JP5495978B2 - Gas particle measurement system - Google Patents
Gas particle measurement system Download PDFInfo
- Publication number
- JP5495978B2 JP5495978B2 JP2010145758A JP2010145758A JP5495978B2 JP 5495978 B2 JP5495978 B2 JP 5495978B2 JP 2010145758 A JP2010145758 A JP 2010145758A JP 2010145758 A JP2010145758 A JP 2010145758A JP 5495978 B2 JP5495978 B2 JP 5495978B2
- Authority
- JP
- Japan
- Prior art keywords
- gas
- air
- sample
- particle
- inlet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000002245 particle Substances 0.000 title claims description 183
- 238000005259 measurement Methods 0.000 title claims description 44
- 239000007789 gas Substances 0.000 claims description 372
- 238000009792 diffusion process Methods 0.000 claims description 12
- 238000000149 argon plasma sintering Methods 0.000 claims description 11
- 238000005192 partition Methods 0.000 claims description 9
- 238000011144 upstream manufacturing Methods 0.000 claims description 9
- 238000012545 processing Methods 0.000 claims description 8
- 229910052734 helium Inorganic materials 0.000 claims description 7
- 239000001307 helium Substances 0.000 claims description 7
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 claims description 7
- 239000011261 inert gas Substances 0.000 claims description 7
- 238000006073 displacement reaction Methods 0.000 claims description 6
- 229910001220 stainless steel Inorganic materials 0.000 claims description 4
- 239000010935 stainless steel Substances 0.000 claims description 4
- 238000009833 condensation Methods 0.000 claims description 3
- 230000005494 condensation Effects 0.000 claims description 3
- 238000000034 method Methods 0.000 description 16
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 10
- 238000001514 detection method Methods 0.000 description 9
- 239000001569 carbon dioxide Substances 0.000 description 5
- 229910002092 carbon dioxide Inorganic materials 0.000 description 5
- 230000003287 optical effect Effects 0.000 description 5
- 238000004140 cleaning Methods 0.000 description 4
- 239000001257 hydrogen Substances 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- 230000003749 cleanliness Effects 0.000 description 3
- 238000010790 dilution Methods 0.000 description 3
- 239000012895 dilution Substances 0.000 description 3
- 238000006467 substitution reaction Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 239000002341 toxic gas Substances 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000001784 detoxification Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- -1 etching Substances 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 239000011859 microparticle Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Landscapes
- Sampling And Sample Adjustment (AREA)
Description
本発明は、空気以外の気体に浮遊する粒子を計測するガス中粒子計測システムに関する。 The present invention relates to a gas particle measurement system that measures particles floating in a gas other than air.
半導体等の電子デバイス産業では、デバイスの生産工程において、エッチング・成膜・洗浄を繰り返すことが多く、これらの作業で使用するガスは高清浄度を維持することが要求される。ガスを管理する手段として、ガス中に浮遊する粒子を精度よく検出する粒子計測器が望まれている。ここで、ガスとは空気以外の気体である。一般に、空気中に浮遊する粒子数を計測する粒子計数器は、空気中粒子計数器、ガス用はガス用粒子計数器と称される。空気中粒子計数器のうち光散乱式気中粒子計数器は、クリーンルームの管理に使用されている。 In the electronic device industry such as semiconductors, etching, film formation, and cleaning are often repeated in the device production process, and the gas used in these operations is required to maintain high cleanliness. As a means for managing gas, a particle measuring instrument that accurately detects particles floating in the gas is desired. Here, the gas is a gas other than air. In general, a particle counter that measures the number of particles floating in the air is called an air particle counter, and a gas counter is a gas particle counter. Among the air particle counters, the light scattering air particle counter is used for clean room management.
ガス中の粒子を計測するためには、ガスの密度・屈折率や粘性等の違いから、空気中で調整した空気中粒子計数器を使用できないので、計測対象となるガスを使用し、夫々のガスに合わせて、試料空気供給部の調整をしなければならない。また、受光部の調整や流量計の指示値の校正等も必要となる。また、レーザキャビティ内においても、ガス毎の光源部の調整が必須となる。メンテナンスにおいても、同様に、計測対象となるガスを使用して行わなければならない。 In order to measure the particles in the gas, because the particle counter in the air adjusted in the air can not be used due to differences in gas density, refractive index, viscosity, etc., use the gas to be measured, The sample air supply must be adjusted for the gas. In addition, adjustment of the light receiving unit and calibration of the indicated value of the flow meter are also required. In addition, it is essential to adjust the light source unit for each gas even in the laser cavity. Similarly, maintenance must be performed using the gas to be measured.
また、腐食性、毒性や反応性を有するガス中の粒子管理は、高リークタイトで不純物を残留しない構造が必要なため、試料空気を粒子検出領域に導入するための空気動力学ノズルを使用せず、粒子検出領域を密閉された透明な流路(フローセル)で構成した専用のガス用粒子計数器を使用することが知られている。ここで、試料空気とは、計測対象となる粒子を含む空気である。 Also, particle management in corrosive, toxic and reactive gas requires a structure that is highly leaky and does not leave impurities, so use an aerodynamic nozzle to introduce sample air into the particle detection area. In addition, it is known to use a dedicated gas particle counter in which a particle detection region is configured by a sealed transparent flow path (flow cell). Here, the sample air is air containing particles to be measured.
また、水素等の反応性ガス中の粒子数を計測する技術として、水素等の反応性ガスに含まれる粒子の数をそのまま維持させた状態で反応性ガスを不活性ガスによって稀釈し、実質的にアルコール類の蒸気と反応を起こさない程度に不活性化させる拡散希釈装置を使用して、反応性ガス中の粒子数を計測する技術が開示されている(例えば、特許文献1参照)。 In addition, as a technique for measuring the number of particles in a reactive gas such as hydrogen, the reactive gas is diluted with an inert gas while maintaining the number of particles contained in the reactive gas such as hydrogen as it is. Discloses a technique for measuring the number of particles in a reactive gas using a diffusion dilution device that is inactivated to such an extent that it does not react with alcohol vapors (see, for example, Patent Document 1).
しかし、フローセルを使用したガス用粒子計数器は、夫々のガス毎に、計測対象となるガスを使用して、供給部の調整、受光部の調整は不要であるが、オープンキャビティ方式を用いることが出来ないので、空気中粒子計数器で使用するレーザのキャビティ内と同等の照射強度を得るためには、より照射強度の高い光源を必要とする。あるいは、照射光のエネルギー密度を上げるため、試料流量を減らすことが必要になる。これらの理由により、フローセルを使用したガス用粒子計数器は、光散乱式気中粒子計数器に比べ、かなり高価である。 However, the gas particle counter using the flow cell uses the gas to be measured for each gas, and it is not necessary to adjust the supply unit and the light receiving unit, but use the open cavity method. Therefore, in order to obtain an irradiation intensity equivalent to that in the cavity of the laser used in the air particle counter, a light source with a higher irradiation intensity is required. Alternatively, it is necessary to reduce the sample flow rate in order to increase the energy density of the irradiation light. For these reasons, gas particle counters using flow cells are much more expensive than light scattering airborne particle counters.
また、特許文献1に記載の発明においては、97%程度の希釈でも安全が確保できる水素等の反応性ガスを不活性ガスにより希釈するものであり、希釈した状態のガスでは、粒子を計測する装置によっては危険な状態になる可能性がある。また、希釈の程度により、用いる粒子計数器によっては、計測精度が低下してしまうことも想定される。 Further, in the invention described in Patent Document 1, a reactive gas such as hydrogen that can ensure safety even with dilution of about 97% is diluted with an inert gas, and particles are measured in the diluted gas. Some devices can be dangerous. In addition, depending on the degree of dilution, the measurement accuracy may be lowered depending on the particle counter used.
本発明は、従来の技術が有するこのような問題点に鑑みてなされたものであり、その目的とするところは、ガス中の粒子を空気中粒子計数器で精度を低下させることなく計測することができるガス中粒子計測システムを提供しようとするものである。 The present invention has been made in view of such problems of the prior art, and the object of the present invention is to measure particles in a gas with an air particle counter without reducing accuracy. It is intended to provide a gas particle measurement system that can be used.
上記課題を解決すべく請求項1に係る発明は、空気以外の気体に浮遊する粒子を計測するガス中粒子計測システムであって、多孔性隔壁を介して計測対象となる試料ガスと空気との分圧差による拡散により、試料ガスを空気に置換するガス空気置換部と、このガス空気置換部で置換された空気中の粒子を計測する空気中粒子計数器と、前記ガス空気置換部の試料ガス流入口と空気流入口の差圧を測定する差圧計と、前記空気流入口への空気流量を制御するバルブを備え、試料ガスの流量は前記空気中粒子計数器に設けた流量コントローラにより制御し、試料ガスの流量に応じて前記差圧計の測定値に基づき、前記空気流入口における圧力を前記バルブで調整するものである。 In order to solve the above-mentioned problem, the invention according to claim 1 is a gas particle measurement system for measuring particles suspended in a gas other than air, and includes a sample gas and air to be measured via a porous partition wall. A gas air replacement unit that replaces the sample gas with air by diffusion due to a partial pressure difference, an air particle counter that measures particles in the air replaced by the gas air replacement unit, and a sample gas of the gas air replacement unit A differential pressure gauge that measures the differential pressure between the inlet and the air inlet, and a valve that controls the air flow rate to the air inlet, the flow rate of the sample gas is controlled by a flow rate controller provided in the particle counter in the air. , based on the measured value of the differential pressure gauge according to the flow rate of the sample gas, it is shall adjust the pressure in the air inlet in the valve.
請求項2に係る発明は、請求項1に記載のガス中粒子計測システムにおいて、前記ガス空気置換部の試料ガス流入口の上流に、試料ガス又は空気を選択して前記試料ガス流入口へ導く切換バルブを設ける。
The invention according to
請求項3に係る発明は、空気以外の気体に浮遊する粒子を計測するガス中粒子計測システムであって、多孔性隔壁を介して試料ガスと中間ガスとの分圧差による拡散により、試料ガスを中間ガスに置換する一段置換部と、この一段置換部で置換された中間ガスを多孔性隔壁を介して中間ガスと空気との分圧差による拡散により空気に置換する二段置換部と、この二段置換部で置換された空気中の粒子を計測する空気中粒子計数器と、前記一段置換部の試料ガス流入口と中間ガス流入口の差圧を測定する差圧計と、前記二段置換部の試料中間ガス流入口と空気流入口の差圧を測定する差圧計と、前記中間ガス流入口への中間ガス流量を制御する中間ガス用バルブと、前記空気流入口への空気流量を制御する空気用バルブを備え、試料ガスの流量及び試料中間ガスの流量は前記空気中粒子計数器に設けた流量コントローラにより制御し、試料ガスの流量に応じて前記一段置換部に設けた差圧計の測定値に基づき、前記中間ガス流入口における圧力を前記中間ガス用バルブで調整し、試料中間ガスの流量に応じて前記二段置換部に設けた差圧計の測定値に基づき、前記空気流入口における圧力を前記空気用バルブで調整するものである。 The invention according to claim 3 is an in-gas particle measurement system for measuring particles suspended in a gas other than air , wherein the sample gas is dispersed by diffusion due to a partial pressure difference between the sample gas and the intermediate gas through a porous partition wall. A two-stage replacement section that replaces the intermediate gas with the intermediate gas, and a two-stage replacement section that replaces the intermediate gas replaced with the first-stage replacement section with air through a porous partition wall by diffusion due to a partial pressure difference between the intermediate gas and air. An air particle counter for measuring particles in the air replaced by a stage replacement unit, a differential pressure gauge for measuring a differential pressure between a sample gas inlet and an intermediate gas inlet of the first stage replacement unit, and the two-stage replacement unit A differential pressure gauge for measuring a differential pressure between the sample intermediate gas inlet and the air inlet, an intermediate gas valve for controlling an intermediate gas flow rate to the intermediate gas inlet, and an air flow rate to the air inlet Equipped with air valve, sample gas flow rate And the flow rate of the sample intermediate gas is controlled by a flow rate controller provided in the air particle counter, and based on the measured value of the differential pressure gauge provided in the one-stage replacement unit according to the flow rate of the sample gas, The pressure is adjusted by the intermediate gas valve, and the pressure at the air inlet is adjusted by the air valve based on the measured value of the differential pressure gauge provided in the two-stage replacement unit according to the flow rate of the sample intermediate gas. It is.
請求項4に係る発明は、請求項3に記載のガス中粒子計測システムにおいて、前記一段置換部の試料ガス流入口の上流に、試料ガス又は中間ガスを選択して前記試料ガス流入口へ導く切換バルブと、前記二段置換部の試料中間ガス流入口の上流に、試料中間ガス又は空気を選択して前記試料中間ガス流入口へ導く切換バルブを設ける。 According to a fourth aspect of the present invention, in the gas particle measurement system according to the third aspect , a sample gas or an intermediate gas is selected and introduced to the sample gas inlet upstream of the sample gas inlet of the one-stage replacement unit. a switching valve, upstream of the sample intermediate gas inlet of the two-stage replacement unit, provided with a switching valve that selects the sample intermediate gas or air leads to the sample intermediate gas inlet.
請求項5に係る発明は、請求項3又は4に記載のガス中粒子計測システムにおいて、前記試料ガスが特殊ガスであり、前記中間ガスが不活性ガスである。
The invention according to
請求項6に係る発明は、請求項3乃至請求項5のいずれかに記載のガス中粒子計測システムにおいて、前記中間ガスがヘリウムである。 According to a sixth aspect of the present invention, in the gas particle measurement system according to any one of the third to fifth aspects, the intermediate gas is helium.
請求項7に係る発明は、請求項1乃至請求項6のいずれかに記載のガス中粒子計測システムにおいて、前記空気中粒子計数器の内部に前記ガス空気置換部を備える。 According to claim 7 invention is provided in claim 1 gas particle measurement system according to claim 6, the gas air displacement unit inside the air particle counter.
請求項8に係る発明は、請求項1乃至請求項7のいずれかに記載のガス中粒子計測システムにおいて、前記空気中粒子計数器が、光散乱式気中粒子計数器又は凝縮粒子計数器である。
The invention according to
請求項9に係る発明は、請求項1乃至請求項7のいずれかに記載のガス中粒子計測システムにおいて、前記空気中粒子計数器が、電気移動度分級器による粒子径弁別機能を備えている。
The invention according to
請求項10に係る発明は、請求項1乃至請求項9のいずれかに記載のガス中粒子計測システムにおいて、前記空気中粒子計数器が所定の試料空気流量を吸引した時の粒子数測定値を、前記ガス空気置換部に吸引される試料ガス流量から個数濃度に換算する処理部を備える。
The invention according to
請求項11に係る発明は、請求項1乃至請求項10のいずれかに記載のガス中粒子計測システムにおいて、前記ガス空気置換部の外管及び接続管がステンレス製である。 The invention according to claim 11 is the gas particle measurement system according to any one of claims 1 to 10, the outer tube and the connecting pipe of the gas air displacement unit is made of stainless steel.
本発明によれば、空気動力学ノズル等による整流状態の調整、レーザ等の光学系の調整業や受光系の焦点調整などの作業を、計測対象となるガスごとに行う必要がなくなり、通常の空気中粒子計数器をそのまま使用することができる。メンテナンスにおいても、同様に計測対象となるガスを使用せずに、空気で行うことができる。また、ガスを使用した場合に比べ、各調整作業が容易となる。また、フローセルを使用しないなど、製造コストもガスを使用する場合に比べ安価となる。更に、計測対象となるガスの種類が複数であっても、ガス毎に専用の粒子計数器を必要としないので、設備コストが低減でき、管理も容易となる。 According to the present invention, it is not necessary to perform operations such as adjustment of the rectification state by an aerodynamic nozzle or the like, adjustment of an optical system such as a laser, or focus adjustment of a light receiving system for each gas to be measured. An air particle counter can be used as it is. Similarly, maintenance can be performed with air without using the gas to be measured. Moreover, each adjustment work becomes easy compared with the case where gas is used. In addition, the manufacturing cost is lower than when gas is used, such as not using a flow cell. Furthermore, even if there are a plurality of types of gases to be measured, a dedicated particle counter is not required for each gas, so that the equipment cost can be reduced and management is facilitated.
また、ガス空気置換部の試料ガス流入口と空気流入口の差圧を測定する差圧計を設ければ、試料ガス流入口と空気流入口の差圧を所定値に調整して、試料ガスと空気を置換する際に、ガス置換効率を維持して試料ガス中の粒子を損なうことなく試料空気中へ効率よく移動させることができる。 In addition, if a differential pressure gauge for measuring the differential pressure between the sample gas inlet and the air inlet of the gas / air replacement unit is provided, the differential pressure between the sample gas inlet and the air inlet is adjusted to a predetermined value, When replacing the air, the gas replacement efficiency can be maintained and the particles in the sample gas can be efficiently moved into the sample air without damaging the particles.
ガス空気置換部が一段置換部と二段置換部からなる二段式の場合には、一段置換部の試料ガス流入口と中間ガス流入口の差圧を測定する差圧計と、二段置換部の中間ガス流入口と空気流入口の差圧を測定する差圧計を設ければ、試料ガス流入口と中間ガス流入口の差圧を所定値に調整して、試料ガスと中間ガスを置換する際に、ガス置換効率を維持して試料ガス中の粒子を損なうことなく中間ガス中へ効率よく移動させ、次いで中間ガス流入口と空気流入口の差圧を所定値に調整して、中間ガスと空気を置換する際に、ガス置換効率を維持して中間ガス中の粒子を損なうことなく空気中へ効率よく移動させることができる。 When the gas-air replacement unit is a two-stage type consisting of a single-stage replacement unit and a two-stage replacement unit, a differential pressure gauge that measures the differential pressure between the sample gas inlet and the intermediate gas inlet of the first-stage replacement unit, and a two-stage replacement unit If a differential pressure gauge that measures the differential pressure between the intermediate gas inlet and the air inlet is provided, the differential pressure between the sample gas inlet and the intermediate gas inlet is adjusted to a predetermined value to replace the sample gas and the intermediate gas. In this case, the gas replacement efficiency is maintained and the particles in the sample gas are efficiently moved into the intermediate gas without damaging the particles, and then the differential pressure between the intermediate gas inlet and the air inlet is adjusted to a predetermined value. When the air is replaced, the gas replacement efficiency can be maintained and the particles in the intermediate gas can be efficiently moved into the air without damaging the particles.
また、ガス空気置換部の試料ガス流入口の上流に、試料ガス又は空気を選択して試料ガス流入口へ導く切換バルブを設ければ、空気をガス空気置換部に流すことで洗浄をして、試料ガスを変更したときに、前の試料ガスの影響を無くすことができる。 In addition, if a switching valve that selects the sample gas or air and leads it to the sample gas inlet is provided upstream of the sample gas inlet of the gas / air replacement unit, cleaning is performed by flowing the air through the gas / air replacement unit. When the sample gas is changed, the influence of the previous sample gas can be eliminated.
ガス空気置換部が一段置換部と二段置換部からなる二段式の場合には、一段置換部の試料ガス流入口の上流に、試料ガス又は中間ガス(又は空気)を選択して試料ガス流入口へ導く切換バルブと、二段置換部の中間ガス流入口の上流に、中間ガス又は空気を選択して中間ガス流入口へ導く切換バルブを設ければ、中間ガス(又は空気)を一段置換部に、空気を二段置換部に流すことで夫々洗浄をして、試料ガスを変更したときに、前の試料ガスの影響を無くすことができる。 When the gas / air replacement unit is a two-stage type consisting of a single-stage replacement unit and a two-stage replacement unit, a sample gas or an intermediate gas (or air) is selected upstream of the sample gas inlet of the single-stage replacement unit. If a switching valve that leads to the inlet and a switching valve that selects the intermediate gas or air and leads it to the intermediate gas inlet upstream of the intermediate gas inlet of the two-stage replacement unit are provided, the intermediate gas (or air) is one stage. When the sample gas is changed by flowing air through the two-stage replacement unit in the replacement unit, the influence of the previous sample gas can be eliminated.
また、ガス空気置換部の外管及び接続管をステンレス製にすれば、石英ガラスと比較して溶着などの工程がなくなるので製造コストが下がると共に、製造作業時・搬送時・現場での取付け作業時などで、外管の破損などの可能性を低減させることができる。 In addition, if the outer tube and connecting tube of the gas / air replacement part are made of stainless steel, there is no need for welding or other processes compared to quartz glass, which lowers manufacturing costs and also allows for installation work, transportation, and installation on site. At times, the possibility of damage to the outer tube can be reduced.
本発明に係るガス中粒子計測システムの第1実施の形態は、図1に示すように、計測対象となる試料ガスを空気に置換するガス空気置換部1と、ガス空気置換部1で置換された空気中の粒子を計測する空気中粒子計数器2と、試料ガスと空気を所定の条件で導くためのバルブ3,4,5,6と、流量計7,8,9と、差圧計10と、切換バルブ12などを備えてなる。13はガス空気置換部1に供給する空気の清浄度を所望レベルに維持するためのフィルタである。なお、ガス中粒子計測システムの最小構成としては、ガス空気置換部1・空気中粒子計数器2・バルブ3・流量計7及びフィルタ13を設けることで構成できる。
As shown in FIG. 1, the first embodiment of the gas particle measurement system according to the present invention is replaced with a gas / air replacement unit 1 that replaces a sample gas to be measured with air, and a gas / air replacement unit 1. An
ガス空気置換部1は、空気中粒子計数器2の内部に設けることもできる。ガス空気置換部1における置換方法としては、多孔性隔壁を介して試料ガスと空気との分圧差による拡散により、試料ガスを空気に置換する方法が知られている(例えば、特開2006−170659号公報参照)。
The gas air replacement unit 1 can also be provided inside the
この方法を適用するガス空気置換部1は、図2に示すように、多孔性隔壁で形成された内管1aと、内管1aを囲む外管1bと、内管1aと外管1bを接続する接続管1cなどからなる。外管1bと接続管1cはステンレス製、内管1aは石英ガラス製又はセラミックス製である。内管1aと接続管1c及び接続管1cと外管1bは樹脂材などで固定することで、ガスや空気などの漏れを防止することができる。樹脂材は、試料ガスの種類によって選定し、ガス漏れし難く、粒子を含む異物等が付着し難いものであれば、限定されない。
As shown in FIG. 2, the gas-air replacement unit 1 to which this method is applied connects an
この方法によれば、計測対象となる粒子を含む試料ガス(例えば、二酸化炭素)が試料ガス流入口Aから内管1aに流入し、置換ガスである空気が空気流入口Bから内管1aと外管1bで形成される通路1dに流入する。すると、試料ガスと空気の流れは逆向きとなり、多孔性隔壁を介して試料ガスと空気との分圧差による拡散の効率を上げつつ、試料ガスが空気に置換される。試料ガスの中の粒子はそのまま内管1aを通過し、置換された空気と共に試料空気排気口Dから流出して空気中粒子計数器2へ流入する。試料ガスは空気を含んで試料ガス排気口Cから排出される。
According to this method, a sample gas (for example, carbon dioxide) containing particles to be measured flows into the
空気中粒子計数器2を新たに調整せずに使用するためには、二酸化炭素から空気への置換率は99%程度以上で、二酸化炭素中の粒子がガス空気置換部1を通過する通過率は少なくとも95%以上であることが望ましい。ここで、試料ガスの種類によって、空気流入口Bから流入する空気量をバルブ3で調整することになる。試料ガスの分子量(密度)が小さいほど置換率を上げることができる。
In order to use the
空気中粒子計数器による計測では、一般的に、試料空気流量は0.3リットル/分〜30リットル/分である。この試料空気流量に対応するため、ガス空気置換部1は、1個に限らず複数個を並列に設けることができる。 In the measurement by the particle counter in air, the sample air flow rate is generally 0.3 liter / minute to 30 liter / minute. In order to cope with this sample air flow rate, the number of gas air replacement sections 1 is not limited to one, and a plurality of gas air replacement sections 1 can be provided in parallel.
ここでは、空気中の粒子を計測する空気中粒子計数器2として、光散乱式気中粒子計数器20を使用した場合について説明する。光散乱式気中粒子計数器20は、図3に示すように、試料空気供給部21、光源部22、受光部23、信号処理部24を備えている。受光部23からの電気信号を信号処理部24で処理し、粒子についての計測結果を表示又はプリンタ等へ出力する。
Here, the case where the light scattering type air particle counter 20 is used as the
試料空気供給部21は、試料空気を空気動力学ノズル25,26と流量調整部(不図示)により、粒子検出領域27の試料空気を整流にする。流量調整部には流量測定器が設けられている。試料空気は空気動力学ノズル25から粒子検出領域27を通過し空気動力学ノズル26へと流入する。周囲は清浄な空気が循環している。
The sample air supply unit 21 rectifies the sample air in the particle detection region 27 by using the
光源部22は、固体レーザ等のレーザ素子28と共振鏡29からなり、高い光エネルギー密度を得るため、オープンキャビティ方式であり、整流とされた試料空気の通路となる粒子検出領域27を含めその周囲は空気で満たされている。例えば、粒子径が0.1μm程度と小さい場合では、オープンキャビティ方式を採用するが、粒子径が大きい場合には、特にオープンキャビティ方式を採用しなくてもよい。
The light source unit 22 includes a
オープンキャビティ方式を採用するか否かは、粒子の検出感度により選択することになる。ここで、オープンキャビティ方式とはレーザ素子28と共振鏡29間を光の共振により高い光エネルギーの光路L1を形成し、この光路L1内に粒子検出領域27を設けることで、高い光エネルギーを試料空気中の粒子に照射する方式である。
Whether or not to adopt the open cavity method is selected depending on the detection sensitivity of the particles. Here, in the open cavity system, an optical path L1 of high light energy is formed between the
受光部23は、粒子検出領域27の粒子の散乱光L2を、レンズ30を介して光電変換素子31で受ける。光電変換素子31は光の強度に応じて電気信号S1に変換し信号処理部24へ送る。
The light receiving unit 23 receives the scattered light L <b> 2 of the particles in the particle detection region 27 by the photoelectric conversion element 31 through the lens 30. The photoelectric conversion element 31 converts it into an electric signal S1 according to the intensity of light and sends it to the
以上のように構成された本発明に係るガス中粒子計測システムの第1実施の形態による計測手順を説明する。先ず、空気の流路を設定する。バルブ3,4を開状態にし、切換バルブ12を操作して、流入口Fを試料流入口Aと連通させ、空気を、試料ガス流入口Aから導くと共に、バルブ3と流量計7を介して空気流入口Bからガス空気置換部1へ導く。空気は、粒子の計測に影響しないよう、フィルタ13を介してガス空気置換部1へ流入される。
A measurement procedure according to the first embodiment of the gas particle measurement system according to the present invention configured as described above will be described. First, an air flow path is set. The valves 3 and 4 are opened, the switching valve 12 is operated, the inlet F is communicated with the sample inlet A, air is introduced from the sample gas inlet A, and the valve 3 and the flow meter 7 are connected. The air is introduced from the air inlet B to the gas air replacement unit 1. The air flows into the gas-air replacement unit 1 through the
次いで、試料ガス(例えば、二酸化炭素)の流路を設定する。バルブ4を閉状態にし、バルブ6を開状態にし、切換バルブ12を操作して流入口Eをガス空気置換部1の試料ガス流入口Aと連通させ、試料ガスを試料ガス流入口Aからガス空気置換部1へ導く。試料ガスの流量は空気中粒子計数器2(例えば、光散乱式気中粒子計数器20)に設けた流量コントローラにより制御する。 Next, a flow path for the sample gas (for example, carbon dioxide) is set. The valve 4 is closed, the valve 6 is opened, the switching valve 12 is operated to connect the inlet E to the sample gas inlet A of the gas air replacement unit 1, and the sample gas is supplied from the sample gas inlet A to the gas. It leads to the air replacement part 1. The flow rate of the sample gas is controlled by a flow rate controller provided in the air particle counter 2 (for example, the light scattering air particle counter 20).
次いで、試料ガスと空気の流量を調整する。試料ガスと空気の効率的な置換を行うためには、試料ガスが流入するガス空気置換部1の試料ガス流入口Aにおける圧力と空気が流入するガス空気置換部1の空気流入口Bにおける圧力が同程度になるように、試料ガス流入口Aと空気流入口Bの圧力差を差圧計10で測定してバルブ5で調整する。ここで、流量計9で排気する試料ガスの量が十分で、試料ガス流入口Aの圧力がほぼ大気圧になっていればこの調整は不要である。
Next, the flow rates of the sample gas and air are adjusted. In order to efficiently replace the sample gas and air, the pressure at the sample gas inlet A of the gas / air replacement unit 1 into which the sample gas flows and the pressure at the air inlet B of the gas / air replacement unit 1 into which air flows in are obtained. So that the pressure difference between the sample gas inlet A and the air inlet B is measured by the
光散乱式気中粒子計数器20では、通常、試料ガス側の圧力が大気圧より高い場合、ほぼ大気圧にするために、流量計9から試料ガスを放出させながら、粒子を計測する。
In the light scattering type airborne particle counter 20, normally, when the pressure on the sample gas side is higher than the atmospheric pressure, the particles are measured while releasing the sample gas from the
バルブ5の調整や差圧計10については、例えば、差圧計10の測定値を基にバルブ5を所定の条件に基づき、自動的に制御してもよいし、ガス空気置換部1の試料ガス流入口Aと試料ガス排気口Cとの間に差圧計を設けてもよい。また、差圧計の替わりに、圧力計(不図示)を設けてもよい。例えば、試料ガス排気口Cに設ける。
Regarding the adjustment of the
次いで、流量が調整された試料ガスは、ガス空気置換部1において、空気に置換される。また、試料ガス中の粒子は、そのまま、空気中に含まれることになる。粒子は空気と共に、試料空気排気口Dへ導かれる。 Next, the sample gas whose flow rate is adjusted is replaced with air in the gas-air replacement unit 1. Further, the particles in the sample gas are included in the air as they are. The particles are introduced to the sample air outlet D together with the air.
次いで、ガス空気置換部1の試料空気排気口Dから流出する試料空気を空気中粒子計数器2で計測する。また、置換された試料ガスは空気に混じり、ガス空気置換部1の試料ガス排気口Cからバルブ5を介して排出される。なお、試料ガスが有害な場合には試料ガスを除害する除害装置がバルブ5の下流に設けられる。
Next, the sample air flowing out from the sample air exhaust port D of the gas air replacement unit 1 is measured by the
次いで、適宜に、ガス空気置換部1などを洗浄する。切換バルブ12を操作して流入口Fをガス空気置換部1の試料ガス流入口Aと連通させ、バルブ3及びバルブ4を開状態にする。そして、空気の流量・圧力等を所望の条件にして、空気を試料ガス流入口Aと空気流入口Bからガス空気置換部1に流し込むことでガス空気置換部1内の洗浄を行う。この洗浄作業は、複数の試料ガスを使用することが前提であるので、試料ガスを変更したときに、前の試料ガスの影響を無くすために行う。なお、試料空気排気口Dと空気中粒子係数器2の間に切換バルブ(不図示)を設け、空気中粒子係数器2を介さずに排出する経路を備えてもよい。
Next, the gas-air replacement unit 1 and the like are washed as appropriate. The switching valve 12 is operated to make the inlet F communicate with the sample gas inlet A of the gas / air replacement unit 1, and the valves 3 and 4 are opened. Then, the air / air replacement unit 1 is cleaned by flowing air from the sample gas inlet A and the air inlet B into the gas / air replacement unit 1 under the desired conditions such as the air flow rate and pressure. Since this cleaning operation is premised on the use of a plurality of sample gases, it is performed to eliminate the influence of the previous sample gas when the sample gas is changed. A switching valve (not shown) may be provided between the sample air exhaust port D and the in-air
次に、本発明に係るガス中粒子計測システムの第2実施の形態は、図4に示すように、ガス空気置換部が一段置換部41と二段置換部42からなる二段式の場合で、一段式では所望の置換率まで上げることが出来ない場合や試料ガスを中間ガスに置換してから空気に置換する場合などに採用される。
Next, the second embodiment of the gas particle measurement system according to the present invention is a two-stage system in which the gas-air replacement unit is composed of a single-
第2実施の形態は、計測対象となる試料ガスを中間ガスに置換する一段置換部41と、中間ガスを空気に置換する二段置換部42と、二段置換部42で置換された空気中の粒子を計測する空気中粒子計数器2と、試料ガス・中間ガス・空気を所定の条件で導くためのバルブ43,44,45,46,47,48,49と、流量計50,51,52,53,54と、差圧計55,56と、切換バルブ57,58などを備えてなる。59は一段置換部41に、60は二段置換部42に、供給する空気の清浄度を所望レベルに維持するためのフィルタである。なお、二段式の置換部を設けるガス中粒子計測システムの最小構成としては、一段置換部41・二段置換部42・空気中粒子計数器2・バルブ43,47・流量計50,53及びフィルタ59,60を設けることで構成できる。
In the second embodiment, a one-
二段式の場合には、分子量(密度)の小さい中間ガスを一段置換部41で使用することが望ましい。例えば、不活性ガスであるヘリウムを中間ガスとして使用するとよい。
In the case of the two-stage type, it is desirable to use an intermediate gas having a small molecular weight (density) in the one-
試料ガスであるオゾンが切換バルブ57を通って一段置換部41の試料ガス流入口Kから流入し、ヘリウムを一段置換部41の中間ガス流入口Lから流入する。続いて、一段置換部41の試料中間ガス排気口Nから流出するヘリウムが切換バルブ58を通って二段置換部42の試料中間ガス流入口Rから流入すると共に、空気が二段置換部42の空気流入口Sから流入することで、ヘリウムから空気に置換して、粒子を含む空気(試料空気)が試料空気排気口Uから空気中粒子計数器2へ流入すればよい。
Ozone, which is the sample gas, flows from the sample gas inlet K of the first
一段置換部41と二段置換部42以外の配管などは、図1に示す第1実施の形態と同様に構成すればよい。このような二段式置換が有効となる試料ガスとしては、オゾンを含め、特殊材料ガス・毒性ガス・可燃性ガスや高濃度では危険な酸素などの特殊ガスである。特殊材料ガスは、半導体製造等に用いられるガスで39種類が定められている。毒性ガスとしては、一酸化炭素等であり、可燃性ガスとしては、水素等である。また、中間ガスとしては、不活性ガスを使用することが望ましい。不活性ガスとしては、窒素・二酸化炭素・ヘリウム・アルゴン等である。
What is necessary is just to comprise piping other than the 1st
以上のように構成された本発明に係るガス中粒子計測システムの第2実施の形態による計測手順を説明する。先ず、空気の流路を設定する。バルブ47を開状態にし、バルブ48を閉状態にし、空気をバルブ47と流量計53を介して空気流入口Sから二段置換部42へ導く。空気は、粒子の計測に影響しないよう、フィルタ60を介して二段置換部42へ流入される。
A measurement procedure according to the second embodiment of the gas particle measurement system according to the present invention configured as described above will be described. First, an air flow path is set. The
次いで、中間ガスの流路を設定する。バルブ43,44を開状態にし、切換バルブ57を操作して、流入口Qを試料ガス流入口Kに連通させ、中間ガスを、試料ガス流入口Kから導くと共に、バルブ43と流量計50を介して中間ガス流入口Lから一段置換部41へ導く。また、切換バルブ58を操作して流入口Vを二段置換部42の試料中間ガス流入口Rと連通させる。なお、空気の流路設定と中間ガスの流路設定の順序は限定するものではない。
Next, a flow path for the intermediate gas is set. The
次いで、試料ガスの流路を設定する。バルブ44を閉状態にし、バルブ46を開状態にし、切換バルブ57を操作して流入口Pを一段置換部41の試料ガス流入口Kと連通させ、試料ガスを試料ガス流入口Kから一段置換部41へ導く。試料ガスの流量及び試料中間ガスの流量は空気中粒子計数器2(例えば、光散乱式気中粒子計数器20)に設けた流量コントローラにより制御する。ここで、試料中間ガスとは、計測対象となる粒子を含む中間ガスである。
Next, a flow path for the sample gas is set. The
次いで、試料ガスと中間ガスと空気の流量を調整する。試料ガスと中間ガスの効率的な置換を行うためには、試料ガスが流入する一段置換部41の試料ガス流入口Kにおける圧力と試料ガスが流入する一段置換部41の中間ガス流入口Lにおける圧力が同程度になるように、試料ガス流入口Kと中間ガス流入口Lの圧力差を差圧計55で測定してバルブ45で調整する。ここで、流量計52で排気する試料ガスの量が十分で、試料ガス流入口Kの圧力がほぼ大気圧になっていればこの調整は不要である。
Next, the flow rates of the sample gas, intermediate gas, and air are adjusted. In order to efficiently replace the sample gas and the intermediate gas, the pressure at the sample gas inlet K of the first-
また、試料中間ガスと空気の効率的な置換を行うためには、試料中間ガスが流入する二段置換部42の試料中間ガス流入口Rにおける圧力と空気が流入する二段置換部42の空気流入口Sにおける圧力が同程度になるように、試料中間ガス流入口Rと空気流入口Sの圧力差を差圧計56で測定してバルブ49で調整する。
In addition, in order to efficiently replace the sample intermediate gas and air, the pressure in the sample intermediate gas inlet R of the two-
次いで、流量が調整された試料ガスは、一段置換部41において、中間ガスに置換される。また、試料ガス中の粒子は、そのまま、中間ガスに含まれることになる。粒子は中間ガスと共に、試料中間ガス排気口Nへ導かれる。
Next, the sample gas whose flow rate has been adjusted is replaced with the intermediate gas in the one-
次いで、試料中間ガス排気口Nから切換バルブ58を通って二段置換部42の試料中間ガス流入口Rに流入した試料中間ガスは、二段置換部42において、空気流入口Sから流入する空気に置換される。また、試料中間ガス中の粒子は、そのまま、空気に含まれることになる。粒子は空気と共に、試料空気排気口Uへ導かれる。
Next, the sample intermediate gas that has flowed from the sample intermediate gas exhaust port N through the switching
次いで、二段置換部42の試料空気排気口Uから流出する試料空気を空気中粒子計数器2で計測する。また、一段置換部41で置換された試料ガスは中間ガスに混じり、試料ガス排気口Mからバルブ45を介して排出される。また、二段置換部42で置換された中間ガスは空気に混じり、試料中間ガス排気口Tからバルブ49を介して排出される。なお、試料ガスが有害な場合には試料ガスを除害する除害装置がバルブ45の下流に設けられる。
Next, the sample air flowing out from the sample air exhaust port U of the two-
次いで、適宜に、一段置換部41や二段置換部42などを洗浄する。切換バルブ57を操作して流入口Qを一段置換部41の試料ガス流入口Kと連通させ、バルブ43及びバルブ44を開状態にする。そして、中間ガスの流量・圧力等を所望の条件にして、中間ガスを試料ガス流入口Kと中間ガス流入口Lから一段置換部41に流し込むことで一段置換部41内の洗浄を行う。なお、必要に応じて、中間ガスの代わりに、空気をもちいて洗浄してもよい。
Next, the first-
また、切換バルブ58を操作して流入口Wを二段置換部42の試料中間ガス流入口Rと連通させ、バルブ47及びバルブ48を開状態にする。そして、空気の流量・圧力等を所望の条件にして、空気を試料中間ガス流入口Rと空気流入口Sから二段置換部42に流し込むことで二段置換部42内の洗浄を行う。これらの洗浄作業は、複数の試料ガスを使用することが前提であるので、試料ガスを変更したときに、前の試料ガスの影響を無くすために行う。なお、二段置換部42の試料空気排気口Uと空気中粒子計数器2の間に切換バルブ(不図示)を設け、空気中粒子計数器2を介さずに排出する経路を備えてもよい。
Further, the switching
空気中粒子計数器2として、電気移動度分級器(DMA:Differential Mobility Analyzer)と空気中微粒子計を組み合わせてもよい。DMAも空気中の粒子に使用するのが一般的である。DMAとは、印加電圧を制御することで、所定の移動度を有した粒子だけを分級する装置である。
As the
DMAには清浄空気(シースエア)が必須である。ガスを試料として導入する場合、同じガスをクリーン化してシースエアとして用いれば、原理的には動作するが、試料ガス流量の十倍程度以上が必要であり、かなりの高清浄にしなければならないのでコスト的に高額となり、DMAに空気以外の試料を導入することは現実的ではない Clean air (sheath air) is essential for DMA. When introducing gas as a sample, if the same gas is cleaned and used as sheath air, in principle it will work, but it requires more than ten times the sample gas flow rate, and the cost must be high because it must be very clean. It is not practical to introduce a sample other than air into DMA.
また、空気中粒子計数器2として、DMAと凝縮粒子計数器(CPC:Condensation Particle Counter)を組み合わせてもよい。この組み合わせを走査型移動度粒径測定器(SMPS:Scanning Mobility Particle Sizer)といい、多く用いられている。CPCとは、気化させたアルコールや水などを粒子に凝縮させて、光散乱法による粒子検出をより小さな粒子にまで適用できるようにしたものである。アルコール等を粒子に凝縮させて検出するため,実際の粒子の大きさの情報は失われる。
Further, as the
また、空気中粒子計数器2が、所定の試料空気流量を吸引した時の粒子数測定値を、ガス空気置換部1に吸引されるガス流量から個数濃度換算にする処理部を備えることができる。分子拡散による移動は、単位時間あたりの質量の移動量(質量フラックス)の収支が合うことが基本である。本発明において、ガス流れを対向させるなど実際上は圧力勾配に依存する部分もあるが、基本原理は分子拡散によるものであり、分子の拡散速度は分子量(質量)に1/2乗に反比例する。つまり、空気中微粒子計が空気として所定試料空気流量を吸引した場合、置換前の試料ガスの吸引(体積)流量はガスの種類によって異なることになる。
Further, the
ガスの種類が異なっても空気体積量相当で粒子個数濃度を求めるなら、そのまま空気中微粒子計の表示値を使用すれば良いが、元の試料ガスの体積量あたりの粒子数として個数濃度を求める場合、ガス種ごとに体積を換算する必要がある。
空気中微粒子計に流量計及び試料ガス体積量を算出する処理部を設け、流量計により試料空気体積量を求め、求めた試料空気体積量を用い処理部により試料ガス体積量を算出する。
If you want to obtain the particle number concentration equivalent to the air volume even if the gas type is different, you can use the displayed value of the air particle meter as it is, but find the number concentration as the number of particles per volume of the original sample gas. In this case, it is necessary to convert the volume for each gas type.
A processing unit for calculating the flow meter and the sample gas volume is provided in the fine particle meter in the air, the sample air volume is obtained by the flow meter, and the sample gas volume is calculated by the processing unit using the obtained sample air volume.
本発明によれば、空気動力学ノズル等による整流状態の調整、レーザ等の光学系の調整業や受光系の焦点調整などの作業を、計測対象となるガスを使用せずに、空気で行うことができ、計測対象となるガスの種類が複数であっても、ガス毎に専用の粒子計数器を必要としないガス中粒子計測システムを提供することができる。 According to the present invention, operations such as adjustment of a rectification state using an aerodynamic nozzle, adjustment of an optical system such as a laser, and focus adjustment of a light receiving system are performed with air without using a gas to be measured. It is possible to provide a gas particle measurement system that does not require a dedicated particle counter for each gas even when there are a plurality of types of gases to be measured.
1…ガス空気置換部、2…空気中粒子計数器、3,4,5,6,43,44,45,46,47,48,49…バルブ、7,8,9,50,51,52,53,54…流量計、10,55,56…差圧計、12,57,58…切換バルブ、13,59,60…フィルタ、20…光散乱式気中粒子計数器、41…一段置換部、42…二段置換部、A,K…試料ガス流入口、B,S…空気流入口、C,M…試料ガス排気口、D,U…試料空気排気口、L…中間ガス流入口、N,T…試料中間ガス排気口、R…試料中間ガス流入口。
DESCRIPTION OF SYMBOLS 1 ... Gas air replacement part, 2 ... Particle counter in air, 3, 4, 5, 6, 43, 44, 45, 46, 47, 48, 49 ... Valve, 7, 8, 9, 50, 51, 52 , 53, 54 ... flow meter, 10, 55, 56 ... differential pressure gauge, 12, 57, 58 ... switching valve, 13, 59, 60 ... filter, 20 ... light scattering airborne particle counter, 41 ... one-
Claims (11)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010145758A JP5495978B2 (en) | 2010-06-28 | 2010-06-28 | Gas particle measurement system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010145758A JP5495978B2 (en) | 2010-06-28 | 2010-06-28 | Gas particle measurement system |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012008059A JP2012008059A (en) | 2012-01-12 |
JP5495978B2 true JP5495978B2 (en) | 2014-05-21 |
Family
ID=45538762
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010145758A Expired - Fee Related JP5495978B2 (en) | 2010-06-28 | 2010-06-28 | Gas particle measurement system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5495978B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20190088425A (en) * | 2018-01-18 | 2019-07-26 | 인더스트리얼 테크놀로지 리서치 인스티튜트 | Calibrated particle analysis apparatus and method |
KR20220163748A (en) * | 2021-06-03 | 2022-12-12 | 케이앤제이엔지니어링 주식회사 | Fine dust measurement system with automatic purification and correction technology |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107064432A (en) * | 2017-05-22 | 2017-08-18 | 苏州宏瑞净化科技有限公司 | Gases at high pressure diffuser |
TWI697675B (en) | 2017-10-19 | 2020-07-01 | 財團法人工業技術研究院 | Apparatus for on-line monitoring particle contamination in special gases |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01184442A (en) * | 1988-01-19 | 1989-07-24 | Rion Co Ltd | Light scattering type grain counter |
US5231865A (en) * | 1992-01-02 | 1993-08-03 | Air Products And Chemicals, Inc. | Diffusion gas diluter |
KR100252219B1 (en) * | 1997-06-09 | 2000-04-15 | 윤종용 | Particle sampling apparatus and its driving method and semiconductor device fabrication system using that method |
JP3629512B2 (en) * | 2000-02-29 | 2005-03-16 | 独立行政法人産業医学総合研究所 | Fine particle classification apparatus and method |
JP4315348B2 (en) * | 2004-12-13 | 2009-08-19 | 住友精化株式会社 | Gas replacement method, gas replacement apparatus, and analysis system |
JP4879921B2 (en) * | 2008-01-30 | 2012-02-22 | 新日本製鐵株式会社 | Continuous collection device for atmospheric fallout |
-
2010
- 2010-06-28 JP JP2010145758A patent/JP5495978B2/en not_active Expired - Fee Related
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20190088425A (en) * | 2018-01-18 | 2019-07-26 | 인더스트리얼 테크놀로지 리서치 인스티튜트 | Calibrated particle analysis apparatus and method |
KR102165770B1 (en) * | 2018-01-18 | 2020-10-15 | 인더스트리얼 테크놀로지 리서치 인스티튜트 | Calibrated particle analysis apparatus and method |
US11105726B2 (en) | 2018-01-18 | 2021-08-31 | Industrial Technology Research Institute | Calibrated particle analysis apparatus and method |
KR20220163748A (en) * | 2021-06-03 | 2022-12-12 | 케이앤제이엔지니어링 주식회사 | Fine dust measurement system with automatic purification and correction technology |
KR102541876B1 (en) | 2021-06-03 | 2023-06-12 | 케이앤제이엔지니어링 주식회사 | Fine dust measurement system with automatic purification and correction technology |
Also Published As
Publication number | Publication date |
---|---|
JP2012008059A (en) | 2012-01-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102625909B (en) | Flow monitored particle sensor | |
JP5495978B2 (en) | Gas particle measurement system | |
KR101249114B1 (en) | Systems and methods for inspecting a wafer with increased sensitivity | |
US6791092B2 (en) | Transmission meter, a method of measuring transmittance and a disinfection apparatus | |
CN109557009B (en) | Wide-range particulate matter detection device | |
US3787122A (en) | Light scattering particle analyzer | |
CN109351172A (en) | A kind of preform tail gas collection system | |
JP5239053B2 (en) | Method and apparatus for measuring ozone concentration | |
KR20100091916A (en) | In-line high pressure particle sensing system | |
Albrecht et al. | The radiator gas and the gas system of COMPASS RICH-1 | |
US10801945B2 (en) | Inline particle sensor | |
JP5798230B1 (en) | Chlorine dioxide gas concentration measuring device | |
CN2789760Y (en) | Fumes discharging continuous monitoring instrument | |
JP2002079203A (en) | Ultraviolet irradiation device and method for controlling ultraviolet-light irradiation device | |
JP2008292215A (en) | Measuring gas dilution device, method therefor, mercury analyzer, and method therefor | |
JP2001124692A (en) | Particulate measuring device | |
CN221923079U (en) | Argon gas filling gas circuit system of direct-reading spectrometer | |
JP2019190988A (en) | Exhaust gas radiation monitoring system, radioactive substance handling facility, and exhaust gas radiation monitoring method | |
CN207133231U (en) | A kind of long-life hydrogen fluoride alarm | |
JP2004226098A (en) | Fluid modulation type measuring apparatus | |
JP2016024130A (en) | Sampling device and sampling method | |
JP2003156428A (en) | Fine particulate detector | |
KR20240155605A (en) | Apparatus for sensing contamination material | |
JP2006058239A (en) | Particle detector | |
JPH03238344A (en) | Method for judging deterioration in performance of zero-gas generating device in ozone-concentration measuring apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130520 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20131212 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20131217 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140204 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140225 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140304 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5495978 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |