2. A control device for an AC rotating machine according to item 1.
  3.  前記回転子は、界磁巻線を有し、
     前記スイッチング制御部は、前記電力変換器が有する前記界磁巻線用のスイッチング素子をオンオフして、前記界磁巻線に電圧を印加し、
     前記鎖交磁束推定部により推定される前記鎖交磁束の推定値には、前記界磁巻線により生じた鎖交磁束が含まれる請求項1又は2に記載の交流回転機の制御装置。
    The rotor has a field winding,
    The switching control unit turns on and off a switching element for the field winding included in the power converter to apply a voltage to the field winding,
    The control device for an AC rotating machine according to claim 1 or 2, wherein the estimated value of the flux linkage estimated by the flux linkage estimator includes flux linkage generated by the field winding.
  4.  前記電機子巻線の温度を検出又は推定し、取得する巻線温度取得部を更に備え、
     前記鎖交磁束推定部は、前記電機子巻線の温度の取得値に基づいて、前記抵抗値を推定し、前記抵抗値として、前記抵抗値の推定値を用いて、前記鎖交磁束を推定する請求項1から3のいずれか一項に記載の交流回転機の制御装置。
    Further comprising a winding temperature acquisition unit that detects or estimates and acquires the temperature of the armature winding,
    The flux linkage estimation unit estimates the resistance value based on the acquired value of the temperature of the armature winding, and estimates the flux linkage using the estimated value of the resistance value as the resistance value. The control device for an AC rotating machine according to any one of claims 1 to 3.
  5.  前記鎖交磁束推定部は、前記電圧指令値として、q軸の電圧指令値を用い、前記電流値として、q軸の電流値を用い、前記鎖交磁束の推定値として、前記電機子巻線に鎖交するd軸の鎖交磁束を推定し、
     d軸は、前記磁石のN極の方向に定められ、q軸は、d軸よりも電気角で90度進んだ方向に定められている請求項1から4のいずれか一項に記載の交流回転機の制御装置。
    The flux linkage estimation unit uses a q-axis voltage command value as the voltage command value, uses a q-axis current value as the current value, and uses a q-axis current value as the estimated value of the armature winding as the estimated value of the flux linkage. Estimate the d-axis magnetic flux linkage to
    The alternating current according to any one of claims 1 to 4, wherein the d-axis is set in the direction of the north pole of the magnet, and the q-axis is set in a direction 90 degrees electrical angle ahead of the d-axis. Control device for rotating machines.
  6.  前記鎖交磁束推定部は、前記q軸の電圧指令値をVqoとし、前記q軸の電流値をIqとし、前記抵抗値をRaとし、前記回転角速度をωとし、前記d軸の鎖交磁束をφdとして、
    φd=(Vqo-Ra×Iq)/ω
    の算出式を用い、前記d軸の鎖交磁束を推定する請求項5に記載の交流回転機の制御装置。
    The flux linkage estimator is configured to calculate the flux linkage of the d-axis by setting the voltage command value of the q-axis as Vqo, setting the current value of the q-axis as Iq, setting the resistance value as Ra, and setting the rotational angular velocity as ω. As φd,
    φd=(Vqo-Ra×Iq)/ω
    The control device for an AC rotating machine according to claim 5, wherein the d-axis magnetic flux linkage is estimated using a calculation formula.
  7.  前記鎖交磁束推定部は、前記抵抗値として、予め設定された前記抵抗値の変動範囲の最小値を用いて、大きい側の前記d軸の鎖交磁束を推定し、前記抵抗値として、予め設定された前記抵抗値の変動範囲の最大値を用いて、小さい側の前記d軸の鎖交磁束を推定し、
     前記減磁判定部は、前記小さい側のd軸の鎖交磁束の推定値が前記減磁判定値よりも大きい場合は、減磁が発生していないと判定し、前記大きい側のd軸の鎖交磁束の推定値が、前記減磁判定値よりも小さい場合は、減磁が発生していると判定する請求項6に記載の交流回転機の制御装置。
    The flux linkage estimating unit estimates the flux linkage of the d-axis on the larger side using the minimum value of a preset variation range of the resistance value as the resistance value, and Estimate the interlinkage magnetic flux of the d-axis on the smaller side using the maximum value of the set variation range of the resistance value,
    The demagnetization determination unit determines that demagnetization has not occurred when the estimated value of the interlinkage magnetic flux of the smaller d-axis is larger than the demagnetization determination value, and the demagnetization determination unit determines that demagnetization has not occurred. The control device for an AC rotating machine according to claim 6, wherein if the estimated value of the flux linkage is smaller than the demagnetization determination value, it is determined that demagnetization has occurred.
  8.  前記鎖交磁束推定部は、前記抵抗値として、予め設定された前記抵抗値の変動範囲の最小値を用いて、大きい側の前記d軸の鎖交磁束を推定し、前記抵抗値として、予め設定された前記抵抗値の変動範囲の最大値を用いて、小さい側の前記d軸の鎖交磁束を推定し、
     前記減磁判定部は、大きい側の前記減磁判定値と、前記大きい側の減磁判定値よりも小さい値の小さい側の前記減磁判定値と、を設定し、
     前記小さい側のd軸の鎖交磁束の推定値が、前記大きい側の減磁判定値よりも大きい場合は、減磁が発生していないと判定し、前記大きい側の鎖交磁束の推定値が、前記小さい側の減磁判定値よりも小さい場合は、減磁が発生していると判定する請求項6に記載の交流回転機の制御装置。
    The flux linkage estimating unit estimates the flux linkage of the d-axis on the larger side using the minimum value of a preset variation range of the resistance value as the resistance value, and Estimate the interlinkage magnetic flux of the d-axis on the smaller side using the maximum value of the set variation range of the resistance value,
    The demagnetization determination unit sets a larger demagnetization determination value and a smaller demagnetization determination value that is smaller than the larger demagnetization determination value,
    If the estimated value of the d-axis magnetic flux linkage on the smaller side is larger than the demagnetization judgment value on the larger side, it is determined that demagnetization has not occurred, and the estimated value of the magnetic flux linkage on the larger side is determined. 7. The control device for an AC rotating machine according to claim 6, wherein it is determined that demagnetization is occurring when the demagnetization determination value is smaller than the smaller demagnetization determination value.
  9.  前記減磁判定部は、
     予め設定された前記抵抗値の変動範囲の最大値に対応する前記小さい側の減磁判定値と、前記小さい側の減磁判定値よりも大きい値の前記大きい側の減磁判定値とを設定する、又は、
     予め設定された前記抵抗値の変動範囲の最小値に対応する前記大きい側の減磁判定値と、予め設定された前記抵抗値の変動範囲の最大値に対応する前記小さい側の減磁判定値と、を設定し、
     前記小さい側の鎖交磁束の推定値が、前記小さい側の減磁判定値よりも小さい場合は、減磁が発生していると判定する請求項8に記載の交流回転機の制御装置。
    The demagnetization determination section includes:
    The smaller demagnetization judgment value corresponding to the maximum value of the preset variation range of the resistance value and the larger demagnetization judgment value that is larger than the smaller demagnetization judgment value are set. do, or
    the larger side demagnetization judgment value corresponding to the minimum value of the preset resistance value variation range; and the smaller side demagnetization judgment value corresponding to the preset maximum value of the resistance value variation range. and set
    The control device for an AC rotating machine according to claim 8, wherein when the estimated value of the smaller side flux linkage is smaller than the smaller side demagnetization determination value, it is determined that demagnetization has occurred.
  10.  前記減磁判定部は、
     予め設定された前記抵抗値の変動範囲の最小値に対応する前記大きい側の減磁判定値と、前記大きい側の減磁判定値よりも小さい値の前記小さい側の減磁判定値と、を設定する又は、
     予め設定された前記抵抗値の変動範囲の最小値に対応する前記大きい側の減磁判定値と、予め設定された前記抵抗値の変動範囲の最大値に対応する前記小さい側の減磁判定値と、を設定し、
     前記大きい側の鎖交磁束の推定値が、前記大きい側の減磁判定値よりも大きい場合は、減磁が発生していないと判定する請求項8又は9に記載の交流回転機の制御装置。
    The demagnetization determination section includes:
    the larger demagnetization judgment value corresponding to the minimum value of the preset variation range of the resistance value; and the smaller demagnetization judgment value that is smaller than the larger demagnetization judgment value. set or
    the larger side demagnetization judgment value corresponding to the minimum value of the preset resistance value variation range; and the smaller side demagnetization judgment value corresponding to the preset maximum value of the resistance value variation range. and set
    The control device for an AC rotating machine according to claim 8 or 9, which determines that demagnetization has not occurred when the estimated value of the larger side magnetic flux linkage is larger than the larger side demagnetization determination value. .
  11.  前記減磁判定部は、判定値設定用のq軸の前記電圧指令値、q軸の前記電流値、判定値設定用の前記抵抗値、及び前記回転角速度に基づいて、判定値設定用のd軸の鎖交磁束を算出し、算出した前記判定値設定用のd軸の鎖交磁束に基づいて前記減磁判定値を設定する請求項5に記載の交流回転機の制御装置。 The demagnetization determining unit determines the d value for determining a determination value based on the voltage command value of the q-axis for determining a determination value, the current value for the q-axis, the resistance value for determining a determination value, and the rotational angular velocity. 6. The control device for an AC rotating machine according to claim 5, wherein the demagnetization determination value is set based on the calculated magnetic flux linkage of the d-axis for setting the determination value by calculating the magnetic flux linkage of the shaft.
  12.  前記減磁判定部は、判定値設定用のq軸の前記電圧指令値をVqothとし、q軸の前記電流値をIqとし、判定値設定用の前記抵抗値をRathとし、前記回転角速度をωとし、前記電機子巻線に鎖交する判定値設定用のd軸の鎖交磁束をφdthとして、
    φdth=(Vqoth-Rath×Iq)/ω
    の算出式を用いて、前記判定値設定用のd軸の鎖交磁束を算出し、算出した前記判定値設定用のd軸の鎖交磁束に基づいて前記減磁判定値を設定する請求項5に記載の交流回転機の制御装置。
    The demagnetization determination unit sets the voltage command value of the q-axis for setting a judgment value to Vqoth, the current value for the q-axis to Iq, the resistance value for setting a judgment value to Rath, and the rotational angular velocity to ω. and the interlinking magnetic flux of the d-axis for setting the judgment value interlinking with the armature winding is φdth,
    φdth=(Vqoth-Rath×Iq)/ω
    The d-axis magnetic flux linkage for setting the determination value is calculated using the calculation formula, and the demagnetization determination value is set based on the calculated d-axis magnetic flux linkage for setting the determination value. 5. The control device for an AC rotating machine according to 5.
  13.  前記減磁判定部は、前記判定値設定用の抵抗値として、予め設定された前記抵抗値の変動範囲の最小値を用いて、前記判定値設定用のd軸の鎖交磁束を算出し、前記判定値設定用のd軸の鎖交磁束に基づいて、前記減磁判定値を設定し、
     前記鎖交磁束の推定値が、前記減磁判定値よりも大きい場合は、減磁が発生していないと判定し、前記鎖交磁束の推定値が、前記減磁判定値よりも小さい場合は、減磁が発生していると判定する請求項11又は12に記載の交流回転機の制御装置。
    The demagnetization determination unit calculates the d-axis magnetic flux linkage for setting the judgment value, using a minimum value in a preset variation range of the resistance value as the resistance value for setting the judgment value, setting the demagnetization judgment value based on the d-axis interlinkage magnetic flux for setting the judgment value;
    If the estimated value of the magnetic flux linkage is larger than the demagnetization judgment value, it is determined that demagnetization has not occurred, and if the estimated value of the magnetic flux linkage is smaller than the demagnetization judgment value. The control device for an AC rotating machine according to claim 11 or 12, wherein the control device determines that demagnetization has occurred.
  14.  前記減磁判定部は、前記判定値設定用の抵抗値として、予め設定された前記抵抗値の変動範囲の最大値を用いて、前記判定値設定用のd軸の鎖交磁束を算出し、前記判定値設定用のd軸の鎖交磁束に基づいて、前記減磁判定値を設定し、
     前記鎖交磁束の推定値が、前記減磁判定値よりも大きい場合は、減磁が発生していないと判定し、前記鎖交磁束の推定値が、前記減磁判定値よりも小さい場合は、減磁が発生していると判定する請求項11又は12に記載の交流回転機の制御装置。
    The demagnetization determination unit calculates a d-axis magnetic flux linkage for setting the judgment value, using a maximum value of a preset variation range of the resistance value as the resistance value for setting the judgment value, setting the demagnetization judgment value based on the d-axis interlinkage magnetic flux for setting the judgment value;
    If the estimated value of the magnetic flux linkage is larger than the demagnetization judgment value, it is determined that demagnetization has not occurred, and if the estimated value of the magnetic flux linkage is smaller than the demagnetization judgment value. The control device for an AC rotating machine according to claim 11 or 12, wherein the control device determines that demagnetization has occurred.
  15.  前記電機子巻線の温度を検出又は推定し、取得する巻線温度取得部を更に備え、
     前記減磁判定部は、前記電機子巻線の温度の取得値に基づいて、前記抵抗値を推定し、前記判定値設定用の抵抗値として、前記抵抗値の推定値を用いて、前記判定値設定用のd軸の鎖交磁束を算出し、算出した前記判定値設定用のd軸の鎖交磁束に基づいて前記減磁判定値を設定し、
     前記鎖交磁束の推定値が、前記減磁判定値よりも大きい場合は、減磁が発生していないと判定し、前記鎖交磁束の推定値が、前記減磁判定値よりも小さい場合は、減磁が発生していると判定する請求項11又は12に記載の交流回転機の制御装置。
    Further comprising a winding temperature acquisition unit that detects or estimates and acquires the temperature of the armature winding,
    The demagnetization determination unit estimates the resistance value based on the obtained value of the temperature of the armature winding, and uses the estimated value of the resistance value as the resistance value for setting the determination value. calculating a d-axis magnetic flux linkage for value setting, and setting the demagnetization judgment value based on the calculated d-axis magnetic flux linkage for setting the judgment value;
    If the estimated value of the magnetic flux linkage is larger than the demagnetization judgment value, it is determined that demagnetization has not occurred, and if the estimated value of the magnetic flux linkage is smaller than the demagnetization judgment value. The control device for an AC rotating machine according to claim 11 or 12, wherein the control device determines that demagnetization has occurred.
  16.  前記減磁判定部は、
     前記判定値設定用の抵抗値として、予め設定された前記抵抗値の変動範囲の最小値を用いて、大きい側の前記判定値設定用のd軸の鎖交磁束を算出し、大きい側の前記判定値設定用のd軸の鎖交磁束を、大きい側の前記減磁判定値として設定し、前記大きい側の減磁判定値よりも小さい値を、小さい側の前記減磁判定値として設定し、又は、
     前記判定値設定用の抵抗値として、予め設定された前記抵抗値の変動範囲の最小値を用いて、大きい側の前記判定値設定用のd軸の鎖交磁束を算出し、大きい側の前記判定値設定用のd軸の鎖交磁束を、大きい側の前記減磁判定値として設定し、前記判定値設定用の抵抗値として、予め設定された前記抵抗値の変動範囲の最大値を用いて、小さい側の前記判定値設定用のd軸の鎖交磁束を算出し、小さい側の前記判定値設定用のd軸の鎖交磁束を、小さい側の前記減磁判定値として設定し、又は、
     前記判定値設定用の抵抗値として、予め設定された前記抵抗値の変動範囲の最大値を用いて、小さい側の前記判定値設定用のd軸の鎖交磁束を算出し、小さい側の前記判定値設定用のd軸の鎖交磁束を、小さい側の前記減磁判定値として設定し、前記小さい側の減磁判定値よりも大きい値を、大きい側の前記減磁判定値として設定し、
     前記鎖交磁束の推定値が、前記大きい側の減磁判定値よりも大きい場合は、減磁が発生していないと判定し、前記鎖交磁束の推定値が、前記小さい側の減磁判定値よりも小さい場合は、減磁が発生していると判定する請求項11又は12に記載の交流回転機の制御装置。
    The demagnetization determination section includes:
    As the resistance value for setting the judgment value, the minimum value of the variation range of the resistance value set in advance is used to calculate the d-axis linkage flux for setting the judgment value on the larger side, and The d-axis interlinkage magnetic flux for judgment value setting is set as the larger demagnetization judgment value, and a value smaller than the larger demagnetization judgment value is set as the smaller demagnetization judgment value. , or
    As the resistance value for setting the judgment value, the minimum value of the variation range of the resistance value set in advance is used to calculate the d-axis linkage flux for setting the judgment value on the larger side, and The d-axis interlinkage magnetic flux for setting the judgment value is set as the larger demagnetization judgment value, and the maximum value of the preset variation range of the resistance value is used as the resistance value for setting the judgment value. calculate the d-axis magnetic flux linkage for setting the judgment value on the small side, and set the d-axis magnetic flux linkage for setting the judgment value on the small side as the demagnetization judgment value on the small side; Or
    As the resistance value for setting the judgment value, the maximum value of the variation range of the resistance value set in advance is used to calculate the d-axis interlinkage flux for setting the judgment value on the smaller side. A d-axis interlinkage magnetic flux for setting a determination value is set as the smaller demagnetization determination value, and a value larger than the smaller demagnetization determination value is set as the larger demagnetization determination value. ,
    If the estimated value of the flux linkage is larger than the larger demagnetization judgment value, it is determined that no demagnetization has occurred, and the estimated value of the flux linkage is determined to be larger than the smaller demagnetization judgment value. The control device for an AC rotating machine according to claim 11 or 12, wherein if the value is smaller than the value, it is determined that demagnetization has occurred.
  17.  前記電機子巻線の温度を検出又は推定し、取得する巻線温度取得部を更に備え、
     前記減磁判定部は、前記電機子巻線の温度の取得値に基づいて、前記抵抗値を推定し、前記判定値設定用の抵抗値として、前記抵抗値の推定値を用いて、前記判定値設定用のd軸の鎖交磁束を算出し、算出した前記判定値設定用のd軸の鎖交磁束に基づいて、大きい側の前記減磁判定値、及び前記大きい側の減磁判定値よりも小さい値の小さい側の前記減磁判定値を設定し、
     前記鎖交磁束の推定値が、前記大きい側の減磁判定値よりも大きい場合は、減磁が発生していないと判定し、前記鎖交磁束の推定値が、前記小さい側の減磁判定値よりも小さい場合は、減磁が発生していると判定する請求項11又は12に記載の交流回転機の制御装置。
    Further comprising a winding temperature acquisition unit that detects or estimates and acquires the temperature of the armature winding,
    The demagnetization determination unit estimates the resistance value based on the obtained value of the temperature of the armature winding, and uses the estimated value of the resistance value as the resistance value for setting the determination value. Calculate the d-axis magnetic flux linkage for value setting, and based on the calculated d-axis magnetic flux linkage for judgment value setting, the larger demagnetization judgment value and the larger demagnetization judgment value. Set the demagnetization judgment value on the smaller side of the smaller value,
    If the estimated value of the flux linkage is larger than the larger demagnetization judgment value, it is determined that no demagnetization has occurred, and the estimated value of the flux linkage is determined to be larger than the smaller demagnetization judgment value. The control device for an AC rotating machine according to claim 11 or 12, wherein if the value is smaller than the value, it is determined that demagnetization has occurred.
  18.  前記減磁判定部は、前記判定値設定用のq軸の電圧指令値として、予め設定された減磁未発生時の前記q軸の電圧指令値を用いて、前記判定値設定用のd軸の鎖交磁束を算出する請求項11から17のいずれか一項に記載の交流回転機の制御装置。 The demagnetization determination unit uses a preset voltage command value of the q-axis when demagnetization does not occur as the voltage command value of the q-axis for setting the determination value, and determines the voltage command value of the d-axis for setting the determination value. The control device for an AC rotating machine according to any one of claims 11 to 17, wherein the control device calculates a magnetic flux linkage.
  19.  前記減磁判定部は、前記判定値設定用のq軸の電圧指令値として、予め設定された減磁未発生時の前記q軸の電圧指令値の変動範囲の最大値を用いて、前記判定値設定用のd軸の鎖交磁束を算出する請求項13に記載の交流回転機の制御装置。 The demagnetization determination section uses a preset maximum value of a variation range of the q-axis voltage command value when demagnetization does not occur as the q-axis voltage command value for setting the determination value, and performs the determination. The control device for an AC rotating machine according to claim 13, wherein the control device for an AC rotating machine calculates a d-axis interlinkage magnetic flux for value setting.
  20.  前記減磁判定部は、前記判定値設定用のq軸の電圧指令値として、予め設定された減磁未発生時の前記q軸の電圧指令値の変動範囲の最小値を用いて、前記判定値設定用のd軸の鎖交磁束を算出する請求項14に記載の交流回転機の制御装置。 The demagnetization determination section uses a preset minimum value of a variation range of the q-axis voltage command value when demagnetization does not occur as the q-axis voltage command value for setting the determination value, and performs the determination. The control device for an AC rotating machine according to claim 14, wherein the control device for an AC rotating machine calculates a d-axis interlinkage magnetic flux for value setting.
  21.  前記減磁判定部は、前記回転角速度に基づいて前記減磁判定値を補正する請求項1から20のいずれか一項に記載の交流回転機の制御装置。 The control device for an AC rotating machine according to any one of claims 1 to 20, wherein the demagnetization determination unit corrects the demagnetization determination value based on the rotational angular velocity.
  22.  前記減磁判定部は、前記回転角速度、前記電圧指令値、及び前記電流値に基づいて、減磁判定を実行するか否かを判定し、前記減磁判定を実行すると判定した場合に、前記磁石の減磁が発生しているか否かを判定する請求項1から21のいずれか一項に記載の交流回転機の制御装置。 The demagnetization determination unit determines whether or not to perform a demagnetization determination based on the rotational angular velocity, the voltage command value, and the current value, and when it is determined that the demagnetization determination is to be performed, the The control device for an AC rotating machine according to any one of claims 1 to 21, which determines whether demagnetization of the magnet has occurred.
  23.  前記回転子は、界磁巻線を有し、
     前記スイッチング制御部は、前記電力変換器が有する前記界磁巻線用のスイッチング素子をオンオフして、前記界磁巻線に電圧を印加し、
     前記減磁判定部は、前記界磁巻線に流れる電流値である界磁電流値に基づいて、前記減磁判定値を補正する請求項1から22のいずれか一項に記載の交流回転機の制御装置。
    The rotor has a field winding,
    The switching control unit turns on and off a switching element for the field winding included in the power converter to apply a voltage to the field winding,
    The AC rotating machine according to any one of claims 1 to 22, wherein the demagnetization determination unit corrects the demagnetization determination value based on a field current value that is a current value flowing through the field winding. control device.
PCT/JP2022/018875 2022-04-26 2022-04-26 Device for controlling ac rotary machine WO2023209803A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/018875 WO2023209803A1 (en) 2022-04-26 2022-04-26 Device for controlling ac rotary machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/018875 WO2023209803A1 (en) 2022-04-26 2022-04-26 Device for controlling ac rotary machine

Publications (1)

Publication Number Publication Date
WO2023209803A1 true WO2023209803A1 (en) 2023-11-02

Family

ID=88518220

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/018875 WO2023209803A1 (en) 2022-04-26 2022-04-26 Device for controlling ac rotary machine

Country Status (1)

Country Link
WO (1) WO2023209803A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005253258A (en) * 2004-03-08 2005-09-15 Mitsubishi Electric Corp Controller for winding field type synchronizer
JP2010110141A (en) * 2008-10-31 2010-05-13 Hitachi Automotive Systems Ltd Controller for rotating electrical machine
WO2015166528A1 (en) * 2014-04-28 2015-11-05 三菱電機株式会社 Ac rotating machine control device and control method, and electric power steering device
JP2015211569A (en) * 2014-04-28 2015-11-24 三菱電機株式会社 Synchronous machine control device
JP2019129575A (en) * 2018-01-23 2019-08-01 株式会社デンソー Ac motor control device
US11088643B1 (en) * 2020-03-03 2021-08-10 Infineon Technologies Austria Ag Demagnetization sensing for permanent magnet synchronous motor drive

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005253258A (en) * 2004-03-08 2005-09-15 Mitsubishi Electric Corp Controller for winding field type synchronizer
JP2010110141A (en) * 2008-10-31 2010-05-13 Hitachi Automotive Systems Ltd Controller for rotating electrical machine
WO2015166528A1 (en) * 2014-04-28 2015-11-05 三菱電機株式会社 Ac rotating machine control device and control method, and electric power steering device
JP2015211569A (en) * 2014-04-28 2015-11-24 三菱電機株式会社 Synchronous machine control device
JP2019129575A (en) * 2018-01-23 2019-08-01 株式会社デンソー Ac motor control device
US11088643B1 (en) * 2020-03-03 2021-08-10 Infineon Technologies Austria Ag Demagnetization sensing for permanent magnet synchronous motor drive

Similar Documents

Publication Publication Date Title
US8975841B2 (en) Motor control device
EP2464002B1 (en) Estimation of actual torque in an electrical motor drive
US9935568B2 (en) Control apparatus of rotary electric machine
JP6869392B1 (en) Control device for AC rotating electric machine
JP6687228B1 (en) AC rotating electric machine control device
JP6795267B1 (en) AC rotating machine control device
JP5095134B2 (en) Motor control device and motor control method
WO2023209803A1 (en) Device for controlling ac rotary machine
US11646686B2 (en) Controller for AC rotary electric machine
JP6949165B2 (en) AC rotating machine control device
JP7062084B2 (en) Control device for AC rotary electric machine
CN113078863A (en) Control device for AC rotating machine
JP6991297B1 (en) Current detector and AC rotary machine control device
WO2019150984A1 (en) Control device for three-phase synchronous electric motor
JP6991298B1 (en) Current detector
JP6818929B1 (en) Rotating electric machine control device and electric power steering device
JP2019170089A (en) Motor controller
JP6945673B2 (en) Control device for AC rotating electric machine
WO2022054232A1 (en) Rotating machine control device
JP7002626B1 (en) AC rotating machine control device
JP7317249B2 (en) Rotating electric machine control device and electric power steering device
WO2019230818A1 (en) Motor control device, motor control method, and motor system
JP2023183492A (en) Control device for ac rotary machine and power generating electric motor device for vehicle
JP2023183491A (en) Control device for ac rotary machine and power generating electric motor device for vehicle
JP2022109070A (en) Control device, magnetic flux estimation device and magnetic flux estimation method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22940083

Country of ref document: EP

Kind code of ref document: A1