JP5781737B2 - Low concentration methane removal method and low concentration methane removal device - Google Patents

Low concentration methane removal method and low concentration methane removal device Download PDF

Info

Publication number
JP5781737B2
JP5781737B2 JP2010052308A JP2010052308A JP5781737B2 JP 5781737 B2 JP5781737 B2 JP 5781737B2 JP 2010052308 A JP2010052308 A JP 2010052308A JP 2010052308 A JP2010052308 A JP 2010052308A JP 5781737 B2 JP5781737 B2 JP 5781737B2
Authority
JP
Japan
Prior art keywords
methane
gas
concentration
temperature
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010052308A
Other languages
Japanese (ja)
Other versions
JP2011183322A (en
Inventor
大塚 浩文
浩文 大塚
阪井 敦
敦 阪井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2010052308A priority Critical patent/JP5781737B2/en
Priority to AU2010299162A priority patent/AU2010299162B2/en
Priority to US13/388,588 priority patent/US9067175B2/en
Priority to CN201080042623.5A priority patent/CN102510770B/en
Priority to PCT/JP2010/065956 priority patent/WO2011037056A1/en
Publication of JP2011183322A publication Critical patent/JP2011183322A/en
Application granted granted Critical
Publication of JP5781737B2 publication Critical patent/JP5781737B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Description

本発明は、炭坑の換気ガスのように、メタンの燃焼限界(爆発限界)の下限よりも低く、いかなる割合で空気と混合しても可燃範囲に入らない低濃度のメタンを含むガスからメタンを除去する方法および装置に関する。   The present invention removes methane from a gas containing a low concentration of methane that is lower than the lower limit of methane combustion limit (explosion limit) and does not enter the flammable range when mixed with air at any ratio, such as coal mine ventilation gas. The present invention relates to a removal method and apparatus.

石炭層にはメタンが多量に吸着されており、その有効利用が進められつつある。採掘前の石炭層からのガス抜きなどにより回収されるメタンは、メタン濃度が30〜95%と比較的高く、濃縮するなどして有効活用が比較的容易である。これに対し、炭坑の換気により放出されるガスは、メタン濃度が0.1〜1%程度と低いため、そのほとんどが大気中に放散されている。メタンは、人体には何ら有害ではないものの、地球温暖化効果は高いため、その放出量を削減することが望まれている。しかし、炭坑換気ガスのように低濃度のガスを濃縮する場合には、その工程中においてメタンの爆発限界(5〜15%)を通過することから、安全上の懸念が大きく、現実的ではない。従って、ガスエンジンやタービンなどの燃焼空気として用いるか、接触酸化などの方法により酸化除去する方法が提案されている(非特許文献1、2)。   A large amount of methane is adsorbed in the coal bed, and its effective use is being promoted. Methane recovered by degassing from a coal bed before mining has a relatively high methane concentration of 30 to 95%, and it is relatively easy to use effectively by concentrating it. On the other hand, most of the gas released by the ventilation of the coal mine is diffused into the atmosphere because the methane concentration is as low as about 0.1 to 1%. Although methane is not harmful to the human body, it has a high global warming effect, so it is desired to reduce its emission. However, when concentrating a low-concentration gas such as a coal mine ventilation gas, it passes the methane explosion limit (5 to 15%) during the process, so there are great safety concerns and it is not realistic. . Therefore, a method of oxidizing and removing by using a method such as catalytic oxidation or the like as combustion air of a gas engine or a turbine has been proposed (Non-Patent Documents 1 and 2).

低濃度の有機化合物を含むガスの処理において、酸化触媒を熱交換器と組み合わせ、予熱したガスを触媒に通じて、ガス中の有機化合物を接触酸化反応により除去するプロセスは、工業プロセスから発生する揮発性有機化合物(VOC)含有排ガスの処理において広く実用に供されている(非特許文献3、4)。このプロセスでは、通常PtやPdをアルミナ担体に担持した触媒が用いられている。VOC処理プロセスが通常対象とするのは、トルエン、アセトン、酢酸エチルなどの比較的容易に酸化される化合物であり、これらは、前記の触媒を用いて350℃以下の低温で容易に酸化することができる。   In the treatment of gases containing low concentrations of organic compounds, a process in which an oxidation catalyst is combined with a heat exchanger, a preheated gas is passed through the catalyst, and organic compounds in the gas are removed by a catalytic oxidation reaction is generated from an industrial process. Widely used in the treatment of exhaust gases containing volatile organic compounds (VOC) (Non-patent Documents 3 and 4). In this process, a catalyst in which Pt or Pd is usually supported on an alumina carrier is used. The VOC treatment process is usually targeted for compounds that are relatively easily oxidized, such as toluene, acetone, ethyl acetate, etc., and these are easily oxidized at a low temperature of 350 ° C. or lower using the above catalyst. Can do.

しかし、メタンは、炭化水素の中でもっとも安定な化合物であり、前記の触媒では、400℃以下の低温で酸化除去することは難しい。例えば、非特許文献2には、触媒入口温度を500℃に設定した場合、メタン濃度が0.3%程度ないと十分なメタン除去性能が得られていないこと、メタン濃度が0.423%の場合でも触媒入口温度が490℃以上でないと十分なメタン除去性能が得られていないことなどが示されている。常温かつ大量の炭坑換気ガスを500℃程度まで予熱するには大容量の熱交換器が必要となり、経済性が悪化する問題がある。また、触媒入口温度が500℃程度では、メタン酸化の反応熱が加わって触媒出口温度は600℃〜700℃程度となる。これは、触媒の耐久性を悪化させるほか、耐熱温度の問題から、配管や熱交換器のコストが増大するという問題も生じる。   However, methane is the most stable compound among hydrocarbons, and it is difficult to oxidize and remove the catalyst at a low temperature of 400 ° C. or lower. For example, in Non-Patent Document 2, when the catalyst inlet temperature is set to 500 ° C., sufficient methane removal performance is not obtained unless the methane concentration is about 0.3%, and the methane concentration is 0.423%. Even in this case, it is indicated that sufficient methane removal performance cannot be obtained unless the catalyst inlet temperature is 490 ° C. or higher. In order to preheat a large amount of coal mine ventilation gas to about 500 ° C. at room temperature, a large-capacity heat exchanger is required, and there is a problem that economic efficiency deteriorates. Further, when the catalyst inlet temperature is about 500 ° C., the reaction heat of methane oxidation is added and the catalyst outlet temperature becomes about 600 ° C. to 700 ° C. This deteriorates the durability of the catalyst and also causes a problem that the cost of piping and heat exchanger increases due to the problem of heat-resistant temperature.

炭坑換気ガスには、石炭中の硫黄化合物に由来して、微量の硫黄化合物(硫化水素、メチルメルカプタン、ジメチルスルフィド、二酸化硫黄など)が含まれる。これらは強い触媒毒となり、メタンの低温での接触酸化をさらに困難にする。たとえば、Leeらは、Pd触媒を用いたメタンの酸化に対する硫化水素の影響を検討し、26ppmの硫化水素が共存すると、メタンの50%除去温度が360℃から580℃まで200℃以上も上昇することを明らかにしている(非特許文献5)。   Coal mine ventilation gas is derived from sulfur compounds in coal and contains trace amounts of sulfur compounds (hydrogen sulfide, methyl mercaptan, dimethyl sulfide, sulfur dioxide, etc.). These become strong catalyst poisons and make the catalytic oxidation of methane at low temperatures even more difficult. For example, Lee et al. Examined the effect of hydrogen sulfide on the oxidation of methane using a Pd catalyst, and when 26 ppm of hydrogen sulfide coexists, the 50% removal temperature of methane increases by more than 200 ° C. from 360 ° C. to 580 ° C. (Non-Patent Document 5).

燃焼排ガス中のメタンの酸化除去触媒として、ジルコニア担体にイリジウムおよび白金を担持した触媒やチタニア担体にイリジウムおよび白金を担持した触媒が知られている(特許文献1、2)。これらの触媒では、高濃度の水蒸気に加えて二酸化硫黄の共存する条件でも350〜400℃程度の比較的低い温度でメタンを酸化除去することができる。しかし、この触媒の炭坑換気ガスの処理に適用に当たっては、次のような課題がある。   As a catalyst for removing oxidation of methane in combustion exhaust gas, a catalyst in which iridium and platinum are supported on a zirconia support and a catalyst in which iridium and platinum are supported on a titania support are known (Patent Documents 1 and 2). These catalysts can oxidize and remove methane at a relatively low temperature of about 350 to 400 ° C. even under conditions where sulfur dioxide coexists in addition to high-concentration water vapor. However, there are the following problems when applying this catalyst to the treatment of coal mine ventilation gas.

まず、硫化水素やメルカプタンなど還元性硫黄化合物に対して触媒の耐久性が確保される必要がある。一般に、硫黄化合物による被毒では、硫黄原子そのものが活性点に配位できる還元性硫黄化合物の方が、強い被毒となると考えられている。   First, it is necessary to ensure the durability of the catalyst against reducing sulfur compounds such as hydrogen sulfide and mercaptans. In general, in the poisoning with a sulfur compound, it is considered that a reducing sulfur compound in which a sulfur atom itself can coordinate to an active site is a stronger poison.

さらに、炭坑換気ガス中のメタン濃度は、0.1〜1%という幅広い範囲で変動し、その変動を予測することも難しいため、熱交換器と触媒を単純に組み合わせただけでは、メタン濃度が急激に低下した場合には、触媒入口のガス温度が低下して十分な除去性能が得られなくなり、逆にメタン濃度が急激に上昇した場合には、触媒層温度が急激に上昇して、回復不能な触媒の活性劣化を引き起こすことになる。特に、メタン濃度が急激に上昇した場合には、熱交換の効果で触媒入口温度も上昇し、これがさらに触媒層温度の上昇を招いて、短時間のうちに触媒層温度の急激な上昇を引き起こし、触媒や熱交換器の致命的な破壊をもたらす危険性がある。ガスの予熱に、熱交換に加えてバーナーによる加熱を併用し、予熱温度(=触媒入口温度)が一定以上に上昇した場合に、バーナーの燃焼を停止させることにより、触媒入口温度を安定化する方法も知られている(特許文献3)が、この方法ではバーナーの燃料を必要とするため運転コストが増大するほか、メタン濃度が増大すると、触媒出口温度が上昇し、これにより触媒入口温度が上昇するという過程を経るため、メタン濃度の増大から触媒入口温度の上昇を検知するまでの時間遅れが大きく、急激にメタン濃度が変動した場合には、触媒の活性劣化を回避できない。   Furthermore, the methane concentration in the coal mine ventilation gas fluctuates over a wide range of 0.1 to 1%, and it is difficult to predict the fluctuation. Therefore, simply combining a heat exchanger and a catalyst will reduce the methane concentration. If it drops rapidly, the gas temperature at the catalyst inlet will drop and sufficient removal performance will not be obtained. Conversely, if the methane concentration rises rapidly, the catalyst layer temperature will rise rapidly and recover. This will cause an impossibility of catalyst activity deterioration. In particular, when the methane concentration increases rapidly, the catalyst inlet temperature also increases due to the effect of heat exchange, which further increases the catalyst layer temperature, causing a rapid increase in the catalyst layer temperature within a short time. There is a risk of catastrophic destruction of the catalyst and heat exchanger. Gas preheating is combined with heat exchange in addition to heat exchange, and when the preheating temperature (= catalyst inlet temperature) rises above a certain level, combustion of the burner is stopped to stabilize the catalyst inlet temperature. A method is also known (Patent Document 3). However, this method requires fuel for the burner, so that the operation cost increases. When the methane concentration increases, the catalyst outlet temperature rises. Since the process goes up, the time delay from the increase in the methane concentration to the detection of the rise in the catalyst inlet temperature is large, and when the methane concentration fluctuates rapidly, deterioration of the catalyst activity cannot be avoided.

国際公開公報WO2002/040152International Publication WO2002 / 040152 特開2008−246473号公報JP 2008-246473 A 特開昭62−254826号公報Japanese Patent Laid-Open No. Sho 62-254826

シー・スー(Shi Su)ら、プログレス・イン・エネルギー・アンド・コンバスチョン・サイエンス(Progress in energy and combustion science)第31巻, 123〜170頁(2005年)Shi Su et al., Progress in energy and combustion science, Vol. 31, 123-170 (2005) シー・スー(Shi Su)およびジェニー・アグニュー(Jenny Agnew)、フュエル(Fuel)第85巻、1201〜1210頁(2006年)Shi Su and Jenny Agnew, Fuel 85, 1201-1210 (2006) 桜井敏彦、触媒、第35巻、304〜311ページ(1993年)Toshihiko Sakurai, Catalyst, 35, 304-311 (1993) ジェニングス(M.S. Jennings)ら、「キャタリティック・インシネレーション・フォア・コントロール・オブ・ヴォラタイル・オルガニック・コンパウンド・エミッションズ(Catalytic incinerations for control of volatile organic compound emissions)」、ノイェス・パブリッシング(Noyes Publishing)、米国ニュージャージー州(1985年)。Jensings et al., “Catalytic incineration for control of volatile organic compound emissions,” Noyes Publishing), New Jersey, USA (1985). リー(J.H. Lee)ら、キャタリシス・トゥディ(Catalysis Today)、第47巻、353〜357頁(1999年)Lee, et al., Catalysis Today, 47, 353-357 (1999).

本発明は、炭坑の換気ガスのように、メタンの燃焼限界(爆発限界)の下限よりも低く、いかなる割合で空気と混合しても可燃範囲に入らない低濃度のメタンを含むガスからメタンを除去するにあたり、硫黄化合物が共存しても十分なメタンの除去性能を確保するとともに、メタン濃度が大きく変動しても性能が低下することなく、長期にわたって安定した除去性能が得られるメタンの除去方法および装置を提供することを主な目的とする。   The present invention removes methane from a gas containing a low concentration of methane that is lower than the lower limit of methane combustion limit (explosion limit) and does not enter the flammable range when mixed with air at any ratio, such as coal mine ventilation gas. A methane removal method that ensures sufficient methane removal performance even when sulfur compounds coexist, and stable removal performance over a long period of time without degrading performance even if the methane concentration fluctuates greatly. And the main object is to provide a device.

〔構成〕
上記の目的を達成するための、還元性硫黄化合物を含むとともに、いかなる割合で空気と混合しても可燃範囲に入らない低濃度のメタンを含む被処理ガスからメタンを除去する低濃度メタンの除去方法の特徴構成は、
前記被処理ガスを、熱交換器の低温流路に通じて予熱した後、ジルコニアまたはチタニアまたはその混合物からなる担体にイリジウムおよび白金を担持した触媒に通じてメタンを接触酸化し、熱交換器の高温流路に通じて反応前の被処理ガスとの熱交換により熱回収を行った後排出する流路に供給し、
前記熱交換器に通じる低温流路、高温流路の少なくともいずれか一方の流路に供給される被処理ガスの一部を、前記流路における熱交換器の上流側と下流側とを短絡して設けられた短絡流路に通じる一方、残部を熱交換器に通じる流路に流通させ、被処理ガス全量に対する、前記短絡流路に通じる被処理ガスの割合を、前記被処理ガス中のメタン濃度が低い場合ほど低く、メタン濃度が高い場合ほど高い割合に設定変更して、酸化触媒入口の温度が350℃以上であり、酸化触媒出口の温度が550℃以下となる条件とすることにある。
〔Constitution〕
In order to achieve the above objective, the removal of low-concentration methane that contains reducing sulfur compounds and removes methane from gas to be treated that contains low-concentration methane that does not enter the flammable range when mixed with air in any proportion The characteristic configuration of the method is
The gas to be treated is preheated through a low-temperature channel of a heat exchanger, and then methane is catalytically oxidized through a catalyst having iridium and platinum supported on a support made of zirconia, titania or a mixture thereof, and the heat exchanger Supply heat to the discharge channel after heat recovery through heat exchange with the gas to be treated before reaction through the high temperature channel,
A part of the gas to be treated supplied to at least one of the low-temperature channel and the high-temperature channel leading to the heat exchanger is short-circuited between the upstream side and the downstream side of the heat exchanger in the channel. The remaining portion is circulated through the flow path leading to the heat exchanger, and the ratio of the gas to be treated that leads to the short-circuit flow path to the total amount of the gas to be treated is expressed as methane in the gas to be treated. The lower the concentration is, the lower the setting is, and the higher the methane concentration is, the higher the ratio is set, so that the oxidation catalyst inlet temperature is 350 ° C. or higher and the oxidation catalyst outlet temperature is 550 ° C. or lower. .

〔作用効果〕
本発明の特徴構成によれば、熱交換器を備えて、メタン除去により発生する熱を酸化触媒に導入するガスに回収する構成を採用するに、処理対象の被処理ガスのメタン濃度に応じて、熱交換器を短絡する短絡流路に導く流量割合を変化させることで、酸化触媒の温度を適切に保つようにできる。即ち、例えば、メタン濃度が低い場合には熱交換器を短絡する短絡流路に導く流量割合を低下し、逆にメタン濃度が高い場合には熱交換器を短絡する短絡流路に導く流量割合を増加することにより、酸化触媒入口の温度の変動を抑制することができる。
[Function and effect]
According to the characteristic configuration of the present invention, in order to employ a configuration including a heat exchanger and recovering heat generated by methane removal into a gas introduced into the oxidation catalyst, depending on the methane concentration of the gas to be processed The temperature of the oxidation catalyst can be appropriately maintained by changing the flow rate ratio leading to the short-circuit channel that short-circuits the heat exchanger. That is, for example, when the methane concentration is low, the flow rate leading to the short circuit that short-circuits the heat exchanger decreases, and conversely, when the methane concentration is high, the flow rate that leads to the short circuit that short-circuits the heat exchanger By increasing this, fluctuations in the temperature at the oxidation catalyst inlet can be suppressed.

これにより、高いメタン除去性能が得られるとともに、触媒の性能が長期にわたって維持される。本願において酸化触媒入口の温度或いは酸化触媒出口の温度という場合は、ともに、当該部位におけるガス温度も意味するものとする。   Thereby, high methane removal performance is obtained and the performance of the catalyst is maintained over a long period of time. In the present application, the temperature of the oxidation catalyst inlet or the temperature of the oxidation catalyst outlet both mean the gas temperature at the relevant part.

そして、このような低濃度メタン除去方法に使用する酸化触媒としては、ジルコニアまたはチタニアまたはその混合物からなる担体にイリジウムおよび白金を担持した触媒あるいは、ジルコニアまたはチタニアまたはその混合物からなる担体にパラジウムおよび白金を担持した触媒を用いる。 Then, as such oxidation catalyst used in the low-concentration methane removing method, zirconia or titania, or a catalyst, or carrying iridium and platinum on a support consisting of a mixture thereof, palladium and platinum on a support consisting of zirconia or titania, or mixtures thereof Is used.

これらの触媒は、350℃〜400℃程度の低い温度でもメタンを酸化することができ、硫黄化合物による活性低下が小さいので、熱交換器の容量を大きくする必要がなく、経済性に優れる。 These catalysts can oxidize methane even at a low temperature of about 350 ° C. to 400 ° C., and their activity decrease due to the sulfur compound is small. Therefore, it is not necessary to increase the capacity of the heat exchanger, and the economy is excellent.

後にも、図9、図11に基づいて説明するように、熱交換器を備えて酸化除去に伴って発生する熱を酸化触媒に導くガスに回収する構成では、被処理ガスの全量を熱交換器に通じた場合、酸化触媒出口の温度は、被処理ガスのメタン濃度が上昇するに従って上昇する。このように酸化触媒出口の温度が許容上限温度より上昇した場合は、酸化触媒が劣化し、短寿命となる。また、熱交換器等の機器にも特別の配慮が必要となる。これに対して、本願構成に従い、熱交換器を短絡する短絡流路に被処理ガスの一部を導き、メタン濃度が増加するに従って短絡流路に通じる流量割合を増加すると、酸化触媒出口の温度の上昇を回避できる。このため、酸化触媒が長寿命に保たれる上に、熱交換器等に特別の高温対策を施す必要がなく、良好な運転を長い時間に渡って継続することができる。   As will be described later with reference to FIGS. 9 and 11, in the configuration in which a heat exchanger is provided to recover the heat generated by the oxidation removal to the gas that leads to the oxidation catalyst, the entire amount of the gas to be treated is subjected to heat exchange. When it goes to the vessel, the temperature at the oxidation catalyst outlet rises as the methane concentration of the gas to be treated rises. As described above, when the temperature at the oxidation catalyst outlet rises above the allowable upper limit temperature, the oxidation catalyst deteriorates and the life becomes short. Also, special considerations are required for equipment such as heat exchangers. In contrast, according to the configuration of the present application, when a part of the gas to be treated is guided to the short-circuit channel that short-circuits the heat exchanger and the flow rate ratio leading to the short-circuit channel increases as the methane concentration increases, the temperature of the oxidation catalyst outlet Can be avoided. For this reason, the oxidation catalyst has a long life, and it is not necessary to take special measures against high temperatures in the heat exchanger or the like, and a good operation can be continued for a long time.

なお、熱交換器を短絡する短絡流路は、熱交換器の低温側(触媒前)あるいは高温側(触媒後)のいずれに設けても同様の効果を奏するが、低温側に設けると流量調整弁に耐熱性が求められないため有利である。   A short-circuit channel that short-circuits the heat exchanger has the same effect whether it is provided on either the low temperature side (before the catalyst) or the high temperature side (after the catalyst) of the heat exchanger. This is advantageous because the valve does not require heat resistance.

これまで説明してきた、酸化触媒入口の温度が350℃以上であり、酸化触媒出口の温度が550℃以下となる条件で行う。 As described above, the oxidation catalyst inlet temperature is 350 ° C. or higher and the oxidation catalyst outlet temperature is 550 ° C. or lower .

このような温度条件とすることにより、硫黄化合物の存在下においてもメタンの酸化除去能を良好に維持でき、さらに、酸化触媒の劣化を防止できる。 By setting it as such temperature conditions, the oxidation removal ability of methane can be maintained well even in the presence of a sulfur compound, and further, deterioration of the oxidation catalyst can be prevented .

〔構成〕
これまで説明してきた低濃度のメタンを含む被処理ガスが、炭坑の換気により放出されるガスであることが好ましい。
〔Constitution〕
It is preferable that the to-be-processed gas containing the low concentration methane demonstrated so far is a gas discharge | released by ventilation of a coal mine.

〔作用効果〕
従来大気中に放出されてきた炭鉱換気ガスを本願に係る低濃度メタンの除去方法を使用して処理することで、地球温暖化防止に寄与できる技術を提供できる。
[Function and effect]
The technology that can contribute to the prevention of global warming can be provided by treating the coal mine ventilation gas that has been conventionally released into the atmosphere using the method for removing low-concentration methane according to the present application.

上記の本発明に係る低濃度メタンの除去方法は、以下の構成の低濃度メタンの除去装置で実施することができる。
即ち、還元性硫黄化合物を含むとともに、いかなる割合で空気と混合しても可燃範囲に入らない低濃度のメタンを含む被処理ガスからの低濃度メタンの除去装置として
メタンを接触酸化するジルコニアまたはチタニアまたはその混合物からなる担体にイリジウムおよび白金を担持した酸化触媒を設けるとともに、前記酸化触媒に前記被処理ガスを導入するための送風機、および、前記酸化触媒に通じる前後の低温流路と高温流路との間で熱交換をする熱交換器を設け、
さらに、前記熱交換器に通じる低温流路と高温流路との少なくともいずれか一方の流路に対して、前記流路における熱交換器の上流側と下流側とを短絡する短絡流路を設けるとともに、被処理ガスの一部を短絡流路に通じる一方、残部を熱交換器に通じる流路に流通させる流量調整弁を設け、
被処理ガス全量に対する前記短絡流路に通じる被処理ガスの割合を、前記被処理ガス中のメタン濃度が低い場合ほど低く、メタン濃度が高い場合ほど高い割合に設定変更して、酸化触媒入口の温度が350℃以上であり、酸化触媒出口の温度が550℃以下となる条件とする制御手段を設けた構成とできる。
The above-described method for removing low-concentration methane according to the present invention can be implemented by a low-concentration methane removal apparatus having the following configuration.
That is, zirconia or titania that catalytically oxidizes methane as a device for removing low-concentration methane from gas to be treated that contains reducible sulfur compounds and does not enter the flammable range even if mixed with air at any ratio Or, a support made of a mixture thereof is provided with an oxidation catalyst supporting iridium and platinum, a blower for introducing the gas to be treated into the oxidation catalyst, and a low-temperature flow path and a high-temperature flow path before and after communicating with the oxidation catalyst A heat exchanger that exchanges heat with
Furthermore, a short-circuit channel that short-circuits the upstream side and the downstream side of the heat exchanger in the channel is provided for at least one of the low-temperature channel and the high-temperature channel that communicates with the heat exchanger. In addition, while providing a part of the gas to be treated to the short-circuit flow path, a flow rate adjusting valve is provided for flowing the remainder to the flow path to the heat exchanger,
The ratio of the gas to be processed that leads to the short-circuit flow path to the total amount of the gas to be processed is set to be lower as the methane concentration in the gas to be processed is lower and higher as the methane concentration is higher. A control means can be provided in which the temperature is 350 ° C. or higher and the temperature at the oxidation catalyst outlet is 550 ° C. or lower.

〔作用効果〕
この構成を採用することで、高いメタン除去性能が得られるとともに、触媒の性能を比較的長期に渡って維持でき、先に説明したと同様の作用・効果を得ることができる。
[Function and effect]
By adopting this configuration, high methane removal performance can be obtained, and the performance of the catalyst can be maintained for a relatively long period of time, and the same actions and effects as described above can be obtained.

本発明のメタン除去方法では、硫黄化合物による活性阻害に対して非常に優れた抵抗性を示す触媒を用いることができるので、炭坑換気ガスのように多様な硫黄化合物(硫化水素、メチルメルカプタン、ジメチルスルフィド、二酸化硫黄など)が含まれていても、350℃程度という低い温度からメタンの除去が可能となる。従って、従来技術に比べて熱交換器の容量を小さくすることが可能で、経済性が大きく改善される。また、本発明の低濃度メタン除去方法では、被処理ガス中のメタン濃度が急激に変動しても、触媒出口温度を常に550℃以下に安定して保つことができるため、触媒の耐久性が確保され、長期にわたって安定したメタン除去性能が得られるほか、配管や熱交換器に高価な材料を用いる必要がなくなり経済性が大きく改善される。   In the methane removal method of the present invention, since a catalyst exhibiting very excellent resistance to activity inhibition by sulfur compounds can be used, various sulfur compounds (hydrogen sulfide, methyl mercaptan, dimethyl, etc., such as coal mine ventilation gas) can be used. Even if sulfide, sulfur dioxide, etc. are contained, methane can be removed from a temperature as low as about 350 ° C. Therefore, the capacity of the heat exchanger can be reduced as compared with the prior art, and the economic efficiency is greatly improved. Further, in the low concentration methane removal method of the present invention, even if the methane concentration in the gas to be treated fluctuates rapidly, the catalyst outlet temperature can always be kept stably at 550 ° C. or lower, so that the durability of the catalyst is improved. In addition to ensuring stable methane removal performance over a long period of time, there is no need to use expensive materials for piping and heat exchangers, and the economy is greatly improved.

本発明のメタン除去装置の構成の一例を示す図である。It is a figure which shows an example of a structure of the methane removal apparatus of this invention. 本発明のメタン除去装置の構成の別の一例を示す図である。It is a figure which shows another example of a structure of the methane removal apparatus of this invention. Ir−Pt/ジルコニア触媒の硫黄化合物(CH3SH 1.5 ppm + H2S 1.5 ppm)共存下でのメタン除去性能と性能の経時変化を示す図It shows the time course of Ir-Pt / sulfur compounds zirconia catalyst (CH 3 SH 1.5 ppm + H 2 S 1.5 ppm) methane removal performance and performance under co Ir−Pt/ジルコニア触媒の硫黄化合物(SO2 3 ppm)共存下でのメタン除去性能と性能の経時変化を示す図Ir-Pt / sulfur compounds zirconia catalyst (SO 2 3 ppm) shows changes with time of the methane removal performance and performance under co Pd−Pt/アルミナ触媒の硫黄化合物(CH3SH 1.5 ppm + H2S 1.5 ppm)共存下でのメタン除去性能と性能の経時変化を示す図It shows the time course of pd-Pt / sulfur compounds alumina catalyst (CH 3 SH 1.5 ppm + H 2 S 1.5 ppm) methane removal performance and performance under co Pd−Pt/アルミナ触媒の硫黄化合物(SO2 3 ppm)共存下でのメタン除去性能と性能の経時変化を示す図Pd-Pt / sulfur compounds alumina catalyst (SO 2 3 ppm) shows changes with time of the methane removal performance and performance under co Ir−Pt/チタニア触媒の硫黄化合物(SO2 3 ppm)共存下でのメタン除去性能と性能の経時変化を示す図Ir-Pt / sulfur compounds titania catalyst (SO 2 3 ppm) shows changes with time of the methane removal performance and performance under co Pd−Pt/ジルコニア触媒の硫黄化合物(CH3SH 1.5 ppm + H2S 1.5 ppm)共存下でのメタン除去性能と性能の経時変化を示す図It shows the time course of pd-Pt / sulfur compounds zirconia catalyst (CH 3 SH 1.5 ppm + H 2 S 1.5 ppm) methane removal performance and performance under co 本発明の方法によらず、メタン濃度の如何に関わらず被処理ガスの全量を熱交換器に通じる場合のメタン濃度に対する触媒入口および出口温度の関係を示す図The figure which shows the relationship of the catalyst inlet_port | entrance and outlet temperature with respect to the methane density | concentration in the case of letting the whole amount of to-be-processed gas pass to a heat exchanger regardless of the methane density | concentration irrespective of the method of this invention 本発明の方法における、メタン濃度と熱交換器を短絡する短絡流路に通じる流量割合との関係の一例を示す図The figure which shows an example of the relationship between the flow rate ratio which leads to the short circuit flow path which short-circuits a methane concentration and a heat exchanger in the method of this invention. 本発明の方法に従って、メタン濃度に応じて熱交換器を短絡する短絡流路に通じる流量割合を増加させる場合のメタン濃度に対する触媒入口および出口温度の関係を示す図The figure which shows the relationship of the catalyst inlet_port | entrance and outlet temperature with respect to the methane density | concentration in the case of making the flow rate ratio which leads to the short circuit flow path which short-circuits a heat exchanger according to the methane concentration according to the method of this invention.

本発明の低濃度メタンの除去装置100は、装置100に被処理ガスGを導入するための送風機1、メタンを接触酸化する酸化触媒2(図1では、酸化触媒を処理筒内に収納した状態を示している)、前記酸化触媒2に通じる前後の低温流路3a側のガスGinと高温流路3b側のGout間で熱交換するための熱交換器3、前記酸化触媒2の上流側に配置されたメタン濃度を検知するガスセンサ等の検知手段4を備える。また、前記低温流路3aにおける熱交換器3の上流側と下流側とを短絡する短絡流路7を設けるとともに、熱交換器3を通じる低温流路3aと熱交換器3を短絡する短絡流路7との流量割合を調整する流量調整弁5、および前記検知手段4の検知値に応じて前記短絡流路7に通じる流量割合を制御する制御手段6とを備える。   The apparatus 100 for removing low-concentration methane according to the present invention includes a blower 1 for introducing the gas G to be treated into the apparatus 100, an oxidation catalyst 2 for catalytically oxidizing methane (in FIG. 1, the oxidation catalyst is housed in a treatment cylinder). A heat exchanger 3 for exchanging heat between the gas Gin on the low-temperature channel 3a side before and after the oxidation catalyst 2 and the Gout on the high-temperature channel 3b side, and upstream of the oxidation catalyst 2 Detection means 4 such as a gas sensor for detecting the concentration of methane disposed is provided. Moreover, while providing the short circuit flow path 7 which short-circuits the upstream and downstream sides of the heat exchanger 3 in the low temperature flow path 3a, the short circuit flow which short-circuits the low temperature flow path 3a and the heat exchanger 3 through the heat exchanger 3 is provided. A flow rate adjusting valve 5 for adjusting a flow rate ratio with the passage 7 and a control means 6 for controlling a flow rate ratio leading to the short-circuit channel 7 according to a detection value of the detection means 4.

前述のように、制御手段6は検知手段4のメタン濃度検知値に応じて流量制御弁5を制御するが、本願に係る制御手段6の制御形態は、前記短絡流路7に通じる流量割合を、被処理ガスのメタン濃度に応じて、メタン濃度が低い場合の流量割合に対してメタン濃度が高い場合の流量割合を増加させる形態とする。   As described above, the control unit 6 controls the flow rate control valve 5 in accordance with the methane concentration detection value of the detection unit 4, but the control mode of the control unit 6 according to the present application determines the flow rate ratio leading to the short-circuit channel 7. According to the methane concentration of the gas to be treated, the flow rate ratio when the methane concentration is high is increased with respect to the flow rate ratio when the methane concentration is low.

〔酸化触媒〕
酸化触媒2としては、ジルコニアまたはチタニアまたはその混合物からなる担体にイリジウムおよび白金を担持した触媒あるいは、ジルコニアまたはチタニアまたはその混合物からなる担体にパラジウムおよび白金を担持した触媒が好ましい。これらの触媒は、350℃〜400℃程度の低温でもメタンを酸化除去することができるとともに、硫化水素や二酸化硫黄などの硫黄化合物が共存しても活性低下が小さい。
[Oxidation catalyst]
The oxidation catalyst 2 is preferably a catalyst in which iridium and platinum are supported on a support made of zirconia or titania or a mixture thereof, or a catalyst in which palladium and platinum are supported on a support made of zirconia, titania or a mixture thereof. These catalysts can oxidize and remove methane even at a low temperature of about 350 ° C. to 400 ° C., and their activity decrease is small even when a sulfur compound such as hydrogen sulfide or sulfur dioxide coexists.

酸化触媒a
図3に、ジルコニア担体(BET比表面積 17 m2/g)にIr 3wt%とPt 2wt%を担持した触媒(粒径 約1 mm, 1.45g)に、炭坑換気ガスを模擬したガス(CH4 1000 ppm, O2 20%, H2O 3%、残部N2)を120 l/hの流量で流通した(ガス時間あたり空間速度(GHSV) 80,000 h-1に相当)際のメタン除去率の温度依存性を示す。初期活性では、350℃で50%のメタン除去率が得られており、触媒入口温度が350℃程度あれば十分反応が開始することがわかる。引き続いて、硫黄化合物(CH3SH 1.5 ppm + H2S 1.5 ppm)を添加して400℃で反応を継続し、20および60時間経過後のメタン除去率を測定すると、活性は若干低下したものの、350℃で38%(20時間後)、35%(60時間後)のメタン除去率が得られ、硫黄化合物が共存しても活性の低下は小さかった。硫黄化合物をSO2 3 ppmに変えてもほぼ同様の結果であり(図4)、硫黄化合物の形態によらず、ジルコニア担体にIrとPtを担持した触媒が高いメタン除去性能を示すことが確認された。
Oxidation catalyst a
FIG. 3 shows a gas simulating coal mine ventilation gas on a zirconia support (BET specific surface area 17 m 2 / g) on which 3 wt% of Ir and 2 wt% of Pt are supported (particle diameter: about 1 mm, 1.45 g). 4 1000 ppm, O 2 20%, H 2 O 3%, balance N 2 ) at a flow rate of 120 l / h (equivalent to space velocity per gas hour (GHSV) 80,000 h −1 )) The temperature dependence of the removal rate is shown. In the initial activity, a methane removal rate of 50% was obtained at 350 ° C., and it can be seen that the reaction starts sufficiently if the catalyst inlet temperature is about 350 ° C. Subsequently, when a sulfur compound (CH 3 SH 1.5 ppm + H 2 S 1.5 ppm) was added and the reaction was continued at 400 ° C., and the methane removal rate after 20 and 60 hours had elapsed, the activity was Although there was a slight decrease, methane removal rates of 38% (after 20 hours) and 35% (after 60 hours) were obtained at 350 ° C., and the decrease in activity was small even when a sulfur compound was present. Even if the sulfur compound is changed to 3 ppm of SO 2, the results are almost the same (FIG. 4), and it is confirmed that the catalyst having Ir and Pt supported on the zirconia support exhibits high methane removal performance regardless of the form of the sulfur compound. It was done.

酸化触媒b
図5および図6に、アルミナ担体(γ型、BET比表面積 125 m2/g)にPd 3wt%とPt 2wt%を担持した触媒(粒径 約1 mm, 1.45g)について、同様にメタン除去性能を評価した結果を示す(GHSV 63,000 h-1に相当)。従来、VOC酸化に用いられてきたPdやPtをアルミナ担体に担持した触媒は、初期活性はジルコニア担体にIrとPtを担持した触媒と同程度であり、本願の低濃度メタンの除去装置に使用できるが、硫黄化合物の共存により短期間でメタン除去性能を失う欠点もある。
Oxidation catalyst b
FIGS. 5 and 6 show the same for methane with a catalyst (particle size: about 1 mm, 1.45 g) in which Pd 3 wt% and Pt 2 wt% are supported on an alumina support (γ type, BET specific surface area 125 m 2 / g). The result of evaluating the removal performance is shown (corresponding to GHSV 63,000 h −1 ). Conventionally, a catalyst in which Pd or Pt supported on VOC oxidation is supported on an alumina carrier has the same initial activity as a catalyst in which Ir and Pt are supported on a zirconia carrier, and is used in the low concentration methane removal apparatus of the present application. However, there is also a drawback that the methane removal performance is lost in a short period of time due to the coexistence of sulfur compounds.

酸化触媒c
図7に、チタニア担体にIr 3wt%とPt 2wt%を担持した触媒(粒径 約1 mm, 1.45g)について、同様にメタン除去性能を評価した結果を示す(GHSV 50,000 h-1に相当)。初期活性では、350℃で90%のメタン除去率が得られ、SO2の共存する条件で60時間経過後でも、59%のメタン除去率が得られた。
Oxidation catalyst c
FIG. 7 shows the results of evaluating the methane removal performance of a catalyst (particle size: about 1 mm, 1.45 g) on which 3 wt% Ir and 2 wt% Pt are supported on a titania support (GHSV 50,000 h −1). Equivalent). In the initial activity, a methane removal rate of 90% was obtained at 350 ° C., and a methane removal rate of 59% was obtained even after 60 hours in the presence of SO 2 .

酸化触媒d
図8に、ジルコニア担体にPd 3wt%とPt 2wt%を担持した触媒(粒径 約1 mm, 1.45g)について、同様にメタン除去性能を評価した結果を示す(GHSV 80,000 h-1に相当)。初期活性では、400℃で83%のメタン除去率が得られ、硫黄化合物の共存する条件で60時間経過後でも、400℃では52%のメタン除去率が得られた。触媒入口温度を400℃以上とすれば、硫黄化合物が共存しても、本触媒は有効に作用する。
Oxidation catalyst d
FIG. 8 shows the result of evaluating the methane removal performance in the same manner for a catalyst (particle size: about 1 mm, 1.45 g) supporting 3 wt% Pd and 2 wt% Pt on a zirconia support (GHSV 80,000 h −1). Equivalent). In the initial activity, a methane removal rate of 83% was obtained at 400 ° C., and a methane removal rate of 52% was obtained at 400 ° C. even after 60 hours in the presence of a sulfur compound. If the catalyst inlet temperature is set to 400 ° C. or higher, even if a sulfur compound coexists, the present catalyst works effectively.

以上の試験では、400℃で60時間反応を継続したが、より高い温度(500℃、550℃)で反応を行った後の触媒活性についても検討した。表1に示すとおり、ジルコニアまたはチタニア担体にイリジウムおよび白金を担持した触媒(酸化触媒a,c)は、500℃までであれば、活性はほとんど低下しないか、むしろ活性が向上するのに対して、550℃になると活性はやや低下した。VOC処理に従来用いられてきた触媒では、Pt/アルミナは600℃、Pd/アルミナは700℃程度まで使用できるとされてきたが、ジルコニアまたはチタニア担体にイリジウムおよび白金を担持した触媒の場合には、従来の触媒よりも低温でメタン酸化が可能であるが、触媒の耐熱温度も低くなることが理解される。   In the above test, the reaction was continued at 400 ° C. for 60 hours, but the catalytic activity after the reaction at higher temperatures (500 ° C., 550 ° C.) was also examined. As shown in Table 1, the activity of iridium and platinum supported on a zirconia or titania support (oxidation catalysts a and c) is not substantially reduced or increased rather than 500 ° C. At 550 ° C., the activity decreased slightly. In the catalyst conventionally used for VOC treatment, Pt / alumina can be used up to about 600 ° C. and Pd / alumina can be used up to about 700 ° C. However, in the case of a catalyst in which iridium and platinum are supported on a zirconia or titania support. It is understood that methane oxidation is possible at a lower temperature than the conventional catalyst, but the heat-resistant temperature of the catalyst is also lowered.

Figure 0005781737
Figure 0005781737

酸化触媒2は、その形状は問わないが、送風機1の動力を極力低減する見地からは、圧力損失の小さいハニカム形状が好ましく、コージェライトやメタルハニカムにウオッシュコートした形状が、強度や耐熱性にも優れており特に好ましい。
酸化触媒2の使用量は、少なすぎる場合には、有効なメタン除去性能が得られないが、多すぎても経済的に不利となるので、ガス時間当たり空間速度(GHSV)で1,000〜200,000h-1となる量を使用することが好ましく、20,000〜100,000h-1程度とすることがより好ましい。
The shape of the oxidation catalyst 2 is not limited, but from the viewpoint of reducing the power of the blower 1 as much as possible, a honeycomb shape with a small pressure loss is preferable, and a shape in which a cordierite or metal honeycomb is wash-coated has high strength and heat resistance. Is also particularly preferred.
If the amount of the oxidation catalyst 2 used is too small, effective methane removal performance cannot be obtained, but if it is too large, it is economically disadvantageous, so that the space velocity per gas hour (GHSV) is 1,000 to It is preferable to use an amount of 200,000 h −1 , more preferably about 20,000 to 100,000 h −1 .

〔熱交換器〕
本発明で用いる熱交換器3は、気体−気体間の熱交換が可能で圧力損失が低く抑えられる限り、その形式を問わないが、通常はコンパクト熱交換器3として知られるプレート・アンド・フィン式の熱交換器、あるいは回転式蓄熱型熱交換器が好ましい。使用する熱交換器の伝熱面積は、適宜選択できるが、通常炭坑換気ガスの排出量に対し、NTUが5〜15程度となるような熱交換器3を選定するのが好ましい。
〔Heat exchanger〕
The heat exchanger 3 used in the present invention may be of any type as long as gas-to-gas heat exchange is possible and pressure loss is suppressed to a low level, but a plate-and-fin usually known as a compact heat exchanger 3 is used. A heat exchanger of the type or a rotary heat storage type heat exchanger is preferable. Although the heat transfer area of the heat exchanger to be used can be selected as appropriate, it is preferable to select the heat exchanger 3 so that the NTU is about 5 to 15 with respect to the discharge amount of the coal mine ventilation gas.

〔検知手段〕
本発明で用いるメタン濃度の検知手段4は、十分な応答性および安定性を有する限り、その形式を問わないが、たとえば、非分散赤外式メタン濃度計や、酸化錫などの半導体式ガスセンサなどが使用できる。
[Detection means]
The methane concentration detection means 4 used in the present invention may be of any type as long as it has sufficient responsiveness and stability. For example, a non-dispersive infrared methane concentration meter, a semiconductor gas sensor such as tin oxide, etc. Can be used.

以上が本発明に係る低濃度メタンの除去装置100の説明であるが、以下、本発明に係る低濃度メタンの除去方法について説明する。
本発明の低濃度メタンの除去方法は、熱交換器3に通じてメタンを含有する被処理ガスGを予熱した後、メタンを接触酸化する酸化触媒2に通じ、再び熱交換器3に通じて反応前のガスとの熱交換により熱回収を行うとともに、熱交換器3を短絡して設けられた短絡流路7に前記被処理ガスの一部を通じ、前記被処理ガスのメタン濃度に応じて、前記短絡流路7に導く流量割合を、前記メタン濃度が低い場合の流量割合に対してメタン濃度が高い場合の流量割合を増加させる形態で変化させることを特徴とする。
The above is the description of the low-concentration methane removal apparatus 100 according to the present invention. Hereinafter, the low-concentration methane removal method according to the present invention will be described.
In the method for removing low-concentration methane according to the present invention, the gas to be treated G containing methane is preheated through the heat exchanger 3, then passed through the oxidation catalyst 2 for catalytic oxidation of methane, and again through the heat exchanger 3. In addition to performing heat recovery by heat exchange with the gas before the reaction, a part of the gas to be processed is passed through a short-circuit channel 7 provided by short-circuiting the heat exchanger 3 according to the methane concentration of the gas to be processed. The flow rate ratio led to the short-circuit channel 7 is changed in such a manner that the flow rate ratio when the methane concentration is high is increased with respect to the flow rate ratio when the methane concentration is low.

一例として、メタン濃度0.3〜0.75%の間で変動する炭坑換気ガス(排出量 100 m3/s, 25℃)の処理を検討する。この例の場合、被処理ガスの量は一定量(100 m3/s)に維持されるものとする。
熱交換器3のNTUを10とし、酸化触媒および接続配管で25 kWの放熱損失が生じるものとすると、メタン濃度にかかわらず炭坑換気ガスの全量を熱交換器3に通じる場合には、メタン濃度に対する触媒入口2inおよび出口2outのガス温度は図9に示すように変化する。実際には、酸化触媒入口の温度が350℃以下(図9,11に一点鎖線で示す)に低下すると酸化触媒のメタン除去性能が低下する。一方、酸化触媒出口の温度が550℃を超える(図9,11に二点鎖線で示す)と触媒に回復不可能な劣化が起こるため、実際に安定してメタン除去が可能となるのは、メタン濃度が0.3〜0.4%というごく限られた範囲に過ぎない。
As an example, consider the treatment of coal mine ventilation gas (discharged 100 m 3 / s, 25 ° C.) that fluctuates between methane concentrations of 0.3-0.75%. In the case of this example, it is assumed that the amount of gas to be treated is maintained at a constant amount (100 m 3 / s).
Assuming that the NTU of the heat exchanger 3 is 10 and a heat dissipation loss of 25 kW occurs in the oxidation catalyst and the connecting pipes, the methane concentration The gas temperature at the catalyst inlet 2in and outlet 2out varies with respect to FIG. Actually, when the temperature at the inlet of the oxidation catalyst is lowered to 350 ° C. or lower (indicated by a one-dot chain line in FIGS. 9 and 11), the methane removal performance of the oxidation catalyst is lowered. On the other hand, if the temperature of the oxidation catalyst outlet exceeds 550 ° C. (indicated by a two-dot chain line in FIGS. 9 and 11), the catalyst cannot be recovered, so that methane removal can be performed stably stably. The methane concentration is only a very limited range of 0.3-0.4%.

これに対して、メタン濃度の上昇に応じて熱交換器3を短絡流路7の流量割合(短絡流路7にガスを流さない場合が0%、全量を短絡流路7に流す場合が100%にそれぞれ対応する)を増加させるように制御した。その結果、上記短絡流路7の流量割合を例えば図10に示す通り制御する場合、メタン濃度0.3%〜0.75%まで触媒入口温度をほぼ一定に維持することができ、かつ触媒出口温度を550℃以下に維持することができることがわかった(図11)。   In contrast, the flow rate of the heat exchanger 3 in the short-circuit channel 7 according to the increase in methane concentration (0% when no gas flows through the short-circuit channel 7 and 100% when the entire amount flows through the short-circuit channel 7) % Corresponding to each%). As a result, when the flow rate ratio of the short-circuit channel 7 is controlled as shown in FIG. 10, for example, the catalyst inlet temperature can be maintained substantially constant up to a methane concentration of 0.3% to 0.75%, and the catalyst outlet It was found that the temperature could be maintained below 550 ° C. (FIG. 11).

〔別実施形態〕
(1)上記の実施の形態では、熱交換器3を短絡する短絡流路7は熱交換器3の低温流路3aに設けたが、熱交換器3の高温流路3bに設けても同様の効果を奏する(図2参照)。ただし、この場合、流量調整弁5は高温にさらされるので、短絡流路7の下流側接続点に設置する方が好ましい場合もある。
(2)メタン濃度の検知手段4は、できるだけ速やかにメタン濃度の変動を検知するという観点からは装置の入口に近接して設置するのが好ましく、被処理ガスのメタン濃度を検知するという意味からは吸引管8に設けるのが好ましい。しかしながら、送風機1出口から熱交換器3入口までの間、あるいは熱交換器3出口から酸化触媒2入口までの間に設けることも可能である。
(3)本発明の低濃度メタンの除去装置には、さらに必要に応じて、酸化触媒入口および酸化触媒出口のガス温度の測定手段を設けてもよい。これにより、メタン濃度の検知手段4に異常を生じた場合でも、より安全に装置を停止することが可能となる。
[Another embodiment]
(1) In the above embodiment, the short-circuit channel 7 for short-circuiting the heat exchanger 3 is provided in the low-temperature channel 3 a of the heat exchanger 3, but the same is true even if provided in the high-temperature channel 3 b of the heat exchanger 3. (See FIG. 2). However, in this case, since the flow regulating valve 5 is exposed to a high temperature, it may be preferable to install it at the connection point on the downstream side of the short-circuit channel 7.
(2) The methane concentration detection means 4 is preferably installed in the vicinity of the inlet of the apparatus from the viewpoint of detecting a change in the methane concentration as quickly as possible, from the meaning of detecting the methane concentration of the gas to be treated. Is preferably provided in the suction tube 8. However, it is also possible to provide between the outlet of the blower 1 and the inlet of the heat exchanger 3 or between the outlet of the heat exchanger 3 and the inlet of the oxidation catalyst 2.
(3) The apparatus for removing low-concentration methane of the present invention may further be provided with means for measuring the gas temperature at the oxidation catalyst inlet and the oxidation catalyst outlet as necessary. As a result, even when an abnormality occurs in the methane concentration detection means 4, the apparatus can be stopped more safely.

炭坑の換気ガスのように、いかなる割合で空気と混合しても可燃範囲に入らない低濃度のメタンを含むガスからメタンを除去するにあたり、硫黄化合物が共存しても十分なメタンの除去性能を確保するとともに、メタン濃度が大きく変動しても性能が低下することなく、長期にわたって安定した除去性能が得られる低濃度メタンの除去方法および装置を提供することができた。   When removing methane from a gas containing low-concentration methane that does not enter the flammable range even if mixed with air at any ratio, such as coal mine ventilation gas, sufficient methane removal performance can be achieved even if sulfur compounds coexist. As a result, it was possible to provide a low-concentration methane removal method and apparatus capable of obtaining stable removal performance over a long period of time without degrading performance even when the methane concentration fluctuates greatly.

1:送風機
2:酸化触媒
3:熱交換器
4:メタン濃度の検知手段
5:流量調整弁
6:制御手段
7:短絡流路
8:吸引管
1: Air blower 2: Oxidation catalyst 3: Heat exchanger 4: Methane concentration detection means 5: Flow rate adjusting valve 6: Control means 7: Short circuit 8: Suction pipe

Claims (3)

還元性硫黄化合物を含むとともに、いかなる割合で空気と混合しても可燃範囲に入らない低濃度のメタンを含む被処理ガスからメタンを除去する低濃度メタンの除去方法であって、
前記被処理ガスを、熱交換器の低温流路に通じて予熱した後、ジルコニアまたはチタニアまたはその混合物からなる担体にイリジウムおよび白金を担持した触媒に通じてメタンを接触酸化し、熱交換器の高温流路に通じて反応前の被処理ガスとの熱交換により熱回収を行った後排出する流路に供給し、
前記熱交換器に通じる低温流路、高温流路の少なくともいずれか一方の流路に供給される被処理ガスの一部を、前記流路における熱交換器の上流側と下流側とを短絡して設けられた短絡流路に通じる一方、残部を熱交換器に通じる流路に流通させ、被処理ガス全量に対する、前記短絡流路に通じる被処理ガスの割合を、前記被処理ガス中のメタン濃度が低い場合ほど低く、メタン濃度が高い場合ほど高い割合に設定変更して、酸化触媒入口の温度が350℃以上であり、酸化触媒出口の温度が550℃以下となる条件とする低濃度メタンの除去方法。
A method for removing low-concentration methane that contains a reducing sulfur compound and removes methane from the gas to be treated containing low-concentration methane that does not enter the flammable range even if mixed with air at any ratio,
The gas to be treated is preheated through a low-temperature channel of a heat exchanger, and then methane is catalytically oxidized through a catalyst having iridium and platinum supported on a support made of zirconia, titania or a mixture thereof, and the heat exchanger Supply heat to the discharge channel after heat recovery through heat exchange with the gas to be treated before reaction through the high temperature channel,
A part of the gas to be treated supplied to at least one of the low-temperature channel and the high-temperature channel leading to the heat exchanger is short-circuited between the upstream side and the downstream side of the heat exchanger in the channel. The remaining portion is circulated through the flow path leading to the heat exchanger, and the ratio of the gas to be treated that leads to the short-circuit flow path to the total amount of the gas to be treated is expressed as methane in the gas to be treated. Low concentration methane is set so that the lower the concentration is, the higher the methane concentration is, and the higher the methane concentration is, the condition is that the oxidation catalyst inlet temperature is 350 ° C. or higher and the oxidation catalyst outlet temperature is 550 ° C. or lower. Removal method.
低濃度のメタンを含むガスが、炭坑の換気により放出されるガスである請求項1に記載の低濃度メタンの除去方法。   The method for removing low-concentration methane according to claim 1, wherein the gas containing low-concentration methane is a gas released by ventilation in a coal mine. 還元性硫黄化合物を含むとともに、いかなる割合で空気と混合しても可燃範囲に入らない低濃度のメタンを含む被処理ガスからの低濃度メタンの除去装置であって、
メタンを接触酸化するジルコニアまたはチタニアまたはその混合物からなる担体にイリジウムおよび白金を担持した酸化触媒を設けるとともに、前記酸化触媒に前記被処理ガスを導入するための送風機、および、前記酸化触媒に通じる前後の低温流路と高温流路との間で熱交換をする熱交換器を設け、
さらに、前記熱交換器に通じる低温流路と高温流路との少なくともいずれか一方の流路に対して、前記流路における熱交換器の上流側と下流側とを短絡する短絡流路を設けるとともに、被処理ガスの一部を短絡流路に通じる一方、残部を熱交換器に通じる流路に流通させる流量調整弁を設け、
被処理ガス全量に対する前記短絡流路に通じる被処理ガスの割合を、前記被処理ガス中のメタン濃度が低い場合ほど低く、メタン濃度が高い場合ほど高い割合に設定変更して、酸化触媒入口の温度が350℃以上であり、酸化触媒出口の温度が550℃以下となる条件とする制御手段を設けた低濃度メタンの除去装置。
A device for removing low-concentration methane from a gas to be treated containing low-concentration methane that contains a reducing sulfur compound and does not enter the flammable range even if mixed with air at any ratio,
Provided with an oxidation catalyst supporting iridium and platinum on a support made of zirconia or titania or a mixture thereof for catalytically oxidizing methane, a blower for introducing the gas to be treated into the oxidation catalyst, and before and after the oxidation catalyst A heat exchanger that exchanges heat between the low-temperature channel and the high-temperature channel is provided,
Furthermore, a short-circuit channel that short-circuits the upstream side and the downstream side of the heat exchanger in the channel is provided for at least one of the low-temperature channel and the high-temperature channel that communicates with the heat exchanger. In addition, while providing a part of the gas to be treated to the short-circuit flow path, a flow rate adjusting valve is provided for flowing the remainder to the flow path to the heat exchanger,
The ratio of the gas to be processed that leads to the short-circuit flow path to the total amount of the gas to be processed is set to be lower as the methane concentration in the gas to be processed is lower and higher as the methane concentration is higher. An apparatus for removing low-concentration methane, provided with a control means in which the temperature is 350 ° C. or higher and the temperature at the oxidation catalyst outlet is 550 ° C. or lower.
JP2010052308A 2009-09-25 2010-03-09 Low concentration methane removal method and low concentration methane removal device Active JP5781737B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2010052308A JP5781737B2 (en) 2010-03-09 2010-03-09 Low concentration methane removal method and low concentration methane removal device
AU2010299162A AU2010299162B2 (en) 2009-09-25 2010-09-15 Method and Apparatus for Removing Low-Concentration Methane.
US13/388,588 US9067175B2 (en) 2009-09-25 2010-09-15 Method and apparatus for removing low-concentration methane
CN201080042623.5A CN102510770B (en) 2009-09-25 2010-09-15 Method and apparatus for removing low concentrations of methane
PCT/JP2010/065956 WO2011037056A1 (en) 2009-09-25 2010-09-15 Method and apparatus for removing low concentrations of methane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010052308A JP5781737B2 (en) 2010-03-09 2010-03-09 Low concentration methane removal method and low concentration methane removal device

Publications (2)

Publication Number Publication Date
JP2011183322A JP2011183322A (en) 2011-09-22
JP5781737B2 true JP5781737B2 (en) 2015-09-24

Family

ID=44790246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010052308A Active JP5781737B2 (en) 2009-09-25 2010-03-09 Low concentration methane removal method and low concentration methane removal device

Country Status (1)

Country Link
JP (1) JP5781737B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140250857A1 (en) * 2011-10-17 2014-09-11 Kawasaki Jukogyo Kabushiki Kaisha Low-concentration methane gas oxidation system using exhaust heat from gas turbine engine
JPWO2013145867A1 (en) * 2012-03-29 2015-12-10 株式会社村田製作所 Exhaust gas treatment method and exhaust gas treatment apparatus
JP5849276B2 (en) * 2012-06-01 2016-01-27 エスイー工業株式会社 Air purification processing apparatus and air purification processing method using the same
AU2013294306A1 (en) * 2012-07-27 2015-03-12 Kawasaki Jukogyo Kabushiki Kaisha System for low-concentration-methane gas oxidation equipped with multiple oxidizers
GB201318592D0 (en) * 2013-10-21 2013-12-04 Johnson Matthey Davy Technologies Ltd Process and apparatus
CN104976628A (en) * 2015-07-10 2015-10-14 张家港市三星净化设备制造有限公司 Catalytic combustion device
CN105344235B (en) * 2015-10-29 2017-10-24 清华大学 A kind of coal-burned industrial boiler absorbs NOx and SO simultaneously2Device and method
CN113375175B (en) * 2021-07-15 2022-08-09 北京中源博智节能科技有限公司 Coal mine gas regenerative oxidation method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61151013A (en) * 1984-12-21 1986-07-09 Mitsui Toatsu Chem Inc Method of purifying carbon dioxide
JP2001074205A (en) * 1999-09-07 2001-03-23 Seiichi Takahashi Catalytic combustion device
JP4115139B2 (en) * 2002-02-21 2008-07-09 大阪瓦斯株式会社 Exhaust heat recovery method for gas-fired prime mover and exhaust heat recovery device for gas-fired prime mover
JP4247204B2 (en) * 2005-05-09 2009-04-02 株式会社ルネッサンス・エナジー・インベストメント Decomposition method of low concentration methane
JP4917003B2 (en) * 2007-11-02 2012-04-18 東京瓦斯株式会社 Catalyst for oxidation removal of methane in exhaust gas and exhaust gas purification method
JP5083901B2 (en) * 2008-07-18 2012-11-28 東京瓦斯株式会社 Off-gas combustion device

Also Published As

Publication number Publication date
JP2011183322A (en) 2011-09-22

Similar Documents

Publication Publication Date Title
JP5781737B2 (en) Low concentration methane removal method and low concentration methane removal device
WO2011037056A1 (en) Method and apparatus for removing low concentrations of methane
KR101792375B1 (en) Exhaust gas treatment system and treatment method
CA2899149C (en) Method and catalyst for the simultaneous removal of carbon monoxide and nitrogen oxides from flue or exhaust gas
JP4247204B2 (en) Decomposition method of low concentration methane
JP5445027B2 (en) Gas treatment method and apparatus for circulating fluidized bed gasification facility
BRPI0706870A2 (en) APPLIANCE FOR PURIFICATION OF EXHAUST GAS AND METHOD FOR PURIFICATION OF EXHAUST GAS USING THE APPLIANCE FOR PURIFICATION OF EXHAUST GAS
JP2021058881A (en) Exhaust system for power generating apparatus
WO2009157434A1 (en) Method for purifying carbon dioxide off-gas, combustion catalyst for purification of carbon dioxide off-gas, and process for producing natural gas
JP6174143B2 (en) Method for reducing nitrogen dioxide concentration
JP2018135808A (en) Exhaust gas purification device
JP5658447B2 (en) Low concentration methane removal method and low concentration methane removal device
JP5047056B2 (en) Method for falling tar decomposition system and tar decomposition system
JP2007239616A (en) Exhaust emission control device, exhaust emission control method, and purification catalyst
JP2006150223A (en) Exhaust-gas cleaning filter, production method of the filter and exhaust-gas cleaning apparatus
JP2008114115A (en) Harmful substance reduction system
JPH11179153A (en) Method and apparatus for cleaning exhaust gas
JP3779889B2 (en) Catalyst regeneration method
JP2017039072A (en) Exhaust gas purification device and method, and feeding device of carbon dioxide-containing gas and heat to facility for crop production
CN106838888B (en) Combustion system and method of operating the same
WO2019026583A1 (en) Method for controlling co oxidation system, and co oxidation system
WO2018154872A1 (en) Device for purifying exhaust gas with heat recovery function
JP4522512B2 (en) Low concentration hydrocarbon oxidation catalyst in exhaust gas and method for producing the same
JP4348020B2 (en) Method for regenerating catalyst for exhaust gas treatment
JPWO2018021511A1 (en) Exhaust gas denitration catalyst, CO oxidation catalyst, exhaust gas treatment system, and exhaust gas treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140320

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141211

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150618

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150716

R150 Certificate of patent (=grant) or registration of utility model

Ref document number: 5781737

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150