JP2012230057A - Decompression device of containment vessel and decompression method of the same - Google Patents

Decompression device of containment vessel and decompression method of the same Download PDF

Info

Publication number
JP2012230057A
JP2012230057A JP2011099644A JP2011099644A JP2012230057A JP 2012230057 A JP2012230057 A JP 2012230057A JP 2011099644 A JP2011099644 A JP 2011099644A JP 2011099644 A JP2011099644 A JP 2011099644A JP 2012230057 A JP2012230057 A JP 2012230057A
Authority
JP
Japan
Prior art keywords
closing
self
isolation valve
pipe
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011099644A
Other languages
Japanese (ja)
Other versions
JP5665644B2 (en
Inventor
Masanori Ino
正典 猪野
Isao Sakaki
勲 榊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2011099644A priority Critical patent/JP5665644B2/en
Publication of JP2012230057A publication Critical patent/JP2012230057A/en
Application granted granted Critical
Publication of JP5665644B2 publication Critical patent/JP5665644B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a decompression device or the like of a containment vessel capable of venting gas in the containment vessel at any pressure level and further of venting the gas in the containment vessel even when station blackout and loss of air pressure that is a driving source for air-operated valves occur.SOLUTION: A decompression device of a containment vessel includes: an exhaust pipe that transfers gas in the containment vessel to an exhaust tower and exhausts the gas; a self-opening type first isolating valve that performs opening operation by using gas pressure in the exhaust pipe as a driving source and allows the gas to be transferred through the exhaust pipe; a self-opening type first isolating valve driving line that has a pressure guiding pipe for introducing gas in the exhaust pipe to a driving part of the self-opening type first isolating valve and a valve driven by DC power supply; a self-opening type second isolating valve that is disposed downstream from the self-opening type first isolating valve of the exhaust pipe and performs opening operation by using the gas pressure in the exhaust pipe as the driving source; and a self-opening type second isolating valve driving line that has a pressure guiding pipe for introducing the gas in the exhaust pipe to a driving part of the self-opening type second isolating valve and a valve driven by DC power supply.

Description

本発明は、原子炉に係り、特に、緊急に原子炉圧力容器および原子炉格納容器への代替注水が必要になった場合に、圧力が高くなった原子炉格納容器内を任意の圧力レベルに減圧して、吐出圧の低いポンプによる注水も可能にした原子炉格納容器の減圧装置及び減圧方法に関する。   The present invention relates to a nuclear reactor, and in particular, when an alternative water injection to the reactor pressure vessel and the containment vessel is urgently required, the pressure inside the containment vessel where the pressure is increased is set to an arbitrary pressure level. The present invention relates to a reactor containment vessel decompression device and a decompression method that are decompressed and can be injected with a pump having a low discharge pressure.

従来から沸騰水型原子炉(BWR)では、排気管に、電動弁と、設定破裂圧力に達すると破裂するラプチャーディスクとを直列に配設し、原子炉格納容器内の圧力が異常に上昇した際に、原子炉格納容器内の気体を大気中にベントするための機構が知られている(例えば、特許文献1参照。)。   Conventionally, in a boiling water reactor (BWR), an electric valve and a rupture disk that bursts when the set burst pressure is reached are arranged in series in the exhaust pipe, and the pressure in the reactor containment vessel rises abnormally. At the same time, a mechanism for venting the gas in the reactor containment vessel to the atmosphere is known (for example, see Patent Document 1).

図4に、このような沸騰水型原子炉(BWR)の一例として、Mark−I型BWRの概略構成を示す。図4に示すように、原子炉圧力容器1が鋼鉄製の原子炉格納容器2の中に内蔵されている。   FIG. 4 shows a schematic configuration of a Mark-I type BWR as an example of such a boiling water reactor (BWR). As shown in FIG. 4, the reactor pressure vessel 1 is built in a steel reactor containment vessel 2.

Mark−I型BWRの原子炉格納容器2は、原子炉圧力容器1及び再循環系(図示せず)を取り囲むフラスコ型のドライウェル3、その下に同心的に配置されたドーナツ型のサプレッションチャンバー4、ドライウェル3とサプレッションチャンバー4を放射状に連結する複数のベント管5、サプレッションチャンバー4の内部空間でベント管5の先端に連結されたドーナツ型のベントヘッダ6、ベントヘッダ6に接続された複数のダウンカマーパイプ7等の圧力抑制系から構成されている。   The Mark-I type BWR reactor containment vessel 2 includes a reactor pressure vessel 1 and a flask-type dry well 3 surrounding a recirculation system (not shown), and a donut-type suppression chamber concentrically disposed below the flask-type dry well 3. 4, a plurality of vent pipes 5 that radially connect the dry well 3 and the suppression chamber 4, a donut-shaped vent header 6 connected to the tip of the vent pipe 5 in the internal space of the suppression chamber 4, and the vent header 6 It is comprised from the pressure suppression system, such as several downcomer pipes 7. FIG.

サプレッションチャンバー4にはプール水が張られており、ダウンカマーパイプ7の先端部分がこの水面下に没している。   The suppression chamber 4 is filled with pool water, and the tip portion of the downcomer pipe 7 is submerged below the surface of the water.

主蒸気系配管8に取り付けられた主蒸気逃がし安全弁9から延びる主蒸気逃がし管10の先端もサプレッションチャンバー4の水面下まで導かれている。   The leading end of the main steam escape pipe 10 extending from the main steam relief safety valve 9 attached to the main steam system pipe 8 is also led to the surface of the suppression chamber 4.

そして、原子炉圧力容器1内の圧力が過度に上昇した場合には、この主蒸気逃がし安全弁9を作動させて原子炉圧力容器1からの蒸気の一部をサプレッションチャンバー4のプール水中に放出して原子炉圧力容器1内の圧力上昇が抑制される。   When the pressure in the reactor pressure vessel 1 rises excessively, the main steam relief safety valve 9 is operated to release a part of the steam from the reactor pressure vessel 1 into the pool water of the suppression chamber 4. Thus, the pressure rise in the reactor pressure vessel 1 is suppressed.

サプレッションチャンバー4のプール水は、残留熱除去系(RHR)により冷却されて循環しているが、この残留熱除去系が正常に機能しない、主蒸気逃がし安全弁が一旦開いた後機器の故障により閉弁しない、などの事故が重なった場合には、原子炉格納容器2内の圧力、温度が急激に上昇し、最終的には、原子炉格納容器2の設計限界を超える危険性が発生する。   The pool water in the suppression chamber 4 is cooled and circulated by the residual heat removal system (RHR), but this residual heat removal system does not function properly. After the main steam relief valve is opened, it is closed due to equipment failure. When accidents such as failure do not occur, the pressure and temperature in the reactor containment vessel 2 rapidly increase, and finally there is a risk of exceeding the design limit of the reactor containment vessel 2.

原子炉格納容器2内に放出された放射性物質を含む気体等を安全に処理する設備として非常用ガス処理系(SGTS)14が設けられている。非常用ガス処理系14は、図示を省略した湿分除去装置、高性能粒子フィルタ、ヨウ素用チャコールフィルタ、排気ファン等から構成されている。   An emergency gas processing system (SGTS) 14 is provided as a facility for safely processing a gas containing a radioactive substance released into the reactor containment vessel 2. The emergency gas treatment system 14 includes a moisture removal device, a high performance particle filter, an iodine charcoal filter, an exhaust fan, etc. (not shown).

原子炉格納容器2のサプレッションチャンバー4には、サプレッションチャンバー4と排気塔15との間を連通する排気管12が配設されている。この排気管12は原子炉格納容器2内の気体を排気塔15に移送して大気に放出するためのものである。この排気管12には、上流側から順に、空気圧駆動弁からなるサプレッションチャンバー側第1隔離弁11、電動弁(MO)16、ラプチャーディスク17がこの順で配設されている。   An exhaust pipe 12 that communicates between the suppression chamber 4 and the exhaust tower 15 is disposed in the suppression chamber 4 of the reactor containment vessel 2. The exhaust pipe 12 is for transferring the gas in the reactor containment vessel 2 to the exhaust tower 15 and releasing it to the atmosphere. In the exhaust pipe 12, a suppression chamber side first isolation valve 11, a motor operated valve (MO) 16, and a rupture disk 17 each including a pneumatically driven valve are arranged in this order from the upstream side.

また、排気管12の、サプレッションチャンバー側第1隔離弁11と電動弁16との間から分岐してドライウェル3に接続された分岐排気管12aが配設されており、この分岐排気管12aには、ドライウェル側第1隔離弁11aが配設されている。排気管12と分岐排気管12aは耐圧配管とされている。   Further, a branch exhaust pipe 12a branched from the suppression chamber side first isolation valve 11 and the motor operated valve 16 of the exhaust pipe 12 and connected to the dry well 3 is disposed. Is provided with a dry well side first isolation valve 11a. The exhaust pipe 12 and the branch exhaust pipe 12a are pressure-resistant piping.

さらに、上記排気管12のサプレッションチャンバー側第1隔離弁11と、電動弁(MO)16との間から分岐し、非常用ガス処理系14を介して排気塔15に接続されたパージ配管18が配設されており、パージ配管18には、空気圧駆動とされた第2隔離弁13が配設されている。このパージ配管18は、耐圧配管に比べて耐圧性の低い通常配管から構成されている。   Further, a purge pipe 18 branched from the suppression chamber side first isolation valve 11 of the exhaust pipe 12 and the motor operated valve (MO) 16 and connected to the exhaust tower 15 via the emergency gas processing system 14 is provided. The purge pipe 18 is provided with a second isolation valve 13 that is pneumatically driven. The purge pipe 18 is composed of a normal pipe having a lower pressure resistance than that of the pressure resistant pipe.

原子炉格納容器2内の圧力が正常であり、原子炉格納容器2内を窒素ガスでパージするような場合、サプレッションチャンバー側第1隔離弁11と第2隔離弁13が遠隔操作で開かれ、サプレッションチャンバー4内の気体が、非常用ガス処理系14で処理され、放射性物質等が除去された後、排気塔15から高所放出される。   When the pressure inside the reactor containment vessel 2 is normal and the inside of the reactor containment vessel 2 is purged with nitrogen gas, the suppression chamber side first isolation valve 11 and the second isolation valve 13 are opened remotely, After the gas in the suppression chamber 4 is processed by the emergency gas processing system 14 to remove radioactive substances and the like, it is discharged from the exhaust tower 15 at a high place.

一方、原子炉格納容器2の圧力、温度が急激に上昇して原子炉格納容器2が損傷する可能性が考えられる場合には、サプレッションチャンバー側第1隔離弁11又はドライウェル側第1隔離弁11aと、電動弁16とが遠隔操作で開放される。これによって、排気管12内の気体の圧力が予め設定したラプチャーディスク17の設定破裂圧力に達するとラプチャーディスク17が破裂して高圧の気体が急速に放出され、過圧による原子炉格納容器2の損傷が防止される。   On the other hand, if there is a possibility that the pressure and temperature of the reactor containment vessel 2 will suddenly rise and damage the reactor containment vessel 2, the suppression chamber side first isolation valve 11 or the dry well side first isolation valve will be described. 11a and the motor-operated valve 16 are opened by remote control. As a result, when the pressure of the gas in the exhaust pipe 12 reaches the preset burst pressure of the rupture disk 17, the rupture disk 17 bursts and high pressure gas is rapidly released, and the reactor containment vessel 2 of the reactor containment vessel 2 due to overpressure is released. Damage is prevented.

ところで、このような従来のラプチャーディスク17の破裂により原子炉格納容器2の損傷に至る過圧を防ぐようにした原子炉では、ラプチャーディスク17の破裂設定圧力が原子炉格納容器2の最高使用圧力以上の圧力に設定されているため、この圧力以下での原子炉格納容器2内の気体をベントすることはできない。   By the way, in such a reactor in which the conventional rupture disk 17 is ruptured so as to prevent overpressure leading to damage to the reactor containment vessel 2, the rupture set pressure of the rupture disc 17 is the maximum operating pressure of the reactor containment vessel 2. Since it is set to the above pressure, the gas in the reactor containment vessel 2 below this pressure cannot be vented.

したがって、原子炉冷却材喪失事故(LOCA)時のように、緊急に炉心への代替注水が必要になった場合には、原子炉格納容器の最大使用圧力以上の吐出圧力を持つポンプしか使うことができず、ポンプの調達範囲が制約されるという課題があった。   Therefore, in the event of an urgent need for alternative water injection to the reactor core, such as during a reactor coolant loss accident (LOCA), only pumps with discharge pressures greater than the maximum operating pressure of the containment vessel should be used. There was a problem that the pump procurement range was limited.

また、電動弁16は、交流電源で駆動され、サプレッションチャンバー側第1隔離弁11及びドライウェル側第1隔離弁11aは、空気圧で駆動され制御電源(直流電源)によって制御される。このため、外部電源喪失及び非常用電源喪失が重なる全交流電源喪失(SBO)、又は空気作動弁の駆動源である空気圧の喪失、或いは弁制御のための制御電源(直流電源)の喪失のいずれかが発生した場合には、原子炉格納容器2内の気体のベントが行えなくなる可能性があった。   The motor operated valve 16 is driven by an AC power source, and the suppression chamber side first isolation valve 11 and the dry well side first isolation valve 11a are driven by air pressure and controlled by a control power source (DC power source). For this reason, either the total AC power loss (SBO) in which the loss of the external power supply and the emergency power supply overlap, the loss of the air pressure that is the drive source of the air operated valve, or the loss of the control power supply (DC power supply) for valve control In the case where a stagnation occurs, there is a possibility that the gas in the reactor containment vessel 2 cannot be vented.

特開平3−235093号公報Japanese Patent Laid-Open No. 3-235093

従来のラプチャーディスクの破裂により原子炉格納容器の過圧による損傷を防ぐ技術では、ラプチャーディスクの破裂設定圧力が原子炉格納容器の最高使用圧力以上の圧力に設定されるため、原子炉格納容器への緊急の代替注水が必要になった場合に、原子炉格納容器の最大使用圧力以上の吐出圧力を持つポンプしか使うことができず、ポンプの調達範囲が制約されるという課題があった。   In the conventional technology for preventing damage to the reactor containment vessel due to overpressure by rupture of the rupture disk, the burst set pressure of the rupture disk is set to a pressure higher than the maximum use pressure of the containment vessel. When urgent alternative water injection was required, only pumps having discharge pressures higher than the maximum operating pressure of the containment vessel could be used, and there was a problem that the pump procurement range was limited.

また、全交流電源喪失(SBO)、又は空気作動弁の駆動源である空気圧の喪失、或いは弁制御のための制御電源(直流電源)の喪失のいずれかが発生した場合には、原子炉格納容器2内の気体のベントを行えなくなる可能性があった。   In addition, if either all AC power loss (SBO), loss of air pressure, which is the driving source of the air operated valve, or loss of control power supply (DC power supply) for valve control occurs, the reactor is stored. There was a possibility that the gas in the container 2 could not be vented.

本発明は、かかる従来の課題を解決するためになされたもので、任意の圧力レベルで、原子炉格納容器内の気体をベントすることができるとともに、全交流電源喪失、空気作動弁の駆動源である空気圧の喪失が発生した際にも、原子炉格納容器内の気体をベントすることのできる原子炉格納容器の減圧装置及び減圧方法を提供することを目的とする。   The present invention has been made to solve such a conventional problem, and can vent the gas in the reactor containment vessel at an arbitrary pressure level, and also loses all AC power and drives the air-operated valve. An object of the present invention is to provide a depressurization apparatus and depressurization method for a reactor containment vessel that can vent the gas in the reactor containment vessel even when air pressure loss occurs.

本発明の原子炉格納容器の減圧装置の一態様は、 原子炉圧力容器を収容する原子炉格納容器のサプレッションチャンバーに接続され、当該原子炉格納容器内の気体を排気塔に移送して大気に放出する排気管と、前記排気管内の前記原子炉格納容器側の気体圧力を駆動源として開動作し当該排気管を介した気体の移送を許容する自力開閉式第1隔離弁と、前記排気管の前記自力開閉式第1隔離弁より上流側の気体を前記自力開閉式第1隔離弁の駆動部に導入するための第1導圧配管と当該第1導圧配管に介挿された第1直流電源駆動弁とを有する自力開閉式第1隔離弁駆動用ラインと、前記排気管の前記自力開閉式第1隔離弁より下流側に配設され、当該排気管内の前記原子炉格納容器側の気体圧力を駆動源として開動作する自力開閉式第2隔離弁と、前記排気管の前記自力開閉式第2隔離弁より上流側の気体を前記自力開閉式第2隔離弁の駆動部に導入するための第2導圧配管と当該第2導圧配管に介挿された第2直流電源駆動弁とを有する自力開閉式第2隔離弁駆動用ラインと、を有することを特徴とする。   One aspect of the pressure reduction device for a reactor containment vessel according to the present invention is connected to a suppression chamber of a reactor containment vessel that contains a reactor pressure vessel, and transfers the gas in the reactor containment vessel to an exhaust tower to the atmosphere. An exhaust pipe to be discharged, a self-opening / closing first isolation valve that opens by using the gas pressure on the reactor containment vessel side in the exhaust pipe as a driving source, and allows gas transfer through the exhaust pipe, and the exhaust pipe The first pressure guiding pipe for introducing the gas upstream from the self-closing on / off type first isolation valve to the drive part of the self-closing on / off type first isolation valve and the first pressure inserted into the first pressure guiding pipe A self-closing on / off type first isolation valve driving line having a DC power supply driving valve, and disposed on the downstream side of the self-closing on / off type first isolation valve of the exhaust pipe, on the reactor containment vessel side in the exhaust pipe Self-opening / closing type 2 that opens with gas pressure as the driving source A second pressure guiding pipe for introducing a gas upstream of the self-closing on / off type second isolation valve of the exhaust pipe into the driving unit of the self-closing on / off type second isolation valve; and the second pressure guiding pipe And a second isolation valve drive line having a second DC power supply drive valve interposed between the first and second power supply valves.

本発明の原子炉格納容器の減圧方法の一態様は、原子炉圧力容器を収容する原子炉格納容器のサプレッションチャンバーに接続され、当該原子炉格納容器内の気体を排気塔に移送して大気に放出する排気管と、前記排気管内の前記原子炉格納容器側の気体圧力を駆動源として開動作し当該排気管を介した気体の移送を許容する自力開閉式第1隔離弁と、前記排気管の前記自力開閉式第1隔離弁より上流側の気体を前記自力開閉式第1隔離弁の駆動部に導入するための第1導圧配管と当該第1導圧配管に介挿された第1直流電源駆動弁とを有する自力開閉式第1隔離弁駆動用ラインと、前記排気管の前記自力開閉式第1隔離弁より下流側に配設され、当該排気管内の前記原子炉格納容器側の気体圧力を駆動源として開動作する自力開閉式第2隔離弁と、前記排気管の前記自力開閉式第2隔離弁より上流側の気体を前記自力開閉式第2隔離弁の駆動部に導入するための第2導圧配管と当該第2導圧配管に介挿された第2直流電源駆動弁とを有する自力開閉式第2隔離弁駆動用ラインと、を配設し、前記第1直流電源駆動弁と、前記第2直流電源駆動弁に通電して開弁することによって、前記原子炉圧力容器内の気体を前記排気管を通じて大気に放出することを特徴とする。   One aspect of the method for depressurizing a reactor containment vessel according to the present invention is connected to a suppression chamber of a reactor containment vessel containing a reactor pressure vessel, and transfers the gas in the reactor containment vessel to an exhaust tower to the atmosphere. An exhaust pipe to be discharged, a self-opening / closing first isolation valve that opens by using the gas pressure on the reactor containment vessel side in the exhaust pipe as a driving source, and allows gas transfer through the exhaust pipe, and the exhaust pipe The first pressure guiding pipe for introducing the gas upstream from the self-closing on / off type first isolation valve to the drive part of the self-closing on / off type first isolation valve and the first pressure inserted into the first pressure guiding pipe A self-closing on / off type first isolation valve driving line having a DC power supply driving valve, and disposed on the downstream side of the self-closing on / off type first isolation valve of the exhaust pipe, on the reactor containment vessel side in the exhaust pipe A self-opening / closing second gap that opens using gas pressure as the drive source A valve, a second pressure guiding pipe for introducing a gas upstream of the self-closing on / off type second isolation valve of the exhaust pipe into a drive unit of the self-powering on / off type second isolation valve, and the second pressure guiding pipe A self-closing on / off-type second isolation valve driving line having a second DC power supply driving valve inserted therein, and energizing the first DC power supply driving valve and the second DC power supply driving valve. By opening the valve, the gas in the reactor pressure vessel is released to the atmosphere through the exhaust pipe.

本発明によれば、任意の圧力レベルで、原子炉格納容器内の気体をベントすることができるとともに、全交流電源喪失、空気作動弁の駆動源である空気圧の喪失が発生した際にも、原子炉格納容器内の気体をベントすることのできる原子炉の減圧装置及び減圧方法を提供することができる。   According to the present invention, it is possible to vent the gas in the reactor containment vessel at an arbitrary pressure level, and also when the loss of all the AC power supply and the loss of air pressure that is the drive source of the air operation valve occur. It is possible to provide a depressurizing device and a depressurizing method for a reactor capable of venting a gas in a reactor containment vessel.

本発明の第1実施形態の要部構成を模式的に示す図。The figure which shows typically the principal part structure of 1st Embodiment of this invention. 本発明の第2実施形態の要部構成を模式的に示す図。The figure which shows typically the principal part structure of 2nd Embodiment of this invention. 隔離弁の構成を模式的に示す図。The figure which shows the structure of an isolation valve typically. 従来の原子炉の要部構成を模式的に示す図。The figure which shows typically the principal part structure of the conventional nuclear reactor.

次に、本発明を、Mark−I型沸騰水型原子炉に適用した実施形態について、図面を参照して説明する。   Next, an embodiment in which the present invention is applied to a Mark-I boiling water reactor will be described with reference to the drawings.

図1は、本発明の第1実施形態に係る原子炉の要部概略構成を示す系統図である。なお、図1において、図4に示した従来の原子炉格納容器の減圧装置と対応する部分には同一符号を付して重複する説明を省略する。   FIG. 1 is a system diagram showing a schematic configuration of a main part of a nuclear reactor according to the first embodiment of the present invention. 1, parts corresponding to those of the conventional reactor containment decompression device shown in FIG.

図1に示す原子炉は、いわゆるMark−I型BWRであって、ドライウェル3と、サプレッションチャンバー4、ベント管5、ベントヘッダ6、ダウンカマーパイプ7等の圧力抑制系から主要部分が構成されている。   The nuclear reactor shown in FIG. 1 is a so-called Mark-I type BWR, and is composed mainly of a dry well 3 and a pressure suppression system such as a suppression chamber 4, a vent pipe 5, a vent header 6, and a downcomer pipe 7. ing.

原子炉格納容器2には、サプレッションチャンバー4を貫通して内部空間に開口する排気管12と、排気管12から分岐しドライウェル3を貫通して内部空間に開口する分岐排気管12aが配設されている。排気管12には、通常の空気圧駆動弁からなるサプレッションチャンバー側第1隔離弁11が配設されている。また、このサプレッションチャンバー側第1隔離弁11をバイパスするように並列に、通常の空気圧駆動弁からなるパージ弁20と、自力開閉式空気作動弁からなる自力開閉式第1隔離弁21が配設されている。パージ弁20は、サプレッションチャンバー側第1隔離弁11及び自力開閉式第1隔離弁21に比べて容量の少ない弁であり、通常時に原子炉格納容器2内を窒素ガスでパージする際等に開かれる。   The reactor containment vessel 2 is provided with an exhaust pipe 12 that passes through the suppression chamber 4 and opens into the internal space, and a branch exhaust pipe 12a that branches from the exhaust pipe 12 and passes through the dry well 3 and opens into the internal space. Has been. The exhaust pipe 12 is provided with a suppression chamber side first isolation valve 11 made of a normal pneumatic drive valve. In addition, a purge valve 20 comprising a normal pneumatically driven valve and a self-closing on / off type first isolation valve 21 comprising a self-operating air-operating valve are arranged in parallel so as to bypass the suppression chamber side first isolation valve 11. Has been. The purge valve 20 has a smaller capacity than the suppression chamber side first isolation valve 11 and the self-operating first isolation valve 21, and is opened when purging the reactor containment vessel 2 with nitrogen gas during normal operation. It is.

上記自力開閉式第1隔離弁21は、排気管12内の原子炉格納容器2側の気体圧力を駆動源として開動作し排気管12を介した気体の移送を許容する。この自力開閉式第1隔離弁21には、排気管12の自力開閉式第1隔離弁21より上流側の気体を自力開閉式第1隔離弁21の駆動部に導入するための導圧配管22aと導圧配管22aに介挿され直流電源によって駆動される直流電源駆動弁22bとを有する自力開閉式第1隔離弁駆動用ライン22が配設されている。   The self-opening / closing first isolation valve 21 opens by using the gas pressure on the reactor containment vessel 2 side in the exhaust pipe 12 as a driving source, and allows the gas to be transferred through the exhaust pipe 12. The self-opening / closing first isolation valve 21 has a pressure guiding pipe 22 a for introducing a gas upstream of the self-opening / closing first isolation valve 21 of the exhaust pipe 12 into the drive unit of the self-opening / closing first isolation valve 21. And a self-opening / closing first isolation valve driving line 22 having a direct current power supply valve 22b inserted in the pressure guiding pipe 22a and driven by a direct current power supply.

また、排気管12の自力開閉式第1隔離弁21より下流側には、自力開閉式空気作動弁からなる自力開閉式第2隔離弁31が配設されている。自力開閉式第2隔離弁31は、排気管12内の原子炉格納容器2側の気体圧力を駆動源として開動作し排気管12を介した気体の移送を許容する。この自力開閉式第2隔離弁31には、排気管12の自力開閉式第2隔離弁31より上流側の気体を自力開閉式第2隔離弁31の駆動部に導入するための導圧配管32aと導圧配管32aに介挿され直流電源によって駆動される直流電源駆動弁32bとを有する自力開閉式第2隔離弁駆動用ライン32が配設されている。   A self-opening / closing second isolation valve 31 comprising a self-opening / closing air-operating valve is disposed downstream of the exhaust pipe 12 from the self-opening / closing first isolation valve 21. The self-closing on / off-type second isolation valve 31 opens by using the gas pressure on the reactor containment vessel 2 side in the exhaust pipe 12 as a drive source, and allows the transfer of gas through the exhaust pipe 12. In this self-closing on / off type second isolation valve 31, a pressure guiding pipe 32 a for introducing a gas upstream of the self-closing on / off type second isolation valve 31 of the exhaust pipe 12 into the drive part of the self-closing on / off type second isolation valve 31. And a self-opening / closing second isolation valve drive line 32 having a DC power supply drive valve 32b inserted in the pressure guiding pipe 32a and driven by a DC power supply.

また、排気管12から分岐してドライウェル3の内部空間に開口する分岐排気管12aには、ドライウェル3側の分岐排気管12a内の気体圧力を駆動源として開動作し、分岐排気管12a及び排気管12を介した気体の移送を許容するドライウェル側自力開閉式第1隔離弁23が配設されている。このドライウェル側自力開閉式第1隔離弁23には、分岐排気管12aのドライウェル側自力開閉式第1隔離弁23より上流側の気体をドライウェル側自力開閉式第1隔離弁23の駆動部に導入するための導圧配管24aとこの導圧配管24aに介挿された直流電源駆動弁24bとを有するドライウェル側自力開閉式第1隔離弁駆動用ライン24が配設されている。   Further, the branch exhaust pipe 12a branched from the exhaust pipe 12 and opened to the internal space of the dry well 3 is opened by using the gas pressure in the branch exhaust pipe 12a on the dry well 3 side as a drive source, and the branch exhaust pipe 12a is opened. Also, a dry well side self-closing first isolation valve 23 that allows gas transfer through the exhaust pipe 12 is provided. In the dry well side self-closing first isolation valve 23, the gas upstream of the dry well side self-closing first isolation valve 23 of the branch exhaust pipe 12a is driven to drive the dry well side self-closing first isolation valve 23. A dry well side self-opening / closing first isolation valve driving line 24 having a pressure guiding pipe 24a for introduction into the section and a DC power supply driving valve 24b inserted in the pressure guiding pipe 24a is provided.

さらに、排気管12から分岐し、非常用ガス処理系14を介して排気塔15に接続されたパージ配管18には、自力開閉式空気作動弁からなるパージ側自力開閉式第2隔離弁33が配設されている。このパージ側自力開閉式第2隔離弁33には、パージ配管18のパージ側自力開閉式第2隔離弁33より上流側の気体をパージ側自力開閉式第2隔離弁33の駆動部に導入するための導圧配管34aと導圧配管34aに介挿され直流電源によって駆動される直流電源駆動弁34bとを有するパージ側自力開閉式第2隔離弁駆動用ライン34が配設されている。   Further, a purge side self-closing on / off type second isolation valve 33 comprising a self-opening / closing type air operating valve is provided in the purge pipe 18 branched from the exhaust pipe 12 and connected to the exhaust tower 15 via the emergency gas processing system 14. It is arranged. In the purge side self-closing on / off type second isolation valve 33, the gas upstream of the purge side self-closing on / off type second isolation valve 33 in the purge pipe 18 is introduced into the drive unit of the purge side self-closing on / off type second isolation valve 33. A purge side self-closing on / off type second isolation valve driving line 34 having a pressure guiding pipe 34a for connecting to the pressure guiding pipe 34a and a DC power source driving valve 34b that is driven by a DC power source is provided.

パージ配管18のパージ側自力開閉式第2隔離弁33の下流側には、自力開閉式空気作動弁からなり、パージ配管18のパージ側自力開閉式第2隔離弁33側の気体圧力を駆動源として閉動作するパージ配管閉塞弁37が配設されている。このパージ配管閉塞弁37には、パージ配管18のパージ配管閉塞弁37より上流側の気体をパージ配管閉塞弁37の駆動部に導入するための導圧配管を有するパージ配管閉塞弁駆動用ライン38が配設されている。   A downstream side of the purge side self-closing on / off type second isolation valve 33 of the purge pipe 18 is a self-opening / closing type air operated valve, and the gas pressure on the purge side self-closing on / off type second isolation valve 33 side of the purge pipe 18 is driven. As shown, a purge pipe closing valve 37 that is closed is provided. The purge pipe blocking valve 37 includes a purge pipe blocking valve drive line 38 having a pressure guiding pipe for introducing a gas upstream of the purge pipe blocking valve 37 of the purge pipe 18 into the drive section of the purge piping blocking valve 37. Is arranged.

パージ配管閉塞弁37は、常時開とされており、パージ側自力開閉式第2隔離弁33が開かれている時に、パージ配管18内の圧力が上昇してパージ配管18の耐圧を超えるような圧力となった場合に、この気体の圧力によって自動的に閉塞する構成となっている。   The purge pipe closing valve 37 is normally open, and when the purge side self-closing second isolation valve 33 is opened, the pressure in the purge pipe 18 rises and exceeds the pressure resistance of the purge pipe 18. When the pressure is reached, the gas is automatically closed by the pressure of the gas.

また、パージ配管18には、非常用ガス処理系14をバイパスして排気塔15に接続されたバイパス配管18aが配設されている。このバイパス配管18aには、自力開閉式空気作動弁からなるバイパス側自力開閉式第2隔離弁35が配設されている。このバイパス側自力開閉式第2隔離弁35には、バイパス配管18aのバイパス側自力開閉式第2隔離弁35より上流側の気体をバイパス側自力開閉式第2隔離弁35の駆動部に導入するための導圧配管36aと導圧配管36aに介挿され直流電源によって駆動される直流電源駆動弁36bとを有するバイパス側自力開閉式第2隔離弁駆動用ライン36が配設されている。   The purge pipe 18 is provided with a bypass pipe 18 a that bypasses the emergency gas treatment system 14 and is connected to the exhaust tower 15. The bypass pipe 18a is provided with a bypass-side self-closing on / off-type second isolation valve 35 made up of a self-opening / closing air-operating valve. In this bypass side self-closing on / off type second isolation valve 35, the gas upstream of the bypass side self-powering on / off type second isolation valve 35 of the bypass pipe 18a is introduced into the drive unit of the bypass side self-power on / off type second isolation valve 35. A bypass side self-closing on / off-type second isolation valve driving line 36 having a pressure guiding pipe 36a and a DC power supply driving valve 36b inserted in the pressure guiding pipe 36a and driven by a DC power supply is disposed.

バイパス配管18aのバイパス側自力開閉式第2隔離弁35の下流側には、自力開閉式空気作動弁からなり、バイパス配管18aのバイパス側自力開閉式第2隔離弁35側の気体圧力を駆動源として閉動作するバイパス配管閉塞弁39が配設されている。このバイパス配管閉塞弁39には、バイパス配管18aのバイパス配管閉塞弁39より上流側の気体をバイパス配管閉塞弁39の駆動部に導入するための導圧配管を有するバイパス配管閉塞弁駆動用ライン40が配設されている。   On the downstream side of the bypass side self-closing on / off type second isolation valve 35 of the bypass pipe 18a, a self-opening / closing type air operating valve is provided, and the gas pressure on the bypass side self-closing on / off type second isolation valve 35 side of the bypass pipe 18a is driven. As shown in FIG. The bypass pipe closing valve 39 includes a bypass pipe closing valve drive line 40 having a pressure guiding pipe for introducing a gas upstream of the bypass pipe closing valve 39 of the bypass pipe 18 a into the drive unit of the bypass pipe closing valve 39. Is arranged.

バイパス配管閉塞弁39は、常時開とされており、バイパス側自力開閉式第2隔離弁35が開かれている時に、パージ配管18内の圧力が上昇してパージ配管18の耐圧を超えるような圧力となった場合に、この気体の圧力によって自動的に閉塞する構成となっている。   The bypass pipe closing valve 39 is normally open. When the bypass side self-closing second isolation valve 35 is opened, the pressure in the purge pipe 18 rises and exceeds the pressure resistance of the purge pipe 18. When the pressure is reached, the gas is automatically closed by the pressure of the gas.

上記構成の第1実施形態において、自力開閉式空気弁からなる、自力開閉式第1隔離弁21、ドライウェル側自力開閉式第1隔離弁23、自力開閉式第2隔離弁31、パージ側自力開閉式第2隔離弁33、バイパス側自力開閉式第2隔離弁35は、その駆動力として原子炉格納容器2内の気体の圧力を用いている。また、これらの自力開閉式空気弁に設けられた直流電源駆動弁22b,24b,32b,34b,36bは、制御用電源である直流電源を駆動源としており、直流電源が喪失した場合は、バッテリー(蓄電池、乾電池)から供給される直流電源で駆動できる構成となっている。   In the first embodiment having the above-described configuration, a self-closing on / off type first isolation valve 21, a dry well side self-closing on / off type first isolation valve 23, a self-closing on / off type second isolation valve 31 and a purge-side self-powering unit comprising self-opening / closing type air valves The on / off-type second isolation valve 33 and the bypass side self-closing on / off-type second isolation valve 35 use the gas pressure in the reactor containment vessel 2 as the driving force. The DC power supply drive valves 22b, 24b, 32b, 34b, and 36b provided in these self-opening / closing air valves are driven by a DC power supply that is a control power supply. If the DC power supply is lost, the battery It can be driven by a DC power source supplied from (storage battery, dry battery).

したがって、非常時に、全交流電源喪失(SBO)、空気作動弁の駆動源である空気圧の喪失、弁制御のための制御電源(直流電源)の喪失が全て発生した場合においても、直流電源駆動弁22b,24b,32b,34b,36bへ供給する直流電源を、乾電池等の電池からの直流電源に切り替えることによって、上記の各自力開閉式第1隔離弁21、ドライウェル側自力開閉式第1隔離弁23、自力開閉式第2隔離弁31、パージ側自力開閉式第2隔離弁33、バイパス側自力開閉式第2隔離弁35を動作させることができ、原子炉格納容器2内の気体のベントを行えるようになっている。   Therefore, even in the event of all loss of AC power supply (SBO), loss of air pressure as the drive source of the air operated valve, and loss of control power supply (DC power supply) for valve control in the event of an emergency, the DC power supply drive valve By switching the direct current power supplied to 22b, 24b, 32b, 34b, 36b to a direct current power source from a battery such as a dry cell, the above-mentioned first self-opening / closing first isolation valve 21 and drywell side self-opening / closing first isolation The valve 23, the self-closing second isolation valve 31, the purge-side self-closing second isolation valve 33, and the bypass-side self-closing second isolation valve 35 can be operated to vent the gas in the reactor containment vessel 2. Can be done.

非常時に、原子炉格納容器2内からの気体のベントをする必要が生じた場合、先ず、サプレッションチャンバー4側からプール水を通過することによってある程度放射性物質が除去された気体をベントする。この場合、原子炉格納容器2内の圧力が高くなっていない状態では、自力開閉式第1隔離弁21及びパージ側自力開閉式第2隔離弁33を開き、非常用ガス処理系14を介した気体のベントを行う。この場合、非常用ガス処理系14で処理されて放射性物質の除去された気体が排気塔15へ送られて高所放出される。   In the event of an emergency, when it becomes necessary to vent the gas from the reactor containment vessel 2, first, the gas from which the radioactive material has been removed to some extent is vented by passing through the pool water from the suppression chamber 4 side. In this case, when the pressure in the reactor containment vessel 2 is not high, the first self-opening / closing first isolation valve 21 and the purge side self-closing second isolation valve 33 are opened and the emergency gas treatment system 14 is passed through. Vent the gas. In this case, the gas that has been processed by the emergency gas processing system 14 and from which the radioactive material has been removed is sent to the exhaust tower 15 and released at a high place.

一方、既に原子炉格納容器2内の圧力が高くなっており、耐圧の関係で非常用ガス処理系14を使用することができない場合は、自力開閉式第1隔離弁21及び自力開閉式第2隔離弁31を開くことによって、原子炉格納容器2内の気体のベントを行う。さらに、サプレッションチャンバー4内の水位が一定以上に上昇している場合は、自力開閉式第1隔離弁21ではなく、ドライウェル側自力開閉式第1隔離弁23及び自力開閉式第2隔離弁31を開くことによって、原子炉格納容器2内の気体のベントを行う。   On the other hand, when the pressure in the reactor containment vessel 2 is already high and the emergency gas treatment system 14 cannot be used due to pressure resistance, the self-opening / closing first isolation valve 21 and the self-operating opening / closing second By opening the isolation valve 31, the gas in the reactor containment vessel 2 is vented. Furthermore, when the water level in the suppression chamber 4 rises above a certain level, the dry well side self-closing first isolation valve 23 and the self-closing second isolation valve 31 are not the self-closing first isolation valve 21. Is opened, the gas in the reactor containment vessel 2 is vented.

上記のように原子炉格納容器2内の気体のベントを行い、原子炉格納容器2内の圧力を低下させることによって、高圧なポンプを使用することなく、原子炉圧力容器1内への注水を行うことが可能となる。したがって、原子炉冷却材喪失事故(LOCA)時のように、原子炉圧力容器1内への代替注水を緊急かつ大量に行う必要があるのに、吐出圧力が原子炉格納容器2の圧力よりも高いポンプだけでは十分な注水が行えない場合には、従来のようにラプチャーディスクの破裂耐圧に制限されることなく、任意の圧力下において原子炉格納容器2内の気体をベントすることができ、吐出圧の低いポンプによる注水も可能にすることができる。   By venting the gas in the reactor containment vessel 2 as described above and reducing the pressure in the reactor containment vessel 2, water can be injected into the reactor pressure vessel 1 without using a high-pressure pump. Can be done. Therefore, as in the case of the loss of reactor coolant accident (LOCA), it is necessary to perform an urgent and large amount of alternative water injection into the reactor pressure vessel 1, but the discharge pressure is higher than the pressure in the reactor containment vessel 2. When sufficient water injection cannot be performed with only a high pump, the gas in the reactor containment vessel 2 can be vented under an arbitrary pressure without being limited to the burst pressure of the rupture disk as in the prior art. Water can be injected by a pump having a low discharge pressure.

なお、上記の説明において、サプレッションチャンバー側第1隔離弁11及びパージ弁20を開くための空気圧が確保されている場合は、自力開閉式第1隔離弁21ではなく、サプレッションチャンバー側第1隔離弁11又はパージ弁20を開いてもよい。   In the above description, when the air pressure for opening the suppression chamber side first isolation valve 11 and the purge valve 20 is secured, the suppression chamber side first isolation valve is not the self-opening / closing type first isolation valve 21. 11 or the purge valve 20 may be opened.

ところで、上記したとおり、直流電源駆動弁22b,24b,32b,34b,36bは、バッテリー(蓄電池、乾電池)から供給される直流電源で駆動できる構成となっているが、自力開閉式第1隔離弁21、ドライウェル側自力開閉式第1隔離弁23、自力開閉式第2隔離弁31、パージ側自力開閉式第2隔離弁33、バイパス側自力開閉式第2隔離弁35を開状態に維持するためには、直流電源駆動弁22b,24b,32b,34b,36bに対する直流電源の供給を続ける必要がある。   Incidentally, as described above, the DC power supply drive valves 22b, 24b, 32b, 34b, and 36b are configured to be driven by a DC power supply supplied from a battery (storage battery, dry battery). 21, the dry well side self-closing first isolation valve 23, the self-closing second isolation valve 31, the purge side self-closing second isolation valve 33, and the bypass side self-closing second isolation valve 35 are kept open. Therefore, it is necessary to continue supplying DC power to the DC power supply drive valves 22b, 24b, 32b, 34b, and 36b.

一方、自立開閉式空気弁は、例えば図3に示されるように、弁体(図示せず。)を収容するバルブケーシング101、先端部に弁体が設けられた弁棒102、弁棒102を付勢するバネ103、駆動用空気が導入されるダイヤフラム104等からその主要部が構成されている。したがって、弁棒102が移動して、弁体が開状態となった際に、バルブケーシング101と弁棒102のフランジ部105等の位置を機械的に一定に維持する係止部材(所謂ギャグ等)110が挿入されるようにして、直流電源駆動弁22b,24b,32b,34b,36bに対する直流電源の供給が停止された際にも、自力開閉式第1隔離弁21、ドライウェル側自力開閉式第1隔離弁23、自力開閉式第2隔離弁31、パージ側自力開閉式第2隔離弁33、バイパス側自力開閉式第2隔離弁35を開状態に維持できるようにすることができる。   On the other hand, for example, as shown in FIG. 3, the self-standing open / close air valve includes a valve casing 101 that houses a valve body (not shown), a valve rod 102 that is provided with a valve body at the tip, and a valve rod 102. The main part is composed of a spring 103 for biasing, a diaphragm 104 to which driving air is introduced, and the like. Therefore, when the valve stem 102 moves and the valve body is in an open state, a locking member (so-called gag or the like) that keeps the positions of the valve casing 101 and the flange portion 105 of the valve stem 102 mechanically constant. ) When the DC power supply to the DC power supply drive valves 22b, 24b, 32b, 34b, and 36b is stopped by inserting 110, the self-opening / closing first isolation valve 21 and the drywell side self-opening / closing The first isolation valve 23, the self-closing second isolation valve 31, the purge side self-closing second isolation valve 33, and the bypass side self-closing second isolation valve 35 can be maintained in the open state.

さらには、上記係止部材110を電気的に駆動して、挿入、引き抜き可能とすれば、係止部材110を引き抜くことによって自力開閉式第1隔離弁21、ドライウェル側自力開閉式第1隔離弁23、自力開閉式第2隔離弁31、パージ側自力開閉式第2隔離弁33、バイパス側自力開閉式第2隔離弁35を閉じることもできる。   Further, if the locking member 110 is electrically driven so that it can be inserted and pulled out, the self-opening / closing first isolation valve 21 and the drywell side self-closing first isolation can be obtained by pulling out the locking member 110. The valve 23, the self-closing second isolation valve 31, the purge side self-closing second isolation valve 33, and the bypass side self-closing second isolation valve 35 can be closed.

図2は、第2実施形態に係る原子炉の要部概略構成を示す系統図である。なお、図2において、図1に示した第1実施形態の原子炉と対応する部分には同一符号を付して重複する説明を省略する。   FIG. 2 is a system diagram showing a schematic configuration of a main part of a nuclear reactor according to the second embodiment. In FIG. 2, parts corresponding to those of the nuclear reactor according to the first embodiment shown in FIG.

図2に示すように、第2実施形態では、第1実施形態における空気駆動弁からなるサプレッションチャンバー側第1隔離弁11を省略するとともに、パージ配管閉塞弁38及びバイパス配管閉塞弁39を省略したものである。このような構成としても、第1実施形態の場合と同様に、全交流電源喪失(SBO)、空気作動弁の駆動源である空気圧の喪失、弁制御のための制御電源(直流電源)の喪失が全て発生した場合においても、各自力開閉式第1隔離弁21、ドライウェル側自力開閉式第1隔離弁23、自力開閉式第2隔離弁31、パージ側自力開閉式第2隔離弁33、バイパス側自力開閉式第2隔離弁35を動作させることができ、原子炉格納容器2内の気体のベントを行うことができる。   As shown in FIG. 2, in the second embodiment, the suppression chamber side first isolation valve 11 including the air-driven valve in the first embodiment is omitted, and the purge pipe closing valve 38 and the bypass pipe closing valve 39 are omitted. Is. Even in such a configuration, as in the case of the first embodiment, the loss of all AC power (SBO), the loss of air pressure, which is the drive source of the pneumatic valve, and the loss of the control power (DC power) for valve control Even when all of these occur, each self-closing first isolation valve 21, drywell side self-closing first isolation valve 23, self-closing second isolation valve 31, purge side self-closing second isolation valve 33, The bypass-side self-closing second isolation valve 35 can be operated, and the gas in the reactor containment vessel 2 can be vented.

なお、以上の実施形態は、Mark−I型BWRに本発明を適用した場合について説明したが、本発明はかかる実施形態に限定されるべきものではなく、Mark−II型BWRあるいはABWRの原子炉格納容器の減圧装置についても同様に適用することが可能である。   In addition, although the above embodiment demonstrated the case where this invention was applied to Mark-I type BWR, this invention should not be limited to this embodiment, The reactor of Mark-II type BWR or ABWR The same can be applied to the decompression device for the containment vessel.

1……原子炉圧力容器、2……原子炉格納容器、3……ドライウェル、4……サプレッションチャンバー、5……ベント管、6……ベントヘッダ、7……ダウンカマーパイプ、8……主蒸気系配管、9……主蒸気逃がし安全弁、10……主蒸気逃がし管、11……サプレッションチャンバー側第1隔離弁、11a……ドライウェル側第1隔離弁、12……排気管、12a……分岐排気管、13……第2隔離弁、14……非常用ガス処理系(SGTS)、12a,12b……第1隔離弁、15……排気塔、16……電動弁、17……ラプチャーディスク、18……パージ配管、18a……バイパス配管、20……パージ弁、21……自力開閉式第1隔離弁、22a,24a,32a,34a,36a……導圧配管、22b,24b,32b,34b,36b……直流電源駆動弁、22……自力開閉式第1隔離弁駆動用ライン、24……ドライウェル側自力開閉式第1隔離弁駆動用ライン、31……自力開閉式第2隔離弁、32……自力開閉式第2隔離弁駆動用ライン、33……パージ側自力開閉式第2隔離弁、34……パージ側自力開閉式第2隔離弁駆動用ライン、35……バイパス側自力開閉式第2隔離弁、36……バイパス側自力開閉式第2隔離弁駆動用ライン、37……パージ配管閉塞弁、38……パージ配管閉塞弁駆動用ライン、39……バイパス配管閉塞弁、40……バイパス配管閉塞弁駆動用ライン。   1 ... Reactor pressure vessel, 2 ... Reactor containment vessel, 3 ... Dry well, 4 ... Suppression chamber, 5 ... Vent pipe, 6 ... Vent header, 7 ... Downcomer pipe, 8 ... Main steam system piping, 9 ... Main steam relief safety valve, 10 ... Main steam relief pipe, 11 ... Suppression chamber side first isolation valve, 11a ... Dry well side first isolation valve, 12 ... Exhaust pipe, 12a ... branch exhaust pipe, 13 ... second isolation valve, 14 ... emergency gas treatment system (SGTS), 12a, 12b ... first isolation valve, 15 ... exhaust tower, 16 ... motorized valve, 17 ... ... Rupture disk, 18 ... Purge piping, 18a ... Bypass piping, 20 ... Purge valve, 21 ... Self-opening / closing first isolation valve, 22a, 24a, 32a, 34a, 36a ... Pressure guiding piping, 22b, 24b, 32b, 3 b, 36b... DC power supply drive valve, 22... Self-actuated first isolation valve drive line, 24... Drywell side self-actuated first isolation valve drive line, 31. Valve 32. Self-opening and closing second isolation valve drive line 33. Purge side self-opening and closing second isolation valve 34. Purge side self-opening and closing second isolation valve driving line 35 35 Bypass side. Self-opening / closing second isolation valve, 36 …… Bypass side self-closing on / off type second isolation valve drive line, 37 …… Purge piping blocking valve, 38 …… Purge piping blocking valve driving line, 39 …… Bypass piping blocking valve , 40 …… Bypass piping block valve drive line.

Claims (9)

原子炉圧力容器を収容する原子炉格納容器のサプレッションチャンバーに接続され、当該原子炉格納容器内の気体を排気塔に移送して大気に放出する排気管と、
前記排気管内の前記原子炉格納容器側の気体圧力を駆動源として開動作し当該排気管を介した気体の移送を許容する自力開閉式第1隔離弁と、
前記排気管の前記自力開閉式第1隔離弁より上流側の気体を前記自力開閉式第1隔離弁の駆動部に導入するための第1導圧配管と当該第1導圧配管に介挿された第1直流電源駆動弁とを有する自力開閉式第1隔離弁駆動用ラインと、
前記排気管の前記自力開閉式第1隔離弁より下流側に配設され、当該排気管内の前記原子炉格納容器側の気体圧力を駆動源として開動作する自力開閉式第2隔離弁と、
前記排気管の前記自力開閉式第2隔離弁より上流側の気体を前記自力開閉式第2隔離弁の駆動部に導入するための第2導圧配管と当該第2導圧配管に介挿された第2直流電源駆動弁とを有する自力開閉式第2隔離弁駆動用ラインと、
を有することを特徴とする原子炉格納容器の減圧装置。
An exhaust pipe connected to a suppression chamber of a reactor containment vessel containing a reactor pressure vessel, and transferring the gas in the reactor containment vessel to an exhaust tower and releasing it to the atmosphere;
A self-opening / closing first isolation valve that opens by using the gas pressure on the reactor containment vessel side in the exhaust pipe as a drive source and allows gas transfer through the exhaust pipe;
A first pressure guiding pipe for introducing gas upstream of the self-closing on / off type first isolation valve of the exhaust pipe to the drive unit of the self-powering on / off type first isolation valve is inserted into the first pressure guiding pipe. A first isolation valve driving line having a first DC power supply driving valve;
A self-opening / closing second isolation valve disposed downstream of the self-opening / closing first isolation valve of the exhaust pipe and opening with the gas pressure on the reactor containment vessel side in the exhaust pipe as a drive source;
The exhaust pipe is inserted into a second pressure guiding pipe for introducing a gas upstream of the self-closing on / off type second isolation valve to a drive unit of the self-powered on / off type second isolation valve, and the second pressure guiding pipe. A self-opening / closing second isolation valve driving line having a second DC power supply driving valve;
A depressurizing device for a reactor containment vessel, comprising:
前記排気管の前記自力開閉式第1隔離弁と前記自力開閉式第2隔離弁との間から分岐し、前記原子炉格納容器のドライウェルに接続された分岐排気管と、
前記分岐排気管内の前記原子炉格納容器側の気体圧力を駆動源として開動作し当該分岐排気管を介した気体の移送を許容するドライウェル側自力開閉式第1隔離弁と、
前記分岐排気管の前記ドライウェル側自力開閉式第1隔離弁より上流側の気体を前記ドライウェル側自力開閉式第1隔離弁の駆動部に導入するための第3導圧配管と当該第3導圧配管に介挿された第3直流電源駆動弁とを有するドライウェル側自力開閉式第1隔離弁駆動用ラインと、
を具備したことを特徴とする請求項1記載の原子炉格納容器の減圧装置。
A branch exhaust pipe that branches from between the self-closing first isolation valve and the self-closing second isolation valve of the exhaust pipe and connected to a dry well of the reactor containment vessel;
A dry well-side self-closing first isolation valve that opens by using the gas pressure on the reactor containment vessel side in the branch exhaust pipe as a drive source and allows gas transfer through the branch exhaust pipe;
A third pressure guiding pipe for introducing a gas upstream of the dry well side self-closing first isolation valve of the branch exhaust pipe into the drive unit of the dry well side self-closing first isolation valve; A dry well side self-closing first isolation valve driving line having a third DC power supply driving valve inserted in the pressure guiding pipe;
The reactor containment vessel decompression device according to claim 1, comprising:
前記排気管の前記自力開閉式第1隔離弁と前記自力開閉式第2隔離弁との間から分岐し、非常用ガス処理系に接続されたパージ配管と、
前記パージ配管に介挿され当該パージ配管内の前記原子炉格納容器側の気体圧力を駆動源として開動作するパージ側自力開閉式第2隔離弁と、
前記パージ配管の前記パージ側自力開閉式第2隔離弁より上流側の気体を前記パージ側自力開閉式第2隔離弁の駆動部に導入するための第4導圧配管と当該第4導圧配管に介挿された第4直流電源駆動弁とを有するパージ側自力開閉式第2隔離弁駆動用ラインと、
前記自力開閉式第1隔離弁をバイパスする配管に介挿され外部からの空気圧で駆動されるパージ弁と
を具備したことを特徴とする請求項1又は2記載の原子炉格納容器の減圧装置。
A purge pipe branched from the self-closing first isolation valve and the self-closing second isolation valve of the exhaust pipe and connected to an emergency gas treatment system;
A purge-side self-closing second isolation valve that is inserted into the purge pipe and opens using the gas pressure on the reactor containment vessel side in the purge pipe as a drive source;
A fourth pressure guiding pipe and a fourth pressure guiding pipe for introducing a gas upstream of the purge side self-closing on / off type second isolation valve of the purge pipe to a drive portion of the purge side self-powering on / off type second isolation valve. A purge side self-closing on / off type second isolation valve drive line having a fourth DC power supply drive valve inserted in
The pressure reducing device for a reactor containment vessel according to claim 1 or 2, further comprising: a purge valve that is inserted into a pipe that bypasses the self-opening / closing first isolation valve and is driven by air pressure from the outside.
前記排気管の前記自力開閉式第1隔離弁が配設された部位には、前記自力開閉式第1隔離弁及び前記パージ弁と並列して、外部からの空気圧で駆動される第1隔離弁がさらに配設されている
ことを特徴とする請求項3記載の原子炉格納容器の減圧装置。
A part of the exhaust pipe where the first self-closing on / off type isolation valve is disposed is a first isolation valve driven by air pressure from the outside in parallel with the self-powering on / off type first isolation valve and the purge valve. The reactor containment vessel decompression device according to claim 3, further comprising:
前記パージ配管から分岐して前記非常用ガス処理系をバイパスするバイパス配管と、
前記バイパス配管に介挿され当該バイパス配管内の前記原子炉格納容器側の気体圧力を駆動源として開動作するバイパス側自力開閉式第2隔離弁と、
前記バイパス配管の前記バイパス側自力開閉式第2隔離弁より上流側の気体を前記バイパス側自力開閉式第2隔離弁の駆動部に導入するための第5導圧配管と当該第5導圧配管に介挿された第5直流電源駆動弁とを有するバイパス側自力開閉式第2隔離弁駆動用ラインと、
を具備したことを特徴とする請求項3又は4記載の原子炉格納容器の減圧装置。
A bypass pipe branched from the purge pipe and bypassing the emergency gas treatment system;
A bypass-side self-closing on / off-type second isolation valve that is inserted into the bypass pipe and opens using the gas pressure on the reactor containment vessel side in the bypass pipe as a drive source;
A fifth pressure guiding pipe and a fifth pressure guiding pipe for introducing a gas upstream of the bypass side self-closing on / off type second isolation valve into the drive unit of the bypass side self-closing on / off type second isolation valve. A bypass side self-closing on / off type second isolation valve drive line having a fifth DC power supply drive valve interposed in
The reactor containment vessel decompression device according to claim 3, wherein the reactor containment vessel pressure reduction device is provided.
前記パージ配管の前記パージ側自力開閉式第2隔離弁より下流側に設けられ、前記パージ配管の前記パージ側自力開閉式第2隔離弁側の気体圧力を駆動源として閉動作するパージ配管閉塞弁と、
前記パージ配管の前記パージ配管閉塞弁より上流側の気体を前記パージ配管閉塞弁の駆動部に導入するための第6導圧配管を有するパージ配管閉塞弁駆動用ラインと、
前記バイパス配管のバイパス側自力開閉式第2隔離弁より下流側に設けられ、前記バイパス配管の前記バイパス側自力開閉式第2隔離弁側の気体圧力を駆動源として閉動作するバイパス配管閉塞弁と、
前記バイパス配管の前記バイパス配管閉塞弁より上流側の気体を前記バイパス配管閉塞弁の駆動部に導入するための第7導圧配管を有するバイパス配管閉塞弁駆動用ラインと、
を具備したことを特徴とする請求項5記載の原子炉格納容器の減圧装置。
A purge pipe closing valve provided downstream of the purge side self-closing on / off type second isolation valve of the purge pipe and closing with the gas pressure on the purge side self-closing on / off type second isolation valve side of the purge pipe as a drive source When,
A purge pipe closing valve drive line having a sixth pressure guiding pipe for introducing a gas upstream of the purge pipe closing valve of the purge pipe into a drive portion of the purge pipe closing valve;
A bypass pipe closing valve provided downstream of the bypass side self-closing on / off type second isolation valve of the bypass pipe and closing with the gas pressure on the bypass side self-closing on / off type second isolation valve side of the bypass pipe as a drive source; ,
A bypass pipe closing valve drive line having a seventh pressure guiding pipe for introducing a gas upstream of the bypass pipe closing valve of the bypass pipe into a drive portion of the bypass pipe closing valve;
The reactor containment vessel decompression device according to claim 5, comprising:
前記第1〜5直流電源駆動弁が、電池からの直流電源で駆動可能とされている
ことを特徴とする請求項1〜6いずれか1項記載の原子炉格納容器の減圧装置。
The decompression device for a nuclear reactor containment vessel according to any one of claims 1 to 6, wherein the first to fifth DC power supply drive valves are capable of being driven by a DC power supply from a battery.
少なくとも前記自力開閉式第1隔離弁と前記自力開閉式第2隔離弁は、開状態で弁棒の移動を機械的に制限し開状態を維持する機構を具備している
ことを特徴とする請求項1〜7いずれか1項記載の原子炉格納容器の減圧装置。
At least the first self-opening / closing first isolation valve and the second self-opening / closing isolation valve have a mechanism for mechanically restricting movement of the valve rod in the open state and maintaining the open state. Item 8. A reactor containment depressurization apparatus according to any one of Items 1 to 7.
原子炉圧力容器を収容する原子炉格納容器のサプレッションチャンバーに接続され、当該原子炉格納容器内の気体を排気塔に移送して大気に放出する排気管と、
前記排気管内の前記原子炉格納容器側の気体圧力を駆動源として開動作し当該排気管を介した気体の移送を許容する自力開閉式第1隔離弁と、
前記排気管の前記自力開閉式第1隔離弁より上流側の気体を前記自力開閉式第1隔離弁の駆動部に導入するための第1導圧配管と当該第1導圧配管に介挿された第1直流電源駆動弁とを有する自力開閉式第1隔離弁駆動用ラインと、
前記排気管の前記自力開閉式第1隔離弁より下流側に配設され、当該排気管内の前記原子炉格納容器側の気体圧力を駆動源として開動作する自力開閉式第2隔離弁と、
前記排気管の前記自力開閉式第2隔離弁より上流側の気体を前記自力開閉式第2隔離弁の駆動部に導入するための第2導圧配管と当該第2導圧配管に介挿された第2直流電源駆動弁とを有する自力開閉式第2隔離弁駆動用ラインと、
を配設し、前記第1直流電源駆動弁と、前記第2直流電源駆動弁に通電して開弁することによって、前記原子炉圧力容器内の気体を前記排気管を通じて大気に放出することを特徴とする原子炉格納容器の減圧方法。
An exhaust pipe connected to a suppression chamber of a reactor containment vessel containing a reactor pressure vessel, and transferring the gas in the reactor containment vessel to an exhaust tower and releasing it to the atmosphere;
A self-opening / closing first isolation valve that opens by using the gas pressure on the reactor containment vessel side in the exhaust pipe as a drive source and allows gas transfer through the exhaust pipe;
A first pressure guiding pipe for introducing gas upstream of the self-closing on / off type first isolation valve of the exhaust pipe to the drive unit of the self-powering on / off type first isolation valve is inserted into the first pressure guiding pipe. A first isolation valve driving line having a first DC power supply driving valve;
A self-opening / closing second isolation valve disposed downstream of the self-opening / closing first isolation valve of the exhaust pipe and opening with the gas pressure on the reactor containment vessel side in the exhaust pipe as a drive source;
The exhaust pipe is inserted into a second pressure guiding pipe for introducing a gas upstream of the self-closing on / off type second isolation valve to a drive unit of the self-powered on / off type second isolation valve, and the second pressure guiding pipe. A self-opening / closing second isolation valve driving line having a second DC power supply driving valve;
The gas in the reactor pressure vessel is released to the atmosphere through the exhaust pipe by energizing and opening the first DC power supply drive valve and the second DC power supply drive valve. A depressurizing method for a reactor containment vessel.
JP2011099644A 2011-04-27 2011-04-27 Reactor containment decompression device and decompression method Active JP5665644B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011099644A JP5665644B2 (en) 2011-04-27 2011-04-27 Reactor containment decompression device and decompression method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011099644A JP5665644B2 (en) 2011-04-27 2011-04-27 Reactor containment decompression device and decompression method

Publications (2)

Publication Number Publication Date
JP2012230057A true JP2012230057A (en) 2012-11-22
JP5665644B2 JP5665644B2 (en) 2015-02-04

Family

ID=47431708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011099644A Active JP5665644B2 (en) 2011-04-27 2011-04-27 Reactor containment decompression device and decompression method

Country Status (1)

Country Link
JP (1) JP5665644B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5373213B1 (en) * 2013-03-06 2013-12-18 日立Geニュークリア・エナジー株式会社 Gas supply device and air or nitrogen supply device of nuclear power plant
JP2014173723A (en) * 2013-09-18 2014-09-22 Hitachi-Ge Nuclear Energy Ltd Remote control device, and remote control device of nuclear power plant
WO2014173594A1 (en) * 2013-04-25 2014-10-30 Areva Gmbh Emission monitoring system for a venting system of a nuclear power plant
JP2015117721A (en) * 2013-12-17 2015-06-25 日立Geニュークリア・エナジー株式会社 Gas supply apparatus and air or nitrogen supply apparatus of nuclear power plant
WO2021166325A1 (en) * 2020-02-20 2021-08-26 日立Geニュークリア・エナジー株式会社 Valve drive system and emergency condensate system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5596304A (en) * 1979-01-17 1980-07-22 Hitachi Ltd Self-opening and closing valve device
JPH0450798A (en) * 1990-06-20 1992-02-19 Toshiba Corp Emitted radiation reduction device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5596304A (en) * 1979-01-17 1980-07-22 Hitachi Ltd Self-opening and closing valve device
JPH0450798A (en) * 1990-06-20 1992-02-19 Toshiba Corp Emitted radiation reduction device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5373213B1 (en) * 2013-03-06 2013-12-18 日立Geニュークリア・エナジー株式会社 Gas supply device and air or nitrogen supply device of nuclear power plant
KR102225810B1 (en) 2013-04-25 2021-03-11 프라마톰 게엠베하 Emission monitoring system for a venting system of a nuclear power plant
WO2014173594A1 (en) * 2013-04-25 2014-10-30 Areva Gmbh Emission monitoring system for a venting system of a nuclear power plant
CN105190770A (en) * 2013-04-25 2015-12-23 阿海珐有限公司 Emission monitoring system for a venting system of a nuclear power plant
KR20160002921A (en) * 2013-04-25 2016-01-08 아레바 게엠베하 Emission monitoring system for a venting system of a nuclear power plant
JP2016517013A (en) * 2013-04-25 2016-06-09 アレヴァ ゲゼルシャフト ミット ベシュレンクテル ハフツングAreva GmbH Emission monitoring system for vent system of nuclear power plant
EA028872B1 (en) * 2013-04-25 2018-01-31 Арефа Гмбх Emission monitoring system for a venting system of a nuclear power plant
US10037825B2 (en) 2013-04-25 2018-07-31 Areva Gmbh Emission monitoring system for a venting system of a nuclear power plant
JP2014173723A (en) * 2013-09-18 2014-09-22 Hitachi-Ge Nuclear Energy Ltd Remote control device, and remote control device of nuclear power plant
JP2015117721A (en) * 2013-12-17 2015-06-25 日立Geニュークリア・エナジー株式会社 Gas supply apparatus and air or nitrogen supply apparatus of nuclear power plant
WO2021166325A1 (en) * 2020-02-20 2021-08-26 日立Geニュークリア・エナジー株式会社 Valve drive system and emergency condensate system
JP2021131139A (en) * 2020-02-20 2021-09-09 日立Geニュークリア・エナジー株式会社 Valve drive system and emergency condensate system
JP7201630B2 (en) 2020-02-20 2023-01-10 日立Geニュークリア・エナジー株式会社 Valve drive system and emergency condensate system

Also Published As

Publication number Publication date
JP5665644B2 (en) 2015-02-04

Similar Documents

Publication Publication Date Title
JP5665644B2 (en) Reactor containment decompression device and decompression method
US8976920B2 (en) Nuclear power plant using nanoparticles in emergency systems and related method
US11646123B2 (en) Three-way valve operational to both transfer steam to a decontamination water tank under one accident situation and discharge the steam to atmosphere under a different accident situation
US11521758B2 (en) Depressurization valve
US20210151208A1 (en) Alternative circulation cooling method for emergency core cooling system, and nuclear power plant
EP3667678B1 (en) Depressurisation valve
KR20170037971A (en) Loca integral isolation valve systems and methods of operating same for loss of coolant accidentlocaprotection
RU2666346C2 (en) Passive depressurisation system for pressurised vessels in nuclear reactors
KR101434532B1 (en) Passive Safety Injection System using Safety Injection Tank
JP4768855B2 (en) Safety valve drive system
JP5373213B1 (en) Gas supply device and air or nitrogen supply device of nuclear power plant
JP2012230058A (en) Decompression device of containment vessel
US20150194225A1 (en) Passively initiated depressurization for light water reactor
JP2011220822A (en) Driving system for escape safety valves
JP5781575B2 (en) Remote control device and remote control device of nuclear power plant
CN217444076U (en) Automatic primary circuit pressure compensation system of high-temperature gas cooled reactor
JP6118231B2 (en) Gas supply device and air or nitrogen supply device of nuclear power plant
JP4991598B2 (en) Automatic decompression system for nuclear power generation facilities
KR20240042526A (en) pressure reducing valve
KR20240045306A (en) pressure reducing valve
JPS6247279B2 (en)
CN110970139A (en) Pressure stabilizer overflow prevention system, pressurized water reactor nuclear power plant and pressure stabilizer overflow prevention method
JPS58118985A (en) Unnecesary scram protecting device in emergency reactor shutdown system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140819

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141209

R151 Written notification of patent or utility model registration

Ref document number: 5665644

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151