JP5780005B2 - Ultraviolet irradiation furnace for optical fiber and optical fiber manufacturing method - Google Patents

Ultraviolet irradiation furnace for optical fiber and optical fiber manufacturing method Download PDF

Info

Publication number
JP5780005B2
JP5780005B2 JP2011129433A JP2011129433A JP5780005B2 JP 5780005 B2 JP5780005 B2 JP 5780005B2 JP 2011129433 A JP2011129433 A JP 2011129433A JP 2011129433 A JP2011129433 A JP 2011129433A JP 5780005 B2 JP5780005 B2 JP 5780005B2
Authority
JP
Japan
Prior art keywords
optical fiber
quartz tube
ultraviolet irradiation
opening diameter
side opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011129433A
Other languages
Japanese (ja)
Other versions
JP2012254903A (en
Inventor
中原 慎二
慎二 中原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2011129433A priority Critical patent/JP5780005B2/en
Publication of JP2012254903A publication Critical patent/JP2012254903A/en
Application granted granted Critical
Publication of JP5780005B2 publication Critical patent/JP5780005B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)

Description

本発明は、線引きした光ファイバの外周に紫外線硬化型樹脂の被覆を形成する光ファイバ用紫外線照射炉および光ファイバの製造方法に関する。   The present invention relates to an ultraviolet irradiation furnace for an optical fiber in which a coating of an ultraviolet curable resin is formed on the outer periphery of a drawn optical fiber, and an optical fiber manufacturing method.

従来の紫外線照射炉は、光ファイバの外周に塗布した紫外線硬化型樹脂を硬化させるための硬化装置であり、円筒状の石英管が光ファイバの通過路に配置されている。この石英管の外部に紫外線を照射する紫外線ランプが配置されている。この紫外線ランプから紫外線を石英管へ向けて照射することで、石英管内を通過する光ファイバに塗布された紫外線硬化型樹脂が硬化する(例えば、特許文献1の図4参照)。   A conventional ultraviolet irradiation furnace is a curing device for curing an ultraviolet curable resin applied to the outer periphery of an optical fiber, and a cylindrical quartz tube is disposed in the passage of the optical fiber. An ultraviolet lamp for irradiating ultraviolet rays is disposed outside the quartz tube. By irradiating the ultraviolet ray from the ultraviolet lamp toward the quartz tube, the ultraviolet curable resin applied to the optical fiber passing through the quartz tube is cured (for example, see FIG. 4 of Patent Document 1).

また、従来の紫外線照射炉において、石英管の内部に酸素があると、紫外線硬化型樹脂の硬化が阻害される。このため、石英管の内部に外気が混入して酸素濃度が上がらないように、石英管の上端および下端に無酸素室が設けられている。そして、上部の無酸素室内にパージガスである窒素ガスを導入し、無酸素室から石英管の内部に窒素ガスを流している。これによって、石英管内の酸素濃度が下がり、光ファイバの紫外線硬化型樹脂を硬化させている(例えば、特許文献2参照)。   Further, in the conventional ultraviolet irradiation furnace, if there is oxygen inside the quartz tube, curing of the ultraviolet curable resin is hindered. For this reason, an oxygen-free chamber is provided at the upper end and the lower end of the quartz tube so that outside air does not mix inside the quartz tube and the oxygen concentration does not increase. Nitrogen gas, which is a purge gas, is introduced into the upper oxygen-free chamber, and nitrogen gas is allowed to flow from the oxygen-free chamber into the quartz tube. Thereby, the oxygen concentration in the quartz tube is lowered, and the ultraviolet curable resin of the optical fiber is cured (for example, see Patent Document 2).

特開2005−350310号公報JP 2005-350310 A 特開2004−189540号公報JP 2004-189540 A

ところで、上記紫外線照射炉においては、紫外線硬化型樹脂が硬化する際に、揮発成分が発生する。しかしながら、石英管の内部が密閉構造であるため、揮発成分は外部に流出し難い。揮発成分が石英管内に滞留すると石英管が曇り、紫外線硬化型樹脂に紫外線が十分に照射されないという問題が発生する。
このような石英管の曇りを防ぐために、石英管の内部に流す窒素ガスのパージ量を増やして、揮発成分を強制的に外部に排出させても良いが、このように窒素パージガスを増やすと、光ファイバの線振れの原因や製造コストの増加につながる。
By the way, in the ultraviolet irradiation furnace, a volatile component is generated when the ultraviolet curable resin is cured. However, since the inside of the quartz tube has a sealed structure, the volatile component hardly flows out to the outside. If the volatile component stays in the quartz tube, the quartz tube becomes cloudy and the ultraviolet curable resin is not sufficiently irradiated with ultraviolet rays.
In order to prevent such fogging of the quartz tube, the purge amount of nitrogen gas flowing inside the quartz tube may be increased, and the volatile component may be forced to be discharged to the outside, but when the nitrogen purge gas is increased in this way, This leads to the cause of optical fiber runout and increased manufacturing costs.

本発明の目的は、上述した事情に鑑みてなされたものであり、石英管内の酸素濃度をより低下させると共に、石英管内に滞留する揮発成分をスムースに外部に排出させて石英管内の曇りを抑制することができる光ファイバ用紫外線照射炉および光ファイバの製造方法を提供することにある。   The object of the present invention has been made in view of the above-described circumstances, and further reduces the oxygen concentration in the quartz tube and smoothly discharges volatile components staying in the quartz tube to the outside to suppress fogging in the quartz tube. An object of the present invention is to provide an ultraviolet irradiation furnace for an optical fiber and a method for manufacturing the optical fiber.

上記課題を解決することができる本発明に係る光ファイバ用紫外線照射炉は、紫外線硬化型樹脂を外周に塗布した光ファイバを通過させる円筒状の石英管と、該石英管の上流側端部に不活性ガスを供給する不活性ガス供給口と、前記石英管の径方向外側から紫外線を照射して光ファイバに塗布した紫外線硬化型樹脂を硬化させる紫外線照射部と、を備えた光ファイバ用紫外線照射炉であって、前記紫外線照射炉上端の前記光ファイバ入線側開口径が3mmから10mmの範囲内、前記紫外線照射炉下端の前記光ファイバ出線側開口径が4mmから20mmの範囲内であり、前記出線側開口径が前記入線側開口径より大きいことを特徴としている。   An ultraviolet irradiation furnace for an optical fiber according to the present invention that can solve the above-mentioned problems includes a cylindrical quartz tube that passes an optical fiber coated with an ultraviolet curable resin on the outer periphery, and an upstream end of the quartz tube. An ultraviolet for an optical fiber, comprising: an inert gas supply port for supplying an inert gas; and an ultraviolet irradiation unit that cures the ultraviolet curable resin applied to the optical fiber by irradiating the ultraviolet from the radial outside of the quartz tube. An irradiation furnace, wherein the opening diameter of the optical fiber entrance side at the upper end of the ultraviolet irradiation furnace is within a range of 3 mm to 10 mm, and the opening diameter of the optical fiber exit side of the lower end of the ultraviolet irradiation furnace is within a range of 4 mm to 20 mm. The outgoing wire side opening diameter is larger than the incoming wire side opening diameter.

このように構成された光ファイバ用紫外線照射炉によれば、入線側開口径および該入線側開口径より大きい出線側開口径の最適径を設定することにより、石英管内の酸素濃度を現状より低下させると共に、石英管内に滞留する揮発成分をスムースに外部に排出させて石英管内の曇りを抑制することができる。   According to the ultraviolet irradiation furnace for an optical fiber thus configured, the oxygen concentration in the quartz tube can be reduced from the current level by setting the optimum diameter of the incoming side opening diameter and the outgoing side opening diameter larger than the incoming side opening diameter. In addition to the reduction, the volatile components staying in the quartz tube can be smoothly discharged to the outside to suppress fogging in the quartz tube.

また、本発明に係る光ファイバ用紫外線照射炉は、上記記載の光ファイバ用紫外線照射炉であって、前記出線側開口径が前記石英管の内径より小さいことが好ましい。   Moreover, the ultraviolet irradiation furnace for optical fibers which concerns on this invention is an ultraviolet irradiation furnace for optical fibers as described above, Comprising: It is preferable that the said outgoing wire side opening diameter is smaller than the internal diameter of the said quartz tube.

前記構成の光ファイバ用紫外線照射炉によれば、出線側開口径が石英管の内径より小さく設定されるので、石英管内の酸素濃度を一層低減することができる。   According to the ultraviolet irradiation furnace for an optical fiber having the above-described configuration, since the outgoing-side opening diameter is set smaller than the inner diameter of the quartz tube, the oxygen concentration in the quartz tube can be further reduced.

また、本発明に係る光ファイバ用紫外線照射炉は、上記記載の光ファイバ用紫外線照射炉であって、前記不活性ガス供給口と前記石英管の外周上部との間に設けられた入線側の気密用パッキンが2段構成であることが好ましい。   An ultraviolet irradiation furnace for an optical fiber according to the present invention is the ultraviolet irradiation furnace for an optical fiber described above, which is provided on an incoming line side provided between the inert gas supply port and the outer peripheral upper portion of the quartz tube. It is preferable that the airtight packing has a two-stage configuration.

前記構成の光ファイバ用紫外線照射炉によれば、入線側の気密用パッキンが2段構成であるので、石英管内の気密性を一層向上させることができ、石英管内への外気の浸入および石英管内へ導入する不活性ガスの漏れを低減することができる。   According to the ultraviolet irradiation furnace for an optical fiber having the above-described configuration, since the airtight packing on the incoming line side has a two-stage configuration, it is possible to further improve the airtightness in the quartz tube, so that the outside air can enter the quartz tube and the inside of the quartz tube. Leakage of the inert gas introduced into can be reduced.

上記課題を解決することができる本発明に係る光ファイバの製造方法は、紫外線硬化型樹脂を外周に塗布した光ファイバが、円筒状の石英管内の上方から下方に通過すると共に、前記石英管の上流側端部に設けられた不活性ガス供給口から該石英管内に不活性ガスを供給し、前記石英管の外側に配置した紫外線照射部から紫外線が前記光ファイバへ照射されることで、前記光ファイバに塗布した紫外線硬化型樹脂を硬化させる光ファイバの製造方法であって、
前記光ファイバが、前記石英管の上方にあり3mmから10mmの範囲内にある入線側開口から入線し、前記石英管の下方にあり前記入線側開口径より大きい4mmから20mmの範囲内にある出線側開口から出線することを特徴としている。
An optical fiber manufacturing method according to the present invention capable of solving the above-mentioned problems is that an optical fiber coated with an ultraviolet curable resin on the outer periphery passes downward from above in a cylindrical quartz tube, and An inert gas is supplied into the quartz tube from an inert gas supply port provided at an upstream end, and ultraviolet rays are irradiated onto the optical fiber from an ultraviolet irradiation unit disposed outside the quartz tube, An optical fiber manufacturing method for curing an ultraviolet curable resin applied to an optical fiber,
The optical fiber enters from an entrance side opening above the quartz tube and within a range of 3 mm to 10 mm, and is below the quartz tube and within a range of 4 mm to 20 mm larger than the entrance side opening diameter. It is characterized by outgoing from the outgoing side opening.

このように構成された光ファイバの製造方法によれば、入線側開口径および該入線側開口径より大きい出線側開口径の最適径を設定することにより、石英管内の酸素濃度を現状より低下させることができると共に、石英管内に滞留する揮発成分をスムースに外部に排出させて石英管内の曇りを抑制することができる。   According to the optical fiber manufacturing method configured in this way, the oxygen concentration in the quartz tube is reduced from the current level by setting the optimum diameter of the incoming side opening diameter and the outgoing side opening diameter larger than the incoming side opening diameter. In addition, the volatile components staying in the quartz tube can be smoothly discharged to the outside, and fogging in the quartz tube can be suppressed.

本発明に係る光ファイバ用紫外線照射炉および光ファイバの製造方法によれば、紫外線照射炉の開口径を最適径に設定することにより、石英管内の酸素濃度を現状より低下させることができると共に、石英管内に滞留する揮発成分をスムースに外部に排出させて石英管内の曇りを抑制することができる。   According to the ultraviolet irradiation furnace for an optical fiber and the optical fiber manufacturing method according to the present invention, by setting the opening diameter of the ultraviolet irradiation furnace to an optimum diameter, the oxygen concentration in the quartz tube can be reduced from the current state, Volatile components staying in the quartz tube can be smoothly discharged to the outside to suppress fogging in the quartz tube.

本発明に係る光ファイバ用紫外線照射炉の概略構成図である。It is a schematic block diagram of the ultraviolet irradiation furnace for optical fibers which concerns on this invention.

以下、本発明の一実施形態である光ファイバ用紫外線照射炉および光ファイバの製造方法について図面を参照して説明する。   Hereinafter, an ultraviolet irradiation furnace for an optical fiber and an optical fiber manufacturing method according to an embodiment of the present invention will be described with reference to the drawings.

図1に示すように、本実施形態の光ファイバ用紫外線照射炉10は、紫外線硬化型樹脂を塗布する塗布装置がその上流側に配置されており、この塗布装置により光ファイバ11外周に塗布された紫外線硬化型樹脂を紫外線の照射により硬化させる。
光ファイバ用紫外線照射炉10の主要部は、照射炉本体12と、内径D0を有する円筒状の石英管13と、石英管13の外側に配置され、紫外線を照射する紫外線照射部である紫外線ランプ14と、から構成される。
As shown in FIG. 1, in the ultraviolet irradiation furnace 10 for an optical fiber of the present embodiment, a coating device for applying an ultraviolet curable resin is disposed on the upstream side, and the coating device is applied to the outer periphery of the optical fiber 11. The cured UV curable resin is cured by UV irradiation.
The main parts of the optical fiber ultraviolet irradiation furnace 10 are an irradiation furnace main body 12, a cylindrical quartz tube 13 having an inner diameter D0, and an ultraviolet lamp that is disposed outside the quartz tube 13 and irradiates ultraviolet rays. 14.

また、光ファイバ用紫外線照射炉10は、照射炉本体12の上部に設けられ、上端に入線側開口径D1の入線口17を有する入口カバー15と、照射炉本体12の下部に設けられ、下端に出線側開口径D2の出線口18を有する出口カバー16と、を備えている。   Moreover, the ultraviolet irradiation furnace 10 for optical fibers is provided in the upper part of the irradiation furnace main body 12, and is provided in the lower end of the irradiation furnace main body 12, the inlet cover 15 which has the inlet 17 of the incoming line side opening diameter D1 in an upper end, and a lower end. And an outlet cover 16 having an outgoing line opening 18 having an outgoing line side opening diameter D2.

入口カバー15の側部には、不活性ガス供給口19が設けられており、ガス導入管21から供給される窒素ガス等の不活性ガスGを石英管13内に導入する。この不活性ガスGの導入により石英管13内の酸素濃度を減らすことができる。紫外線硬化型樹脂の硬化を妨げる酸素濃度を減らすことで、酸素による阻害を受けることなく紫外線硬化型樹脂を硬化することができる。導入された不活性ガスGは、下端の出線側開口径D2の出線口18から自然排出される。   An inert gas supply port 19 is provided at a side portion of the inlet cover 15, and an inert gas G such as nitrogen gas supplied from the gas introduction pipe 21 is introduced into the quartz tube 13. By introducing the inert gas G, the oxygen concentration in the quartz tube 13 can be reduced. By reducing the oxygen concentration that hinders the curing of the ultraviolet curable resin, the ultraviolet curable resin can be cured without being inhibited by oxygen. The introduced inert gas G is naturally discharged from the outgoing wire opening 18 having the lower outgoing wire side opening diameter D2.

紫外線ランプ14は、紫外線の照射時に高温になるため、空気導入管23から冷却空気24が導入されて冷却される。この冷却空気24は、石英管13の外側を流れてから、空気排出管25より排出空気26として排気される。空気排出管25は、図示しない排気装置に接続されており、大気圧に比べ、−0.5kPa程度負圧にされている。   Since the ultraviolet lamp 14 becomes high temperature when irradiated with ultraviolet rays, the cooling air 24 is introduced from the air introduction pipe 23 and cooled. The cooling air 24 flows outside the quartz tube 13 and is then exhausted as exhaust air 26 from the air exhaust tube 25. The air discharge pipe 25 is connected to an exhaust device (not shown), and has a negative pressure of about −0.5 kPa compared to the atmospheric pressure.

紫外線ランプ14の外側には、石英管13を中心として円筒状の反射鏡31が配置されている。この反射鏡31により紫外線ランプ14から照射した紫外線を反射鏡31で反射させて間接的に石英管13内の光ファイバ11に再照射させる。   A cylindrical reflecting mirror 31 centering on the quartz tube 13 is disposed outside the ultraviolet lamp 14. Ultraviolet light irradiated from the ultraviolet lamp 14 by the reflecting mirror 31 is reflected by the reflecting mirror 31 and indirectly re-irradiated to the optical fiber 11 in the quartz tube 13.

そして、本実施形態の光ファイバ用紫外線照射炉10は、出線側開口径D2が入線側開口径D1より大きく、石英管13の内径D0より小さく設定されている(D1<D2<D0)。具体的には、入線口17の入線側開口径D1が、3mm〜10mmの範囲内にある。また、出線口18の出線側開口径D2が、4mm〜20mmの範囲内にある。   In the ultraviolet irradiation furnace 10 for an optical fiber of the present embodiment, the outgoing line side opening diameter D2 is set to be larger than the incoming line side opening diameter D1 and smaller than the inner diameter D0 of the quartz tube 13 (D1 <D2 <D0). Specifically, the incoming wire side opening diameter D1 of the incoming wire port 17 is in the range of 3 mm to 10 mm. Moreover, the outgoing wire side opening diameter D2 of the outgoing wire port 18 is in the range of 4 mm to 20 mm.

入線口17の入線側開口径D1を設定すると共に、該入線側開口径D1より大きく且つ石英管13の内径D0より小さくなるように出線口18の出線側開口径D2の最適径を設定する。
出線側開口径D2を入線側開口径D1より大きくすることで、不活性ガスGを排出し易くし、石英管13内に滞留する揮発成分をスムースに外部に排出して、石英管13内の曇りを抑制することができる。また、石英管13の内径D0より出線側開口径D2を小さくすることで、酸素濃度を低減することができる。このように最適径を設定することで、石英管13内の酸素濃度を1000ppm以下に低減でき、石英管13内に滞留する揮発成分を外部にスムースに排出できる。
In addition to setting the incoming wire side opening diameter D1 of the incoming wire port 17, the optimum diameter of the outgoing wire side opening diameter D2 of the outgoing wire port 18 is set so as to be larger than the incoming wire side opening diameter D1 and smaller than the inner diameter D0 of the quartz tube 13. To do.
By making the outgoing line side opening diameter D2 larger than the incoming line side opening diameter D1, the inert gas G can be easily discharged, and the volatile components staying in the quartz tube 13 are smoothly discharged to the outside. Can suppress fogging. Moreover, the oxygen concentration can be reduced by making the outgoing wire side opening diameter D2 smaller than the inner diameter D0 of the quartz tube 13. By setting the optimum diameter in this way, the oxygen concentration in the quartz tube 13 can be reduced to 1000 ppm or less, and the volatile components staying in the quartz tube 13 can be discharged smoothly to the outside.

また、光ファイバ用紫外線照射炉10は、不活性ガス供給口19と石英管13の外周上部との間に、ゴム製で2段構成の入線側気密用パッキン27,28が設けられている。上流側の第1の気密用パッキン27は、上面が陽圧P1で加圧された不活性ガスGに接しており、下流側の第2の気密用パッキン28は、下面が負圧P2で吸引された冷却空気24に接している(P2<P1)。   The optical fiber ultraviolet irradiation furnace 10 is provided with two-stage inlet-side airtight packings 27 and 28 made of rubber between the inert gas supply port 19 and the outer periphery of the quartz tube 13. The first airtight packing 27 on the upstream side is in contact with the inert gas G whose upper surface is pressurized with the positive pressure P1, and the second airtight packing 28 on the downstream side is sucked with the negative pressure P2 on the lower surface. Is in contact with the cooled cooling air 24 (P2 <P1).

この気密用パッキン27,28により、紫外線ランプ14を空冷する冷却空気24が不活性ガスGを吸引してしまうのを防ぎ、石英管13内への不活性ガスGの供給が減少して、石英管13内の酸素濃度が上がってしまうのを防ぐ。パッキンは1段でも良いが、特に、2段構成の入線側気密用パッキン27,28とすることで、石英管13内への外気の浸入および石英管13内へ導入する不活性ガスGの漏れを最小限に抑えることができる。
また、石英管13の外周下部と空気導入管23及び空気排出管25との間には、ゴム製の出線側気密用パッキン29が設けられている。
The airtight packings 27 and 28 prevent the cooling air 24 that cools the ultraviolet lamp 14 from sucking the inert gas G, and the supply of the inert gas G into the quartz tube 13 is reduced. This prevents the oxygen concentration in the tube 13 from increasing. The packing may be one-stage, but in particular, by using the two-stage inlet-side airtight packings 27 and 28, intrusion of outside air into the quartz tube 13 and leakage of the inert gas G introduced into the quartz tube 13 Can be minimized.
Further, between the lower outer periphery of the quartz tube 13 and the air introduction tube 23 and the air discharge tube 25, a rubber outgoing wire side airtight packing 29 is provided.

上述したように本実施形態の光ファイバ用紫外線照射炉10によれば、上端の入線口17の入線側開口径D1が3mm〜10mmの範囲内、下端の出線口18の出線側開口径D2が4mm〜20mmの範囲内であり、出線側開口径D2が入線側開口径D1より大きくなるように最適径を設定する。これにより、石英管13内の酸素濃度を現状より低下させると共に、石英管13内に滞留する揮発成分をスムースに外部に排出させて石英管13内の曇りを抑制できる。   As described above, according to the ultraviolet irradiation furnace 10 for an optical fiber of the present embodiment, the incoming wire side opening diameter D1 of the upper incoming wire port 17 is within the range of 3 mm to 10 mm, and the outgoing wire side opening diameter of the lower outgoing wire port 18. The optimum diameter is set so that D2 is in the range of 4 mm to 20 mm, and the outgoing wire side opening diameter D2 is larger than the incoming wire side opening diameter D1. Thereby, while reducing the oxygen concentration in the quartz tube 13 from the present condition, the volatile component which stays in the quartz tube 13 can be discharged | emitted smoothly outside, and the fogging in the quartz tube 13 can be suppressed.

また、光ファイバ用紫外線照射炉10によれば、出線側開口径D2が石英管13の内径D0より小さく設定されるので、石英管13内の酸素濃度を一層低減できる。   Moreover, according to the ultraviolet irradiation furnace 10 for optical fibers, since the outgoing wire opening diameter D2 is set smaller than the inner diameter D0 of the quartz tube 13, the oxygen concentration in the quartz tube 13 can be further reduced.

また、光ファイバ用紫外線照射炉10によれば、不活性ガス供給口19と石英管13の外周上部との間に設けられた入線側の気密用パッキン27,28を2段構成とすることで、石英管13内の気密性を一層向上させることができ、石英管13内への外気の浸入および石英管13内へ導入する不活性ガスGの漏れを低減できる。   Moreover, according to the ultraviolet irradiation furnace 10 for optical fibers, the airtight packings 27 and 28 on the incoming line side provided between the inert gas supply port 19 and the upper outer periphery of the quartz tube 13 are configured in two stages. Further, the airtightness in the quartz tube 13 can be further improved, and the intrusion of outside air into the quartz tube 13 and the leakage of the inert gas G introduced into the quartz tube 13 can be reduced.

また、本実施形態の光ファイバの製造方法によれば、先ず、入線側開口径D1を3mm〜10mmの範囲内に設定し、該入線側開口径より大きい4mm〜20mmの範囲内で出線側開口径D2の最適径を設定する。次に、紫外線硬化型樹脂を外周に塗布した光ファイバ11が、円筒状の石英管13の上方にある入線側開口径D1から入線し、石英管13の下方にある出線側開口径D2から出線させる。   Moreover, according to the manufacturing method of the optical fiber of this embodiment, first, the incoming side opening diameter D1 is set within a range of 3 mm to 10 mm, and the outgoing side is within a range of 4 mm to 20 mm larger than the incoming side opening diameter. The optimum diameter of the opening diameter D2 is set. Next, the optical fiber 11 coated with an ultraviolet curable resin on the outer periphery enters from the incoming side opening diameter D1 above the cylindrical quartz tube 13 and from the outgoing side opening diameter D2 below the quartz tube 13. Let it come out.

このとき、光ファイバ11が石英管13内の上方から下方に通過すると共に、石英管13の上端に設けられた不活性ガス供給口19から石英管13内に不活性ガスGが供給され、紫外線ランプ14から紫外線が光ファイバ11へ照射されることで、光ファイバ11に塗布した紫外線硬化型樹脂が硬化する。入線側開口径D1と出線側開口径D2を上記した最適径に設定することにより、石英管13内の酸素濃度を低減できると共に滞留する揮発成分をスムースに外部に排出させて石英管13内の曇りを抑制できる。   At this time, the optical fiber 11 passes from the upper side to the lower side in the quartz tube 13, and the inert gas G is supplied into the quartz tube 13 from the inert gas supply port 19 provided at the upper end of the quartz tube 13. By irradiating the optical fiber 11 with ultraviolet rays from the lamp 14, the ultraviolet curable resin applied to the optical fiber 11 is cured. By setting the inlet-side opening diameter D1 and the outgoing-side opening diameter D2 to the optimum diameters described above, the oxygen concentration in the quartz tube 13 can be reduced and the volatile components that remain can be discharged smoothly to the outside. Can suppress fogging.

次に、本発明の光ファイバ用紫外線照射炉および光ファイバの製造方法の一実施例を説明する。   Next, an embodiment of an ultraviolet irradiation furnace for an optical fiber and an optical fiber manufacturing method according to the present invention will be described.

(測定方法)
実施例は、光ファイバ用紫外線照射炉の入線側開口径D1を3mm〜10mm、出線側開口径D2を4mm〜20mmの範囲内で、D1<D2の条件下でD1およびD2を適宜変化させる。一方、比較例は、実施例の条件から外れて、D1およびD2を適宜変化させた場合の例である。
その他、実施例、比較例とも、入線側の気密用パッキンを1段又は2段、不活性ガス(N)の流量を30又は50リットル/分のいずれかを選択する。
なお、実施例、比較例とも、石英管の内径D0は21mmのものを使用し、光ファイバの線速は同一に設定する。
(Measuring method)
In the embodiment, the entrance-side opening diameter D1 of the ultraviolet irradiation furnace for optical fibers is 3 mm to 10 mm, the exit-side opening diameter D2 is 4 mm to 20 mm, and D1 and D2 are appropriately changed under the condition of D1 <D2. . On the other hand, the comparative example is an example in the case where D1 and D2 are appropriately changed without departing from the conditions of the example.
In addition, in both the examples and the comparative examples, the airtight packing on the incoming line side is selected in one or two stages, and the flow rate of the inert gas (N 2 ) is selected as either 30 or 50 liters / minute.
In both the examples and comparative examples, the quartz tube having an inner diameter D0 of 21 mm is used, and the linear velocity of the optical fiber is set to be the same.

(測定項目)
実施例、比較例とも、石英管内の酸素濃度と、光ファイバを1000(km)線引き後の石英管の曇りによるUV光パワー減衰率(測定パワー/初期パワー)を測定する。
(評価基準)
酸素濃度は1000(ppm)以下、UV光パワー減衰率は70(%)以上を合格ラインとする。
(Measurement item)
In both Examples and Comparative Examples, the oxygen concentration in the quartz tube and the UV light power attenuation ratio (measured power / initial power) due to the fogging of the quartz tube after drawing the optical fiber by 1000 (km) are measured.
(Evaluation criteria)
The oxygen concentration is 1000 (ppm) or less, and the UV light power attenuation rate is 70 (%) or more as a pass line.

その結果、表1に示すような結果を得る。   As a result, the results shown in Table 1 are obtained.

Figure 0005780005
Figure 0005780005

表1から明らかなように、実施例1から実施例3では、出線側開口径D2のみを20mmから10mmに段階的に小さくすることで、酸素濃度が1000(ppm)から10(ppm)に良好に減少することが判る。但し、UV光パワー減衰率は75(%)から70(%)に低下する。
また、実施例3と実施例4の結果から、D1=8mm、D2=10mmの条件では、窒素ガスを50リットル/分から30リットル/分に減らしても酸素濃度とUV光パワー減衰率が変わらず、窒素ガスを減らしても問題ないことが判る。これは、D1,D2の関係が最適になっているので、石英管内の気密性を確保しつつ、スムースに排気がなされているためと考えられる。
As is clear from Table 1, in Examples 1 to 3, the oxygen concentration is reduced from 1000 (ppm) to 10 (ppm) by decreasing only the outgoing wire side opening diameter D2 from 20 mm to 10 mm in a stepwise manner. It can be seen that it decreases well. However, the UV light power attenuation rate decreases from 75 (%) to 70 (%).
Further, from the results of Example 3 and Example 4, under the conditions of D1 = 8 mm and D2 = 10 mm, the oxygen concentration and the UV light power attenuation rate do not change even if the nitrogen gas is reduced from 50 liters / minute to 30 liters / minute. It turns out that there is no problem even if nitrogen gas is reduced. This is considered to be because the relationship between D1 and D2 is optimal, and the air is smoothly exhausted while ensuring the airtightness in the quartz tube.

実施例5は、D1,D2をさらに下げていった場合で、酸素濃度は殆んどゼロに近く、UV光パワー減衰率も基準をクリアしている。
実施例6は、逆にD1,D2を上げていった場合で、酸素濃度およびUV光パワー減衰率も基準をクリアしている。
実施例7は、実施例4の同じ条件下で、入線側の気密用パッキンを2段構成にした場合で、実施例4よりも酸素濃度が更に良好になっていることが判る。
In Example 5, D1 and D2 were further lowered, the oxygen concentration was almost zero, and the UV light power attenuation rate also cleared the standard.
In Example 6, conversely, D1 and D2 were raised, and the oxygen concentration and UV light power attenuation rate also cleared the standards.
Example 7 shows that the oxygen concentration is even better than that of Example 4 when the airtight packing on the incoming line side has a two-stage configuration under the same conditions as in Example 4.

これに対して、比較例1は、実施例1より出線側開口径D2を大きくした場合で、酸素濃度が3000(ppm)となり、実施例1と比較すると酸素濃度が悪化している。これは、出線口から外気が巻き込まれているためと考えられる。
比較例2は、比較例1の窒素ガス50リットル/分から30リットル/分に減らした場合で、比較例1よりさらに酸素濃度が悪化している。
比較例3は、比較例1に比べてD2を小さくし、入線側開口径D1と出線側開口径D2を同じ8mmにした場合で、この場合は、石英管に曇りが生じ易くなり、比較例1に比べてUV光パワー減衰率は60(%)に低下している。
比較例4は、比較例3よりさらに出線側開口径D2を小さくして、D1>D2とした場合で、UV光パワー減衰率が比較例3より更に低下している。
On the other hand, Comparative Example 1 is a case where the outgoing wire side opening diameter D2 is larger than that of Example 1, and the oxygen concentration is 3000 (ppm), which is worse than that of Example 1. This is considered to be because outside air is caught from the outlet.
The comparative example 2 is a case where the nitrogen gas of the comparative example 1 is reduced from 50 liters / minute to 30 liters / minute, and the oxygen concentration is further deteriorated compared with the comparative example 1.
Comparative Example 3 is a case where D2 is smaller than Comparative Example 1 and the incoming wire side opening diameter D1 and the outgoing wire side opening diameter D2 are the same 8 mm. In this case, the quartz tube is likely to be fogged. Compared to Example 1, the UV light power attenuation rate is reduced to 60 (%).
The comparative example 4 is a case where the outgoing-side opening diameter D2 is made smaller than that of the comparative example 3 so that D1> D2, and the UV light power attenuation rate is further lower than that of the comparative example 3.

比較例5は、比較例1の条件からさらに入線側開口径D1を小さくした場合で、この場合は、線振れにより入線口に光ファイバが接触してしまい、断線してしまった。
比較例6は、比較例5の条件よりは若干入線側開口径D1を大きくした場合で、この場合は断線することは無かったが、酸素濃度が2000(ppm)となり、基準をクリアすることはできなかった。
比較例7は、比較例6の条件から出線側開口径D2を小さくした場合で、酸素濃度は良好であるものの、石英管に曇りが生じてUV光パワー減衰率は60(%)に低下している。
The comparative example 5 is a case where the incoming line side opening diameter D1 is further reduced from the conditions of the comparative example 1, and in this case, the optical fiber is brought into contact with the incoming line port due to line runout, resulting in disconnection.
Comparative Example 6 is a case where the incoming line side opening diameter D1 is slightly larger than the condition of Comparative Example 5, and in this case, there was no disconnection, but the oxygen concentration was 2000 (ppm), and the standard was cleared. could not.
Comparative Example 7 is a case where the outgoing wire side opening diameter D2 is reduced from the conditions of Comparative Example 6, and although the oxygen concentration is good, the quartz tube is clouded and the UV light power attenuation rate is reduced to 60 (%). doing.

比較例8は、実施例1の条件からさらに入線側開口径D1を大きくした場合で、UV光パワー減衰率は実施例1より良好となるものの、酸素濃度が2000(ppm)となり、基準をオーバしている。
比較例9は、比較例1と同じ条件下で、入線側の気密用パッキンを2段構成とした場合で、比較例1よりは酸素濃度が良くなるものの、酸素濃度は2200(ppm)となり、基準をオーバしている。
Comparative Example 8 is a case where the incoming-side opening diameter D1 is further increased from the conditions of Example 1, and the UV light power attenuation rate is better than that of Example 1, but the oxygen concentration is 2000 (ppm), which exceeds the standard. doing.
Comparative Example 9 is a case where the airtight packing on the incoming line side has a two-stage configuration under the same conditions as Comparative Example 1, and although the oxygen concentration is better than Comparative Example 1, the oxygen concentration is 2200 (ppm), The standard is exceeded.

以上の結果から、入線側開口径D1を3mm〜10mm、出線側開口径D2を4mm〜20mmの範囲内で、D1<D2の条件下でD1およびD2を適宜設定すれば、合格ラインである酸素濃度1000(ppm) 以下およびUV光パワー減衰率70(%)以上を達成できることが判る。   From the above results, if D1 and D2 are appropriately set under the condition of D1 <D2 within the range of the incoming side opening diameter D1 of 3 mm to 10 mm and the outgoing side opening diameter D2 of 4 mm to 20 mm, it is a pass line. It can be seen that an oxygen concentration of 1000 (ppm) or less and a UV light power attenuation rate of 70 (%) or more can be achieved.

なお、本発明の光ファイバ用紫外線照射炉および光ファイバの製造方法は、上述した実施形態に限定されるものではなく、適宜、変形、改良等が自在であり、同様の効果がある。その他、上述した実施形態における各構成要素の材質、形状、寸法、数値、形態、数、配置場所、等は本発明を達成できるものであれば任意であり、限定されない。   In addition, the ultraviolet irradiation furnace for optical fibers and the manufacturing method of an optical fiber of this invention are not limited to embodiment mentioned above, A deformation | transformation, improvement, etc. are possible suitably, and there exists the same effect. In addition, the material, shape, dimension, numerical value, form, number, arrangement location, and the like of each component in the above-described embodiment are arbitrary and are not limited as long as the present invention can be achieved.

10…光ファイバ用紫外線照射炉、11…光ファイバ、12…照射炉本体、13…石英管、14…紫外線ランプ(紫外線照射部)、15…入口カバー、16…出口カバー、17…入線口、18…出線口、19…不活性ガス供給口、23…空気導入管、24…冷却空気、25…空気排出管、26…排出空気、27…第1の気密用パッキン、28…第2の気密用パッキン、D0…石英管内径、D1…入線側開口径、D2…出線側開口径、G…不活性ガス、P1…陽圧(不活性ガス)、P2…負圧(冷却空気)
DESCRIPTION OF SYMBOLS 10 ... Ultraviolet irradiation furnace for optical fibers, 11 ... Optical fiber, 12 ... Irradiation furnace main body, 13 ... Quartz tube, 14 ... Ultraviolet lamp (ultraviolet irradiation part), 15 ... Inlet cover, 16 ... Outlet cover, 17 ... Inlet, DESCRIPTION OF SYMBOLS 18 ... Outlet port, 19 ... Inert gas supply port, 23 ... Air introduction pipe, 24 ... Cooling air, 25 ... Air discharge pipe, 26 ... Exhaust air, 27 ... 1st airtight packing, 28 ... 2nd Gas-tight packing, D0 ... quartz tube inner diameter, D1 ... incoming wire side opening diameter, D2 ... outgoing wire side opening diameter, G ... inert gas, P1 ... positive pressure (inert gas), P2 ... negative pressure (cooling air)

Claims (4)

紫外線硬化型樹脂を外周に塗布した光ファイバを通過させる円筒状の石英管と、
該石英管の上流側端部に不活性ガスを供給する不活性ガス供給口と、
前記石英管の径方向外側から紫外線を照射して光ファイバに塗布した紫外線硬化型樹脂を硬化させる紫外線照射部と、
を備えた光ファイバ用紫外線照射炉であって、
前記紫外線照射炉上端の前記光ファイバの入線口の入線側開口径が3mmから10mmの範囲内、前記紫外線照射炉下端の前記光ファイバの出線口の出線側開口径が4mmから20mmの範囲内であり、
前記出線側開口径が前記入線側開口径より大きく、
前記不活性ガスが前記出線口から自然排出されることを特徴とする光ファイバ用紫外線照射炉。
A cylindrical quartz tube that passes an optical fiber coated with UV curable resin on the outer periphery;
An inert gas supply port for supplying an inert gas to the upstream end of the quartz tube;
An ultraviolet irradiation unit that cures the ultraviolet curable resin applied to the optical fiber by irradiating ultraviolet rays from the radially outer side of the quartz tube;
An ultraviolet irradiation furnace for an optical fiber comprising:
The ultraviolet irradiation furnace range from the incoming line side opening diameter 3mm of 10mm of incoming port of the optical fiber at the upper end, the range of the outgoing line side opening diameter 4mm of 20mm outgoing line port of the optical fiber of the ultraviolet irradiation furnace bottom Within
The outgoing line side aperture diameter is rather larger than the incoming side aperture diameter,
An ultraviolet irradiation furnace for an optical fiber, wherein the inert gas is naturally discharged from the outlet .
請求項1に記載の光ファイバ用紫外線照射炉であって、
前記出線側開口径が前記石英管の内径より小さいことを特徴とする光ファイバ用紫外線照射炉。
An ultraviolet irradiation furnace for an optical fiber according to claim 1,
An ultraviolet irradiation furnace for an optical fiber, wherein the outgoing wire side opening diameter is smaller than the inner diameter of the quartz tube.
請求項1又は2に記載の光ファイバ用紫外線照射炉であって、
前記不活性ガス供給口と前記石英管の外周上部との間に設けられた入線側の気密用パッキンが2段構成であることを特徴とする光ファイバ用紫外線照射炉。
An ultraviolet irradiation furnace for an optical fiber according to claim 1 or 2,
An ultraviolet irradiation furnace for an optical fiber, wherein an inlet-side airtight packing provided between the inert gas supply port and the upper outer periphery of the quartz tube has a two-stage configuration.
紫外線硬化型樹脂を外周に塗布した光ファイバが、円筒状の石英管内の上方から下方に通過すると共に、前記石英管の上流側端部に設けられた不活性ガス供給口から該石英管内に不活性ガスを供給し、前記石英管の外側に配置した紫外線照射部から紫外線が前記光ファイバへ照射されることで、前記光ファイバに塗布した紫外線硬化型樹脂を硬化させる光ファイバの製造方法であって、
前記光ファイバが、前記石英管の上方にあり3mmから10mmの範囲内にある入線側開口径の入線口から入線し、
前記石英管の下方にあり前記入線側開口径より大きい4mmから20mmの範囲内にある出線側開口径の出線口から出線し、
前記不活性ガスを前記出線口から自然排出することを特徴とする光ファイバの製造方法。
An optical fiber coated with an ultraviolet curable resin on the outer periphery passes from the upper side to the lower side in the cylindrical quartz tube and is not introduced into the quartz tube from the inert gas supply port provided at the upstream end of the quartz tube. This is an optical fiber manufacturing method in which an active gas is supplied and ultraviolet light is irradiated to the optical fiber from an ultraviolet irradiation unit disposed outside the quartz tube, thereby curing the ultraviolet curable resin applied to the optical fiber. And
The optical fiber, and the incoming line from the incoming line port of the incoming line-side opening diameter from 3mm located above the quartz tube in the range of 10 mm,
And outgoing line from the output line port of the outgoing line side opening diameter from the incoming line side opening diameter greater than 4mm located below the quartz tube in the range of 20 mm,
A method for producing an optical fiber, wherein the inert gas is naturally discharged from the outlet .
JP2011129433A 2011-06-09 2011-06-09 Ultraviolet irradiation furnace for optical fiber and optical fiber manufacturing method Active JP5780005B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011129433A JP5780005B2 (en) 2011-06-09 2011-06-09 Ultraviolet irradiation furnace for optical fiber and optical fiber manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011129433A JP5780005B2 (en) 2011-06-09 2011-06-09 Ultraviolet irradiation furnace for optical fiber and optical fiber manufacturing method

Publications (2)

Publication Number Publication Date
JP2012254903A JP2012254903A (en) 2012-12-27
JP5780005B2 true JP5780005B2 (en) 2015-09-16

Family

ID=47526862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011129433A Active JP5780005B2 (en) 2011-06-09 2011-06-09 Ultraviolet irradiation furnace for optical fiber and optical fiber manufacturing method

Country Status (1)

Country Link
JP (1) JP5780005B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016124731A (en) * 2014-12-26 2016-07-11 古河電気工業株式会社 Method for producing optical fiber
JP6248130B2 (en) 2016-02-15 2017-12-13 古河電気工業株式会社 Manufacturing method of optical fiber
CN110045474A (en) * 2019-05-08 2019-07-23 成都亨通光通信有限公司 A kind of three core curing ovens of optical cable production

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04280838A (en) * 1991-03-07 1992-10-06 Sumitomo Electric Ind Ltd Production of optical fiber and production device therefor
JPH05246738A (en) * 1992-03-03 1993-09-24 Furukawa Electric Co Ltd:The Production of coated optical fiber
JP3194633B2 (en) * 1992-11-02 2001-07-30 昭和電線電纜株式会社 UV irradiation equipment for optical fiber coating
JP2003002699A (en) * 2001-06-18 2003-01-08 Sumitomo Electric Ind Ltd Apparatus for coating wire body and method for coating
JP2004189540A (en) * 2002-12-11 2004-07-08 Mitsubishi Cable Ind Ltd Curing method of ultraviolet curing resin
JP2005284027A (en) * 2004-03-30 2005-10-13 Fujikura Ltd Resin curing device of optical fiber resin covered line
JP2005350310A (en) * 2004-06-11 2005-12-22 Sumitomo Electric Ind Ltd Method of manufacturing optical fiber strand
JP2006056734A (en) * 2004-08-18 2006-03-02 Sumitomo Electric Ind Ltd Apparatus and method for coating optical fiber

Also Published As

Publication number Publication date
JP2012254903A (en) 2012-12-27

Similar Documents

Publication Publication Date Title
AU2002363320C1 (en) Ultraviolet disinfecting apparatus
JP5780005B2 (en) Ultraviolet irradiation furnace for optical fiber and optical fiber manufacturing method
AU2002363320A1 (en) Ultraviolet disinfecting apparatus
US11690162B2 (en) Laser-sustained plasma light source with gas vortex flow
US11547770B2 (en) UV emitter module and use thereof
US6570301B1 (en) Dielectric barrier discharge lamp device with coupler for coolant fluid flow
US6770165B2 (en) Apparatus for plasma treatment
JP2005108834A5 (en)
JP2019525259A (en) Lens contamination prevention apparatus and method
CN103777470B (en) For reducing the method and apparatus that the ultraviolet (UV) of getter action patterns
CN106094444B (en) A kind of dynamic gas for extreme ultra violet lithography is locked
JP2019532903A (en) Purge device for optical fiber drawing system
CN108356413B (en) Laser welding head
JP5495978B2 (en) Gas particle measurement system
CN206133184U (en) A dynamic gaseous isolating device for extreme ultraviolet carves quick -wittedly
US7804248B1 (en) Lamp with shaped wall thickness, method of making same and optical apparatus
JP2016074562A (en) Ultraviolet irradiation reactor for optical fiber and method for manufacturing optical fiber
KR101234400B1 (en) Excimer lamp apparatus
CN207925886U (en) Gas laser apparatus
JP2005217119A (en) Laser oscillator
JP2023140360A (en) Ultraviolet irradiation device, ozone generator, and ozone generation method
JP2016124731A (en) Method for producing optical fiber
CN213601838U (en) Mercury lamp and system for manufacturing wafer
JP2016530553A (en) Hollow optical waveguide assembly
JP2018081778A (en) Excimer light irradiation device

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20121130

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140416

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141028

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150616

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150629

R150 Certificate of patent or registration of utility model

Ref document number: 5780005

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250