JP5781575B2 - Remote control device and remote control device of nuclear power plant - Google Patents

Remote control device and remote control device of nuclear power plant Download PDF

Info

Publication number
JP5781575B2
JP5781575B2 JP2013192482A JP2013192482A JP5781575B2 JP 5781575 B2 JP5781575 B2 JP 5781575B2 JP 2013192482 A JP2013192482 A JP 2013192482A JP 2013192482 A JP2013192482 A JP 2013192482A JP 5781575 B2 JP5781575 B2 JP 5781575B2
Authority
JP
Japan
Prior art keywords
valve
remote control
control device
air
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013192482A
Other languages
Japanese (ja)
Other versions
JP2014173723A (en
Inventor
久保田 亮
亮 久保田
小野寺 賢司
賢司 小野寺
清時 芳久
芳久 清時
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi GE Nuclear Energy Ltd
Original Assignee
Hitachi GE Nuclear Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi GE Nuclear Energy Ltd filed Critical Hitachi GE Nuclear Energy Ltd
Priority to JP2013192482A priority Critical patent/JP5781575B2/en
Publication of JP2014173723A publication Critical patent/JP2014173723A/en
Application granted granted Critical
Publication of JP5781575B2 publication Critical patent/JP5781575B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Description

本発明は遠隔操作装置及び原子力プラントの遠隔操作装置に係り、例えば、原子力プラントに設置されている空気作動弁の如く、弁の開閉動作を切替るために配管系の途中に電磁弁が設置されているものに好適な遠隔操作装置及び原子力プラントの遠隔操作装置に関するものである。 The present invention relates to a remote control unit of the remote operation apparatus and nuclear power plants, for example, as an air-operated valve installed in nuclear power plants, the solenoid valve is installed in the middle of the pipe system opening and closing operation of the valve for Ru switch It is related with the remote control apparatus suitable for what is, and the remote control apparatus of a nuclear power plant.

原子力発電所を含む各種プラントには、空気、窒素又は蒸気等の気体や、水等の液体を流すための配管が設置されており、この配管の途中には、配管内の流体を流すための開動作、遮断するための閉動作、或いは電気信号や空気圧信号によって、電気または圧縮空気・窒素等を用いて作動することで、流量、圧力等を調整する電動弁、空気または窒素作動弁が設置されている。   In various plants including nuclear power plants, pipes for flowing gases such as air, nitrogen or steam, and liquids such as water are installed. An electric valve or air or nitrogen operating valve is installed to adjust the flow rate, pressure, etc. by operating with electricity, compressed air, nitrogen, etc., by opening, closing to shut off, or electric or pneumatic signals. Has been.

特に、原子力プラントに設置されている空気又は窒素作動弁においては、弁の開閉動作を切替るために空気配管系の途中に電磁弁が設けられているが、例えば、全電源喪失事故(SBO:Station Blackout)時には、電磁弁のコイル無励磁化、空気供給源からの空気圧の低下によってフェイル動作するものの、その後は、電源からの電気の供給不能、空気供給装置からの空気の供給不能により、空気作動弁の動作が不能になり、その後の空気または窒素作動弁の運用に支障が生じる恐れがある。   In particular, in an air or nitrogen operating valve installed in a nuclear power plant, an electromagnetic valve is provided in the middle of an air piping system in order to switch the opening / closing operation of the valve. For example, a total power loss accident (SBO: At the time of Station Blackout), the solenoid valve's coil is de-excited and the air pressure decreases from the air supply source. However, after that, the air supply cannot be supplied and the air supply device cannot supply the air. The operation of the operation valve becomes impossible, and there is a risk that the subsequent operation of the air or nitrogen operation valve may be hindered.

このように空気作動弁には、電源からの電気の供給不能、空気供給装置からの空気の供給不能による空気作動弁操作不能ポテンシャルがあるため、非常時(例えば、SBO時)においても、安全に遠隔操作できる設備が求められている。   As described above, the air-operated valve has the potential of being unable to operate the air-operated valve due to the inability to supply electricity from the power source and the inability to supply air from the air supply device. Therefore, even in an emergency (for example, SBO) Equipment that can be operated remotely is required.

一方、全電源喪失が生じ、原子炉圧力容器内で発生した水素が原子炉建屋内に漏洩した場合でも、水素を安全に処理して水素爆発を防ぎ、原子炉建屋の損壊を防止する技術が特許文献1に記載されている。   On the other hand, even if the total power loss occurs and hydrogen generated in the reactor pressure vessel leaks into the reactor building, there is a technology that safely treats hydrogen to prevent hydrogen explosion and damage the reactor building. It is described in Patent Document 1.

特開2012−230058号公報JP2012-230058A

通常、空気又は窒素作動弁の開閉動作は、その弁の動力となる空気または窒素を供給する空気配管系の途中に設置されている電磁弁の電源をオン、オフすることで切り替えられるが、電源喪失時には、電源喪失、動力用空気源の喪失により、空気又は窒素作動弁の開閉動作のための電磁弁の電源のオン、オフができなくなると共に、動力となる空気又は窒素の供給も不可能となり、外部からの遠隔操作が不可能になる。しかし、設計基準となった不具合を上回るような事故事象においては、必要な空気又は窒素作動弁は、通常の電源・動力用空気源とは異なる電源・動力用空気源による外部からの遠隔操作を、空気又は窒素作動弁の通常の作動特性に影響を及ぼさずに、可能とすることが必要となる。   Normally, the opening or closing operation of an air or nitrogen operating valve can be switched by turning on and off the power of a solenoid valve installed in the middle of an air piping system that supplies air or nitrogen to power the valve. At the time of loss, the power supply of the solenoid valve for the opening / closing operation of the air or nitrogen operating valve cannot be turned on / off due to the loss of the power supply or the power source, and the supply of power air or nitrogen becomes impossible. Remote operation from the outside becomes impossible. However, in the event of an accident that exceeds the design standard failure, the necessary air or nitrogen actuated valve must be remotely operated from the outside by a power source / power air source different from the normal power source / power air source. It is necessary to be able to do this without affecting the normal operating characteristics of the air or nitrogen operated valve.

特に、原子力発電所においては、SBOのような非常時に、原子炉格納容器内の空気又は窒素作動弁を開閉可能とするためには、原子炉格納容器の外部に操作用の電磁弁を設置し、通常電源とは別のバッテリーなどの電源を接続して、空気又は窒素作動弁の開閉動作を行うには、空気又は窒素作動弁に要求される作動時間等の作動特性に影響を及ぼさないようにすることや、操作用空気の原子炉格納容器外への排気などの考慮が必要であり、これらのことを考慮した電源喪失時に用いられる空気又は窒素供給装置の操作源の確保が必要となっている。   In particular, in a nuclear power plant, in order to be able to open and close the air or nitrogen operation valve in the reactor containment vessel in an emergency such as SBO, an operation electromagnetic valve is installed outside the reactor containment vessel. In order to open and close the air or nitrogen operating valve by connecting a power source such as a battery other than the normal power source, the operating characteristics such as the operating time required for the air or nitrogen operating valve will not be affected. In addition, it is necessary to consider the exhaust of the operating air to the outside of the containment vessel, and it is necessary to secure the operating source of the air or nitrogen supply device used at the time of power loss considering these things ing.

しかしながら、上述した特許文献1には、全電源喪失時に、原子炉圧力容器内で発生した水素が原子炉建屋内に漏洩した場合でも、原子炉建屋の損壊を防止する手段については記載されているが、電源喪失時に用いられる空気又は窒素供給装置の操作源確保については、全く記載されていない。   However, Patent Document 1 described above describes means for preventing damage to the reactor building even when hydrogen generated in the reactor pressure vessel leaks into the reactor building when all power is lost. However, there is no description about securing the operation source of the air or nitrogen supply device used when power is lost.

本発明は上述の点に鑑みなされたもので、その目的とするところは、電源喪失時においても空気作動弁等の作動弁を遠隔操作できる遠隔操作装置及び原子力プラントの遠隔操作装置を提供することにある。 The present invention has been made in view of the above points, and an object of the present invention is to provide a remote operation device capable of remotely operating an operation valve such as an air operation valve even when power is lost, and a remote operation device for a nuclear power plant. It is in.

本発明の遠隔操作装置は、上記目的を達成するために、体の供給又は排出により開閉動作を行う気体作動弁を、該気体作動弁が設けられた建屋の外部から遠隔にて操作する遠隔操作装置において、前記建屋の外部に設けられた第1の気体供給源と、前記建屋の内部に設けられた第2の気体供給源と、該第2の気体供給源と前記気体作動弁を接続する配管の途中に、前記気体作動弁への気体の流れの開閉を行う電磁弁とを備え、前記電磁弁の排気ラインに、前記電磁弁からの排気と該電磁弁への給気を切替える切替弁が設置され、該切替弁は、電源喪失時には、該切替弁の給気ラインから建屋外の排気ラインを経由して排気され、前記切替弁を作動させる気体がなくなると、前記切替弁の排気ラインから前記建屋内に排気されることを特徴とする。
ことを特徴とする。
In order to achieve the above object, the remote control device of the present invention remotely operates a gas operated valve that opens and closes by supplying or discharging a body from the outside of a building provided with the gas operated valve. In the apparatus, a first gas supply source provided outside the building, a second gas supply source provided inside the building, and the second gas supply source and the gas operation valve are connected. A switching valve for switching the exhaust from the solenoid valve and the supply of air to the solenoid valve in an exhaust line of the solenoid valve, comprising a solenoid valve that opens and closes a gas flow to the gas actuation valve in the middle of the piping There is provided, said switching valve, the loss of power is exhausted through the building outside of the exhaust line from the air supply line of the switching valve, the gas to create dynamic said switching valve is eliminated, the switching valve It is exhausted from the exhaust line into the building. .
It is characterized by that.

また、本発明の原子力プラントの遠隔操作装置は、上記目的を達成するために、原子炉格納容器に収納されている原子炉圧力容器からの蒸気をタービン建屋に供給する主蒸気配管から分岐した配管の途中に設けられ、前記主蒸気配管内の蒸気を逃す安全弁を動作させるためのシリンダを遠隔にて操作する原子力プラントの遠隔操作装置において、前記原子力プラントの遠隔操作装置は、上記構成の遠隔操作装置を備えていることを特徴とする。 In order to achieve the above object, the remote control device for a nuclear power plant of the present invention is a pipe branched from a main steam pipe for supplying steam from a reactor pressure vessel stored in a reactor containment vessel to a turbine building. In a nuclear power plant remotely operating a cylinder for operating a safety valve for releasing steam in the main steam pipe, wherein the nuclear power plant remote operating device is configured as described above. A device is provided .

また、本発明の原子力プラントの遠隔操作装置は、上記目的を達成するために、原子炉圧力容器が収納されている原子炉格納容器からの気体を排気塔から排出する非常用ガス処理系に開閉弁が設置され、前記原子炉格納容器の圧力が一定値以上になった際に前記開閉弁を開動作して前記原子炉格納容器内の気体を前記非常用ガス処理系から排気する気体作動弁を動作させるためのシリンダを遠隔にて操作する原子力プラントの遠隔操作装置において、前記原子力プラントの遠隔操作装置は、上記構成の遠隔操作装置を備えていることを特徴とする。 In order to achieve the above object, the remote control device for a nuclear power plant according to the present invention opens and closes an emergency gas treatment system that discharges gas from a reactor containment vessel in which a reactor pressure vessel is contained from an exhaust tower. A gas-operated valve that is provided with a valve and opens the on-off valve when the pressure in the reactor containment vessel exceeds a predetermined value to exhaust the gas in the reactor containment vessel from the emergency gas processing system In a remote control device for a nuclear power plant that remotely operates a cylinder for operating the nuclear power plant, the remote control device for the nuclear power plant includes the remote control device having the above-described configuration .

本発明によれば、電源喪失時においても空気作動弁等の作動弁を遠隔操作できる効果がある。   According to the present invention, there is an effect that an operation valve such as an air operation valve can be remotely operated even when the power supply is lost.

本発明の遠隔操作装置の実施例1であり、切替弁が電磁弁の排気側に接続されている状態を示す図である。It is Example 1 of the remote control apparatus of this invention, and is a figure which shows the state by which the switching valve is connected to the exhaust side of the solenoid valve. 図1の状態から切替弁が電磁弁の給気側に切替った状態を示す図である。It is a figure which shows the state which the switching valve switched from the state of FIG. 1 to the supply side of a solenoid valve. 本発明の遠隔操作装置の実施例1における通常時の待機状態を示す図である。It is a figure which shows the standby state at the normal time in Example 1 of the remote control apparatus of this invention. 本発明の遠隔操作装置の実施例1における通常時の給気状態を示す図である。It is a figure which shows the normal air supply state in Example 1 of the remote control apparatus of this invention. 本発明の遠隔操作装置の実施例1における通常時の排気状態を示す図である。It is a figure which shows the normal exhaust state in Example 1 of the remote control apparatus of this invention. 本発明の遠隔操作装置の実施例1における電源喪失時の待機状態を示す図である。It is a figure which shows the standby state at the time of the power loss in Example 1 of the remote control apparatus of this invention. 本発明の遠隔操作装置の実施例1における電源喪失時の給気状態を示す図である。It is a figure which shows the air supply state at the time of the power loss in Example 1 of the remote control apparatus of this invention. 本発明の遠隔操作装置の実施例1における電源喪失時の排気状態を示す図である。It is a figure which shows the exhaust condition at the time of the power loss in Example 1 of the remote control apparatus of this invention. 図4に示した遠隔操作装置の通常時の給気状態のフローを示す図である。It is a figure which shows the flow of the air supply state in the normal time of the remote control apparatus shown in FIG. 図5に示した遠隔操作装置の通常時の排気状態のフローを示す図である。It is a figure which shows the flow of the exhaust_gas | exhaustion state at the normal time of the remote control apparatus shown in FIG. 図7に示した遠隔操作装置の電源喪失時の給気状態のフローを示す図である。It is a figure which shows the flow of the air supply state at the time of the power loss of the remote control apparatus shown in FIG. 図8に示した遠隔操作装置の電源喪失時の排気状態のフローを示す図である。It is a figure which shows the flow of the exhaustion state at the time of the power loss of the remote control apparatus shown in FIG. 本発明の遠隔操作装置の実施例2を示す図である。It is a figure which shows Example 2 of the remote control apparatus of this invention. 本発明の実施例3である原子力プラントの遠隔操作装置を示す図である。It is a figure which shows the remote control apparatus of the nuclear power plant which is Example 3 of this invention. 本発明の実施例4である原子力プラントの遠隔操作装置を示す図である。It is a figure which shows the remote control apparatus of the nuclear power plant which is Example 4 of this invention. 本発明の実施例5である遠隔操作装置を加圧水型原子炉における加圧器逃し弁と主蒸気逃し弁に適用した場合を示す図である。It is a figure which shows the case where the remote control apparatus which is Example 5 of this invention is applied to the pressurizer relief valve and main steam relief valve in a pressurized water reactor.

以下、図示した実施例に基づいて本発明の遠隔操作装置及び原子力プラントの遠隔操作装置を説明する。なお、各図において、弁の黒表示は“閉”状態を、白表示は“開”状態をそれぞれ示すものである。また、符号は、同一構成部品には同符号を使用すると共に、既に説明した部品の説明は省略する。 Hereinafter, the remote control unit of the remote operation apparatus and nuclear power plants of the present invention will be described with reference to the embodiments shown. In each figure, the black display of the valve indicates the “closed” state, and the white display indicates the “open” state. Further, the same reference numerals are used for the same component parts, and the description of the parts already described is omitted.

図1及び図2は、本発明の遠隔操作装置の実施例1を示し、例えば、弁本体(図示せず)を開閉する空気作動弁アクチュエータ1があり、この空気作動弁アクチュエータ1は、建屋21内の配管20Aの途中に設置された電磁弁2により動作されものである。即ち、電磁弁2は、電源のオン、オフにより、供給口であるIA系(計装空気供給系統設備)から制御用空気又は窒素が供給されることで、空気作動弁アクチュエータ1が作動し、作動完了後、電磁弁2の電源のオフにより、空気作動弁アクチュエータ1の制御用空気又は窒素は、電磁弁2の排気口から、切替弁3のA→Eの経路で排出され、空気作動弁アクチュエータ1は作動前の状態に復帰する。 1 and 2 show a first embodiment of a remote control device according to the present invention. For example, there is an air-operated valve actuator 1 that opens and closes a valve main body (not shown). It is operated by the electromagnetic valve 2 installed in the middle of the inner pipe 20A. That is, the solenoid valve 2 is supplied with control air or nitrogen from the IA system (instrument air supply system equipment) which is a supply port when the power is turned on and off, so that the air actuated valve actuator 1 operates. When the operation of the solenoid valve 2 is turned off after the operation is completed, the control air or nitrogen of the air-actuated valve actuator 1 is exhausted from the exhaust port of the solenoid valve 2 through the path A → E of the switching valve 3, and the air-actuated valve The actuator 1 returns to the state before the operation.

電磁弁2への通電が困難な状態、又は電磁弁2の供給口へのIA系(計装空気供給系統設備)からの制御用空気又は窒素の供給が困難な非常時においては、建屋21外に設置されている空気又は窒素が貯蔵されている気体供給源であるボンベ4から後述する第2の電磁弁5の電源がオンすることで、第2の電磁弁5を介して制御用空気又は窒素を切替弁3に給気する。これにより、切替弁3にP⇔Aの流路が形成され、ボンベ4から第2の電磁弁5、切替弁3、電磁弁2、空気作動弁アクチュエータ1の流路を形成し、空気作動弁アクチュエータ1が作動し、作動完了後、電磁弁5の電源がオフすると、第2の電磁弁5、切替弁3、電磁弁2、空気作動弁アクチュエータ1間の圧力が低下し、切替弁3の流路がA→Eに切り替わる。更に、空気作動弁アクチュエータ1の制御用空気又は窒素は、電磁弁2の排気口から切替弁3のA→Eの経路で排出され、空気作動弁アクチュエータ1は作動前の状態に復帰する。   Outside the building 21 in a situation where it is difficult to energize the solenoid valve 2 or when it is difficult to supply control air or nitrogen from the IA system (instrument air supply system equipment) to the supply port of the solenoid valve 2 When a power source of a second electromagnetic valve 5 described later is turned on from a cylinder 4 which is a gas supply source in which air or nitrogen is stored, control air or Nitrogen is supplied to the switching valve 3. Thereby, the flow path of P⇔A is formed in the switching valve 3, and the flow path of the second electromagnetic valve 5, the switching valve 3, the electromagnetic valve 2, and the air operated valve actuator 1 is formed from the cylinder 4. When the actuator 1 is activated and the solenoid valve 5 is turned off after the operation is completed, the pressure between the second solenoid valve 5, the switching valve 3, the solenoid valve 2, and the air-actuated valve actuator 1 is reduced. The flow path is switched from A to E. Further, the control air or nitrogen of the air actuated valve actuator 1 is discharged from the exhaust port of the electromagnetic valve 2 through the path A → E of the switching valve 3, and the air actuated valve actuator 1 returns to the state before the operation.

つまり、本実施例では、電磁弁2には、気体(空気又は窒素)を供給する気体供給源として、IA系(計装空気供給系統設備)とボンベ4の2系列を備えている。   That is, in the present embodiment, the solenoid valve 2 includes two systems of an IA system (instrumented air supply system facility) and a cylinder 4 as gas supply sources for supplying gas (air or nitrogen).

本実施例では、このようにして、空気作動弁アクチュエータ1を動作し、弁本体を開閉させるようになっている。なお、図1,2では、切替弁3の表記は、空気油圧回路図のJISシンボル表記を模したものとしている。   In this embodiment, the air operated valve actuator 1 is operated in this way to open and close the valve body. 1 and 2, the notation of the switching valve 3 is similar to the JIS symbol notation of the air hydraulic circuit diagram.

本実施例では、電磁弁2とボンベ4間の建屋21内の配管20Aの途中に、電磁弁2からの排気と、この電磁弁2への給気を切替える切替弁3が設置されている。この切替弁3は、電源喪失時には、電磁弁2に空気又は窒素を供給するためにボンベ4との接続に切替えられるものである。   In the present embodiment, a switching valve 3 for switching between exhaust from the solenoid valve 2 and supply of air to the solenoid valve 2 is installed in the middle of the pipe 20 </ b> A in the building 21 between the solenoid valve 2 and the cylinder 4. This switching valve 3 is switched to connection with the cylinder 4 in order to supply air or nitrogen to the electromagnetic valve 2 when the power is lost.

つまり、電磁弁2の排気ライン側の建屋21内にある配管20Aの途中に切替弁3を設置し、切替弁3に作動用の空気又は窒素が建屋21外に設けられたボンベ4から配管20Bを介して供給されると、通常時は、図1に示す如く、電磁弁2の排気側に接続されている切替弁3が、図2に示すように給気側に切り替わり、作動用空気又は窒素を電磁弁2に供給することができ、電源喪失時においても、空気作動弁アクチュエータ1に空気の供給が可能となる。   In other words, the switching valve 3 is installed in the middle of the pipe 20A in the building 21 on the exhaust line side of the solenoid valve 2, and the switching valve 3 is connected to the pipe 20B from the cylinder 4 provided outside the building 21 with operating air or nitrogen. In normal times, as shown in FIG. 1, the switching valve 3 connected to the exhaust side of the electromagnetic valve 2 is switched to the air supply side as shown in FIG. Nitrogen can be supplied to the electromagnetic valve 2, and air can be supplied to the air-operated valve actuator 1 even when power is lost.

また、切替弁3のボンベ4側の建屋21外の配管20Bの途中には、通常時の建屋21内の雰囲気が切替弁3の給気側のリークによって建屋21外へ漏出するのを防止する隔離弁6が設置されている。   Further, in the middle of the pipe 20 </ b> B outside the building 21 on the cylinder 4 side of the switching valve 3, the atmosphere in the normal building 21 is prevented from leaking out of the building 21 due to a leakage on the air supply side of the switching valve 3. An isolation valve 6 is installed.

更に、切替弁3に空気又は窒素を供給する設備は、建屋21内の電源とは別の電源種別、例えばバッテリーを持つことで、安全性を高めることができるが、更なるバックアップとして、手動弁によって給気しても良い。   Furthermore, the facility for supplying air or nitrogen to the switching valve 3 can have improved safety by having a power source type different from the power source in the building 21, for example, a battery. You may be supplied with air.

即ち、本実施例では、ボンベ4から切替弁3に供給する建屋21外の配管20Bに設置されている第2の電磁弁5は、交流電源又は直流電源、直流電源、手動のそれぞれを動力源とする3つの電磁弁から構成されている。即ち、図1及び図2に示す如く、第2の電磁弁5Aは、非常時(その1)の際に、交流電源又は直流電源を動力源とし、第2の電磁弁5Bは、非常時(その2)の際に、直流電源(例えば、バッテリー)を動力源として動作するものであり、また、第2の電磁弁5Cは、バックアップとして手動で動作するものである。   In other words, in the present embodiment, the second electromagnetic valve 5 installed in the pipe 20B outside the building 21 that supplies the switching valve 3 from the cylinder 4 has an AC power source or a DC power source, a DC power source, and a manual power source. It consists of three solenoid valves. That is, as shown in FIGS. 1 and 2, the second electromagnetic valve 5A uses an AC power source or a DC power source as a power source in an emergency (part 1), and the second electromagnetic valve 5B has an emergency ( In the case of 2), a DC power source (for example, a battery) is operated as a power source, and the second electromagnetic valve 5C is manually operated as a backup.

そして、電源喪失時には、直流電源(バッテリー)を駆動原とする第2の電磁弁5Bを駆動し、ボンベ4から電磁弁2に空気又は窒素を供給するものである。切替弁3の給気側へのリークは、隔離弁6により防止されている。   When the power source is lost, the second electromagnetic valve 5B using a DC power source (battery) as a driving source is driven, and air or nitrogen is supplied from the cylinder 4 to the electromagnetic valve 2. Leakage to the supply side of the switching valve 3 is prevented by the isolation valve 6.

次に、上述した実施例1の遠隔操作装置における各状態の具体的な例を、図3乃至図12を用いて説明する。 Next, specific examples of each state in the above-described remote control device according to the first embodiment will be described with reference to FIGS.

図3乃至図12には、弁本体7として、空気又は窒素を動力源とするリンクを伴う駆動装置であるシリンダ8を有するアングル弁(スプリング力により、空気又は窒素が供給されていない場合は、閉状態)を示し、切替弁3の表記は、空気油圧回路図のJISシンボル表記ではなく、他の弁の表記同様に、白・黒で開閉状態を表記している。   3 to 12, the valve body 7 is an angle valve having a cylinder 8 that is a drive device with a link using air or nitrogen as a power source (when air or nitrogen is not supplied by the spring force, The notation of the switching valve 3 is not the JIS symbol notation of the air hydraulic circuit diagram, but the open / closed state is indicated by white / black as in the case of other valves.

図3は、本実施例の遠隔操作装置の通常使用時の待機状態を示す。該図に示す如く、通常使用時は、待機状態において、シリンダ(空気作動弁アクチュエータ)8に接続する電磁弁2は排気ライン11側が開になっている。また、切替弁3は排気ライン13側が開になっている。 FIG. 3 shows a standby state during normal use of the remote control device of this embodiment. As shown in the figure, during normal use, the solenoid valve 2 connected to the cylinder (pneumatically operated valve actuator) 8 is open on the exhaust line 11 side in a standby state. The switching valve 3 is open on the exhaust line 13 side.

図4及び図9は、本実施例の遠隔操作装置の通常使用時の給気時の状態及びフローを示す。該図に示す如く、弁作動の信号が電磁弁2に入ると(ステップ19)、電磁弁2は排気ライン11側を閉にして給気ライン10側を開にする(ステップ20)。すると、電磁弁2の給気ライン10から圧縮空気や圧縮窒素などの気体がシリンダ8に供給され(ステップ21)、弁本体7が作動する(ステップ22)。 4 and 9 show the state and flow at the time of air supply during normal use of the remote control device of this embodiment. As shown in the figure, when a valve operation signal enters the solenoid valve 2 (step 19), the solenoid valve 2 closes the exhaust line 11 and opens the supply line 10 (step 20). Then, gas such as compressed air or compressed nitrogen is supplied to the cylinder 8 from the air supply line 10 of the electromagnetic valve 2 (step 21), and the valve body 7 is activated (step 22).

図5及び図10は、本実施例の遠隔操作装置の通常使用時の排気時の状態およびフローを示す。該図に示す如く、待機状態に復帰するときは、電磁弁2に信号を送り(ステップ23)、電磁弁2の給気ライン10側を閉にし、排気ライン11を開にする(ステップ24)。すると、シリンダ8に供給された気体は電磁弁2の排気ライン11側から排気され(ステップ25)、切替弁3の排気ライン13(図1、2の切替弁3の接続口Eに接続)側から排気される(ステップ26)。シリンダ8を作動させるのに十分な気体がなくなると、弁本体7を作動させ(ステップ27)待機状態に戻る。一例として、待機時を閉、作動時を開としたが、その逆の作動も可能となる。 5 and 10 show the state and flow during exhaust of the remote control device of this embodiment during normal use. As shown in the figure, when returning to the standby state, a signal is sent to the solenoid valve 2 (step 23), the supply line 10 side of the solenoid valve 2 is closed, and the exhaust line 11 is opened (step 24). . Then, the gas supplied to the cylinder 8 is exhausted from the exhaust line 11 side of the solenoid valve 2 (step 25), and the exhaust line 13 of the switching valve 3 (connected to the connection port E of the switching valve 3 in FIGS. 1 and 2) side. (Step 26). When there is not enough gas to actuate the cylinder 8, the valve body 7 is actuated (step 27) to return to the standby state. As an example, the standby time is closed and the operation time is open, but the reverse operation is also possible.

図6は、本実施例の遠隔操作装置の全電源喪失などの過酷事故時の待機状態を示す。該図に示す如く、全電源喪失などの過酷事故時には、電源喪失により、電磁弁2は排気ライン11側を開にした状態になり、外部からの操作が不可能なまま待機する。 FIG. 6 shows a standby state at the time of a severe accident such as loss of all power sources of the remote control device of this embodiment. As shown in the figure, at the time of a severe accident such as loss of all power sources, due to the loss of power sources, the solenoid valve 2 is in a state where the exhaust line 11 side is opened and stands by without being operable from the outside.

図7及び図11は、本実施例の遠隔操作装置の過酷事故時の給気時の状態及びフローを示す。該図に示す如く、電源喪失により電磁弁2は、排気ライン11(図1、2の切替弁3の接続口Aに接続)側を開にし、給気側ライン10側を閉の状況にする(ステップ28)。外部から弁本体7を作動させるために、建屋21外にあるバッテリーを駆動原とする第2の電磁弁5の給気ライン17側を開にし、排気ライン18を閉にする(ステップ29)。次に、隔離弁6を操作して開にする(ステップ30)ことで、切替弁3を作動させるに十分な気体を第2の電磁弁5の給気ライン14(図1、2の切替弁3の接続口Pに接続)側から供給する(ステップ31)。供給された気体によって、切替弁3は排気ライン13(図1、2の切替弁3の接続口E)側を閉にして給気ライン14(図1、2の切替弁3の接続口P)を開とする。すると、建屋21外から給気された気体は、切替弁3の給気ライン14(図1、2の切替弁3の接続口Pに接続)から電磁弁2の排気ライン11(図1、2の切替弁3の接続口Aに接続)を通りシリンダ8へと到達し、シリンダ8に弁本体7を作動させるに十分な気圧が充填されることで、弁本体7が作動する(ステップ32)。 FIG.7 and FIG.11 shows the state and flow at the time of the air supply at the time of a severe accident of the remote control apparatus of a present Example. As shown in the figure, due to the loss of power, the solenoid valve 2 opens the exhaust line 11 (connected to the connection port A of the switching valve 3 in FIGS. 1 and 2) and closes the supply side line 10 side. (Step 28). In order to operate the valve body 7 from the outside, the air supply line 17 side of the second electromagnetic valve 5 whose driving source is a battery outside the building 21 is opened, and the exhaust line 18 is closed (step 29). Next, by operating the isolation valve 6 to open (step 30), sufficient gas for operating the switching valve 3 is supplied to the air supply line 14 of the second electromagnetic valve 5 (the switching valve in FIGS. 1 and 2). 3 is connected from the connection port P) (step 31). With the supplied gas, the switching valve 3 closes the exhaust line 13 (the connection port E of the switching valve 3 in FIGS. 1 and 2) and closes the air supply line 14 (the connection port P of the switching valve 3 in FIGS. 1 and 2). Is open. Then, the gas supplied from outside the building 21 is supplied from the air supply line 14 of the switching valve 3 (connected to the connection port P of the switching valve 3 of FIGS. 1 and 2) to the exhaust line 11 of the electromagnetic valve 2 (FIGS. 1 and 2). The valve main body 7 is actuated when the cylinder 8 is filled with sufficient air pressure to actuate the valve main body 7 (step 32). .

図8及び図12は、本実施例の遠隔操作装置の過酷事故時の排気時の状態及びフローを示す。該図に示す如く、建屋21外にあるバッテリーを駆動原とする第2の電磁弁5に弁作動の信号を送る(ステップ33)。弁本体7を待機状態に戻す場合は、建屋21外の第2の電磁弁5の排気ライン18側を開にし、給気ライン17側を閉にする(ステップ34)。すると、シリンダ8に供給された気体は電磁弁2の排気ライン11側から排気され(ステップ35)、電磁弁2の排気ライン11(図1、2の切替弁3の接続口Aに接続)から排気された気体は、切替弁3の給気ライン14(図1、2の切替弁3の接続口Pに接続)から、建屋21外の第2の電磁弁5の排気ライン18を経由し、排気される(ステップ36)。切替弁3を作動させるのに十分な気体がなくなると、切替弁3は給気ライン14(図1、2の切替弁3の接続口Pに接続)側を閉にし、排気ライン13側(図1、2の切替弁3の接続口Eに接続)を開にする(ステップ37)。すると、シリンダ8に残っている気体は、電磁弁2の排気ライン11側から排気され(ステップ38)、切替弁3の排気ライン13(図1、2の切替弁3の接続口Eに接続)から建屋21内に排気される。シリンダ8を作動させるのに十分な気体がなくなると、弁本体7を作動させ(ステップ39)待機状態に戻る。一例として、待機時を閉、作動時を開としたが、その逆の作動も可能となる。 8 and 12 show the state and flow during exhaust of the remote control device of this embodiment during a severe accident. As shown in the figure, a valve operation signal is sent to the second electromagnetic valve 5 whose driving source is a battery outside the building 21 (step 33). When returning the valve body 7 to the standby state, the exhaust line 18 side of the second electromagnetic valve 5 outside the building 21 is opened, and the air supply line 17 side is closed (step 34). Then, the gas supplied to the cylinder 8 is exhausted from the exhaust line 11 side of the solenoid valve 2 (step 35), and from the exhaust line 11 of the solenoid valve 2 (connected to the connection port A of the switching valve 3 in FIGS. 1 and 2). The exhausted gas passes from the air supply line 14 of the switching valve 3 (connected to the connection port P of the switching valve 3 in FIGS. 1 and 2) via the exhaust line 18 of the second electromagnetic valve 5 outside the building 21, The air is exhausted (step 36). When there is not enough gas to operate the switching valve 3, the switching valve 3 closes the air supply line 14 (connected to the connection port P of the switching valve 3 in FIGS. 1 and 2) and the exhaust line 13 side (see FIG. Open the connection port E of the switching valves 3 of 1 and 2) (step 37). Then, the gas remaining in the cylinder 8 is exhausted from the exhaust line 11 side of the solenoid valve 2 (step 38), and the exhaust line 13 of the switching valve 3 (connected to the connection port E of the switching valve 3 in FIGS. 1 and 2). To the building 21. When there is not enough gas to actuate the cylinder 8, the valve body 7 is actuated (step 39) to return to the standby state. As an example, the standby time is closed and the operation time is open, but the reverse operation is also possible.

このように本実施例では、電磁弁2の排気ライン11側の配管21Aの途中に切替弁3を接続し、電源喪失時に建屋21外からボンベ4などで空気又は窒素等の気体を供給しているため、切替弁3に作動用の空気又は窒素が供給されると、通常時は、排気側に接続されている切替弁3が給気側に切り替わり、電源喪失時に空気又は窒素を電磁弁に供給することが可能となる。また、切替弁3が切り替わる圧力は、建屋21内の圧力よりも十分高くなっており、切替弁3が作動中は、第2の電磁弁5を経由して、建屋21内の雰囲気が建屋21外に流出することはない。   As described above, in this embodiment, the switching valve 3 is connected in the middle of the piping 21A on the exhaust line 11 side of the solenoid valve 2, and a gas such as air or nitrogen is supplied from the outside of the building 21 by the cylinder 4 or the like when power is lost. Therefore, when operating air or nitrogen is supplied to the switching valve 3, the switching valve 3 connected to the exhaust side is normally switched to the supply side, and air or nitrogen is used as a solenoid valve when the power is lost. It becomes possible to supply. In addition, the pressure at which the switching valve 3 is switched is sufficiently higher than the pressure in the building 21. When the switching valve 3 is operating, the atmosphere in the building 21 is passed through the second electromagnetic valve 5. It will not flow out.

従って、電源喪失時においても空気作動弁等の作動弁を遠隔操作できる効果がある。また、第2の電磁弁5の電源種別(交流電源若しくは直流電源)を常時使用する電磁弁2と差別化することにより、駆動原を多様化できる効果もある。   Therefore, there is an effect that an operation valve such as an air operation valve can be remotely operated even when the power supply is lost. Further, by differentiating the power source type (AC power source or DC power source) of the second electromagnetic valve 5 from the electromagnetic valve 2 that always uses, there is also an effect that the driving source can be diversified.

なお、切替弁3に空気又は窒素を供給する設備は、建屋21内の電源とは別の電源(例えば、バッテリー)を持つことで安全性を高めることができるが、更なるバックアップとして、手動弁によって給気しても良い。   The facility for supplying air or nitrogen to the switching valve 3 can be improved in safety by having a power source (for example, a battery) different from the power source in the building 21, but as a backup, a manual valve You may be supplied with air.

図13に、本発明の遠隔操作装置の実施例2を示す。該図に示す本実施例は、上述した実施例と略同様な構成であるが、実施例1と異なる構成は、建屋21内の切替弁3の排気ライン13が気体処理ライン39に接続され、第2の電磁弁5の排気ライン18が、建屋21外の逆止弁15を設けたライン38を介して気体処理ライン39に接続されている点である。 FIG. 13 shows a second embodiment of the remote control device of the present invention. The present embodiment shown in the figure has substantially the same configuration as the above-described embodiment, but the configuration different from the first embodiment is that the exhaust line 13 of the switching valve 3 in the building 21 is connected to the gas processing line 39, The exhaust line 18 of the second electromagnetic valve 5 is connected to a gas processing line 39 via a line 38 provided with a check valve 15 outside the building 21.

このような本実施例によれば、実施例1と同様な効果が得られることは勿論、第2の電磁弁5の排気ライン18を、逆止弁15を設けたライン38を介して気体処理ライン39に戻し入れることで、作業者の安全性を更に向上させることができる。   According to the present embodiment, the same effect as that of the first embodiment can be obtained, and the exhaust line 18 of the second electromagnetic valve 5 is gas-treated through the line 38 provided with the check valve 15. Returning to the line 39 can further improve the safety of the operator.

なお、気体処理ライン39を建屋21外のみに設けた場合には、逆止弁15を設けたライン38を介さず、第2の電磁弁5の排気ライン18を、直接、建屋21外の気体処理ライン39に接続することでも、作業者の安全性向上は可能である。   When the gas treatment line 39 is provided only outside the building 21, the gas outside the building 21 is directly connected to the exhaust line 18 of the second electromagnetic valve 5 without using the line 38 provided with the check valve 15. By connecting to the processing line 39, the safety of the operator can be improved.

図14に、本発明の実施例3である原子力プラントの遠隔操作装置を示す。 FIG. 14 shows a remote control device for a nuclear power plant that is Embodiment 3 of the present invention.

該図に示す如く、本実施例の原子力プラントの遠隔操作装置は、原子炉格納容器48に収納されている原子炉圧力容器40からの蒸気をタービン建屋(図示せず)に供給する主蒸気配管41から分岐した配管51に設けられ、原子炉の圧力が一定値以上になった際に開動作して主蒸気配管41内の主蒸気を逃す主蒸気逃し安全弁43と、この主蒸気逃し安全弁43を強制的に開動作させるために、空気又は窒素を主蒸気逃し安全弁43に駆動力を供給する強制作動用シリンダ47と、強制作動用シリンダ47への空気又は窒素の流れの開閉を行う電磁弁2と、この電磁弁2の給気口、排気口に独立に、配管を介して空気又は窒素を供給する原子炉格納容器48外に設置されている空気又は窒素供給源(特に図示しないが、高圧ガスアキュムレータや、実施例1と同様なボンベや液体窒素を気化させて窒素ガスを供給する)とを備えて概略構成されている。 As shown in the figure, the remote control device for the nuclear power plant of this embodiment is a main steam pipe for supplying steam from a reactor pressure vessel 40 stored in a reactor containment vessel 48 to a turbine building (not shown). A main steam relief safety valve 43 that is provided in a pipe 51 branched from 41 and opens when the pressure of the reactor reaches a certain value or more, and releases the main steam in the main steam pipe 41, and the main steam relief safety valve 43 In order to forcibly open the cylinder, a forcible operation cylinder 47 for supplying air or nitrogen to the main steam escape safety valve 43 and a solenoid valve for opening and closing the flow of air or nitrogen to the forcible operation cylinder 47 2 and an air or nitrogen supply source installed outside the reactor containment vessel 48 for supplying air or nitrogen to the air supply port and the exhaust port of the electromagnetic valve 2 independently through a pipe (not shown) High pressure gas accumulation Data and is a schematic configuration and a) supplying nitrogen gas by vaporizing the same cylinder and liquid nitrogen as in Example 1.

そして、本実施例では、原子炉格納容器48内の電磁弁2の排気ラインに、電磁弁2からの排気と電磁弁2への給気を切替える切替弁3が設置され、この切替弁3は、電源喪失時には、電磁弁2に空気又は窒素を供給するために、配管を介して原子炉格納容器48外に設置されている空気又は窒素供給源とは異なる別の空気又は窒素供給源(ボンベ)に、第2の電磁弁5の給気ライン17を介しての接続に切替えられるようにしたものである。   In this embodiment, a switching valve 3 for switching the exhaust from the solenoid valve 2 and the supply of air to the solenoid valve 2 is installed in the exhaust line of the solenoid valve 2 in the reactor containment vessel 48. When the power is lost, in order to supply air or nitrogen to the solenoid valve 2, another air or nitrogen supply source (cylinder) different from the air or nitrogen supply source installed outside the reactor containment vessel 48 through the pipe is used. ) Is switched to the connection of the second electromagnetic valve 5 via the air supply line 17.

上述した空気又は窒素供給源であるボンベは、実施例1と同様に、ボンベ4から切替弁3に供給する原子炉格納容器48外の配管20Bに設置されている第2の電磁弁5を介して接続され、第2の電磁弁5は、交流電源又は直流電源、直流電源(例えば、バッテリー)、手動のそれぞれを動力源とする3つの弁の内から、単独または複数で構成され、その動作は、実施例1と同様である。更に、切替弁3のボンベ側の原子炉格納容器48外の配管の途中には、切替弁3の給気側へのリークを防止する隔離弁6が設置され、この隔離弁6で切替弁3の給気側へのリークを防止する構成としている。   The cylinder as the air or nitrogen supply source described above is connected to the second electromagnetic valve 5 installed in the pipe 20B outside the reactor containment vessel 48 supplied from the cylinder 4 to the switching valve 3 as in the first embodiment. The second solenoid valve 5 is composed of one or more of three valves, each of which is powered by an AC power source or a DC power source, a DC power source (for example, a battery), and a manual power source. These are the same as in Example 1. Further, an isolation valve 6 for preventing leakage of the switching valve 3 to the air supply side is installed in the middle of the piping outside the reactor containment vessel 48 on the cylinder side of the switching valve 3. In this configuration, leakage to the air supply side is prevented.

通常、原子炉圧力容器40からは、蒸気が主蒸気配管41を通ってタービン建屋に供給されるが、原子力発電所は地震などの災害を検知すると、配管破断による冷却材喪失事象(LOCA:Loss Of Coolant Accident)を防ぐために、主蒸気配管41に設けられている主蒸気隔離弁42が閉止する。その際、原子炉内の温度は、核燃料の崩壊熱により上昇を続け、原子炉内の圧力も蒸気の発生に伴い上昇する。原子炉の圧力が一定値以上になった場合、主蒸気配管41から分岐した配管51に設けられた主蒸気逃し安全弁43が作動し、原子炉の圧力を低下させる。その際、切替弁3は、主蒸気逃し安全弁43の作動に影響を及ぼすことはない。   Normally, steam is supplied from the reactor pressure vessel 40 to the turbine building through the main steam pipe 41. When a nuclear power plant detects a disaster such as an earthquake, a loss of coolant due to pipe breakage (LOCA: Loss) Of Coolant Accident), the main steam isolation valve 42 provided in the main steam pipe 41 is closed. At that time, the temperature in the reactor continues to rise due to the decay heat of the nuclear fuel, and the pressure in the reactor also rises with the generation of steam. When the reactor pressure exceeds a certain value, the main steam relief safety valve 43 provided in the pipe 51 branched from the main steam pipe 41 is actuated to lower the reactor pressure. At that time, the switching valve 3 does not affect the operation of the main steam relief safety valve 43.

原子炉の冷却は高圧炉心注水系44や低圧炉心注水系45で行われるが、全電源喪失(SBO)時には、外部注水ライン46から非常用ポンプ車などによる注水も可能としておくことが望まれる。   The reactor is cooled by the high-pressure core water injection system 44 or the low-pressure core water injection system 45, but it is desired that water can be injected from the external water injection line 46 by an emergency pump vehicle or the like when the total power supply is lost (SBO).

この際、原子炉内の圧力が注水の圧力よりも高い場合、原子炉内の圧力を下げる必要があるが、前述の主蒸気逃し安全弁43の安全弁機能は、原子炉内が一定の圧力になるまで作動しないため、主蒸気逃し安全弁43の逃し弁機能を用いて強制的に主蒸気逃し安全弁43を開作動させる必要がある。   At this time, if the pressure in the reactor is higher than the water injection pressure, it is necessary to lower the pressure in the reactor. However, the safety valve function of the main steam relief safety valve 43 described above provides a constant pressure in the reactor. Therefore, it is necessary to forcibly open the main steam relief safety valve 43 using the relief valve function of the main steam relief safety valve 43.

ここで、主蒸気逃し安全弁43の逃し弁機能とは、アキュムレータに蓄えられた窒素や圧縮空気などの気体を、主蒸気逃し安全弁43の強制作動用シリンダ47に供給し、主蒸気逃し安全弁43を開作動させる機能である。   Here, the relief valve function of the main steam relief safety valve 43 is to supply a gas such as nitrogen or compressed air stored in the accumulator to the forcible operation cylinder 47 of the main steam relief safety valve 43, and the main steam relief safety valve 43. It is a function to open.

本実施例では、全電源喪失などの過酷事故時は、主蒸気逃し安全弁43に圧縮空気又は圧縮窒素を供給するための電磁弁2も操作不能となり、排気側を開にした状態で待機し、その後、電磁弁2の排気ライン11側に切替弁3を接続し、切替弁3に作動用の空気又は窒素が原子炉格納容器48外に設けられたボンベなどの空気又は窒素供給源から供給し、通常時は排気側に接続されている切替弁3を給気側に切り替え、作動用の空気又は窒素を電磁弁2に供給することで、電源喪失時においても主蒸気逃し安全弁43を作動させる強制作動用シリンダ47に空気又は窒素が供給されて作動させることが可能となっている。   In this embodiment, in the event of a severe accident such as loss of all power, the solenoid valve 2 for supplying compressed air or compressed nitrogen to the main steam relief safety valve 43 becomes inoperable and waits with the exhaust side open, Thereafter, the switching valve 3 is connected to the exhaust line 11 side of the solenoid valve 2, and operating air or nitrogen is supplied to the switching valve 3 from an air or nitrogen supply source such as a cylinder provided outside the reactor containment vessel 48. In normal times, the switching valve 3 connected to the exhaust side is switched to the air supply side, and the air or nitrogen for operation is supplied to the electromagnetic valve 2, thereby operating the main steam relief safety valve 43 even when the power is lost. Air or nitrogen is supplied to the forcible operation cylinder 47 and can be operated.

主蒸気逃し安全弁43が作動することで、原子炉圧力容器40の圧力は、サプレッションチェンバの接続ラインに逃されて減圧され、原子炉圧力容器40が減圧されることで、外部注水ライン46からの注水が可能となり、原子炉を冷温停止させることが可能となる。   By operating the main steam relief safety valve 43, the pressure in the reactor pressure vessel 40 is released to the suppression chamber connection line and depressurized. By depressurizing the reactor pressure vessel 40, the pressure from the external water injection line 46 is reduced. Water can be injected and the reactor can be shut down cold.

図15に、本発明の実施例4である原子力プラントの遠隔操作装置を示す。 FIG. 15 shows a remote control device for a nuclear power plant that is Embodiment 4 of the present invention.

該図に示す如く、本実施例の原子力プラントの遠隔操作装置は、原子炉圧力容器40が収納されている原子炉格納容器48からの気体を排気塔54から放出する非常用ガス処理系(非常用ガス処理設備やフィルタベント設備)53に設置されている開閉弁52を駆動する駆動部(シリンダ等)に駆動力を供給する空気又は窒素作動弁50に接続し、この空気又は窒素作動弁50の駆動部(シリンダ等)への空気又は窒素の流れの供給・停止のために開閉を行う電磁弁2と、この電磁弁2の給気口、排気口に独立に空気又は窒素を供給する原子炉格納容器48外に設置されている空気又は窒素供給源(特に図示しないが、実施例1と同様なボンベや液体窒素を気化させて窒素ガスを供給する)とを備えて概略構成されている。 As shown in the figure, the remote control device for a nuclear power plant according to the present embodiment is an emergency gas processing system (emergency system) that discharges gas from a reactor containment vessel 48 in which a reactor pressure vessel 40 is accommodated from an exhaust tower 54. Connected to an air or nitrogen operating valve 50 for supplying driving force to a driving part (cylinder or the like) for driving an on-off valve 52 installed in the gas processing equipment or filter vent equipment) 53. Solenoid valve 2 that opens and closes to supply and stop the flow of air or nitrogen to the drive unit (cylinder, etc.) of the engine, and atoms that supply air or nitrogen independently to the air supply and exhaust ports of the solenoid valve 2 Air or nitrogen supply source installed outside the reactor containment vessel 48 (not shown in the figure, but a cylinder and liquid nitrogen similar to those in the first embodiment are vaporized to supply nitrogen gas). .

そして、本実施例では、電磁弁2からの排気ライン11に電磁弁2への給気を切替える切替弁3が設置され、この切替弁3は、電源喪失時には、電磁弁2に空気又は窒素を供給するために、配管10を介して原子炉建屋58外に設置されている空気又は窒素供給源とは異なる別の空気又は窒素供給源(ボンベ)に、第2の電磁弁5の給気ライン17を介しての接続に切替えられるようにしたものである。   In this embodiment, the switching valve 3 for switching the supply of air to the solenoid valve 2 is installed in the exhaust line 11 from the solenoid valve 2, and this switching valve 3 supplies air or nitrogen to the solenoid valve 2 when power is lost. In order to supply the air, the supply line of the second solenoid valve 5 is connected to another air or nitrogen supply source (cylinder) different from the air or nitrogen supply source installed outside the reactor building 58 via the pipe 10. 17 is switched to a connection via 17.

上述した切替弁3を経て、電磁弁2を介して空気又は窒素作動弁50への空気又は窒素を供給するラインが接続する空気又は窒素供給源であるボンベは、実施例1と同様に、ボンベ4から切替弁3に供給する原子炉建屋58外の配管20Bに設置されている第2の電磁弁5を介して接続され、第2の電磁弁5は、交流電源又は直流電源、直流電源(例えば、バッテリー)、手動のそれぞれを動力源とする3つの弁の内から、単独又は複数で構成され、その動作は、実施例1と同様である。更に、切替弁3のボンベ側の原子炉格納容器48外の配管の途中には、切替弁3の給気側へのリークを防止する隔離弁6が設置され、この隔離弁6で切替弁3の給気側へのリークを防止する構成としている。   The cylinder which is an air or nitrogen supply source connected to a line for supplying air or nitrogen to the air or nitrogen operating valve 50 through the solenoid valve 2 via the switching valve 3 described above is a cylinder as in the first embodiment. 4 is connected to the second solenoid valve 5 installed in the pipe 20B outside the reactor building 58 to be supplied to the switching valve 3, and the second solenoid valve 5 is connected to an AC power source, a DC power source, a DC power source ( For example, it is composed of one or a plurality of valves out of three valves each having a power source such as a battery) and a manual power source, and the operation is the same as that of the first embodiment. Further, an isolation valve 6 for preventing leakage of the switching valve 3 to the air supply side is installed in the middle of the piping outside the reactor containment vessel 48 on the cylinder side of the switching valve 3. In this configuration, leakage to the air supply side is prevented.

通常、全電源喪失などの過酷事故時は、空気又は窒素作動弁50に圧縮空気又は圧縮窒素を供給するための電磁弁2も操作不能となり、排気側を開にした状態で待機する。そして、本実施例では、電磁弁2の排気ライン11側に切替弁3を接続し、切替弁3に作動用の空気又は窒素が、原子炉格納容器48外に設けられたボンベなどの空気又は窒素供給源から供給し、通常時は排気側に接続されている切替弁3を給気側に切り替え、作動用の空気又は窒素を電磁弁3に供給することで、電源喪失時においても空気又は窒素作動弁50に空気又は窒素を供給し、空気又は窒素作動弁50への空気又は窒素の流れを制御することで、開閉弁52の開閉操作を可能とすることができ、原子炉格納容器48内の圧力を非常用ガス処理系(非常用ガス処理設備やフィルタベント設備)53を通し、排気塔54から排気することで減圧することができる。   Normally, at the time of a severe accident such as loss of all power sources, the solenoid valve 2 for supplying compressed air or compressed nitrogen to the air or nitrogen operating valve 50 becomes inoperable and stands by with the exhaust side opened. In the present embodiment, the switching valve 3 is connected to the exhaust line 11 side of the electromagnetic valve 2, and operating air or nitrogen is connected to the switching valve 3, such as air such as a cylinder provided outside the reactor containment vessel 48, or Supplying from the nitrogen supply source, switching the switching valve 3 connected to the exhaust side to the supply side in normal times, and supplying air or nitrogen for operation to the solenoid valve 3 allows air or By supplying air or nitrogen to the nitrogen operating valve 50 and controlling the flow of air or nitrogen to the air or nitrogen operating valve 50, the opening / closing operation of the on / off valve 52 can be enabled, and the reactor containment vessel 48 can be operated. The internal pressure can be reduced by exhausting from the exhaust tower 54 through the emergency gas processing system (emergency gas processing equipment or filter vent equipment) 53.

図16に、本発明の実施例5である遠隔操作装置を加圧水型原子炉における加圧器逃し弁と主蒸気逃し弁に適用した場合を示す。 FIG. 16 shows a case where the remote control device according to the fifth embodiment of the present invention is applied to a pressurizer relief valve and a main steam relief valve in a pressurized water reactor.

該図に示す如く、加圧水型原子炉は、原子炉圧力容器59で発生した熱水を蒸気発生器60に送り、この蒸気発生器60で発生した蒸気により、原子炉建屋58外に設置されているタービン(図示せず)を回転させて電力を得ている。その際、原子炉圧力容器59で発生した熱水を加圧し、液体のままにするために、原子力圧力容器59の圧力、水位を保持する加圧器56が原子炉圧力容器59と蒸気発生器60の間に設けられており、タービンに蒸気を送る主蒸気配管41の途中には、主蒸気逃し弁61が設けられている。主蒸気逃し弁61には、強制作動用シリンダ47Bが設けられている。   As shown in the figure, the pressurized water reactor sends hot water generated in the reactor pressure vessel 59 to the steam generator 60 and is installed outside the reactor building 58 by the steam generated in the steam generator 60. A turbine (not shown) is rotated to obtain electric power. At that time, in order to pressurize the hot water generated in the reactor pressure vessel 59 and keep it in a liquid state, the pressurizer 56 that maintains the pressure and water level of the nuclear pressure vessel 59 is connected to the reactor pressure vessel 59 and the steam generator 60. A main steam relief valve 61 is provided in the middle of the main steam pipe 41 that sends steam to the turbine. The main steam relief valve 61 is provided with a forced operation cylinder 47B.

一方、加圧器56と、必要に応じて加圧器56の圧力を強制的に減圧する加圧器逃し弁57が設けられており、加圧器逃し弁57には強制作動用シリンダ47Aが設けられている。   On the other hand, a pressurizer 56 and a pressurizer relief valve 57 for forcibly reducing the pressure of the pressurizer 56 as necessary are provided, and the pressurizer relief valve 57 is provided with a forcible operation cylinder 47A. .

この加圧器逃し弁57及び主蒸気逃し弁61もSBO時には操作が不能となるため、上述した切替弁を設けることで、原子炉圧力容器59の減圧、又は蒸気発生器60の減圧を安全に実施できるようになる。   Since the pressurizer relief valve 57 and the main steam relief valve 61 cannot be operated during SBO, the pressure reduction of the reactor pressure vessel 59 or the steam generator 60 can be safely performed by providing the switching valve described above. become able to.

即ち、図16に示す加圧水型原子炉に適用される遠隔操作装置は、原子炉圧力容器59に主蒸気配管41によって接続され、原子炉圧力容器59に冷却水を供給する蒸気発生器60内の蒸気を逃す主蒸気逃し弁61と、この主蒸気逃し弁61を開動作させるために、内部に蓄えられている空気又は窒素を主蒸気逃し安全弁61に供給する強制作動用シリンダ47Bと、主蒸気配管41の途中に設置され、主蒸気配管41の空気又は窒素の流れの開閉を行う電磁弁2Bと、この電磁弁2Bに空気又は窒素を供給するボンベ等の空気又は窒素供給源とから構成されている。 That is, the remote control device applied to the pressurized water reactor shown in FIG. 16 is connected to the reactor pressure vessel 59 by the main steam pipe 41, and in the steam generator 60 for supplying cooling water to the reactor pressure vessel 59. A main steam release valve 61 for releasing steam, a forcible operation cylinder 47B for supplying air or nitrogen stored therein to the main steam release safety valve 61 to open the main steam release valve 61, a main steam The solenoid valve 2B is installed in the middle of the pipe 41 and opens and closes the air or nitrogen flow of the main steam pipe 41, and an air or nitrogen supply source such as a cylinder for supplying air or nitrogen to the solenoid valve 2B. ing.

そして、本実施例では、電磁弁2Bの排気ラインに、電磁弁2Bからの排気と、この電磁弁2Bへの給気を切替える切替弁3Bが設置され、この切替弁3Bは、電源喪失時には、電磁弁2Bに空気又は窒素を供給するために、上記空気又は窒素供給源との接続に切替えられるものである。   In this embodiment, a switching valve 3B for switching between exhaust from the solenoid valve 2B and supply of air to the solenoid valve 2B is installed in the exhaust line of the solenoid valve 2B. In order to supply air or nitrogen to the electromagnetic valve 2B, the connection to the air or nitrogen supply source is switched.

また、原子炉圧力容器59と、原子力圧力容器59の圧力、水位を保持する加圧器56との配管の途中に設置され、必要に応じて加圧器56の圧力を強制的に減圧する加圧器逃し弁57は、この加圧器逃し弁57を開動作させるために、内部に蓄えられている空気又は窒素を前記加圧器逃し弁に供給する強制作動用シリンダ47Aと、配管の途中に設置され、強制作動用シリンダ47Aへの空気又は窒素の流れの開閉を行う電磁弁2Aを備えており、電磁弁2Aには、ボンベ等の空気又は窒素供給源により空気又は窒素を供給するようになっている。   Further, a pressurizer escape is installed in the middle of the piping between the reactor pressure vessel 59 and the pressurizer 56 that holds the pressure and water level of the nuclear pressure vessel 59 and forcibly reduces the pressure of the pressurizer 56 as necessary. In order to open the pressurizer relief valve 57, the valve 57 is installed in the middle of the piping and a forced operation cylinder 47A for supplying air or nitrogen stored therein to the pressurizer relief valve. An electromagnetic valve 2A that opens and closes the flow of air or nitrogen to the operating cylinder 47A is provided, and air or nitrogen is supplied to the electromagnetic valve 2A from an air or nitrogen supply source such as a cylinder.

そして、本実施例では、電磁弁2Aの排気ラインに、電磁弁2Aからの排気と、この電磁弁2Aへの給気を切替える切替弁3Aが設置され、この切替弁3Aは、電源喪失時には、電磁弁2Aに空気又は窒素を供給するために、上記空気又は窒素供給源との接続に切替えられるものである。   In this embodiment, a switching valve 3A for switching between the exhaust from the solenoid valve 2A and the supply of air to the solenoid valve 2A is installed in the exhaust line of the solenoid valve 2A. In order to supply air or nitrogen to the solenoid valve 2A, the connection to the air or nitrogen supply source is switched.

このような本実施例の構成とすることにより、SBO時に、加圧器逃し弁57及び/又は主蒸気逃し弁61が操作が不能となっても、切替弁3A、3Bを切替えることにより、ボンベなどの気体供給源から空気又は窒素等の気体を供給できるため、上述した実施例と同様な効果を得ることができる。   By adopting such a configuration of the present embodiment, even when the pressurizer relief valve 57 and / or the main steam relief valve 61 becomes inoperable at the time of SBO, by switching the switching valves 3A, 3B, etc. Since a gas such as air or nitrogen can be supplied from the gas supply source, it is possible to obtain the same effect as in the above-described embodiments.

なお、上述した実施例では、空気又は窒素作動弁について説明したが、安全弁、逃し弁又は安全逃し弁についても適用可能である。また、原子力プラント以外に化学プラント、石油プラント、発電設備等にも本発明は適用できる。また、供給する気体として、空気又は窒素以外に二酸化炭素が考えられる。   In the above-described embodiment, the air or nitrogen operating valve has been described. However, the present invention can also be applied to a safety valve, a relief valve, or a safety relief valve. Further, the present invention can be applied to chemical plants, petroleum plants, power generation facilities and the like in addition to nuclear plants. In addition to air or nitrogen, carbon dioxide can be considered as the gas to be supplied.

更に、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。
例えば、上記した実施例は本発明を分かり易く説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
Furthermore, the present invention is not limited to the above-described embodiments, and includes various modifications.
For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Further, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.

1…空気作動弁アクチュエータ、2、2A、2B…電磁弁、3、3A、3B…切替弁、4…ボンベ、5、5A、5B、5C…第2の電磁弁、6…隔離弁、7…弁本体、8…シリンダ、9…空気作動弁付電磁弁、10…電磁弁の給気ライン、11…電磁弁の排気ライン、12…切替弁、13…切替弁の排気ライン、14…切替弁の給気ライン、15…逆止弁、17…第2の電磁弁の給気ライン、18…第2の電磁弁の排気ライン、21…建屋、21A、20B、51、55…配管、38…ライン、39…気体処理ライン、40…原子炉圧力容器、41…主蒸気配管、42…主蒸気隔離弁、43…主蒸気逃し安全弁、44…高圧炉心注水系、45…低圧炉心注水系、46…外部注水ライン、47、47A、47B…強制作動用シリンダ、48…原子炉格納容器、50…空気又は窒素作動弁、52…開閉弁、53…非常用ガス処理設備又はフィルタベント設備、54…排気塔、56…加圧器、57…加圧器逃し弁、58…原子炉建屋、59…原子炉圧力容器、60…蒸気発生器、61…主蒸気逃し弁。   DESCRIPTION OF SYMBOLS 1 ... Air-operated valve actuator, 2, 2A, 2B ... Solenoid valve, 3, 3A, 3B ... Switching valve, 4 ... Cylinder, 5, 5A, 5B, 5C ... Second solenoid valve, 6 ... Isolation valve, 7 ... Valve body, 8 ... Cylinder, 9 ... Solenoid valve with air operated valve, 10 ... Solenoid valve air supply line, 11 ... Solenoid valve exhaust line, 12 ... Switching valve, 13 ... Switching valve exhaust line, 14 ... Switching valve , 15 ... check valve, 17 ... second solenoid valve supply line, 18 ... second solenoid valve exhaust line, 21 ... building, 21A, 20B, 51, 55 ... piping, 38 ... 39, gas treatment line, 40 ... reactor pressure vessel, 41 ... main steam piping, 42 ... main steam isolation valve, 43 ... main steam relief safety valve, 44 ... high pressure core water injection system, 45 ... low pressure core water injection system, 46 ... External water injection line, 47, 47A, 47B ... Cylinder for forced operation, 48 ... Original Containment vessel, 50 ... Air or nitrogen operation valve, 52 ... Open / close valve, 53 ... Emergency gas treatment facility or filter vent facility, 54 ... Exhaust tower, 56 ... Pressurizer, 57 ... Pressurizer relief valve, 58 ... Reactor Building 59 ... Reactor pressure vessel 60 ... Steam generator 61 ... Main steam relief valve.

Claims (6)

気体の供給又は排出により開閉動作を行う気体作動弁を、該気体作動弁が設けられた建屋の外部から遠隔にて操作する遠隔操作装置において、
前記建屋の外部に設けられた第1の気体供給源と、前記建屋の内部に設けられた第2の気体供給源と、該第2の気体供給源と前記気体作動弁を接続する配管の途中に、前記気体作動弁への気体の流れの開閉を行う電磁弁とを備え、
記電磁弁の排気ラインに、前記電磁弁からの排気と該電磁弁への給気を切替える切替弁が設置され、該切替弁は、電源喪失時には、該切替弁の給気ラインから建屋外の排気ラインを経由して排気され、前記切替弁を作動させる気体がなくなると、前記切替弁の排気ラインから前記建屋内に排気されることを特徴とする遠隔操作装置。
In a remote control device for remotely operating a gas operated valve that opens and closes by supplying or discharging gas from the outside of the building provided with the gas operated valve,
A first gas supply source provided outside the building, a second gas supply source provided inside the building, and a pipe connecting the second gas supply source and the gas operation valve And an electromagnetic valve for opening and closing the flow of gas to the gas actuated valve,
Into the exhaust line before the SL solenoid valve, wherein the switching valve for switching the air supply installation to the exhaust and the solenoid valve from the solenoid valve, the switching valve, the loss of power, building out from the air supply line of the switching valve is exhausted through the exhaust line, the gas to create dynamic said switching valve is eliminated, the remote operation device characterized in that it is exhausted to the inside building from an exhaust line of the switching valve.
請求項1に記載の遠隔操作装置において、
前記第1の気体供給源は、前記建屋の外部に設けられた複数の駆動原のそれぞれに接続された複数の第2の弁を有することを特徴とする遠隔操作装置。
The remote control device according to claim 1,
The remote control device according to claim 1, wherein the first gas supply source has a plurality of second valves connected to a plurality of driving sources provided outside the building.
原子炉格納容器に収納されている原子炉圧力容器からの蒸気をタービン建屋に供給する主蒸気配管から分岐した配管の途中に設けられ、前記主蒸気配管内の蒸気を逃す安全弁を動作させるためのシリンダを遠隔にて操作する原子力プラントの遠隔操作装置において、
前記原子力プラントの遠隔操作装置は、請求項1又は2に記載の遠隔操作装置を備えていることを特徴とする原子力プラントの遠隔操作装置。
Provided in the middle of a pipe branched from the main steam pipe for supplying the steam from the reactor pressure vessel stored in the reactor containment vessel to the turbine building, and for operating a safety valve for releasing the steam in the main steam pipe In a remote control device of a nuclear power plant that operates a cylinder remotely,
A remote control device for a nuclear power plant comprising the remote control device according to claim 1 or 2 .
原子炉圧力容器が収納されている原子炉格納容器からの気体を排気塔から排出する非常用ガス処理系に開閉弁が設置され、前記原子炉格納容器の圧力が一定値以上になった際に前記開閉弁を開動作して前記原子炉格納容器内の気体を前記非常用ガス処理系から排気する気体作動弁を動作させるためのシリンダを遠隔にて操作する原子力プラントの遠隔操作装置において、
前記原子力プラントの遠隔操作装置は、請求項1又は2に記載の遠隔操作装置を備えていることを特徴とする原子力プラントの遠隔操作装置。
When an on-off valve is installed in the emergency gas treatment system that discharges the gas from the reactor containment vessel in which the reactor pressure vessel is stored from the exhaust tower, and the pressure in the reactor containment vessel exceeds a certain value In a remote control device of a nuclear power plant that remotely operates a cylinder for operating a gas operating valve that opens the on-off valve to exhaust gas in the reactor containment vessel from the emergency gas processing system,
A remote control device for a nuclear power plant comprising the remote control device according to claim 1 or 2 .
原子炉圧力容器に配管によって接続され、前記原子炉圧力容器の圧力、水位を保持する加圧器に設置され、必要に応じて前記加圧器の圧力を強制的に減圧する加圧器逃がし弁を動作させるためのシリンダを遠隔にて操作する原子力プラントの遠隔操作装置において、
前記原子力プラントの遠隔操作装置は、請求項1又は2に記載の遠隔操作装置を備えていることを特徴とする原子力プラントの遠隔操作装置。
Connected to the reactor pressure vessel by piping, installed in the pressurizer that holds the pressure and water level of the reactor pressure vessel, and operates the pressurizer relief valve that forcibly depressurizes the pressure of the pressurizer as necessary In a remote control device for a nuclear power plant that remotely operates a cylinder for
A remote control device for a nuclear power plant comprising the remote control device according to claim 1 or 2 .
原子炉圧力容器に配管によって接続され、前記原子炉圧力容器に冷却水を供給する蒸気発生器内の蒸気を逃す主蒸気逃がし安全弁を動作させるためのシリンダを遠隔にて操作する原子力プラントの遠隔操作装置において、
前記原子力プラントの遠隔操作装置は、請求項1又は2に記載の遠隔操作装置を備えていることを特徴とする原子力プラントの遠隔操作装置。
Remote operation of a nuclear power plant that is connected to a reactor pressure vessel by piping and remotely operates a cylinder for operating a main steam relief safety valve that escapes steam in a steam generator that supplies cooling water to the reactor pressure vessel. In the device
A remote control device for a nuclear power plant comprising the remote control device according to claim 1 or 2 .
JP2013192482A 2013-09-18 2013-09-18 Remote control device and remote control device of nuclear power plant Active JP5781575B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013192482A JP5781575B2 (en) 2013-09-18 2013-09-18 Remote control device and remote control device of nuclear power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013192482A JP5781575B2 (en) 2013-09-18 2013-09-18 Remote control device and remote control device of nuclear power plant

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2013044416A Division JP5373213B1 (en) 2013-03-06 2013-03-06 Gas supply device and air or nitrogen supply device of nuclear power plant

Publications (2)

Publication Number Publication Date
JP2014173723A JP2014173723A (en) 2014-09-22
JP5781575B2 true JP5781575B2 (en) 2015-09-24

Family

ID=51695148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013192482A Active JP5781575B2 (en) 2013-09-18 2013-09-18 Remote control device and remote control device of nuclear power plant

Country Status (1)

Country Link
JP (1) JP5781575B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6118231B2 (en) * 2013-10-30 2017-04-19 日立Geニュークリア・エナジー株式会社 Gas supply device and air or nitrogen supply device of nuclear power plant
JP6522563B2 (en) * 2016-08-19 2019-05-29 日立Geニュークリア・エナジー株式会社 Motorized valve
JP7353243B2 (en) * 2020-07-13 2023-09-29 日立Geニュークリア・エナジー株式会社 Air operated valve drive mechanism
KR102513245B1 (en) * 2021-02-22 2023-03-22 중앙대학교 산학협력단 Gas supply system for driving Pneumatic Actuator and Operation method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4576788A (en) * 1984-01-09 1986-03-18 Westinghouse Electric Corp. Straddle-type support structure for nuclear power plant pressurizer valves
JP2502224B2 (en) * 1991-09-19 1996-05-29 株式会社日立製作所 Air operated valve
DE4418660A1 (en) * 1994-05-27 1995-11-30 Siemens Ag Pressure release valve for nuclear reactor pressure vessel
JP2001074881A (en) * 1999-09-07 2001-03-23 Mitsubishi Heavy Ind Ltd Steam-heating device and nuclear power generation facility
JP5642515B2 (en) * 2010-11-24 2014-12-17 日立Geニュークリア・エナジー株式会社 Plant with piping having valve stem and boiling water nuclear power plant
JP5665644B2 (en) * 2011-04-27 2015-02-04 株式会社東芝 Reactor containment decompression device and decompression method

Also Published As

Publication number Publication date
JP2014173723A (en) 2014-09-22

Similar Documents

Publication Publication Date Title
JP5373213B1 (en) Gas supply device and air or nitrogen supply device of nuclear power plant
JP5781575B2 (en) Remote control device and remote control device of nuclear power plant
JP4768855B2 (en) Safety valve drive system
JP6434992B2 (en) Passive decompression system for pressurized containers in nuclear reactors.
JP5676905B2 (en) Relief safety valve drive system
EP2765579B1 (en) Reactor pressure vessel depressurization system and main steam safety relief valve drive apparatus
JP6118231B2 (en) Gas supply device and air or nitrogen supply device of nuclear power plant
US9916908B2 (en) Gas supply apparatus and air or nitrogen supply apparatus of nuclear plant
JP6208569B2 (en) Gas supply device and air or nitrogen supply device of nuclear power plant
JP2012230057A (en) Decompression device of containment vessel and decompression method of the same
KR100808777B1 (en) Vent gas treatment system for liquefied natural gas regasification facility
JP5685426B2 (en) Emergency fluid source for harsh environments
JP2013104867A (en) Nuclear power plant
JP2009191943A (en) Valve assembly and fuel cell system
CN112309598A (en) Overpressure protection system of nuclear power station and nuclear power station
KR20040073361A (en) Submarine
CN210245082U (en) Overpressure protection system of nuclear power station and nuclear power station
JP7349375B2 (en) Blowout panel opening device and blowout panel operating method
JP2015014349A (en) Emergency air supply system
KR20170110198A (en) Gas valve unit for controling gas supply
JP2015087232A5 (en)
JP6491984B2 (en) Reactor pressure vessel decompression equipment
RU2583175C2 (en) Hydraulic equipment for valves intended for production and transportation of mainly fossil fuel
JPS62148890A (en) Cooling spray system of container for nuclear reactor
Kuzma Reconstruction of steam generators super emergency feadwater supply system (SHNC) and steam dump stations to the atmosphere system PSA

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140729

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150302

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150714

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150715

R150 Certificate of patent or registration of utility model

Ref document number: 5781575

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150