JP5642515B2 - Plant with piping having valve stem and boiling water nuclear power plant - Google Patents

Plant with piping having valve stem and boiling water nuclear power plant Download PDF

Info

Publication number
JP5642515B2
JP5642515B2 JP2010261198A JP2010261198A JP5642515B2 JP 5642515 B2 JP5642515 B2 JP 5642515B2 JP 2010261198 A JP2010261198 A JP 2010261198A JP 2010261198 A JP2010261198 A JP 2010261198A JP 5642515 B2 JP5642515 B2 JP 5642515B2
Authority
JP
Japan
Prior art keywords
valve
pipe
plant
flow path
sound wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010261198A
Other languages
Japanese (ja)
Other versions
JP2012112765A (en
Inventor
明紀 田村
明紀 田村
高橋 志郎
志郎 高橋
圭太 奥山
圭太 奥山
久道 井上
久道 井上
通明 黒崎
通明 黒崎
福田 是寿
是寿 福田
靖宏 馬渕
靖宏 馬渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi GE Nuclear Energy Ltd
Original Assignee
Hitachi GE Nuclear Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi GE Nuclear Energy Ltd filed Critical Hitachi GE Nuclear Energy Ltd
Priority to JP2010261198A priority Critical patent/JP5642515B2/en
Publication of JP2012112765A publication Critical patent/JP2012112765A/en
Application granted granted Critical
Publication of JP5642515B2 publication Critical patent/JP5642515B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Description

本発明は、弁管台を有する配管を備えたプラント及び沸騰水型原子力プラントに関する。   The present invention relates to a plant including a pipe having a valve stem and a boiling water nuclear power plant.

沸騰水型原子力プラント(以下、BWRプラントと称する)において、原子炉圧力容器からタービンに供給される主蒸気流量を過度に増加した場合に、主蒸気系での圧力変動が増加し、プラント機器に振動を与える可能性が考えられる。圧力変動を低減するため、主蒸気系の流路形状の適正化等の対策がとられる。このような事例及び対策が、G. Deboo, et al., "Quad cities unit 2 main steam line acoustic source identification and load reduction", Proceedings of ICONE 14, ICONE14-89903 (2006)に開示されている。   In a boiling water nuclear power plant (hereinafter referred to as a BWR plant), when the flow rate of main steam supplied from a reactor pressure vessel to a turbine is excessively increased, pressure fluctuations in the main steam system increase, There is a possibility of giving vibration. In order to reduce pressure fluctuation, measures such as optimizing the flow path shape of the main steam system are taken. Such cases and countermeasures are disclosed in G. Deboo, et al., “Quad cities unit 2 main steam line acoustic source identification and load reduction”, Proceedings of ICONE 14, ICONE14-89903 (2006).

BWRプラントにおける主蒸気系での圧力変動の原因の一つとして、主蒸気配管に設置されている、蒸気逃し安全弁を取り付ける弁管台等の分岐管における流力音響共鳴現象が考えられている。流力音響共鳴は、主蒸気配管との接合部における分岐管の前縁(上流側縁)で、主蒸気配管内を流れる気体(例えば、蒸気)の流れの剥離により生じた渦が、主蒸気配管との接合部における分岐管の後縁(下流側縁)に衝突した際に圧力変動(音波)を発生し、その音波が上流側へ伝播して分岐管の前縁での流れの剥離を励起することで、さらに渦を発生させる、いわゆるフィードバック機構を有する現象である。   As one of the causes of pressure fluctuations in the main steam system in the BWR plant, a hydroacoustic resonance phenomenon is considered in a branch pipe such as a valve pedestal installed in a main steam pipe to which a steam relief safety valve is attached. In hydrodynamic resonance, the vortex generated by the separation of the flow of gas (for example, steam) flowing in the main steam pipe at the front edge (upstream side edge) of the branch pipe at the junction with the main steam pipe is the main steam. Pressure fluctuation (sound wave) is generated when it collides with the rear edge (downstream side edge) of the branch pipe at the junction with the pipe, and the sound wave propagates upstream to separate the flow at the front edge of the branch pipe. This is a phenomenon having a so-called feedback mechanism that generates a vortex when excited.

流力音響共鳴により発生する音波の波長は、主蒸気配管での蒸気流速が増加するにつれて短くなる。しかし、音波の波長が分岐管長の約4倍に等しくなった時、分岐管付根で発生する音波と閉止された分岐管端部で反射する音波の干渉により、分岐管内に1/4波長の定在波が形成され、通常発生する圧力変動に比べ、大きな圧力変動が発生する。その詳細なメカニズムは、S. Ziada, "A flow visualization study of flow-acoustic coupling at the mouth of a resonant side-branch", Journal of Fluids and Structures, 8, pp.391-416 (1994)に開示されている。BWRプラントで主蒸気流量を増加した際に、主蒸気配管内の蒸気流速が増加し、弁管台内に定在波が形成され、圧力変動が増加すると考えられている。   The wavelength of the sound wave generated by the hydrodynamic resonance becomes shorter as the steam flow velocity in the main steam pipe increases. However, when the wavelength of the sound wave becomes equal to about four times the length of the branch pipe, a 1/4 wavelength is fixed in the branch pipe due to interference between the sound wave generated at the root of the branch pipe and the sound wave reflected at the end of the closed branch pipe. A standing wave is formed, and a large pressure fluctuation is generated as compared with a pressure fluctuation that is normally generated. The detailed mechanism is disclosed in S. Ziada, "A flow visualization study of flow-acoustic coupling at the mouth of a resonant side-branch", Journal of Fluids and Structures, 8, pp.391-416 (1994). ing. When the main steam flow rate is increased in the BWR plant, it is considered that the steam flow velocity in the main steam pipe increases, a standing wave is formed in the valve stem, and the pressure fluctuation increases.

このような流力音響共鳴は、分岐管内径d、分岐管の共鳴周波数f、主管の平均流速Uで定義されるストローハル数Stで整理される。   Such hydroacoustic resonance is organized by the Strouhal number St defined by the branch pipe inner diameter d, the branch pipe resonance frequency f, and the average velocity U of the main pipe.

St=f×d/U …(1)
流力音響共鳴の強さは、ストローハル数Stで整理され、一般的には、ストローハル数Stが0.3〜0.6の範囲内になるとき、流力音響共鳴が強くなる(図6参照)。
St = f × d / U (1)
The strength of the hydroacoustic resonance is arranged by the Strouhal number St. Generally, when the Strouhal number St falls within the range of 0.3 to 0.6, the hydroacoustic resonance becomes strong (see FIG. 6).

この流力音響共鳴によるBWRプラントの圧力変動を抑制する対策として、例えば、特開2006−153869号公報に圧力センサ及びヘルムホルツ共鳴管を、原子炉圧力容器の蒸気ドーム、または主蒸気配管に設置し、圧力変動を効果的に抑制する方法が開示されている。   As a countermeasure for suppressing the pressure fluctuation of the BWR plant due to the hydroacoustic resonance, for example, Japanese Patent Application Laid-Open No. 2006-153869 has a pressure sensor and a Helmholtz resonance pipe installed in the steam dome of the reactor pressure vessel or the main steam pipe. A method for effectively suppressing pressure fluctuation is disclosed.

また、高橋志郎他8名, "沸騰水型原子炉蒸気乾燥器の流力音響振動", 日本機械学会論文集B編, 75, pp.597-603 (2009)は、蒸気逃し安全弁を取り付ける、主蒸気配管に設けられた弁管台にヘルムホルツ共鳴管を設置し、音響共鳴を抑制してその弁管台で発生する圧力変動を低減する方法を記載している。   In addition, Shiro Takahashi et al., “The hydroacoustic vibration of boiling water reactor steam dryer”, Journal of the Japan Society of Mechanical Engineers, B, 75, pp.597-603 (2009) A method is described in which a Helmholtz resonance pipe is installed in a valve nozzle provided in the main steam pipe, and acoustic fluctuation is suppressed to reduce pressure fluctuations generated in the valve nozzle.

より汎用的には、流力音響共鳴を抑制する方法として、分岐管より上流側に渦発生器またはスポイラーを設ける方法が知られている。また、例えば、特開平7−301386号公報は、音源となる渦の励起周波数を乱すため、気体が流れる配管に接続された分岐管の、その配管側の入口近傍に減音板を設け、これにより流力音響共鳴の発生を防ぐ方法を開示している。   More generally, a method of providing a vortex generator or a spoiler upstream of the branch pipe is known as a method for suppressing hydrodynamic resonance. Further, for example, in Japanese Patent Laid-Open No. 7-301386, in order to disturb the excitation frequency of a vortex serving as a sound source, a sound reduction plate is provided in the vicinity of an inlet on the pipe side of a branch pipe connected to a pipe through which a gas flows. Discloses a method for preventing the occurrence of hydroacoustic resonance.

特開昭53−86997号公報は、第5図において、主蒸気配管に設置した、蒸気逃し安全弁を取り付ける弁管台に環状の拡大筒を設けることを記載している。この拡大筒の内部空間は、主蒸気配管に連絡されて弁管台内に形成された流路に、開口を通して連絡される。弁管台の軸方向において、内部空間の主蒸気管側の第1面及び蒸気逃し安全弁側の第2面は、共に、平面になっている。内部空間の上記開口の、弁管台の軸方向における寸法は、第1面と第2面の間の間隔の寸法を有し、その開口は弁管台の周方向に連続して形成されている。原子炉の運転中に、主蒸気配管に設けた主蒸気隔離弁等の閉鎖試験を行ったときに発生した圧力波を拡大筒内で減衰させるので、拡大筒の設置により、蒸気逃し安全弁のディスクを押し上げるホッピング現象を防止することができる。   Japanese Patent Application Laid-Open No. 53-86997 describes that in FIG. 5, an annular expansion cylinder is provided in a valve nozzle for installing a steam relief safety valve installed in a main steam pipe. The internal space of the expansion cylinder is communicated through the opening with a flow path that is communicated with the main steam pipe and formed in the valve stem. In the axial direction of the valve stem, both the first surface on the main steam pipe side and the second surface on the steam relief valve side of the inner space are flat. The dimension of the opening in the internal space in the axial direction of the valve stem is the distance between the first surface and the second surface, and the opening is formed continuously in the circumferential direction of the valve stem. Yes. During operation of the nuclear reactor, the pressure wave generated when the main steam isolation valve installed in the main steam pipe is closed is attenuated in the expansion cylinder. The hopping phenomenon that pushes up can be prevented.

特開2006−153869号公報JP 2006-153869 A 特開平7−301386号公報JP-A-7-301386 特開昭53−86997号公報JP-A-53-86997

G. Deboo, et al., "Quad cities unit 2 main steam line acoustic source identification and load reduction", Proceedings of ICONE 14, ICONE14-89903 (2006)G. Deboo, et al., "Quad cities unit 2 main steam line acoustic source identification and load reduction", Proceedings of ICONE 14, ICONE14-89903 (2006) S. Ziada, "A flow visualization study of flow-acoustic coupling at the mouth of a resonant side-branch", Journal of Fluids and Structures, 8, pp.391-416 (1994)S. Ziada, "A flow visualization study of flow-acoustic coupling at the mouth of a resonant side-branch", Journal of Fluids and Structures, 8, pp.391-416 (1994) 高橋志郎他8名、"沸騰水型原子炉蒸気乾燥器の流力音響振動"、日本機械学会論文集B編、75、pp.597-603 (2009)Shiro Takahashi et al., 8 "Hydroacoustic Vibration of Boiling Water Reactor Steam Dryer", Transactions of the Japan Society of Mechanical Engineers, B, 75, pp.597-603 (2009)

前述のように、特開2006−153869号公報には、ヘルムホルツ共鳴管を利用し、BWRプラントの流力音響共鳴による圧力変動を効果的に抑制する方法が開示されている。しかしながら、ヘルムホルツ共鳴管は、共鳴管内での流力音響共鳴を利用してその圧力変動を抑制するという特性上、共鳴管形状で決まるヘルムホルツ共鳴周波数に一致する周波数の圧力変動に対してのみ抑制効果がある。このため、BWRプラントにおいて流力音響共鳴によって生じる圧力変動を抑制するためにヘルムホルツ共鳴管を適用するためには、発生するその圧力変動の周波数を検知するための圧力センサと、ヘルムホルツ共鳴周波数を圧力変動の周波数に一致させるため、共鳴管形状を調節する装置を組み合わせることが必要になる。ヘルムホルツ共鳴管の適用によって、BWRプラントの主蒸気系の構造が複雑になり、既設のBWRプラントへのヘルムホルツ共鳴管の設置は、原子炉圧力容器の蒸気ドーム、または主蒸気配管を含む主蒸気系の大きな改造が必要となる。   As described above, Japanese Patent Laid-Open No. 2006-153869 discloses a method of effectively suppressing pressure fluctuation due to hydroacoustic resonance in a BWR plant using a Helmholtz resonance tube. However, the Helmholtz resonance tube suppresses pressure fluctuations by using hydroacoustic resonance in the resonance pipe, and therefore only suppresses pressure fluctuations at frequencies that match the Helmholtz resonance frequency determined by the resonance tube shape. There is. For this reason, in order to apply a Helmholtz resonance tube in order to suppress pressure fluctuations caused by hydroacoustic resonance in a BWR plant, a pressure sensor for detecting the frequency of the pressure fluctuations generated, a Helmholtz resonance frequency as a pressure In order to match the frequency of variation, it is necessary to combine devices that adjust the shape of the resonant tube. The application of the Helmholtz resonance pipe complicates the structure of the main steam system of the BWR plant, and the installation of the Helmholtz resonance pipe in the existing BWR plant is based on the steam dome of the reactor pressure vessel or the main steam system including the main steam pipe. A major remodeling of is required.

前述のように、蒸気逃し安全弁を取り付ける弁管台にヘルムホルツ共鳴管を設置すれば、その共鳴管内での音響共鳴を利用して共鳴周波数をずらし、圧力変動を抑制することができる。しかしながら、分岐管付根とヘルムホルツ共鳴管の端部までの経路の長さが1/4波長となる新たな音響共鳴モードが発生し、その共鳴周波数f’に対してストローハル数が0.3〜0.6となる蒸気流速U’で流力音響共鳴が発生し、圧力変動が増加する。主蒸気配管内を流れる蒸気の流速がUのとき、ヘルムホルツ共鳴管を設置していない状態での弁管台と主蒸気配管の接合部で共鳴周波数fとなる流力音響共鳴が発生したとする。流力音響共鳴が発生したときにおける、ヘルムホルツ共鳴管を設置した場合とそれを設置していない場合のそれぞれの共鳴周波数、及び主蒸気配管内のそれぞれの蒸気の流速を比較すると、共鳴周波数はf>f’の関係にあり、蒸気流速はU>U’の関係にある。   As described above, if the Helmholtz resonance tube is installed in the valve mount on which the vapor relief safety valve is attached, the resonance frequency can be shifted using acoustic resonance in the resonance tube to suppress pressure fluctuation. However, a new acoustic resonance mode is generated in which the length of the path from the root of the branch pipe to the end of the Helmholtz resonance tube is ¼ wavelength, and the Strouhal number is 0.3 to 0.3 with respect to the resonance frequency f ′. Hydrodynamic acoustic resonance occurs at a steam flow velocity U ′ of 0.6, and the pressure fluctuation increases. When the flow velocity of the steam flowing through the main steam pipe is U, it is assumed that hydroacoustic resonance having a resonance frequency f is generated at the joint between the valve stem and the main steam pipe when the Helmholtz resonance pipe is not installed. . When the resonance frequency when the Helmholtz resonance tube is installed and when it is not installed and the flow velocity of each steam in the main steam pipe when the hydroacoustic resonance occurs, the resonance frequency is f. > F ′ and the vapor flow velocity is U> U ′.

前述のように、分岐管の上流側に渦発生器またはスポイラーを設ける方法、及び分岐管入口近傍に減音板を設ける方法は、流力音響共鳴の抑制に効果的であるが、いずれも主蒸気系の構造の複雑化を招くほか、主蒸気配管の主蒸気の流れの中に構造物を設置するため、主蒸気配管の圧力損失が増加する。また、設置する構造物が大きな密度を有する、諸蒸気配管内の主蒸気の流れに晒されるため、構造物の健全性を考慮することが必要となる。   As described above, the method of providing a vortex generator or spoiler on the upstream side of the branch pipe and the method of providing a sound reduction plate near the branch pipe inlet are effective for suppressing hydroacoustic resonance, but both are mainly used. In addition to complicating the structure of the steam system, the structure is installed in the main steam flow of the main steam pipe, which increases the pressure loss of the main steam pipe. Moreover, since the structure to install is exposed to the flow of the main steam in various steam piping which has a large density, it is necessary to consider the soundness of the structure.

また、発明者らは、特開昭53−86997号公報に記載された弁管台に設けられた拡大筒による、流力音響共鳴により発生する圧力変動の抑制効果について検討した。この結果、弁管台に設けられた拡大筒内に形成された内部空間が、弁管台の軸方向における寸法が第1面と第2面の間の間隔の寸法を有して弁管台の周方向に連続して形成された開口により、弁管台内の流路と連絡されるので、拡大筒を経由する新たな音響共鳴モードが発生し、このときの共鳴周波数f”に対してストローハル数が0.3〜0.6となる蒸気流速U”で流力音響共鳴が発生し、その圧力変動を抑制できないという新たな課題を、発明者らが見出した。共鳴周波数f”は、発明者らが見出した、拡大筒の内面に沿って伝播して蒸気逃し安全弁の弁体に到達する音波の共鳴周波数である。   In addition, the inventors examined the effect of suppressing pressure fluctuations generated by hydroacoustic resonance by the expansion cylinder provided in the valve stem described in JP-A-53-86997. As a result, the internal space formed in the enlarged cylinder provided in the valve nozzle has a dimension in the axial direction of the valve nozzle that is the distance between the first surface and the second surface. Since the opening formed continuously in the circumferential direction of the valve is connected to the flow path in the valve nozzle, a new acoustic resonance mode is generated via the expansion cylinder, and the resonance frequency f ″ at this time is The inventors have found a new problem that hydroacoustic resonance occurs at a steam flow velocity U ″ where the Strouhal number is 0.3 to 0.6, and the pressure fluctuation cannot be suppressed. The resonance frequency f ″ is the resonance frequency of the sound wave that has been found by the inventors and propagates along the inner surface of the expansion cylinder and reaches the valve body of the vapor relief safety valve.

主蒸気配管内を流れる蒸気の流速がUのとき、拡大筒を設置していない(ヘルムホルツ共鳴管も設置していない)状態での弁管台と主蒸気配管の接合部で共鳴周波数fとなる流力音響共鳴が発生したとする。流力音響共鳴が発生したときにおける、拡大筒を設置した場合とそれを設置していない場合のそれぞれの共鳴周波数、及び主蒸気配管内のそれぞれの蒸気の流速を比較すると、共鳴周波数はf>f”の関係にあり、蒸気流速はU>U”の関係にある。弁管台への拡大筒の設置は、ヘルムホルツ共鳴管の設置と同様に、拡大筒内での音響共鳴を利用して共鳴周波数をずらし、圧力変動を抑制する。   When the flow velocity of the steam flowing through the main steam pipe is U, the resonance frequency f is obtained at the junction between the valve stem and the main steam pipe when no expansion cylinder is installed (the Helmholtz resonance pipe is not installed). Assume that hydroacoustic resonance occurs. Comparing the resonance frequency when the expansion cylinder is installed and when the expansion cylinder is not installed and the flow velocity of each steam in the main steam pipe when the hydroacoustic resonance occurs, the resonance frequency is f> f ″ and the steam flow rate is U> U ″. As with the installation of the Helmholtz resonance tube, the installation of the expansion cylinder on the valve stem shifts the resonance frequency using acoustic resonance in the expansion cylinder to suppress pressure fluctuations.

ヘルムホルツ共鳴管及び拡大筒の設置は、いずれも、共鳴周波数をずらして圧力変動を抑制している。しかしながら、ヘルムホルツ共鳴管及び拡大筒の設置によっても、弁管台と主蒸気配管の接合部で発生する音響共鳴モードによっては、上記したように、共鳴周波数に対してストローハル数が0.3〜0.6となる蒸気流速で流力音響共鳴が発生し、その圧力変動を抑制できないという新たな課題が生じる。   In the installation of the Helmholtz resonance tube and the expansion cylinder, the pressure fluctuation is suppressed by shifting the resonance frequency. However, even if the Helmholtz resonance tube and the expansion tube are installed, depending on the acoustic resonance mode generated at the joint between the valve stem and the main steam pipe, the Strouhal number is 0.3 to 0.3 with respect to the resonance frequency as described above. Hydroacoustic resonance occurs at a steam flow rate of 0.6, and a new problem arises that the pressure fluctuation cannot be suppressed.

本発明の目的は、単純な構成で、配管内を流れる気体の流速に関わらず流力音響共鳴の発生を抑制することができる、弁管台を有する配管を備えたプラント及び沸騰水型原子力プラントを提供することにある。   An object of the present invention is to provide a plant and a boiling water nuclear power plant with piping having valve stems that can suppress the occurrence of hydroacoustic resonance with a simple configuration regardless of the flow velocity of gas flowing in the piping. Is to provide.

上記した目的を達成する本発明の特徴は、弁が取り付けられる弁管台が設置されて内部に蒸気が流れる配管を備えたプラントにおいて、その弁管台が、内部にその配管に連絡される流路を形成し、この流路の外側に配置された音波減衰室を有し、音波減衰室の内部空間と流路を仕切る隔壁が弁管台に設けられ、その流路と内部空間を連通する貫通孔が隔壁に形成され
その貫通孔が、弁管台の周方向において、その隔壁に複数個形成され、
隔壁に形成された複数の貫通孔の、弁管台の周方向における相互の間隔が異なっていることにある。
A feature of the present invention that achieves the above-described object is that, in a plant having a pipe nozzle to which a valve is attached and a pipe through which steam flows, the valve nozzle is connected to the pipe inside. There is a sound wave attenuating chamber formed outside the flow path, and a partition wall that partitions the internal space of the sound wave attenuating chamber and the flow path is provided in the valve nozzle, and the flow path communicates with the internal space. A through hole is formed in the partition ,
A plurality of through holes are formed in the partition wall in the circumferential direction of the valve stem,
There exists in the mutually different space | interval in the circumferential direction of a valve nozzle of the some through-hole formed in the partition .

音波減衰室の内部空間と弁管台内の流路を仕切る隔壁が弁管台に設けられ、その流路と内部空間を連通する貫通孔が隔壁に形成されているので、弁管台と配管の接合部で発生した音波が、流路から内部空間に伝播されるとき及び内部空間から流路に伝播されるときに、隔壁に形成された貫通孔を通過する。このため、相互に位相差を有する音波の成分をより多く生成することができ、配管と弁管台の接合部の上流側端部で発生する渦を相互に位相差を有する複数の音波の成分によって乱して崩壊させることができ、配管内を流れる気体の流速に関わらず、流力音響共鳴の発生を著しく抑制することができる。したがって、音波減衰室の内部空間と弁管台内の流路を、内部空間とその流路を連通する貫通孔を形成した隔壁で仕切るという単純な構成で、上記したように、流力音響共鳴の発生を著しく抑制することができる。さらに、その隔壁に形成された複数の貫通孔の、弁管台の周方向における相互の間隔が異なっているため、隔壁で囲まれた、配管に連絡される流路から隔壁に形成された各貫通孔を通して音波減衰室の内部空間に伝播した音波の各成分は、その内部空間での伝播距離が異なり、各成分相互に位相差を有して隔壁で囲まれたその流路に戻る。この結果、上記の流力音響共鳴の発生がさらに抑制される。 A partition wall that partitions the internal space of the sound wave attenuation chamber and the flow path in the valve stem is provided in the valve stem, and a through hole that communicates the flow path and the internal space is formed in the partition wall. When the sound wave generated at the joint portion is propagated from the flow path to the internal space and from the internal space to the flow path, the sound wave passes through the through-hole formed in the partition wall. For this reason, it is possible to generate more sound wave components having a phase difference between each other, and a plurality of sound wave components having a phase difference between the vortices generated at the upstream end of the joint between the pipe and the valve stem. Therefore, the generation of hydroacoustic resonance can be remarkably suppressed regardless of the flow velocity of the gas flowing in the pipe. Therefore, as described above, the hydroacoustic resonance is achieved with a simple configuration in which the internal space of the sound wave attenuation chamber and the flow path in the valve stem are partitioned by a partition wall formed with a through hole that communicates the internal space and the flow path. Can be remarkably suppressed. In addition, since the plurality of through holes formed in the partition wall have different intervals in the circumferential direction of the valve stem, each of the through holes formed in the partition wall is surrounded by the partition wall and connected to the pipe. Each component of the sound wave propagated to the internal space of the sound wave attenuation chamber through the through hole has a different propagation distance in the internal space and returns to the flow path surrounded by the partition wall with a phase difference between the components. As a result, the generation of the hydroacoustic resonance is further suppressed.

本発明によれば、単純な構成で、配管内を流れる気体の流速に関わらず流力音響共鳴の発生を抑制することができる。   According to the present invention, generation of hydroacoustic resonance can be suppressed with a simple configuration regardless of the flow velocity of the gas flowing in the pipe.

本発明の好適な一実施例である実施例1の弁管台を有する配管を備えた沸騰水型原子力プラントの弁管台付近の拡大縦断面図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an enlarged longitudinal sectional view of a vicinity of a valve stem of a boiling water nuclear power plant provided with a pipe having a valve stem of Example 1 which is a preferred embodiment of the present invention. 図1のII−II断面図である。It is II-II sectional drawing of FIG. 実施例1の弁管台を有する配管を備えた沸騰水型原子力プラントの構成図である。It is a block diagram of the boiling water nuclear power plant provided with piping which has a valve stem of Example 1. FIG. 図1に示す、蒸気逃し安全弁を取り付ける弁管台で発生する圧力変動とストローハル数の関係を示す特性図である。It is a characteristic view which shows the relationship between the pressure fluctuation which generate | occur | produces in the valve nozzle which attaches a steam relief safety valve shown in FIG. 1, and a straw hull number. 図1に示す、蒸気逃し安全弁を取り付ける弁管台で発生する圧力変動の時間変化を示す特性図である。It is a characteristic view which shows the time change of the pressure fluctuation which generate | occur | produces in the valve nozzle which attaches a steam relief safety valve shown in FIG. 従来の沸騰水型原子力プラントの主蒸気配管に設けられた、蒸気逃し安全弁を取り付ける弁管台で発生する圧力変動とストローハル数の関係を示す特性図である。It is a characteristic view which shows the relationship between the pressure fluctuation and the Strouhal number which generate | occur | produce in the valve nozzle which installs the steam relief safety valve provided in the main steam piping of the conventional boiling water nuclear power plant. 従来の沸騰水型原子力プラントの主蒸気配管に設けられた、蒸気逃し安全弁を取り付ける弁管台で発生する圧力変動の時間変化を示す特性図である。It is a characteristic view which shows the time change of the pressure fluctuation which generate | occur | produces in the valve nozzle which attaches the steam relief safety valve provided in the main steam piping of the conventional boiling water nuclear power plant. 本発明の他の実施例である実施例2の弁管台を有する配管を備えた沸騰水型原子力プラントの弁管台付近の拡大縦断面図である。It is an expanded longitudinal cross-sectional view of the vicinity of the valve nozzle of a boiling water nuclear power plant provided with piping which has the valve nozzle of Example 2 which is another Example of this invention. 本発明の他の実施例である実施例3の弁管台を有する配管を備えた沸騰水型原子力プラントの弁管台付近の拡大縦断面図である。It is an expanded longitudinal cross-sectional view of the vicinity of the valve stem of the boiling water nuclear power plant provided with piping which has the valve stem of Example 3 which is another Example of this invention. 本発明の他の実施例である実施例4の弁管台を有する配管を備えた沸騰水型原子力プラントの弁管台付近の拡大縦断面図である。It is an expanded longitudinal cross-sectional view of the vicinity of the valve nozzle of the boiling water nuclear power plant provided with piping which has the valve nozzle of Example 4 which is another Example of this invention. 図10のXI−XI断面図である。It is XI-XI sectional drawing of FIG. 図10のXII−XII断面図である。It is XII-XII sectional drawing of FIG. 本発明の他の実施例である実施例5の弁管台を有する配管を備えた沸騰水型原子力プラントの弁管台付近の拡大縦断面図である。It is an expanded longitudinal cross-sectional view of the vicinity of the valve nozzle of the boiling water nuclear power plant provided with piping which has the valve nozzle of Example 5 which is another Example of this invention. 図13のXVI−XVI断面図である。It is XVI-XVI sectional drawing of FIG. 本発明の他の実施例である実施例6の弁管台を有する配管を備えた沸騰水型原子力プラントの弁管台付近の拡大縦断面図である。It is an expanded longitudinal cross-sectional view of the vicinity of the valve nozzle of a boiling water nuclear power plant provided with piping which has the valve nozzle of Example 6 which is another Example of this invention. 図15のXVIII−XVIII断面図である。It is XVIII-XVIII sectional drawing of FIG. 弁管台を有する配管を備えた従来の沸騰水型原子力プラントの弁管台付近の拡大縦断面図である。It is an expanded longitudinal cross-sectional view of the vicinity of the valve stem of the conventional boiling water nuclear power plant provided with piping which has a valve stem.

BWRプラントの主蒸気配管に設けられた、蒸気逃し安全弁を取り付ける弁管台で発生する流力音響共鳴の発生メカニズムの詳細を、図17に示す、内部に主蒸気28が流れている主蒸気配管11に設けられた、蒸気逃し安全弁21を取り付ける弁管台13Fを対象に詳細に説明する。原子炉圧力容器から吐出されて主蒸気配管11内を流れる蒸気28は、主蒸気配管11と弁管台13Fの直管部14Bとの接合部の上流側端部(上流側縁)25で、流れが剥離して渦が発生する。この渦は蒸気4とともに下流側へ流れ、主蒸気配管11と直管部14Bの接合部の下流側端部(下流側縁)26に衝突する。発生した渦が下流側端部26に衝突することにより音波が発生する。音波は弁管台13F内に形成された流路27を伝播し、弁管台13Fを閉止している、蒸気逃し安全弁21の弁体24で反射される。流路27は主蒸気配管11内の蒸気28が流れる蒸気流路に連絡される。弁体24で反射された音波が、主蒸気配管11と直管部14Bの接合部の上流側端部25へ到達する。上流側端部25に到達した音波は、上流側端部25で発生する渦を強める働きをする。   FIG. 17 shows the details of the mechanism of hydroacoustic resonance that occurs in the valve stem that is attached to the steam relief valve provided in the main steam pipe of the BWR plant. The main steam pipe in which the main steam 28 flows is shown in FIG. The valve nozzle 13F to which the steam relief safety valve 21 provided in 11 is attached will be described in detail. The steam 28 discharged from the reactor pressure vessel and flowing in the main steam pipe 11 is an upstream end (upstream edge) 25 of the joint portion between the main steam pipe 11 and the straight pipe portion 14B of the valve stem 13F. The flow is separated and a vortex is generated. The vortex flows downstream with the steam 4 and collides with the downstream end (downstream edge) 26 of the joint between the main steam pipe 11 and the straight pipe portion 14B. A sound wave is generated when the generated vortex collides with the downstream end portion 26. The sound wave propagates through the flow path 27 formed in the valve nozzle 13F, and is reflected by the valve body 24 of the steam relief safety valve 21 that closes the valve nozzle 13F. The flow path 27 is connected to a steam flow path through which the steam 28 in the main steam pipe 11 flows. The sound wave reflected by the valve body 24 reaches the upstream end 25 of the joint between the main steam pipe 11 and the straight pipe portion 14B. The sound wave that has reached the upstream end 25 serves to strengthen the vortex generated at the upstream end 25.

このようにして発生する音波の波長が、長さL(主蒸気配管11と蒸気逃し安全弁21を取り付けた弁管台2との接合部と、弁管台13F内に形成されて主蒸気配管11に連絡される流路27を閉止する弁体24との間の最短距離)の約4倍に等しくなったとき、主蒸気配管11と弁管台13Fの接合部の下流側端部26で発生する音波と、弁管台13Fを閉止する弁体24で反射する音波の干渉により、弁管台13Fの流路27内に1/4波長の定在波が形成され、主蒸気配管11内に、通常発生する圧力変動に比べてより大きな圧力変動が発生する。以上が、蒸気逃し安全弁21の弁管台13Fの主蒸気配管11の接合部での流力音響共鳴の発生メカニズムである。
流力音響共鳴の強さは、弁管台13Fの内径d、弁管台13Fと蒸気逃し安全弁21で構成される流路27の共鳴周波数f、主蒸気28の平均流速Uで定義されるストローハル数Stで整理され、ストローハル数Stが0.3〜0.6の範囲内になるとき、流力音響共鳴が強くなる(図6参照)。
The wavelength of the sound wave thus generated is formed in the length L (the joint portion between the main steam pipe 11 and the valve stem 2 to which the steam relief safety valve 21 is attached, and the valve stem 13F. Is generated at the downstream end 26 of the joint between the main steam pipe 11 and the valve nozzle 13F when it becomes equal to about four times the shortest distance between the valve body 24 and the valve body 24 closing the flow path 27. The standing wave of ¼ wavelength is formed in the flow path 27 of the valve nozzle 13F by the interference between the sound wave to be generated and the sound wave reflected by the valve body 24 that closes the valve nozzle 13F, and is formed in the main steam pipe 11. As a result, a larger pressure fluctuation occurs than a pressure fluctuation that normally occurs. The above is the generation mechanism of the hydroacoustic resonance at the joint of the main steam pipe 11 of the valve stem 13F of the steam relief safety valve 21.
The strength of the hydrodynamic resonance is a straw defined by the inner diameter d of the valve nozzle 13F, the resonance frequency f of the flow path 27 composed of the valve nozzle 13F and the steam relief safety valve 21, and the average flow velocity U of the main steam 28. When the Hull number St is arranged and the Straw Hull number St falls within the range of 0.3 to 0.6, the hydroacoustic resonance becomes strong (see FIG. 6).

主蒸気配管11内を流れる蒸気28の流量を過度に増加した際に、主蒸気配管11と弁管台13Fの接合部の下流側端部26で発生する流力音響共鳴を基に発生するによる圧力変動は、特徴的な周波数を有する正弦波に近い変動である(図7参照)。このような圧力変動を抑制することは、BWRプラントの機器の健全性を保つためにも重要である。   When the flow rate of the steam 28 flowing in the main steam pipe 11 is excessively increased, it is generated based on the hydroacoustic resonance generated at the downstream end portion 26 of the joint portion of the main steam pipe 11 and the valve stem 13F. The pressure fluctuation is a fluctuation close to a sine wave having a characteristic frequency (see FIG. 7). It is important to suppress such pressure fluctuations in order to maintain the soundness of the equipment of the BWR plant.

発明者らは、このような主蒸気配管と弁管台の接合部で生じる流力音響共鳴により発生する圧力変動を抑制する対策を鋭意検討した。   The inventors diligently studied measures for suppressing pressure fluctuations caused by hydroacoustic resonance generated at the junction between the main steam pipe and the valve stem.

発明者らは、特開昭53−86997号公報に記載された、拡大筒を有する弁管台を配管に設置して、この配管に空気を流し、拡大筒の機能を確認する実験を行った。その拡大筒を有する弁管台では、拡大筒による音波波面の拡大・収縮によって音波のエネルギーを低減させ、弁管台と主蒸気配管の接合部の前縁(上流側端部)での渦発生を弱めることで流力音響共鳴を抑制できる。しかしながら、特開昭53−86997号公報に記載された、拡大筒を有する弁管台を用いた場合には、分岐管の後縁で発生した音波が拡大筒の内部空間内で拡大筒に沿った伝播経路を経由して、弁体へ伝播、反射して弁管台と配管の接合部に到達するという新たな音響モードの存在が確認された。拡大筒の内部空間を経由する音響モードの共鳴周波数f’は、周波数fよりも小さくなる。このため、前述したように、配管内を気体がUよりも低い流速U’で流れているとき、ストローハル数が0.3〜0.6の範囲内となり、流力音響共鳴が発生する。このような流力音響共鳴の発生による圧力変動の増加が、発明者らの実験において確認された。   The inventors conducted an experiment in which a valve nozzle having an enlarged cylinder described in JP-A-53-86997 was installed in a pipe and air was allowed to flow through the pipe to confirm the function of the enlarged cylinder. . In the valve stem with the enlarged cylinder, the energy of the sound wave is reduced by expanding and contracting the sound wave front by the enlarged cylinder, and vortex is generated at the leading edge (upstream end) of the junction between the valve nozzle and the main steam pipe. It is possible to suppress hydroacoustic resonance by weakening. However, in the case of using the valve stem having an enlarged cylinder described in JP-A-53-86997, sound waves generated at the rear edge of the branch pipe follow the enlarged cylinder in the inner space of the enlarged cylinder. The existence of a new acoustic mode was confirmed that propagated and reflected to the valve body via the propagation path and reached the joint between the valve stem and the pipe. The resonance frequency f 'of the acoustic mode passing through the internal space of the expansion cylinder is smaller than the frequency f. For this reason, as described above, when the gas flows in the pipe at a flow velocity U 'lower than U, the Strouhal number falls within the range of 0.3 to 0.6, and hydroacoustic resonance occurs. An increase in pressure fluctuation due to the generation of such hydroacoustic resonance was confirmed in the inventors' experiments.

そこで、発明者らは、弁管台を設けた配管内を流れる気体の流速に関わらず、かかわる弁管台と気体が流れる配管の接合部での流力音響共鳴の発生を抑制できる、弁管台を有する配管を備えたプラント、特に、弁管台部分の構造を検討した。この結果、発明者らは、気体が流れる配管に設置された弁管台に、弁管台内に形成されてその配管に連絡される流路の外側に配置された音波減衰室を設け、音波減衰室の内部空間と流路を仕切る隔壁を弁管台に設け、その流路と内部空間を連通する複数の貫通孔(貫通流路)(例えば、図1に示される貫通孔18,19,20)を隔壁に形成することによって、配管内を流れる気体の流速に関わらず、弁管台とその配管の接合部での流力音響共鳴の発生を抑制できることを見出した。   Therefore, the inventors can suppress the occurrence of hydroacoustic resonance at the joint between the valve stem and the gas flow pipe, regardless of the flow velocity of the gas flowing in the pipe provided with the valve stem. We examined the structure of the plant with a pipe with a base, especially the valve base. As a result, the inventors provided a sound wave attenuation chamber disposed outside the flow path formed in the valve nozzle and connected to the pipe in the valve nozzle installed in the pipe through which the gas flows. A partition wall that partitions the internal space of the attenuation chamber and the flow path is provided in the valve nozzle, and a plurality of through holes (through flow paths) that communicate the flow path and the internal space (for example, the through holes 18, 19, It was found that by forming 20) on the partition wall, the occurrence of hydroacoustic resonance at the joint between the valve stem and the pipe can be suppressed regardless of the flow velocity of the gas flowing in the pipe.

弁管台と配管の接合部で生じる流力音響共鳴により発生した音波の一部が、弁管台内の流路を伝播し、隔壁に形成された複数の貫通孔を通って音波減衰室の内部空間に入り、内部空間内で音波減衰室の内面によって反射され、再び、複数の貫通孔を通って弁管台内の流路を経て弁管台と配管の接合部に到達する。このような構造の弁管台では、特開昭53−86997号公報に記載された拡大筒と同様に、音波が音波減衰室の内面によって反射されることにより、音波のエネルギーが低減される。そのような構造の弁管台では、音波が、音波減衰室の内部空間に入るとき、及び音波減衰室の内部空間から外に出るときにおいて、隔壁に形成された複数の貫通孔を通過する。音波がこの複数の貫通孔を通過するときに生じる流体粘性(音波波面の拡大・収縮)により、音波のエネルギーが低減される。また、音波が、複数の貫通孔、すなわち異なった長さを有する複数の経路を通って音波減衰室を出入りするため、音波のエネルギーが複数の周波数に分散され、分散された個々の周波数を有するそれぞれの音波の成分のエネルギーは小さくなる。   A part of the sound wave generated by the hydroacoustic resonance generated at the joint between the valve nozzle and the pipe propagates through the flow path in the valve nozzle and passes through the plurality of through holes formed in the partition wall. It enters the internal space, is reflected by the inner surface of the sound wave attenuation chamber in the internal space, passes through the plurality of through holes, passes through the flow path in the valve base, and reaches the joint between the valve base and the pipe. In the valve stem having such a structure, the sound wave is reflected by the inner surface of the sound wave attenuation chamber as in the case of the enlarged cylinder described in JP-A-53-86997, thereby reducing the energy of the sound wave. In the valve stem having such a structure, the sound wave passes through the plurality of through holes formed in the partition wall when entering the internal space of the sound wave attenuation chamber and when going outside the internal space of the sound wave attenuation chamber. The energy of the sound wave is reduced by the fluid viscosity (expansion / contraction of the sound wave surface) generated when the sound wave passes through the plurality of through holes. Also, since the sound wave enters and leaves the sound wave attenuation chamber through a plurality of through holes, that is, a plurality of paths having different lengths, the energy of the sound wave is dispersed into a plurality of frequencies, and the individual frequencies are dispersed. The energy of each sound wave component is reduced.

弁管台内の流路と音波減衰室の内部空間を、貫通孔を有する隔壁で仕切ることによって、音波のその内部空間への出入り時における貫通孔による流体粘性、及び音波減衰室の内面による音波の反射により音波のエネルギーを低減することができる。また、複数の貫通孔により音波のエネルギーが複数の周波数に分散されるため、ある周波数の音波が上流側端部25へ到達し、渦を強める働きをしても、異なった周波数の音波が上流側端部25へ次々と到達し、渦を乱して崩壊させるため、流力音響共鳴の原因となる、下流側端部26に到達する渦が減少し、結果的に流力音響共鳴の発生が抑制される。したがって、弁管台内の流路と音波減衰室の内部空間の間を、複数の貫通孔を形成した隔壁で仕切ることによって、配管内を流れる気体の流速に関わらず、弁管台と配管の接合部における流力音響共鳴の発生を著しく抑制することができる。   By dividing the flow path in the valve nozzle and the internal space of the sound attenuation chamber by a partition wall having a through hole, the fluid viscosity due to the through hole when the sound wave enters and exits the internal space, and the sound wave by the inner surface of the sound attenuation chamber The energy of the sound wave can be reduced by the reflection. In addition, since the energy of the sound wave is dispersed to a plurality of frequencies by the plurality of through holes, even if the sound wave having a certain frequency reaches the upstream end 25 and strengthens the vortex, the sound wave having a different frequency is upstream. Since the vortex is disturbed and collapsed one after another, the vortex reaching the downstream end 26 that causes the hydroacoustic resonance is reduced, resulting in the occurrence of the hydroacoustic resonance. Is suppressed. Therefore, by dividing the flow path in the valve nozzle and the internal space of the sound wave attenuation chamber by a partition wall having a plurality of through holes, the valve nozzle and the pipe can be connected regardless of the flow velocity of the gas flowing in the pipe. Generation of hydroacoustic resonance at the joint can be significantly suppressed.

以上の検討結果を考慮して得られた、本発明の実施例を以下に説明する。   Examples of the present invention obtained in consideration of the above examination results will be described below.

本実施例の好適な一実施例である実施例1の、弁管台を有する配管を備えたプラントを、図1、図2及び図3を用いて説明する。本実施例の弁管台を有する配管を備えたプラントは、BWRプラント1である。BWRプラント1は、原子炉2、主蒸気配管11、タービン12、復水器(図示せず)及び給水配管を備えている。   A plant including a pipe having a valve nozzle according to the first embodiment which is a preferred embodiment of the present embodiment will be described with reference to FIGS. 1, 2, and 3. A plant provided with piping having the valve nozzle of the present embodiment is a BWR plant 1. The BWR plant 1 includes a nuclear reactor 2, a main steam pipe 11, a turbine 12, a condenser (not shown), and a water supply pipe.

原子炉2は、原子炉圧力容器(以下、RPVという)3、及びRPV3内に配置された炉心を有する。炉心には、多数の燃料集合体(図示せず)が装荷されている。取り外し可能な蓋4がRPV3に取り付けられている。RPV3内には、炉心の上方に気水分離器(図示せず)が設置され、気水分離器の上方に波板6を有する蒸気乾燥器5が設置される。主蒸気配管11は、RPV3に形成されたノズル9に接続され、蒸気乾燥器5よりも上方でRPV3内に形成される蒸気ドーム7に連絡される。タービン12が主蒸気配管11に接続される。弁管台13が直管部14及び音波減衰室15を有し、直管部14が主蒸気配管10に接続されることにより弁管台13が主蒸気配管10に設置される。直管部14内に形成された流路27が主蒸気配管11に連絡される。蒸気逃し安全弁21が弁管台13の端面に取り付けられる。蒸気逃し安全弁21は、弁ケーシング22内に弁体24を設けており、この弁体24は、BWRプラント1の正常な運転時において、流路27を封鎖している。   The reactor 2 has a reactor pressure vessel (hereinafter referred to as RPV) 3 and a core disposed in the RPV 3. A large number of fuel assemblies (not shown) are loaded in the core. A removable lid 4 is attached to the RPV 3. In the RPV 3, a steam / water separator (not shown) is installed above the core, and a steam dryer 5 having a corrugated plate 6 is installed above the steam / water separator. The main steam pipe 11 is connected to a nozzle 9 formed in the RPV 3 and communicates with a steam dome 7 formed in the RPV 3 above the steam dryer 5. A turbine 12 is connected to the main steam pipe 11. The valve stem 13 has a straight pipe portion 14 and a sound wave attenuation chamber 15, and the straight pipe portion 14 is connected to the main steam pipe 10, whereby the valve stem 13 is installed in the main steam pipe 10. A flow path 27 formed in the straight pipe portion 14 communicates with the main steam pipe 11. A steam relief valve 21 is attached to the end face of the valve stem 13. The steam relief safety valve 21 is provided with a valve body 24 in a valve casing 22, and the valve body 24 blocks the flow path 27 during normal operation of the BWR plant 1.

ベント管(図示せず)が、蒸気逃し安全弁21の弁ケーシング22に設けられたフランジ23に接続される。このベント管は、原子炉2を内蔵する原子炉格納容器(図示せず)内に設けられた圧力抑制室(図示せず)内まで伸びており、その先端部が圧力抑制室内のプール水に浸漬されている。   A vent pipe (not shown) is connected to a flange 23 provided in the valve casing 22 of the steam relief safety valve 21. This vent pipe extends into a pressure suppression chamber (not shown) provided in a reactor containment vessel (not shown) containing the nuclear reactor 2, and the tip thereof is used as pool water in the pressure suppression chamber. Soaked.

流路27を取り囲む環状の音波減衰室15が、弁管台13、すなわち、直管部14の内部に形成される流路27を画定する環状の側壁の外面に設けられている。弁管台13、すなわち、直管部14の側壁の一部である隔壁17が、流路27と、音波減衰室15内に形成された内部空間16を仕切っている。内部空間16は流路27を取り囲んでいる環状の空間である。隔壁17には、複数の貫通孔、すなわち、貫通孔18,19及び20が形成され、これらの貫通孔が流路27と内部空間16を連絡している。貫通孔18,19及び20は、隔壁17の周方向において、異なる位置に配置されている(図2参照)。貫通孔18,19及び20のそれぞれの内径は、等しくなっている。これらの貫通孔は、隔壁17の周方向において、相互の間隔が異なるように、配置される。例えば、その周方向における、貫通孔18と貫通孔19の間の距離と、その周方向における、貫通孔18と貫通孔20の間の距離が異なっている。   An annular sound attenuation chamber 15 surrounding the flow path 27 is provided on the outer surface of the annular side wall that defines the flow path 27 formed inside the valve stem 13, that is, the straight pipe portion 14. A valve stem 13, that is, a partition wall 17 that is a part of the side wall of the straight pipe portion 14 divides the flow path 27 and the internal space 16 formed in the sound wave attenuation chamber 15. The internal space 16 is an annular space surrounding the flow path 27. A plurality of through holes, that is, through holes 18, 19, and 20 are formed in the partition wall 17, and these through holes communicate the flow path 27 and the internal space 16. The through holes 18, 19 and 20 are arranged at different positions in the circumferential direction of the partition wall 17 (see FIG. 2). The inner diameters of the through holes 18, 19 and 20 are equal. These through holes are arranged in the circumferential direction of the partition wall 17 so as to have different intervals. For example, the distance between the through hole 18 and the through hole 19 in the circumferential direction is different from the distance between the through hole 18 and the through hole 20 in the circumferential direction.

弁管台13の軸方向において、内部空間16の主蒸気配管11側の第1面及び蒸気逃し安全弁21側の第2面は、共に、平面になっており、貫通孔18,19及び20のそれぞれの内径は、弁管台13の軸方向における内部空間16の第1面と第2面の間の間隔の寸法よりも小さくなっている。本実施例では、貫通孔18,19及び20は、弁管台13の軸方向において、内部空間16の第1面と第2面の間の間隔の1/2の位置に配置されている。   In the axial direction of the valve stem 13, the first surface of the internal space 16 on the main steam pipe 11 side and the second surface on the steam relief safety valve 21 side are both flat, and the through holes 18, 19 and 20 Each inner diameter is smaller than the dimension of the space between the first surface and the second surface of the internal space 16 in the axial direction of the valve nozzle 13. In the present embodiment, the through holes 18, 19, and 20 are disposed at a position that is ½ of the interval between the first surface and the second surface of the internal space 16 in the axial direction of the valve stem 13.

再循環ポンプ(図示せず)の駆動によってRPV3内の冷却水が昇圧されてRPV3内に設置されたジェットポンプ(図示せず)のノズルから噴出される。この噴出された冷却水流によって、ノズルの周囲に存在する冷却水が、ジェットポンプ内に吸引されてジェットポンプから吐出される。吐出された冷却水は、炉心に供給される。この冷却水は、炉心を上昇する間に、燃料集合体内の核燃料物質の核分裂で発生する熱によって加熱され、一部が蒸気28になる。蒸気28に含まれた水分が、気水分離器及び蒸気乾燥器5で除去される。水分が除去された蒸気28は、主蒸気配管11を通ってタービン12に導かれ、タービン12を回転させる。タービン12に連結された発電機(図示せず)が回転し、電力が発生する。タービン12から排出された蒸気28は、復水器(図示せず)で凝縮されて水になる。この水は、給水として、給水ポンプ(図示せず)で昇圧され、給水配管(図示せず)を通ってRPV3内に供給される。BWRプラントの原子炉2は蒸気発生装置である。蒸気乾燥器5で分離された水分は、ドレン管8を通って蒸気乾燥器5よりも下方で気水分離器の相互間に形成された領域に導かれる。   By driving a recirculation pump (not shown), the cooling water in the RPV 3 is pressurized and ejected from a nozzle of a jet pump (not shown) installed in the RPV 3. By the jetted cooling water flow, the cooling water existing around the nozzle is sucked into the jet pump and discharged from the jet pump. The discharged cooling water is supplied to the core. This cooling water is heated by the heat generated by the nuclear fission of the nuclear fuel material in the fuel assembly while ascending the core, and a part thereof becomes steam 28. Water contained in the steam 28 is removed by the steam separator and the steam dryer 5. The steam 28 from which moisture has been removed is guided to the turbine 12 through the main steam pipe 11 and rotates the turbine 12. A generator (not shown) connected to the turbine 12 rotates to generate electric power. The steam 28 discharged from the turbine 12 is condensed into water by a condenser (not shown). This water is pressurized as a feed water by a feed water pump (not shown), and supplied into the RPV 3 through a feed water pipe (not shown). The reactor 2 of the BWR plant is a steam generator. The water separated by the steam dryer 5 is guided to a region formed between the steam-water separators below the steam dryer 5 through the drain pipe 8.

万が一、RPV3内の圧力が設定値よりも高くなったとき、蒸気逃し安全弁21の弁体24が自動的に押し上げられて、蒸気逃し安全弁21が開く。RPV3内の蒸気28は、主蒸気配管11、管台13内の流路27、及び蒸気逃し安全弁21を通り、ベント管を経て圧力抑制室内のプール水中に放出され、凝縮される。これにより、RPV3内の圧力が設定値以下に抑えられ、原子炉2の安全性が確保される。   If the pressure in the RPV 3 becomes higher than the set value, the valve body 24 of the steam relief safety valve 21 is automatically pushed up and the steam relief safety valve 21 is opened. The steam 28 in the RPV 3 passes through the main steam pipe 11, the flow path 27 in the nozzle 13 and the steam relief safety valve 21, is discharged into the pool water in the pressure suppression chamber through the vent pipe, and is condensed. Thereby, the pressure in the RPV 3 is suppressed to a set value or less, and the safety of the nuclear reactor 2 is ensured.

BWRプラント1の正常な運転状態で、RPV3から吐出された蒸気28が主蒸気配管10内を流れる。主蒸気配管11内を流れる蒸気28の流量が過度に増加した場合には、主蒸気配管11と弁管台13の直管部14との接合部の上流側端部(上流側縁)25で、蒸気28の流れが剥離して渦が発生する。この発生した渦は、蒸気28の流れと共に、主蒸気配管11内を下流に向かって流れ、主蒸気配管11と直管部14との接合部の下流側端部(下流側縁)26に衝突する。発生した渦が下流側端部26に衝突することにより音波が発生する。   In a normal operation state of the BWR plant 1, the steam 28 discharged from the RPV 3 flows through the main steam pipe 10. When the flow rate of the steam 28 flowing in the main steam pipe 11 increases excessively, at the upstream end (upstream edge) 25 of the joint portion between the main steam pipe 11 and the straight pipe portion 14 of the valve stem 13. Then, the flow of the vapor 28 is separated and a vortex is generated. The generated vortex flows along with the flow of the steam 28 toward the downstream in the main steam pipe 11 and collides with the downstream end (downstream edge) 26 of the joint portion between the main steam pipe 11 and the straight pipe section 14. To do. A sound wave is generated when the generated vortex collides with the downstream end portion 26.

この発生した音波の一部は、直管部14内に形成された流路27を閉じている弁体24に向かって流路27内を伝播し、その弁体24で反射される。弁体24で反射されてエネルギーが低減された音波は、流路27内を伝播して上流側端部25へ到達する。また、下流側端部26で発生した残りの音波は、貫通孔18,19及び20をそれぞれ通過して内部空間16内に達し、内部空間16を画定する音波減衰室15の内面で反射される。この音波は、再び、貫通孔18,19及び20をそれぞれ通過して流路27内に伝播し、上流側端部25に到達する。   A part of the generated sound wave propagates in the flow path 27 toward the valve body 24 closing the flow path 27 formed in the straight pipe portion 14 and is reflected by the valve body 24. The sound wave reflected by the valve body 24 and reduced in energy propagates through the flow path 27 and reaches the upstream end 25. Further, the remaining sound wave generated at the downstream end 26 passes through the through holes 18, 19 and 20, reaches the internal space 16, and is reflected by the inner surface of the sound wave attenuation chamber 15 that defines the internal space 16. . This sound wave again passes through the through holes 18, 19 and 20, propagates in the flow path 27, and reaches the upstream end 25.

流路27を伝播して貫通孔18,19及び20に到達した音波は、それぞれの貫通孔にほぼ同時に到達する。音波は、貫通孔18,19及び20のそれぞれを通って内部空間16へ伝播する。音波が貫通孔18,19及び20のそれぞれを通過する際における音波の波面の収縮及び拡大(貫通孔での流体粘性)により、音波のエネルギーの一部が失われる。例えば、貫通孔18を通って内部空間16内へ伝播した音波は、内部空間16の壁面で反射され、その一部が再び貫通孔18を通って流路27内に戻り、貫通孔18を通って内部空間16内へ伝播した音波の他の成分は、経路29または30に沿って内部空間16内を伝播し、貫通孔19もしくは20を通過して流路27内に戻る。貫通孔18を通過して内部空間16内に伝播した音波のうち、再び貫通孔18を通過した音波が最も短い時間で流路27に戻り、次に、貫通孔20を通過した音波が流路27に戻り、最後に貫通孔19を通過した音波が流路27に戻る。流路27から貫通孔19及び20のそれぞれを通過して内部空間16に到達した音波も、それぞれ同様に、貫通孔18,19及び20のそれぞれを通過して流路27に戻される。   The sound waves that have propagated through the flow path 27 and reached the through holes 18, 19, and 20 reach the through holes almost simultaneously. The sound wave propagates to the internal space 16 through each of the through holes 18, 19 and 20. Part of the energy of the sound wave is lost due to contraction and expansion of the wave surface of the sound wave (fluid viscosity at the through hole) when the sound wave passes through each of the through holes 18, 19 and 20. For example, a sound wave propagated through the through hole 18 into the internal space 16 is reflected by the wall surface of the internal space 16, and a part of the sound wave returns to the flow path 27 through the through hole 18 and passes through the through hole 18. The other components of the sound wave propagated into the internal space 16 propagate in the internal space 16 along the path 29 or 30, pass through the through holes 19 or 20, and return to the flow path 27. Of the sound waves that have passed through the through hole 18 and propagated into the internal space 16, the sound wave that has passed through the through hole 18 again returns to the flow path 27 in the shortest time, and then the sound wave that has passed through the through hole 20 Returning to 27, the sound wave that has finally passed through the through hole 19 returns to the flow path 27. Similarly, sound waves that have passed through each of the through holes 19 and 20 from the flow path 27 and reached the internal space 16 are also returned to the flow path 27 through the respective through holes 18, 19, and 20.

このように、貫通孔18,19及び20のそれぞれを通って内部空間16内に伝播した音波の各成分は、それぞれ、貫通孔18,19及び20のそれぞれを通過することにより、3つの周波数の異なる成分に分解される。これらの成分は、伝播距離が異なるため、位相差を持って流路27に戻ることになる。音波は、流路27から内部空間16に向かうときに貫通孔18,19及び20のそれぞれを通過するたびに、及び内部空間16から流路27に向かうときに貫通孔18,19及び20のそれぞれを通過するたびに、音波の波面が収縮、拡大するため(貫通孔18,19及び20のそれぞれの流体粘性によって)、音波のエネルギーの一部が失われる。   Thus, each component of the sound wave propagated through the through holes 18, 19 and 20 into the internal space 16 passes through the through holes 18, 19 and 20, respectively, and has three frequencies. Breaks down into different components. Since these components have different propagation distances, they return to the flow path 27 with a phase difference. Each time the sound wave passes through each of the through holes 18, 19 and 20 when going from the flow path 27 to the internal space 16, and when passing from the internal space 16 to the flow path 27, each of the through holes 18, 19 and 20 Each time it passes through, the wavefront of the sound wave contracts and expands (due to the fluid viscosity of each of the through holes 18, 19 and 20), so that a part of the energy of the sound wave is lost.

内部空間16から流路27に戻された、相互に位相差を持った音波の各成分の一部は、上流側端部25に到達する。内部空間16から流路27に戻された、相互に位相差を持った音波の各成分の残りは、弁体24で反射され、再び、貫通孔18,19及び20のそれぞれを通過して、内部空間16に伝播する。前述の内部空間16に到達した音波と同じメカニズムで、相互に位相差を持った、音波の成分がさらに増加して、内部空間16から貫通孔18,19及び20のそれぞれを通過して流路27に戻される。   A part of each component of the sound wave having a phase difference mutually returned from the internal space 16 to the flow path 27 reaches the upstream end 25. The remainder of each component of the sound wave having a phase difference with each other returned from the internal space 16 to the flow path 27 is reflected by the valve body 24 and passes through each of the through holes 18, 19 and 20 again. Propagates to the internal space 16. With the same mechanism as the sound wave that has reached the internal space 16 described above, the components of the sound wave having a phase difference with each other further increase and pass through each of the through holes 18, 19, and 20 from the internal space 16. Returned to 27.

流路27と内部空間16を仕切って貫通孔18,19及び20を形成した隔壁17を有する単純な構成の弁管台13を備えた本実施例において、貫通孔18,19及び20のそれぞれを含む様々な経路を通って上流側端部25に到達した音波の各成分は、流路27と内部空間16を仕切っている隔壁17を有していない弁管台を備えた特開昭53−86997号公報において、拡大筒を有する弁管台と配管の接合部の上流側端部25に到達した音波の各成分に比べ、相当なエネルギーを失っており、さらに、音波の各成分相互に大きな位相差を有している。このため、貫通孔18,19及び20を形成した隔壁17を有する弁管台13を備えた本実施例では、異なったタイミングで周波数が異なるより多くの音波の各成分が上流側端部5へ到達することとなり、これらの音波の成分によって上流側端部5で発生する渦が乱されて崩壊され、特開昭53−86997号公報に比べて渦が相当に弱くなる。この結果、流力音響共鳴の原因となる渦の発生が著しく抑制され、弁管台13と主蒸気配管11の接合部における流力音響共鳴の発生が著しく抑制される。   In this embodiment provided with the valve stem 13 having a simple configuration having a partition wall 17 in which the flow path 27 and the internal space 16 are partitioned to form the through holes 18, 19 and 20, the through holes 18, 19 and 20 are respectively provided. Each component of the sound wave that has reached the upstream end 25 through various paths including the above is provided with a valve nozzle that does not have the partition wall 17 that partitions the flow path 27 and the internal space 16. In the 86997 publication, a considerable amount of energy is lost compared to each component of the sound wave that reaches the upstream end 25 of the joint between the valve stem having the enlarged cylinder and the pipe, and each component of the sound wave is larger than each other. Has a phase difference. For this reason, in this embodiment provided with the valve stem 13 having the partition wall 17 in which the through holes 18, 19 and 20 are formed, each component of more sound waves having different frequencies at different timings is sent to the upstream end 5. As a result, the vortex generated at the upstream end 5 is disturbed and collapsed by these sound wave components, and the vortex becomes considerably weaker than that of Japanese Patent Laid-Open No. 53-86997. As a result, the generation of vortices causing the hydroacoustic resonance is remarkably suppressed, and the occurrence of hydroacoustic resonance at the junction between the valve stem 13 and the main steam pipe 11 is remarkably suppressed.

本実施例に用いられる弁管台13で発生する圧力変動とストローハル数の関係は、図4のようになり、図17に示す従来の弁管台13Fの主蒸気配管11への設置によって発生した流力音響共鳴によるストローハル数Stが0.3〜0.6の範囲での圧力変動の増加が、本実施例では生じない。また、蒸気逃し安全弁を設置する弁管台にヘルムホルツ共鳴管を設置することによって生じた異なる蒸気流速(すなわち、異なるストローハル数)における流力音響共鳴も発生しない。   The relationship between the pressure fluctuation generated in the valve nozzle 13 used in this embodiment and the number of straw hulls is as shown in FIG. 4, and is generated by installing the conventional valve nozzle 13F shown in FIG. 17 on the main steam pipe 11. The increase in pressure fluctuation in the range where the Strouhal number St is in the range of 0.3 to 0.6 due to the hydroacoustic resonance performed does not occur in this embodiment. In addition, hydroacoustic resonance at different steam flow velocities (that is, different Strouhal numbers) generated by installing the Helmholtz resonance tube in the valve nozzle for installing the steam relief safety valve does not occur.

流路27と内部空間16を仕切って貫通孔18,19及び20を形成した隔壁17を有する弁管台13を備えた本実施例では、複数の貫通孔の形成により、相互に位相差を有する音波の成分をより多く生成することができるため、弁管台13と主蒸気配管11の接合部で発生する流力音響共鳴により生じる圧力変動(音波)は、図17に示す従来の弁管台13Fの主蒸気配管11への設置によって発生する圧力変動(図7参照)に比べ、図5に示すように乱れた波形となり、圧力変動の大きさも小さくなる。   In the present embodiment provided with the valve stem 13 having the partition wall 17 in which the flow path 27 and the internal space 16 are partitioned to form the through holes 18, 19, and 20, there is a phase difference due to the formation of the plurality of through holes. Since more sonic components can be generated, the pressure fluctuation (sound wave) generated by the hydroacoustic resonance generated at the joint between the valve stem 13 and the main steam pipe 11 is the conventional valve stem shown in FIG. Compared to the pressure fluctuation (see FIG. 7) generated by the installation of 13F on the main steam pipe 11, the waveform is disturbed as shown in FIG. 5, and the magnitude of the pressure fluctuation is also reduced.

本実施例は、流路27と内部空間16を仕切って流路27と内部空間16を連通する貫通孔18,19及び20を形成した隔壁17を有する弁管台13を設けているので、弁管台13と主蒸気配管11の接合部で生じた音波が、それらの貫通孔を出入りすることによって、相互に位相差を有する音波の成分をより多く生成することができる。このため、前述したように、流力音響共鳴の原因となる上流側端部での渦の生成を弱めることができ、主蒸気配管11内を流れる蒸気28の流速に関わらず、弁管台13と主蒸気配管11との接合部における流力音響共鳴の発生を抑制することができる。隔壁17に形成する貫通孔の個数を多くすればするほど、周波数の異なるより多数の音波成分を生成することができ、上流側端部25での渦の発生をさらに抑制することができる。本実施例は、主蒸気配管11内を流れる蒸気の流速に係らず、弁管台13と主蒸気配管11との接合部における流力音響共鳴の発生を抑制することができる。   In the present embodiment, the valve nozzle 13 having the partition wall 17 having the through holes 18, 19 and 20 that partition the flow path 27 and the internal space 16 and communicate the flow path 27 and the internal space 16 is provided. When sound waves generated at the joint between the nozzle 13 and the main steam pipe 11 enter and leave the through holes, more sound wave components having a phase difference can be generated. For this reason, as described above, it is possible to weaken the generation of vortices at the upstream end that causes the hydroacoustic resonance, and the valve stem 13 regardless of the flow velocity of the steam 28 flowing in the main steam pipe 11. The generation of hydroacoustic resonance at the junction between the main steam pipe 11 and the main steam pipe 11 can be suppressed. As the number of through holes formed in the partition wall 17 is increased, a larger number of sound wave components having different frequencies can be generated, and the generation of vortices at the upstream end 25 can be further suppressed. This embodiment can suppress the occurrence of hydroacoustic resonance at the junction between the valve stem 13 and the main steam pipe 11 regardless of the flow velocity of the steam flowing in the main steam pipe 11.

本実施例の他の実施例である実施例2の、弁管台を有する配管を備えたプラントを、図8を用いて説明する。本実施例の弁管台を有する配管を備えたプラントも、BWRプラントである。本実施例のBWRプラントは、実施例1のBWRプラント1において、弁管台13を弁管台13Aに替えた構成を有する。本実施例のBWRプラントの他の構成は、BWRプラント1と同じである。本実施例で用いられる弁管台13Aは、実施例1で用いられる弁管台13において、隔壁17に形成された貫通孔18,19及び20を、弁管台13Aの軸方向において、隔壁17の上端部(隔壁17の蒸気逃し安全弁21側の端部)に配置した構成を有する。弁管台13Aの他の構成は弁管台13と同じである。   The plant provided with piping which has a valve nozzle of Example 2 which is another Example of a present Example is demonstrated using FIG. The plant provided with piping having the valve nozzle of the present embodiment is also a BWR plant. The BWR plant of the present embodiment has a configuration in which the valve nozzle 13 is replaced with the valve nozzle 13A in the BWR plant 1 of the first embodiment. Other configurations of the BWR plant of the present embodiment are the same as those of the BWR plant 1. The valve nozzle 13A used in the present embodiment is similar to the valve nozzle 13 used in the first embodiment in that the through holes 18, 19 and 20 formed in the partition wall 17 are separated from the partition wall 17 in the axial direction of the valve nozzle 13A. The upper end portion (the end portion of the partition wall 17 on the steam relief safety valve 21 side) is arranged. The other structure of the valve nozzle 13A is the same as that of the valve nozzle 13.

本実施例は、実施例1で生じる各効果を得ることができる。実施例1では、主蒸気配管11内を流れる主蒸気に含まれる非凝縮ガスが貫通孔18,19及び20を通して内部空間16内に流入し、隔壁17が存在する関係上、内部空間16内に滞留する可能性がある。非凝縮ガスは蒸気に比べ軽いため、内部空間16の上部に滞留する。本実施例では、隔壁17に形成された貫通孔18,19及び20が、隔壁17の上端部に存在するので、内部空間16内に非凝縮ガスが流入したとしても、貫通孔18,19及び20を通してこの非凝縮ガスを流路27へ容易に排出することができる。内部空間16内に滞留する非凝縮ガスの量を低減することができる。   In the present embodiment, each effect produced in the first embodiment can be obtained. In the first embodiment, the non-condensable gas contained in the main steam flowing in the main steam pipe 11 flows into the internal space 16 through the through holes 18, 19 and 20, and the partition wall 17 exists, so May stay. Since non-condensable gas is lighter than steam, it stays in the upper part of the internal space 16. In this embodiment, since the through holes 18, 19 and 20 formed in the partition wall 17 are present at the upper end of the partition wall 17, even if non-condensable gas flows into the internal space 16, the through holes 18, 19 and 20 This non-condensed gas can be easily discharged to the flow path 27 through 20. The amount of non-condensable gas remaining in the internal space 16 can be reduced.

本実施例の他の実施例である実施例3の、弁管台を有する配管を備えたプラントを、図9を用いて説明する。本実施例の弁管台を有する配管を備えたプラントも、BWRプラントである。本実施例のBWRプラントは、実施例1のBWRプラント1において、弁管台13を弁管台13Bに替えた構成を有する。本実施例のBWRプラントの他の構成は、BWRプラント1と同じである。本実施例で用いられる弁管台13Bは、実施例1で用いられる弁管台13において、隔壁17に形成された貫通孔18,19及び20を、隔壁17の下端部(隔壁17の主蒸気配管11側の端部)に配置した構成を有する。弁管台13Bの他の構成は弁管台13と同じである。   The plant provided with piping which has a valve nozzle of Example 3 which is another Example of a present Example is demonstrated using FIG. The plant provided with piping having the valve nozzle of the present embodiment is also a BWR plant. The BWR plant of the present embodiment has a configuration in which the valve nozzle 13 is replaced with the valve nozzle 13B in the BWR plant 1 of the first embodiment. Other configurations of the BWR plant of the present embodiment are the same as those of the BWR plant 1. The valve stem 13B used in the present embodiment is similar to the valve stem 13 used in the first embodiment except that the through holes 18, 19 and 20 formed in the partition wall 17 are connected to the lower end portion of the partition wall 17 (the main steam of the partition wall 17). It has the structure arrange | positioned at the edge part of the piping 11 side. The other structure of the valve nozzle 13B is the same as the valve nozzle 13.

本実施例は、実施例1で生じる各効果を得ることができる。主蒸気配管11内を流れる主蒸気が貫通孔18,19及び20を通して内部空間16内に流入する際に凝縮して、凝縮水を生成し、生成された凝縮水は内部空間16内に溜まる可能性がある。本実施例では、隔壁17に形成された貫通孔18,19及び20が、隔壁17の下端部に存在するので、内部空間16内に凝縮水が溜まったとしても、この凝縮水を貫通孔18,19及び20を通して流路27へ容易に排出することができる。   In the present embodiment, each effect produced in the first embodiment can be obtained. When the main steam flowing through the main steam pipe 11 flows into the internal space 16 through the through holes 18, 19 and 20, it is condensed to generate condensed water, and the generated condensed water can be accumulated in the internal space 16. There is sex. In this embodiment, since the through holes 18, 19 and 20 formed in the partition wall 17 exist at the lower end of the partition wall 17, even if condensed water accumulates in the internal space 16, this condensed water is passed through the through hole 18. , 19 and 20 can be easily discharged to the flow path 27.

本実施例の他の実施例である実施例4の、弁管台を有する配管を備えたプラントを、図10、図11及び図12を用いて説明する。本実施例の弁管台を有する配管を備えたプラントも、BWRプラントである。本実施例のBWRプラントは、実施例1のBWRプラント1において、弁管台13を弁管台13Cに替えた構成を有する。本実施例のBWRプラントの他の構成は、BWRプラント1と同じである。本実施例で用いられる弁管台13Cは、実施例1で用いられる弁管台13において、隔壁17に形成された貫通孔18,19及び20を、弁管台13Cの軸方向において、隔壁17の上端部(隔壁17の蒸気逃し安全弁21側の端部)(図10のXII−XII断面を参照)に配置した構成を有する。さらに、弁管台13Cは、他の貫通孔18,19及び20を、弁管台13Cの軸方向において、隔壁17の下端部(隔壁17の主蒸気配管11側の端部)(図10のXI−XI断面を参照)に配置した構成を有する。弁管台13Cの他の構成は弁管台13と同じである。   A plant including a pipe having a valve nozzle according to the fourth embodiment which is another embodiment of the present embodiment will be described with reference to FIGS. 10, 11, and 12. The plant provided with piping having the valve nozzle of the present embodiment is also a BWR plant. The BWR plant of the present embodiment has a configuration in which the valve nozzle 13 is replaced with the valve nozzle 13C in the BWR plant 1 of the first embodiment. Other configurations of the BWR plant of the present embodiment are the same as those of the BWR plant 1. The valve stem 13C used in the present embodiment is similar to the valve stem 13 used in the first embodiment in that the through holes 18, 19 and 20 formed in the partition wall 17 are separated from the partition wall 17 in the axial direction of the valve stem 13C. The upper end portion (the end portion of the partition wall 17 on the steam relief safety valve 21 side) (see the XII-XII cross section of FIG. 10). Furthermore, the valve stem 13C has other through holes 18, 19 and 20 arranged in the axial direction of the valve stem 13C at the lower end of the partition wall 17 (the end of the partition wall 17 on the main steam pipe 11 side) (in FIG. 10). XI-XI cross section). The other configuration of the valve nozzle 13C is the same as that of the valve nozzle 13.

本実施例は、実施例2で生じる各効果を得ることができ、内部空間16内に凝縮水が溜まったとしても、この凝縮水を貫通孔18,19及び20を通して流路27へ容易に排出することができる。本実施例は、実施例1に比べて隔壁17に形成された貫通孔の個数が多くなっているので、周波数の異なる音波成分が実施例1よりも多く生成されるので、実施例1に比べて上流側端部25での生成される渦がより乱されるため、音響共鳴の発生がざらに抑制される。   In the present embodiment, each effect produced in the second embodiment can be obtained, and even if condensed water accumulates in the internal space 16, the condensed water is easily discharged to the flow path 27 through the through holes 18, 19 and 20. can do. In this embodiment, since the number of through holes formed in the partition wall 17 is larger than that in the first embodiment, more sound wave components having different frequencies are generated than in the first embodiment. Since the vortex generated at the upstream end 25 is more disturbed, the generation of acoustic resonance is largely suppressed.

本実施例の他の実施例である実施例5の、弁管台を有する配管を備えたプラントを、図13及び図14を用いて説明する。本実施例の弁管台を有する配管を備えたプラントも、BWRプラントである。本実施例のBWRプラントは、実施例1のBWRプラント1において、弁管台13を弁管台13Eに替えた構成を有する。本実施例のBWRプラントの他の構成は、BWRプラント1と同じである。本実施例で用いられる弁管台13Eは、実施例1で用いられる弁管台13において、音波減衰室15を音波減衰室15Aに替えた構成を有する。弁管台13Eは直管部14A及び音波減衰室15Aを有する。内部に流路27を形成する直管部14Aが主蒸気配管11に接合され、流路27が主蒸気配管11に連絡される。音波減衰室15Aの、弁管台の軸に垂直な方向での断面積は、音波減衰室15のそれの半分しかない。音波減衰室15Aは、直管部14Aの外面の周方向長さの1/2しか取り囲んでいない。直管部14Aの側壁の一部である隔壁17には、流路27と音波減衰室15A内の内部空間16を連通する貫通孔18及び19が形成されている。貫通孔18及び19は、弁管台13Eの軸方向において、内部空間16の第1面と第2面の間の間隔の1/2の位置に配置される。   A plant including a pipe having a valve stem in Example 5 which is another example of this example will be described with reference to FIGS. 13 and 14. The plant provided with piping having the valve nozzle of the present embodiment is also a BWR plant. The BWR plant of the present embodiment has a configuration in which the valve stem 13 is replaced with the valve stem 13E in the BWR plant 1 of the first embodiment. Other configurations of the BWR plant of the present embodiment are the same as those of the BWR plant 1. The valve nozzle 13E used in the present embodiment has a configuration in which the sound attenuation chamber 15 is replaced with the sound attenuation chamber 15A in the valve nozzle 13 used in the first embodiment. The valve stem 13E includes a straight pipe portion 14A and a sound wave attenuation chamber 15A. The straight pipe portion 14 </ b> A that forms the flow path 27 inside is joined to the main steam pipe 11, and the flow path 27 is connected to the main steam pipe 11. The cross-sectional area of the sound attenuation chamber 15A in the direction perpendicular to the axis of the valve stem is only half that of the sound attenuation chamber 15. The sound wave attenuation chamber 15A surrounds only 1/2 of the circumferential length of the outer surface of the straight pipe portion 14A. The partition wall 17 that is a part of the side wall of the straight pipe portion 14A is formed with through holes 18 and 19 that communicate the flow path 27 and the internal space 16 in the sound wave attenuation chamber 15A. The through holes 18 and 19 are arranged at a position that is half the distance between the first surface and the second surface of the internal space 16 in the axial direction of the valve stem 13E.

本実施例は、実施例1で生じる各効果を得ることができる。本実施例は、音波減衰室15Aが実施例1の音波減衰室15よりも小さくなっているので、弁管台13Eを小型化することができる。   In the present embodiment, each effect produced in the first embodiment can be obtained. In this embodiment, since the sound wave attenuation chamber 15A is smaller than the sound wave attenuation chamber 15 of the first embodiment, the valve nozzle 13E can be downsized.

本実施例の他の実施例である実施例6の、弁管台を有する配管を備えたプラントを、図15及び図16を用いて説明する。本実施例の弁管台を有する配管を備えたプラントも、BWRプラントである。本実施例のBWRプラントは、実施例1のBWRプラント1において、弁管台13を弁管台13Fに替え、蒸気逃し安全弁21を蒸気逃し安全弁21Aに替えた構成を有する。本実施例のBWRプラントの他の構成は、BWRプラント1と同じである。本実施例で用いられる弁管台13Fは、図17に示す従来のBWRプラントで用いられる弁管台13Fと同じ構成を有し、音波減衰室15を有していない。この音波減衰室15は、蒸気逃し安全弁21Aに設けられる。   A plant including a pipe having a valve nozzle in Example 6 which is another example of this example will be described with reference to FIGS. 15 and 16. The plant provided with piping having the valve nozzle of the present embodiment is also a BWR plant. The BWR plant of the present embodiment has a configuration in which, in the BWR plant 1 of the first embodiment, the valve nozzle 13 is replaced with the valve nozzle 13F, and the steam relief safety valve 21 is replaced with the steam relief safety valve 21A. Other configurations of the BWR plant of the present embodiment are the same as those of the BWR plant 1. The valve nozzle 13F used in the present embodiment has the same configuration as the valve nozzle 13F used in the conventional BWR plant shown in FIG. The sound wave attenuation chamber 15 is provided in the steam relief safety valve 21A.

音波減衰室15は、蒸気逃し安全弁21Aの弁ケーシング22の下端部に設けられ、弁ケーシング22内に形成されて流路27に連絡される流路を取り囲んでいる。隔壁17が、音波減衰室15内に形成された内部空間16と弁ケーシング22内に形成されて流路を仕切っており、内部空間16と弁ケーシング22内に形成された流路を連通する貫通孔18,19及び29が、隔壁17に形成される。   The sound wave attenuation chamber 15 is provided at the lower end portion of the valve casing 22 of the steam release safety valve 21 </ b> A and surrounds the flow path formed in the valve casing 22 and connected to the flow path 27. A partition wall 17 is formed in the internal space 16 formed in the sound wave attenuation chamber 15 and the valve casing 22 to partition the flow path, and penetrates through the flow path formed in the internal space 16 and the valve casing 22. Holes 18, 19 and 29 are formed in the partition wall 17.

弁ケーシング22内に形成された流路と内部空間16を仕切ってこの流路と内部空間16を連通する貫通孔18,19及び20を形成した隔壁17を有する蒸気逃し安全弁21Aが取り付けられた弁管台13Fを有する本実施例は、実施例1で生じる各効果を得ることができる。   A valve provided with a steam relief safety valve 21A having a partition wall 17 in which through holes 18, 19 and 20 are formed by partitioning the flow path formed in the valve casing 22 and the internal space 16 and communicating the flow path with the internal space 16. In the present embodiment having the nozzle 13F, each effect produced in the first embodiment can be obtained.

以上に述べた各実施例は、蒸気発生器(蒸気発生装置)とタービンを連絡する蒸気配管を有する加圧水型原子力プラント、及びボイラ(蒸気発生装置)とタービンを連絡する蒸気配管を有する火力プラント等の弁管台を有して気体(蒸気及び空気等)が流れる配管を備えたプラントに適用することができる。   Each of the embodiments described above includes a pressurized water nuclear plant having a steam pipe connecting the steam generator (steam generator) and the turbine, a thermal power plant having a steam pipe connecting the boiler (steam generator) and the turbine, and the like. It can apply to the plant provided with piping which has a valve stem of this and a gas (steam, air, etc.) flows.

1…沸騰水型原子力プラント(BWRプラント)、2…原子炉、3…原子炉圧力容器、5…蒸気乾燥器、11…主蒸気配管、12…タービン、13,13A〜13C,13E,13F…弁管台、14,14A…直管部、15,15A…音波減衰室、16…内部空間、17…隔壁、18,19,20…貫通孔、21…主蒸気逃し安全弁、22…弁ケーシング、24…弁体、25…上流側端部、26…下流側端部、27…流路。   DESCRIPTION OF SYMBOLS 1 ... Boiling water type nuclear power plant (BWR plant), 2 ... Reactor, 3 ... Reactor pressure vessel, 5 ... Steam dryer, 11 ... Main steam piping, 12 ... Turbine, 13, 13A-13C, 13E, 13F ... Valve base, 14, 14A ... straight pipe portion, 15, 15A ... sound wave attenuation chamber, 16 ... internal space, 17 ... partition wall, 18, 19, 20 ... through hole, 21 ... main steam relief safety valve, 22 ... valve casing, 24 ... valve body, 25 ... upstream end, 26 ... downstream end, 27 ... flow path.

Claims (8)

弁が取り付けられる弁管台が設置されて内部に蒸気が流れる配管を備えたプラントにおいて、前記弁管台が、内部に前記配管に連絡される流路を形成し、前記流路の外側に配置された音波減衰室を有し、前記音波減衰室の内部空間と前記流路を仕切る隔壁が前記弁管台に設けられ、前記流路と前記内部空間を連通する貫通孔が前記隔壁に形成され、
前記貫通孔が、前記弁管台の周方向において、前記隔壁に複数個形成され、
前記隔壁に形成された前記複数の貫通孔の、前記弁管台の周方向における相互の間隔が異なっていることを特徴とする弁管台を有する配管を備えたプラント。
In a plant equipped with a pipe nozzle to which a valve is attached and a pipe through which steam flows, the valve nozzle forms a flow path communicating with the pipe inside and is arranged outside the flow path. A partition wall that divides the internal space of the sound wave attenuation chamber and the flow path is provided in the valve stem, and a through hole that communicates the flow path and the internal space is formed in the partition wall. ,
A plurality of the through holes are formed in the partition wall in the circumferential direction of the valve stem,
A plant comprising a pipe having a valve nozzle, wherein the plurality of through holes formed in the partition wall have different intervals in the circumferential direction of the valve nozzle.
前記隔壁が前記弁管台の側壁の一部である請求項1に記載の弁管台を有する配管を備えたプラント。 The plant comprising a pipe having a valve nozzle according to claim 1, wherein the partition wall is a part of a side wall of the valve nozzle. 前記貫通孔が、前記隔壁の前記弁側の端部及び前記隔壁の前記配管側の端部の少なくとも1つの端部に形成される請求項1または2に記載の弁管台を有する配管を備えたプラント。 The pipe having the valve nozzle according to claim 1 or 2 , wherein the through-hole is formed in at least one end of the valve-side end of the partition and the pipe-side end of the partition. Plant. 前記プラントが原子力プラントである請求項1ないしのいずれか1項に記載の弁管台を有する配管を備えたプラント。 The said plant is a nuclear power plant, The plant provided with piping which has a valve nozzle in any one of Claim 1 thru | or 3 . 前記プラントが火力プラントである請求項1ないしのいずれか1項に記載の弁管台を有する配管を備えたプラント。 The said plant is a thermal power plant, The plant provided with piping which has the valve nozzle of any one of Claim 1 thru | or 3 . 原子炉と、前記原子炉に接続されて前記原子炉で発生した蒸気を導き、蒸気逃し安全弁が取り付けられる弁管台を有する蒸気配管とを備え、
前記弁管台が、内部に前記蒸気配管に連絡される流路を形成し、前記流路の外側に配置された音波減衰室を有し、前記音波減衰室の内部空間と前記流路を仕切る隔壁が前記弁管台に設けられ、前記流路と前記内部空間を連通する貫通孔が前記隔壁に形成され、
前記貫通孔が、前記弁管台の周方向において、前記隔壁に複数個形成され、
前記隔壁に形成された前記複数の貫通孔の、前記弁管台の周方向における相互の間隔が異なっていることを特徴とする沸騰水型原子力プラント。
A reactor and a steam pipe connected to the reactor for guiding the steam generated in the reactor and having a valve nozzle to which a steam relief valve is attached;
The valve nozzle forms a flow path communicating with the steam pipe inside, and has a sound wave attenuation chamber disposed outside the flow path, and partitions the internal space of the sound wave attenuation chamber from the flow path. A partition wall is provided in the valve stem, and a through hole communicating with the flow path and the internal space is formed in the partition wall,
A plurality of the through holes are formed in the partition wall in the circumferential direction of the valve stem,
A boiling water nuclear plant characterized in that the plurality of through holes formed in the partition walls have different intervals in the circumferential direction of the valve stem.
前記隔壁が前記弁管台の側壁の一部である請求項に記載の沸騰水型原子力プラント。 The boiling water nuclear plant according to claim 6 , wherein the partition wall is a part of a side wall of the valve stem. 前記貫通孔が、前記隔壁の前記蒸気逃し安全弁側の端部及び前記隔壁の前記配管側の端部の少なくとも1つの端部に形成される請求項6または7に記載の沸騰水型原子力プラント。 The boiling water nuclear power plant according to claim 6 or 7 , wherein the through hole is formed in at least one end of an end of the partition on the steam relief safety valve side and an end of the partition on the piping side.
JP2010261198A 2010-11-24 2010-11-24 Plant with piping having valve stem and boiling water nuclear power plant Expired - Fee Related JP5642515B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010261198A JP5642515B2 (en) 2010-11-24 2010-11-24 Plant with piping having valve stem and boiling water nuclear power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010261198A JP5642515B2 (en) 2010-11-24 2010-11-24 Plant with piping having valve stem and boiling water nuclear power plant

Publications (2)

Publication Number Publication Date
JP2012112765A JP2012112765A (en) 2012-06-14
JP5642515B2 true JP5642515B2 (en) 2014-12-17

Family

ID=46497142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010261198A Expired - Fee Related JP5642515B2 (en) 2010-11-24 2010-11-24 Plant with piping having valve stem and boiling water nuclear power plant

Country Status (1)

Country Link
JP (1) JP5642515B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5781575B2 (en) * 2013-09-18 2015-09-24 日立Geニュークリア・エナジー株式会社 Remote control device and remote control device of nuclear power plant

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5386997A (en) * 1977-01-07 1978-07-31 Hitachi Ltd Pressure wave damping method for reactor main steam flow pass
JPH0714297U (en) * 1993-06-15 1995-03-10 三菱重工業株式会社 Piping vibration noise prevention device
DE10112010B4 (en) * 2001-03-13 2018-03-08 Valeo Klimasysteme Gmbh Air duct and motor vehicle heating, ventilation and air conditioning
JP4982846B2 (en) * 2006-07-07 2012-07-25 国立大学法人佐賀大学 Equipment for reducing pressure fluctuations in supersonic cavities

Also Published As

Publication number Publication date
JP2012112765A (en) 2012-06-14

Similar Documents

Publication Publication Date Title
JP5057825B2 (en) Fluid pipe and method for modifying fluid pipe
JP5912221B2 (en) Muffler for internal combustion engine
CA2826858A1 (en) Noise and vibration mitigation system for nuclear reactors employing an acoustic side branch resonator
Coffman et al. Failure of safety valves due to flow-induced vibration
JP5642515B2 (en) Plant with piping having valve stem and boiling water nuclear power plant
JP4796146B2 (en) Moisture separator
JP4469346B2 (en) Boiling water reactor
US4530212A (en) Turbine condenser with at least one bypass steam inlet leading into the steam dome
Proschanka et al. Jet oscillation at low-altitude operation mode in dual-bell nozzle
US11232874B2 (en) Multiple-path flow restrictor nozzle
JP2015521247A (en) Silencer for exhaust steam duct in steam power plant with air-cooled condenser
JP5586270B2 (en) Plant with piping having a branching section and boiling water nuclear power plant
JP4994425B2 (en) Plant with piping having a branching section and boiling water nuclear power plant
JP2012032248A (en) Main steam relief safety valve nozzle of boiling-water nuclear power plant
JP4979433B2 (en) Air / water separator
JP2010242899A (en) Plant equipped with piping having branch part and boiling water type nuclear power plant
Balakrishnan et al. Pipe jet noise reduction using co-axial swirl pipe
JP4945511B2 (en) Plant with piping having a branching section and boiling water nuclear power plant
Wong Overview of flow oscillations in transonic and supersonic nozzles
Morita et al. Considerations in steam piping design for prevention of an acoustic resonance at a closed side branch
US10174652B2 (en) Emission signature modification device
Ko et al. Vibration Analysis Methodology for the Piping Attached to the Steam Generator for the APR1400 CVAP
Morita et al. Pressure fluctuations around steam control valve: Steam experiments and CFD calculations
JP5118513B2 (en) Bulkhead structure and hydraulic machine
JPS6247032Y2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140318

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141021

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141029

R150 Certificate of patent or registration of utility model

Ref document number: 5642515

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees