JP4315348B2 - Gas replacement method, gas replacement apparatus, and analysis system - Google Patents

Gas replacement method, gas replacement apparatus, and analysis system Download PDF

Info

Publication number
JP4315348B2
JP4315348B2 JP2004360102A JP2004360102A JP4315348B2 JP 4315348 B2 JP4315348 B2 JP 4315348B2 JP 2004360102 A JP2004360102 A JP 2004360102A JP 2004360102 A JP2004360102 A JP 2004360102A JP 4315348 B2 JP4315348 B2 JP 4315348B2
Authority
JP
Japan
Prior art keywords
gas
replacement
flow path
sample
porous partition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004360102A
Other languages
Japanese (ja)
Other versions
JP2006170659A (en
Inventor
啓介 宇谷
講平 西口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Seika Chemicals Co Ltd
Original Assignee
Sumitomo Seika Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Seika Chemicals Co Ltd filed Critical Sumitomo Seika Chemicals Co Ltd
Priority to JP2004360102A priority Critical patent/JP4315348B2/en
Publication of JP2006170659A publication Critical patent/JP2006170659A/en
Application granted granted Critical
Publication of JP4315348B2 publication Critical patent/JP4315348B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)

Description

本発明は、微粒子を含む試料ガスを置換ガスに置換するためのガス置換方法と、そのガス置換方法を実施するためのガス置換装置と、そのガス置換装置を備えた分析システムに関する。   The present invention relates to a gas replacement method for replacing a sample gas containing fine particles with a replacement gas, a gas replacement device for implementing the gas replacement method, and an analysis system including the gas replacement device.

近年、生活環境や労働環境に対する関心の高まりから、大気中に存在する微粒子の組成や濃度を測定する技術の向上が求められている。また、半導体産業に代表されるような、例えば原料ガスの高純度化や製造工程における雰囲気ガス制御が必要な産業においては、微粒子を含む原料ガスや雰囲気ガスの分析を容易かつ高精度に行うことが強く望まれている。   In recent years, due to increasing interest in the living environment and the working environment, there has been a demand for improvements in technology for measuring the composition and concentration of fine particles present in the atmosphere. In industries that require high purity of raw material gas and atmospheric gas control in the manufacturing process, as represented by the semiconductor industry, analysis of raw material gas containing fine particles and atmospheric gas should be performed easily and with high accuracy. Is strongly desired.

試料ガス中に微量存在する微粒子の分析装置としては、一般的なガスクロマトグラフ質量分析法(GC−MS法)の他、誘導結合プラズマ分析法(ICP法)やマイクロ波プラズマ分析法(MIP法)等の高感度分析法を用いるものが知られている。プラズマからの信号変化を検出することで分析を行うICP法やMIP法では、アルゴンガス、窒素ガスおよびヘリウムガス等の限られた種類のガスがプラズマガスとして用いられ、高温のプラズマ中に分析試料を導入することで所望の分析が行われる。   In addition to general gas chromatograph mass spectrometry (GC-MS method), inductively coupled plasma analysis (ICP method) and microwave plasma analysis (MIP method) can be used as analysis equipment for fine particles present in trace amounts in the sample gas. A method using a high-sensitivity analysis method is known. In the ICP method and the MIP method in which analysis is performed by detecting a signal change from plasma, a limited kind of gas such as argon gas, nitrogen gas and helium gas is used as the plasma gas, and the analysis sample is contained in the high-temperature plasma. The desired analysis is performed by introducing.

試料ガス中に微量存在する微粒子の分析を高精度に行うには、試料ガス中のガス状汚染成分を充分に排除する必要がある。特に、プラズマを利用した高感度分析を実現するためには、プラズマの温度変化や電子密度変化等をいたずらに誘発することなく、安定したプラズマを維持しながら分析試料に含まれる微粒子を多量にプラズマ中に導入する必要がある。   In order to analyze fine particles present in a small amount in the sample gas with high accuracy, it is necessary to sufficiently eliminate gaseous contamination components in the sample gas. In particular, in order to realize high-sensitivity analysis using plasma, a large amount of fine particles contained in the analysis sample is plasma while maintaining a stable plasma without unnecessarily inducing changes in plasma temperature or electron density. Need to be introduced inside.

そこで、特許文献1に記載された微粒子分級装置においては、試料ガスに含まれる微粒子を荷電して分級する際に、試料ガス中のガス状汚染成分を充分に排除し、評価の対象となる粒子状汚染成分が所望のガス種からなる雰囲気中に浮遊する状態を形成している。
また、特許文献2に記載された試料導入装置においては、液体試料を超音波噴霧器によって液滴とすると共に加熱することで試料成分と溶剤蒸気とに分離し、噴霧ガスをキャリアーガスとして含む試料ガスとし、その試料ガスを各孔径が1〜2μmの多孔材製の管状密閉フィルタ内に導入し、その溶剤蒸気を密閉フィルタを介してフィルタ外部に拡散させると共にフィルタ外部を流れるガスにより除去し、試料成分をキャリアーガスと共に分析装置のプラズマ中に導入している。
特開2001−239181号公報 特表平7−500416号公報
Therefore, in the fine particle classifier described in Patent Document 1, when the fine particles contained in the sample gas are charged and classified, the particulate contamination component in the sample gas is sufficiently eliminated, and the particles to be evaluated A state is formed in which the pollutant component floats in an atmosphere composed of a desired gas species.
In the sample introduction device described in Patent Document 2, a liquid sample is formed into droplets by an ultrasonic sprayer and heated to separate into sample components and solvent vapor, and a sample gas containing spray gas as a carrier gas. The sample gas is introduced into a tubular sealed filter made of a porous material having a pore diameter of 1 to 2 μm, and the solvent vapor is diffused outside the filter through the sealed filter and removed by the gas flowing outside the filter. The components are introduced into the plasma of the analyzer together with the carrier gas.
JP 2001-239181 A JP 7-500416

しかし、上記従来の微粒子分級装置は、微粒子を荷電するための装置や静電場を形成するための高電圧源等を必要とするため、大型化や高額化するという問題がある。また、上記従来の密閉フィルタを用いた試料導入装置を用い、石英ガラス製等のプラズマトーチを介してプラズマ中に試料を導入した場合、プラズマが不安定になってプラズマトーチが溶融するおそれがあるという問題がある。本発明は、そのような従来技術の問題を解決することを目的とする。   However, the conventional fine particle classifier requires a device for charging the fine particles, a high voltage source for forming an electrostatic field, and the like, and thus has a problem of increasing the size and cost. In addition, when a sample is introduced into the plasma via a plasma torch made of quartz glass or the like using the above-described conventional sample introduction device using a sealed filter, the plasma may become unstable and the plasma torch may melt. There is a problem. The present invention aims to solve such problems of the prior art.

本発明のガス置換方法の特徴は、多孔性隔壁により囲まれたガス流路において微粒子を含む試料ガスを流動させ、前記多孔性隔壁の周囲において置換ガスを前記試料ガスの流動方向と逆方向に流動させ、前記試料ガスと前記置換ガスとの分圧差による拡散により、前記試料ガスを前記多孔性隔壁を介して前記ガス流路外に移動させると共に前記置換ガスを前記多孔性隔壁を介して前記ガス流路内に移動させ、前記ガス流路の出口から前記置換ガスを前記微粒子と共に流出させ、前記多孔性隔壁により、前記ガス流路の内外圧力差による前記多孔性隔壁を介するガス移動を実質的に阻止する点にある。この場合、前記圧力差による前記多孔性隔壁を介するガス移動を阻止するため、前記多孔性隔壁の各孔径を実質的に0.8〜0.001μmとするのが好ましい。
本件発明者らは、従来の密閉フィルタを用いた試料導入装置を用いるとプラズマが不安定になるのは、プラズマへの導入ガス流量が変動し、その流量変動はフィルター内外の圧力差によりフィルタを介するガス移動が生じることに起因することを見出した。
これに対し本件発明によれば、試料ガスと置換ガスとの分圧差による拡散により、換言すればガス流路の内外における試料ガスと置換ガスとの濃度差を推進力として、試料ガスは多孔性隔壁を介してガス流路外に移動すると共に置換ガスは多孔性隔壁を介してガス流路内に移動する。また、その多孔性隔壁により、ガス流路の内外圧力差による多孔性隔壁を介するガス移動は阻止される。これにより、ガス流路外に移動する試料ガスの量とガス流路内に移動する置換ガスの量とを略等しくし、ガス流路において試料ガスの殆どを置換ガスに置換し、ガス流路から流出するガスの流量が変動するのを防止できる。この際、ガス流路における微粒子は、その径が多孔性隔壁の孔径を超えるものは各孔を透過したり各孔に捕捉されることはなく、また、その孔径以下のものもガスより拡散速度が遅く拡散ガスの流れによる慣性力も非常に弱いことから、大部分の微粒子は置換ガスと共にガス流路から流出する。すなわち、ガス流路に試料ガスと共に導入された微粒子を、減損することなく試料ガスとほぼ同流量の置換ガスと共に分析装置に供給することができる。これにより、試料ガスを分析装置に適したガスに置換でき、しかも分析装置への導入ガス流量の変動を防止することで分析精度を向上できる。特に、分析装置がプラズマを利用した分析法を採用するものである場合、プラズマトーチの溶融等の問題を生じることなく、安定したプラズマを維持しながら高感度で高精度の分析が可能になる。さらに、ガス流路に導入した試料ガスに含まれる微粒子は、殆ど減損することなくガス流路から排出されて残留することはないので、先に導入された試料ガスとは異なる試料ガスを後にガス流路に導入する場合、先の試料ガスに含まれていた残留微粒子により汚染されるのを防止でき、その異なる試料ガスの高感度で高精度の分析も可能になる。
A feature of the gas replacement method of the present invention is that a sample gas containing fine particles is caused to flow in a gas flow path surrounded by a porous partition wall, and the replacement gas is moved in a direction opposite to the flow direction of the sample gas around the porous partition wall. The sample gas is moved out of the gas flow path through the porous partition wall, and the replacement gas is moved through the porous partition wall by diffusion due to a partial pressure difference between the sample gas and the replacement gas. The gas is moved into the gas flow path, the replacement gas is allowed to flow out together with the fine particles from the outlet of the gas flow path, and the gas movement through the porous partition due to the internal and external pressure difference of the gas flow path is substantially performed by the porous partition. It is in the point to prevent. In this case, in order to prevent gas movement through the porous partition due to the pressure difference, it is preferable that each pore diameter of the porous partition is substantially 0.8 to 0.001 μm.
The inventors of the present invention use a conventional sample introduction device using a hermetic filter, and the plasma becomes unstable because the flow rate of the gas introduced into the plasma fluctuates. It has been found that this is due to the occurrence of gas movement through.
On the other hand, according to the present invention, the sample gas is porous by diffusion due to the partial pressure difference between the sample gas and the replacement gas, in other words, the concentration difference between the sample gas and the replacement gas inside and outside the gas flow path as a driving force. The replacement gas moves out of the gas flow path through the partition wall and moves into the gas flow path through the porous partition wall. In addition, the porous partition prevents gas movement through the porous partition due to the pressure difference between the inside and outside of the gas flow path. As a result, the amount of the sample gas that moves out of the gas flow path is substantially equal to the amount of the replacement gas that moves into the gas flow path, and most of the sample gas is replaced with the replacement gas in the gas flow path. It is possible to prevent fluctuations in the flow rate of the gas flowing out from the tank. At this time, the fine particles in the gas flow path are not permeated through or trapped in each hole if the diameter exceeds the pore diameter of the porous partition wall, and those below the pore diameter are also diffused by the gas. However, since the inertia force due to the flow of the diffusion gas is very slow, most of the fine particles flow out of the gas flow path together with the replacement gas. That is, the fine particles introduced into the gas flow path together with the sample gas can be supplied to the analyzer together with the replacement gas having substantially the same flow rate as the sample gas without deteriorating. As a result, the sample gas can be replaced with a gas suitable for the analyzer, and the analysis accuracy can be improved by preventing fluctuations in the flow rate of the gas introduced into the analyzer. In particular, when the analysis apparatus employs an analysis method using plasma, analysis with high sensitivity and high accuracy is possible while maintaining stable plasma without causing problems such as melting of the plasma torch. Furthermore, since the fine particles contained in the sample gas introduced into the gas flow channel are discharged from the gas flow channel with little loss and do not remain, a sample gas different from the previously introduced sample gas is later gasified. When introduced into the flow path, it can be prevented from being contaminated by the residual fine particles contained in the previous sample gas, and high sensitivity and high accuracy analysis of the different sample gas can be performed.

本発明のガス置換装置は、内管と、前記内管を覆う外管とを備え、前記内管は、内側入口と、内側出口と、前記内側入口と内側出口との間の内側ガス流路とを有し、前記外管は、外側入口と、外側出口と、前記外側入口と前記外側出口との間の外側ガス流路とを有し、前記内側入口、内側出口、外側入口、および外側出口は、前記内側ガス流路における微粒子を含む試料ガスの流動方向と前記外側ガス流路における置換ガスの流動方向が互いに逆方向となるように配置され、前記内管における前記内側ガス流路の少なくとも一部を覆う部位は、前記試料ガスと前記置換ガスとの分圧差による拡散により前記試料ガスを前記内側ガス流路外に移動させると共に前記置換ガスを前記内側ガス流路内に移動させるための多孔性隔壁により構成され、前記多孔性隔壁の各孔径は、前記内側ガス流路における圧力と前記外側ガス流路における圧力との差による前記多孔性隔壁を介するガス移動を実質的に阻止するように設定されていることを特徴とする。前記多孔性隔壁の各孔径は実質的に0.8〜0.001μmとされているのが好ましい。
本発明のガス置換装置によれば、本発明のガス置換方法を小型で低コストな構成により実施できる。
The gas replacement device of the present invention includes an inner tube and an outer tube that covers the inner tube, and the inner tube includes an inner inlet, an inner outlet, and an inner gas flow path between the inner inlet and the inner outlet. The outer tube includes an outer inlet, an outer outlet, and an outer gas flow path between the outer inlet and the outer outlet, and the inner inlet, the inner outlet, the outer inlet, and the outer The outlet is arranged so that the flow direction of the sample gas containing fine particles in the inner gas flow path and the flow direction of the replacement gas in the outer gas flow path are opposite to each other, and the outlet of the inner gas flow path in the inner pipe The portion covering at least a part moves the sample gas out of the inner gas flow path and moves the replacement gas into the inner gas flow path by diffusion due to a partial pressure difference between the sample gas and the replacement gas. Of porous partition walls, Each pore diameter of the porous partition wall is set so as to substantially prevent gas movement through the porous partition wall due to the difference between the pressure in the inner gas channel and the pressure in the outer gas channel. Features. It is preferable that each pore diameter of the porous partition wall is substantially 0.8 to 0.001 μm.
According to the gas replacement device of the present invention, the gas replacement method of the present invention can be implemented with a small and low-cost configuration.

本発明の分析システムは、本発明のガス置換装置と、そのガス置換装置の内側出口から流出する微粒子の分析装置とを備えることを特徴とする。本発明の分析システムによれば、分析装置への導入ガス流量の変動を防止することで分析精度を向上できる。   The analysis system of the present invention comprises the gas replacement device of the present invention and an analysis device for fine particles flowing out from the inner outlet of the gas replacement device. According to the analysis system of the present invention, analysis accuracy can be improved by preventing fluctuations in the flow rate of gas introduced into the analyzer.

本発明によれば、試料ガスに含まれる微粒子を容易かつ高精度に分析するのに寄与できる。   ADVANTAGE OF THE INVENTION According to this invention, it can contribute to analyzing the microparticles | fine-particles contained in sample gas easily and with high precision.

図1に示すガス置換装置1は、横断面円形の直管である内管2と、内管2を覆う横断面円形の直管である外管3を備える二重管構造であり、内管2の両端は外管3から突出し、外管3の両端近傍は次第に小径とされて内管2の外周に接合されている。なお、内外管2、3は直管である必要はなく湾曲していてもよい。   A gas replacement device 1 shown in FIG. 1 has a double tube structure including an inner tube 2 that is a straight tube having a circular cross section and an outer tube 3 that is a straight tube having a circular cross section that covers the inner tube 2. Both ends of 2 protrude from the outer tube 3, and the vicinity of both ends of the outer tube 3 is gradually made smaller in diameter and joined to the outer periphery of the inner tube 2. The inner and outer tubes 2 and 3 do not have to be straight tubes and may be curved.

ガス置換装置1の内管2は、一端に形成された内側入口2aと、他端に形成された内側出口2bと、内側入口2aと内側出口2bとの間の内側ガス流路2cを有する。その内側入口2aから微粒子を含む試料ガスG1や、蒸発することで微粒子を含む試料ガスG1となる液体試料が噴霧器により液滴状とされて導入される。なお、試料ガスG1に含まれる微粒子は、例えば鉄粉等の金属、酸化物や硫化物等の金属化合物、セラミックや高分子化合物等の有機物等を含む固形物であり、分析対象となるものである。   The inner tube 2 of the gas replacement device 1 has an inner inlet 2a formed at one end, an inner outlet 2b formed at the other end, and an inner gas flow path 2c between the inner inlet 2a and the inner outlet 2b. From the inner inlet 2a, the sample gas G1 containing fine particles and the liquid sample that becomes the sample gas G1 containing fine particles by evaporation are formed into droplets by a sprayer. The fine particles contained in the sample gas G1 are solid substances including, for example, metals such as iron powder, metal compounds such as oxides and sulfides, organic substances such as ceramics and polymer compounds, and the like. is there.

外管3は、置換ガスG2を導入するために一端近傍の周壁に形成された外側入口3aと、他端近傍の周壁に形成された外側出口3bと、外側入口3aと外側出口3bとの間の外側ガス流路3cを有する。内側入口2a、内側出口2b、外側入口3a、および外側出口3bは、内側ガス流路2cにおける試料ガスG1の流動方向と外側ガス流路3cにおける置換ガスG2の流動方向が互いに逆方向となるように配置されている。   The outer tube 3 includes an outer inlet 3a formed on the peripheral wall near one end for introducing the replacement gas G2, an outer outlet 3b formed on the peripheral wall near the other end, and an outer inlet 3a and an outer outlet 3b. The outer gas flow path 3c. In the inner inlet 2a, the inner outlet 2b, the outer inlet 3a, and the outer outlet 3b, the flow direction of the sample gas G1 in the inner gas flow path 2c and the flow direction of the replacement gas G2 in the outer gas flow path 3c are opposite to each other. Is arranged.

内管2における内側ガス流路2cを覆う周壁の両端間部位が、試料ガスG1と置換ガスG2との分圧差による拡散によって試料ガスG1を内側ガス流路2c外に移動させると共に置換ガスG2を内側ガス流路2c内に移動させるための多孔性隔壁2Aにより構成されている。多孔性隔壁2Aの各孔径は、内側ガス流路2cにおける圧力と外側ガス流路3cおける圧力との差による多孔性隔壁2Aを介するガス移動を阻止するように設定され、実質的に0.8μm〜0.001μmとされる。各孔径は、ガスG1、G2の置換効率が低下して装置が大型化するのを防止するために0.001μm以上とされ、好ましくは0.002μm以上であり、より好ましくは0.02μm以上であり、微粒子が各孔を透過したり各孔に捕捉されて分析精度が低下したり圧力差によるガス移動が生じるのを防止するため0.8μm以下とされ、好ましくは0.5μm以下であり、より好ましくは0.2μm以下である。なお、多孔性隔壁2Aにおいて、本件発明の作用効果に影響することのない程度の僅かな数の孔の径が0.8μm〜0.001μmの範囲外であっても良く、実質的に0.8μm〜0.001μmであればよい。多孔性隔壁2Aの気孔率は特に制限されないが、ガス置換効率および機械的強度の観点から40%〜80%であるのが好ましい。多孔性隔壁2Aの材質は、上記条件に合致する多孔性材であれば特に制限されず、石英ガラス等のガラスやセラミック等が好ましく、例えばシラス多孔質ガラス(SPG)を用いることができる。内管2の両端近傍部位2B、2Cは多孔性隔壁2Aと内外径が等しく滑らかに結合される。なお、内側ガス流路2cを覆う周壁全体を多孔性隔壁2Aとしてもよく、内側ガス流路2cの少なくとも一部を覆う部位を多孔性隔壁2Aとすればよい。   The portion between both ends of the peripheral wall covering the inner gas flow path 2c in the inner pipe 2 moves the sample gas G1 out of the inner gas flow path 2c by diffusion due to the partial pressure difference between the sample gas G1 and the replacement gas G2, and the replacement gas G2 It is comprised by the porous partition 2A for moving in the inner side gas flow path 2c. Each pore diameter of the porous partition wall 2A is set so as to prevent gas movement through the porous partition wall 2A due to the difference between the pressure in the inner gas channel 2c and the pressure in the outer gas channel 3c, and is substantially 0.8 μm. It is set to -0.001 micrometer. Each pore diameter is set to 0.001 μm or more, preferably 0.002 μm or more, more preferably 0.02 μm or more in order to prevent the replacement efficiency of the gases G1 and G2 from being reduced and the apparatus to be enlarged. In order to prevent fine particles permeating through each hole or being trapped in each hole to reduce analysis accuracy or causing gas movement due to a pressure difference, it is 0.8 μm or less, preferably 0.5 μm or less, More preferably, it is 0.2 μm or less. In the porous partition wall 2A, the diameter of a small number of holes that does not affect the function and effect of the present invention may be outside the range of 0.8 μm to 0.001 μm. What is necessary is just 8 micrometers-0.001 micrometer. The porosity of the porous partition wall 2A is not particularly limited, but is preferably 40% to 80% from the viewpoint of gas replacement efficiency and mechanical strength. The material of the porous partition wall 2A is not particularly limited as long as it is a porous material meeting the above conditions, and glass such as quartz glass, ceramics, and the like are preferable. For example, shirasu porous glass (SPG) can be used. The portions 2B and 2C in the vicinity of both ends of the inner tube 2 are smoothly joined to the porous partition wall 2A with the same inner and outer diameters. The entire peripheral wall that covers the inner gas flow path 2c may be the porous partition wall 2A, and the portion that covers at least a part of the inner gas flow path 2c may be the porous partition wall 2A.

内管2の両端近傍部位2B、2Cと外管3の材質は特に限定されず、複数の異なる材質から構成してもよく、加工容易性および内管2に導入された試料ガスG1の加熱容易性や耐熱性の観点から、例えば金属、セラミック、ガラスであるのが好ましく、セラミックや石英ガラスのようなガラスとするのが望ましい。   The materials of the portions 2B, 2C near the both ends of the inner tube 2 and the outer tube 3 are not particularly limited, and may be composed of a plurality of different materials. Ease of processing and easy heating of the sample gas G1 introduced into the inner tube 2 From the viewpoints of heat resistance and heat resistance, for example, metal, ceramic, and glass are preferable, and glass such as ceramic and quartz glass is preferable.

ガス置換装置1に必要に応じて加熱手段(図示省略)を付加してもよい。加熱手段は特に限定されず、例えば外管3の周囲に巻き付けられる帯状ヒータや外管3の周囲に配置される赤外ランプにより構成でき、この場合、内外管2、3内の温度を制御するための温度センサと検出温度に応じて加熱手段を制御する温度制御装置を設けてもよい。   You may add a heating means (illustration omitted) to the gas displacement apparatus 1 as needed. The heating means is not particularly limited, and can be constituted by, for example, a belt-like heater wound around the outer tube 3 or an infrared lamp disposed around the outer tube 3. In this case, the temperature in the inner and outer tubes 2 and 3 is controlled. A temperature sensor for controlling the heating means according to the temperature sensor and the detected temperature may be provided.

上記ガス置換装置1によるガス置換は、内管2に内側入口2aから微粒子を含む試料ガスG1や、蒸発することで微粒子を含む試料ガスG1となる液体試料を噴霧器により液滴状として導入し、多孔性隔壁2Aにより囲まれた内側ガス流路2cにおいて流動させ、置換ガスG2を外側入口3aから外管3に流入させて多孔性隔壁2Aの周囲における外側ガス流路3cにおいて試料ガスG1の流動方向と逆方向に流動させることで行う。これにより、試料ガスG1と置換ガスG2との分圧差による拡散により、換言すれば内側ガス流路2cの内外における試料ガスG1と置換ガスG2との濃度差を推進力として、試料ガスG1の大部分を多孔性隔壁2Aを介して内側ガス流路2c外に移動させると共に置換ガスG2の一部を多孔性隔壁2Aを介して内側ガス流路2c内に移動させる。内側ガス流路2cにおいては内側入口2aから内側出口2bに向かうに従い試料ガスG1の濃度が次第に低下すると共に置換ガスG2の濃度が次第に増加し、外側ガス流路3cにおいては外側入口3aから外側出口3bに向かうに従い置換ガスG2の濃度が次第に低下すると共に試料ガスG1の濃度が次第に増加する。これにより、置換ガスG2を微粒子と僅かな試料ガスG1と共に内側出口2bから分析用ガスG3として流出させて分析装置に供給し、試料ガスG1と置換ガスG2を外側出口3bから排出ガスG4として流出させることができる。この際、内側ガス流路2cと外側ガス流路3cの圧力差、すなわち内側ガス流路2cの内外圧力差、による多孔性隔壁2Aを介するガス移動を多孔性隔壁2Aにより実質的に阻止できる。よって、多孔性隔壁2Aの各孔径、気孔率、肉厚、管径、長さ、形状、外管4の内径、形状、試料ガスG1および置換ガスG2の流量等を適宜設定することで、内側出口2bから流出する試料ガスG1を、分析装置における分析に悪影響を及ぼさないだけの限界量以下にまで削減できる。   In the gas replacement by the gas replacement device 1, the sample gas G1 containing fine particles from the inner inlet 2a and the liquid sample that becomes the sample gas G1 containing fine particles by evaporation are introduced into the inner tube 2 as droplets by a sprayer. The inner gas flow path 2c surrounded by the porous partition wall 2A is caused to flow, the replacement gas G2 is caused to flow into the outer tube 3 from the outer inlet 3a, and the sample gas G1 flows in the outer gas flow path 3c around the porous partition wall 2A. This is done by flowing in the opposite direction. Thereby, due to the diffusion due to the partial pressure difference between the sample gas G1 and the replacement gas G2, in other words, the concentration difference between the sample gas G1 and the replacement gas G2 inside and outside the inner gas flow path 2c is used as a driving force to increase the sample gas G1. The portion is moved out of the inner gas channel 2c through the porous partition wall 2A, and a part of the replacement gas G2 is moved into the inner gas channel 2c through the porous partition wall 2A. In the inner gas flow path 2c, the concentration of the sample gas G1 gradually decreases and the concentration of the replacement gas G2 gradually increases as it goes from the inner inlet 2a to the inner outlet 2b. In the outer gas flow path 3c, the concentration of the replacement gas G2 gradually increases. As it goes to 3b, the concentration of the replacement gas G2 gradually decreases and the concentration of the sample gas G1 gradually increases. As a result, the replacement gas G2 is discharged as an analysis gas G3 from the inner outlet 2b together with the fine particles and a small amount of the sample gas G1 and supplied to the analyzer, and the sample gas G1 and the replacement gas G2 are discharged from the outer outlet 3b as the exhaust gas G4. Can be made. At this time, gas movement through the porous partition wall 2A due to a pressure difference between the inner gas channel 2c and the outer gas channel 3c, that is, a difference between the inner and outer pressures of the inner gas channel 2c can be substantially prevented by the porous partition wall 2A. Therefore, by appropriately setting each pore diameter, porosity, thickness, tube diameter, length, shape, inner diameter and shape of the outer tube 4, the flow rate of the sample gas G1 and the replacement gas G2, etc. of the porous partition wall 2A, The sample gas G1 flowing out from the outlet 2b can be reduced to a limit amount or less that does not adversely affect the analysis in the analyzer.

上記ガス置換装置1によれば、内側ガス流路2c外に移動する試料ガスG1の量と内側ガス流路2c内に移動する置換ガスG2の量とを略等しくし、内側ガス流路2cにおいて試料ガスG1の殆どを置換ガスG2に置換し、内側出口2bから流出する分析用ガスG3の流量が変動するのを防止できる。この際、内側ガス流路2cにおける微粒子は、その径が多孔性隔壁2Aの孔径を超えるものは各孔を透過したり各孔に捕捉されることはなく、また、その孔径以下のものもガスより拡散速度が遅く拡散ガスの流れによる慣性力も非常に弱いことから、大部分の微粒子は外側ガス流路3cに移動することなく置換ガスG2と共に内側出口2bから流出する。よって、内側ガス流路2cに試料ガスG1と共に導入された微粒子を、減損することなく試料ガスG1とほぼ同流量の置換ガスG2と共に分析装置に供給することができる。これにより、試料ガスG1を分析装置に適したガスに置換でき、しかも、分析装置への導入ガス流量の変動を防止することで分析精度を向上できる。特に、分析装置がプラズマを利用した分析法を採用するものである場合、プラズマトーチの溶融等の問題を生じることなく、安定したプラズマを維持しながら高感度で高精度の分析が可能になる。さらに、内管2に導入した試料ガスG1に含まれる微粒子は、殆ど減損することなく置換ガスG2と共に内側出口2bから排出されて内管2内に残留することはないので、先に導入された試料ガスG1とは異なる試料ガスを後に内管2に導入する場合、先の試料ガスG1に含まれていた残留微粒子により汚染されるのを防止でき、その異なる試料ガスの高感度で高精度の分析も可能になる。   According to the gas replacement device 1, the amount of the sample gas G1 that moves outside the inner gas flow path 2c and the amount of the replacement gas G2 that moves into the inner gas flow path 2c are substantially equal to each other in the inner gas flow path 2c. Most of the sample gas G1 is replaced with the replacement gas G2, and the flow rate of the analysis gas G3 flowing out from the inner outlet 2b can be prevented from fluctuating. At this time, as for the fine particles in the inner gas flow path 2c, those whose diameter exceeds the pore diameter of the porous partition wall 2A are not transmitted through or trapped in each hole, and those smaller than the pore diameter are also gas. Since the diffusion speed is slower and the inertial force due to the flow of the diffusion gas is very weak, most of the fine particles flow out from the inner outlet 2b together with the replacement gas G2 without moving to the outer gas flow path 3c. Therefore, the fine particles introduced into the inner gas flow path 2c together with the sample gas G1 can be supplied to the analyzer together with the replacement gas G2 having substantially the same flow rate as the sample gas G1 without deteriorating. As a result, the sample gas G1 can be replaced with a gas suitable for the analyzer, and the analysis accuracy can be improved by preventing fluctuations in the flow rate of the gas introduced into the analyzer. In particular, when the analysis apparatus employs an analysis method using plasma, analysis with high sensitivity and high accuracy is possible while maintaining stable plasma without causing problems such as melting of the plasma torch. Furthermore, the fine particles contained in the sample gas G1 introduced into the inner pipe 2 are discharged from the inner outlet 2b together with the replacement gas G2 and hardly remain in the inner pipe 2 with almost no loss. When a sample gas different from the sample gas G1 is introduced into the inner tube 2 later, it can be prevented from being contaminated by the residual fine particles contained in the previous sample gas G1, and the high sensitivity and high accuracy of the different sample gas can be prevented. Analysis is also possible.

図2に示す分析システムAは、分析に供する試料がガス体であって試料ガスG1そのものである場合に用いられるもので、ガス置換装置1と、誘導結合プラズマ質量分析装置(ICP−MS)100と、噴霧器101を備える。分析装置100は、高感度分析のためのプラズマPを形成するためのプラズマトーチ100aを有する公知のものであり、プラズマトーチ100aに導入されるアルゴンガス等のプラズマガスG5と同種のガスを置換ガスG2とすることができる。プラズマトーチ100aはガス置換装置1の内側出口2bに噴霧器101を介して接続される。噴霧器101は公知のものであり、その内部がキャリアーガスG6の流れにより減圧されることで分析用ガスG3をプラズマトーチ100aに導入するものである。   The analysis system A shown in FIG. 2 is used when the sample to be analyzed is a gas body and the sample gas G1 itself. The gas replacement device 1 and an inductively coupled plasma mass spectrometer (ICP-MS) 100 are used. And a sprayer 101. The analysis apparatus 100 is a known apparatus having a plasma torch 100a for forming a plasma P for high sensitivity analysis, and a gas similar to the plasma gas G5 such as argon gas introduced into the plasma torch 100a is replaced with a replacement gas. It can be G2. The plasma torch 100 a is connected to the inner outlet 2 b of the gas replacement device 1 via the sprayer 101. The atomizer 101 is a well-known one, and the inside thereof is decompressed by the flow of the carrier gas G6 to introduce the analysis gas G3 into the plasma torch 100a.

図3に示す分析システムA′は、分析に供する試料が液体である場合に用いられるもので、上記分析システムAと同様のガス置換装置1、誘導結合プラズマ質量分析装置100、噴霧器101を備える。上記分析システムAとの相違は、プラズマトーチ100aはガス置換装置1の内側出口2bに直接に接続され、ガス置換装置1の内側入口2aは噴霧器101に接続され、噴霧器101は供給された液体試料L1を液滴として噴霧ガスであるキャリアーガスG6と共にガス置換装置1の内側入口2aから内管2内に導く。この場合、ガス置換装置1が上記加熱手段を備えることで、液滴状の液体試料L1を速やかに蒸発させて微粒子を含む試料ガスG1とすることができる。他は分析システムAと同様で同様部分は同一符号で示す。   The analysis system A ′ shown in FIG. 3 is used when the sample to be analyzed is a liquid, and includes the gas replacement device 1, the inductively coupled plasma mass spectrometer 100, and the nebulizer 101 similar to the analysis system A described above. The difference from the analysis system A is that the plasma torch 100a is directly connected to the inner outlet 2b of the gas displacement device 1, the inner inlet 2a of the gas displacement device 1 is connected to the nebulizer 101, and the nebulizer 101 is supplied liquid sample. L1 is introduced into the inner tube 2 from the inner inlet 2a of the gas displacement device 1 as a droplet together with the carrier gas G6 which is a spray gas. In this case, the gas replacement device 1 includes the heating unit, so that the liquid sample L1 in a droplet form can be quickly evaporated to obtain the sample gas G1 containing fine particles. Others are the same as those of the analysis system A, and the same parts are denoted by the same reference numerals.

なお、分析装置の種類は特に限定されず、例えばガスクロマトグラフ質量分析装置(GC−MS)、誘導結合プラズマ発光分析装置(ICP−AES)、誘導結合プラズマ質量分析装置(ICP−MS)、マイクロ波プラズマ発光分析装置(MIP−AES)等を分析装置として用いてもよい。また、分析に供する試料がガス体である場合、噴霧器101を用いることなくガス置換装置1を分析装置に直接に接続してもよい。   In addition, the kind of analyzer is not specifically limited, For example, a gas chromatograph mass spectrometer (GC-MS), an inductively coupled plasma emission spectrometer (ICP-AES), an inductively coupled plasma mass spectrometer (ICP-MS), a microwave, for example A plasma emission analyzer (MIP-AES) or the like may be used as the analyzer. Further, when the sample to be analyzed is a gas body, the gas displacement device 1 may be directly connected to the analyzer without using the nebulizer 101.

図1に示す実施形態に係るガス置換装置1を用いてガス置換性、流量安定性、金属微粒子回収率の評価実験を行い、また、流量安定性と金属微粒子回収率については市販の溶剤除去装置を用いた場合との比較実験を行った。
実験に供した実施例のガス置換装置1の多孔性隔壁2Aの材質はシラス多孔質ガラス、各孔径は0.2μm、気孔率は70%、肉厚は0.7mm、外径は10mm、長さ420mmであり、内管2の両端近傍部位2B、2Cと外管3の材質は石英ガラス、外管3の内径は16mmである。
比較実験に供した比較例の溶剤除去装置は、従来の特許文献2に記載のものに対応し、セタク テクノロジーズ社製で、製品名はU-6000AT+ ULTRASONIC NEBULIZERであり、本発明の多孔性隔壁に代えて密閉フィルタを備え、その密閉フィルタは直管状マイクロポーラスPTFE(ポリテトラフルオロエチレン)膜製とされている。
An evaluation experiment of gas replacement property, flow rate stability, and metal fine particle recovery rate was performed using the gas replacement device 1 according to the embodiment shown in FIG. 1, and a commercially available solvent removal device was used for the flow rate stability and metal fine particle recovery rate. A comparison experiment with the case of using was performed.
The material of the porous partition wall 2A of the gas replacement device 1 of the example used for the experiment is shirasu porous glass, each pore diameter is 0.2 μm, the porosity is 70%, the wall thickness is 0.7 mm, the outer diameter is 10 mm, long The inner tube 2 is made of quartz glass and the inner diameter of the outer tube 3 is 16 mm.
The solvent removal apparatus of the comparative example used for the comparative experiment corresponds to that of the conventional patent document 2, manufactured by Setac Technologies, and the product name is U-6000AT + ULTRASONIC NEBULIZER. Instead, a sealed filter is provided, and the sealed filter is made of a straight tubular microporous PTFE (polytetrafluoroethylene) film.

(ガス置換性)
実施例のガス置換装置1に試料ガスとして亜酸化窒素を導入し、置換ガスとして窒素ガスを導入し、分析用ガスに含まれる亜酸化窒素濃度をガスクロマトグラフ法(GC−TCD)にて測定した。試料ガスの流量を100〜500mL/分の範囲で変化させ、置換ガスの流量を1〜2L/分の範囲で変化させた場合の測定結果を図4に示す。
図4より、試料ガスの流量が多くなると置換ガスの流量が多い程に亜酸化窒素濃度は低下するが、試料ガスの流量が250mL/分以下であれば置換ガスの流量にかかわらず亜酸化窒素濃度は0.02%以下にまで低下する。これより、本発明のガス置換装置1によれば、実用域において置換ガスの流量を多くすることなく優れたガス置換性を奏することを確認できる。
(Gas replacement)
Nitrous oxide was introduced as a sample gas into the gas replacement device 1 of the example, nitrogen gas was introduced as a replacement gas, and the concentration of nitrous oxide contained in the analysis gas was measured by gas chromatography (GC-TCD). . FIG. 4 shows the measurement results when the flow rate of the sample gas is changed in the range of 100 to 500 mL / min and the flow rate of the replacement gas is changed in the range of 1 to 2 L / min.
As shown in FIG. 4, as the flow rate of the sample gas increases, the nitrous oxide concentration decreases as the flow rate of the replacement gas increases. However, if the flow rate of the sample gas is 250 mL / min or less, the nitrous oxide is used regardless of the flow rate of the replacement gas. The concentration drops to 0.02% or less. Thus, according to the gas replacement device 1 of the present invention, it can be confirmed that excellent gas replacement performance is achieved without increasing the flow rate of the replacement gas in a practical range.

(流量安定性)
実施例のガス置換装置1と比較例の溶剤除去装置に試料ガスおよび置換ガスとして窒素ガスを導入し、試料ガスの流量を500mL/分に固定し、置換ガスの流量を500〜2000mL/分の範囲で変化させた場合の分析用ガスの流量の測定結果を図5に示す。
図5より、比較例の溶剤除去装置においては置換ガスの流量変化に応じて分析用ガスの流量が360〜800mL/分の範囲で大きく変化しているのに対し、実施例のガス置換装置1においては置換ガスの流量が変化しても分析用ガスの流量は導入した流量である500mL/分で一定であった。これにより、実施例のガス置換装置1によれば、置換ガスの流量が変動しても分析用ガスの流量は影響を受けることなく安定することを確認できる。
(Flow rate stability)
Nitrogen gas is introduced as the sample gas and the replacement gas into the gas replacement device 1 of the example and the solvent removal device of the comparative example, the flow rate of the sample gas is fixed to 500 mL / min, and the flow rate of the replacement gas is set to 500 to 2000 mL / min. FIG. 5 shows the measurement result of the flow rate of the analysis gas when the range is changed.
From FIG. 5, in the solvent removal apparatus of the comparative example, the flow rate of the analysis gas greatly changes in the range of 360 to 800 mL / min in accordance with the change of the flow rate of the replacement gas, whereas the gas replacement apparatus 1 of the example. The flow rate of the analysis gas was constant at the introduced flow rate of 500 mL / min even when the flow rate of the replacement gas changed. Thereby, according to the gas replacement apparatus 1 of an Example, even if the flow volume of substitution gas fluctuates, it can confirm that the flow volume of analysis gas is stabilized without being influenced.

(金属微粒子回収率)
実施例のガス置換装置1と比較例の溶剤除去装置それぞれのガス流路を160℃に加熱した後に、試料ガスおよび置換ガスを導入した。試料ガスは、SPEX社製金属標準溶液を希釈して調製した5ppmFe標準溶液を、比較例の溶剤除去装置が備える超音波噴霧器(加熱部温度:140℃,冷却部温度:−5℃)によって液滴化し、キャリアーガスとしてアルゴンガスを噴霧することで生成したものを用いた。置換ガスはアルゴンガスを用いた。しかる後に、試料ガスに含まれるFe分=α、実施例のガス置換装置1から流出する分析用ガスに含まれるFe分=β、および比較例の溶剤除去装置から流出する分析用ガスに含まれるFe分=γを、孔径0.1μmのPTFEフィルタに全量捕集し、メタノール硝酸溶液に溶解後、誘導結合プラズマ発光分析法にて測定した。
試料ガスの流量を500mL/分に固定し、置換ガスの流量を500〜2000mL/分の範囲で変化させた場合において、実施例のガス置換装置1によるFe分回収率(%)=100×β/αと比較例の溶剤除去装置によるFe分回収率(%)=100×γ/αの算出結果を図6に示す。
図6より、比較例1の溶剤除去装置においては金属微粒子回収率は置換ガスの流量に大きく影響を受け、図5から置換ガス流量が分析用ガス流量と等しくなる1000mL/分である場合、金属微粒子回収率は75.3%に留まることを確認できる。これに対し、実施例のガス置換装置1によれば、金属微粒子回収率は99.8%であり、しかも置換ガスの流量に影響を受けないことを確認できる。
(Metal fine particle recovery rate)
After the gas flow paths of the gas displacement device 1 of the example and the solvent removal device of the comparative example were heated to 160 ° C., the sample gas and the replacement gas were introduced. The sample gas was prepared by diluting a 5 ppm Fe standard solution prepared by diluting a metal standard solution manufactured by SPEX with an ultrasonic sprayer (heating unit temperature: 140 ° C., cooling unit temperature: −5 ° C.) provided in the solvent removal apparatus of the comparative example. What was formed by atomizing and spraying argon gas as a carrier gas was used. Argon gas was used as the replacement gas. Thereafter, the Fe content contained in the sample gas = α, the Fe content contained in the analysis gas flowing out from the gas replacement device 1 of the embodiment = β, and the analysis gas flowing out from the solvent removal device of the comparative example. The total amount of Fe content = γ was collected on a PTFE filter having a pore size of 0.1 μm, dissolved in a methanol nitric acid solution, and then measured by inductively coupled plasma emission spectrometry.
When the flow rate of the sample gas is fixed to 500 mL / min and the flow rate of the replacement gas is changed in the range of 500 to 2000 mL / min, the Fe recovery rate (%) by the gas replacement device 1 of the example = 100 × β FIG. 6 shows the calculation result of Fe content recovery rate (%) = 100 × γ / α using the solvent removal apparatus of Comparative Example.
From FIG. 6, in the solvent removal apparatus of Comparative Example 1, the metal fine particle recovery rate is greatly affected by the flow rate of the replacement gas, and when the replacement gas flow rate is equal to the analysis gas flow rate from FIG. It can be confirmed that the fine particle recovery rate remains at 75.3%. On the other hand, according to the gas replacement apparatus 1 of the example, the metal fine particle recovery rate is 99.8%, and it can be confirmed that the flow rate of the replacement gas is not affected.

比較例1の溶剤除去装置において金属微粒子回収率を上げるために置換ガスの流量を増加させると、図5に示すように分析用ガスの流量が増加するため、プラズマを用いた分析装置においてはプラズマの信号強度を減衰させることになり、また、置換ガスの流量およびその変動を厳密に制御する必要がある。これに対し実施例のガス置換装置1によれば、置換ガスの流量がたとえ変動したとしても金属微粒子回収率は影響を受けず、しかも、試料ガスに含まれる金属微粒子のほとんどを減損することなく分析装置へ供給でき、さらに、分析装置へ導入される分析用ガスの流量も変動しない。したがって、プラズマを用いた分析装置を用いる場合は良好なプラズマ状態を維持でき、高精度分析が可能になる。   If the flow rate of the replacement gas is increased in order to increase the metal fine particle recovery rate in the solvent removal apparatus of Comparative Example 1, the flow rate of the analysis gas increases as shown in FIG. It is necessary to strictly control the flow rate of the replacement gas and its fluctuation. On the other hand, according to the gas replacement apparatus 1 of the embodiment, even if the flow rate of the replacement gas varies, the metal particulate recovery rate is not affected, and most of the metal particulates contained in the sample gas are not impaired. It can be supplied to the analyzer, and the flow rate of the analysis gas introduced into the analyzer is not changed. Therefore, when an analysis apparatus using plasma is used, a good plasma state can be maintained and high-precision analysis can be performed.

実施例のガス置換装置と比較例の溶剤除去装置を用いて、Cd、Co、Cr、Mn、Mo、Ni、Pb、TiおよびZnの各標準溶液についても同様に金属微粒子回収率を評価したところ、上記のFe標準溶液についてと同様の結果を得た。   Using the gas displacement device of the example and the solvent removal device of the comparative example, the metal fine particle recovery rate was similarly evaluated for each standard solution of Cd, Co, Cr, Mn, Mo, Ni, Pb, Ti, and Zn. The same results were obtained as for the above Fe standard solution.

なお、本発明は上記実施形態や実施例に何ら限定されるものではない。   In addition, this invention is not limited to the said embodiment and Example at all.

本発明によれば、生活環境や労働環境の環境分析や各種工業原料中の不純物分析に関し、ユースポイントでのリアルタイムの高精度分析を容易に実現することが可能となる。   ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to implement | achieve real-time highly accurate analysis in a use point easily regarding the environmental analysis of a living environment or a working environment, and the impurity analysis in various industrial raw materials.

本発明の実施形態に係るガス置換装置の全体構成を示す断面図Sectional drawing which shows the whole structure of the gas replacement apparatus which concerns on embodiment of this invention 本発明の実施形態に係る分析システムの構成説明図Configuration explanatory diagram of an analysis system according to an embodiment of the present invention 本発明の異なる実施形態に係る分析システムの構成説明図Structure explanatory drawing of the analysis system which concerns on different embodiment of this invention 本発明の実施例のガス置換装置におけるガス置換性を評価するための、試料ガス流量と置換ガス流量と分析用ガスに含まれる亜酸化窒素濃度との関係を示す図The figure which shows the relationship between the nitrous oxide density | concentration contained in the sample gas flow volume, substitution gas flow volume, and analysis gas for evaluating the gas substitution property in the gas substitution apparatus of the Example of this invention. 本発明の実施例のガス置換装置と比較例の溶剤除去装置における流量安定性を評価するための、試料ガス流量と置換ガス流量と分析用ガス流量との関係を示す図The figure which shows the relationship between the sample gas flow rate, substitution gas flow rate, and analysis gas flow rate for evaluating the flow rate stability in the gas displacement device of the embodiment of the present invention and the solvent removal device of the comparative example. 本発明の実施例のガス置換装置と比較例の溶剤除去装置における置換ガス流量と金属微粒子回収率との関係を示す図The figure which shows the relationship between the displacement gas flow rate in the gas displacement apparatus of the Example of this invention, and the solvent removal apparatus of a comparative example, and a metal particulate collection rate.

符号の説明Explanation of symbols

1 ガス置換装置
2 内管
2A 多孔性隔壁
2a 内側入口
2b 内側出口
2c 内側ガス流路
3 外管
3a 外側入口
3b 外側出口
3c 外側ガス流路
100 分析装置
A、A′ 分析システム
DESCRIPTION OF SYMBOLS 1 Gas displacement apparatus 2 Inner pipe | tube 2A Porous partition 2a Inner inlet 2b Inner outlet 2c Inner gas flow path 3 Outer pipe 3a Outer inlet 3b Outer outlet 3c Outer gas path 100 Analyzer A, A 'analysis system

Claims (5)

多孔性隔壁により囲まれたガス流路において微粒子を含む試料ガスを流動させ、
前記多孔性隔壁の周囲において置換ガスを前記試料ガスの流動方向と逆方向に流動させ、前記試料ガスと前記置換ガスとの分圧差による拡散により、前記試料ガスを前記多孔性隔壁を介して前記ガス流路外に移動させると共に前記置換ガスを前記多孔性隔壁を介して前記ガス流路内に移動させ、
前記ガス流路の出口から前記置換ガスを前記微粒子と共に流出させ、
前記多孔性隔壁により、前記ガス流路の内外圧力差による前記多孔性隔壁を介するガス移動を実質的に阻止するガス置換方法。
Flowing a sample gas containing fine particles in a gas flow path surrounded by a porous partition;
The replacement gas is caused to flow in the direction opposite to the flow direction of the sample gas around the porous partition wall, and the sample gas is passed through the porous partition wall by diffusion due to a partial pressure difference between the sample gas and the replacement gas. Moving the gas out of the gas flow path and moving the replacement gas into the gas flow path through the porous partition;
Let the replacement gas flow out together with the fine particles from the outlet of the gas flow path;
A gas replacement method for substantially preventing gas movement through the porous partition due to a pressure difference between the inside and outside of the gas flow path by the porous partition.
前記圧力差による前記多孔性隔壁を介するガス移動を阻止するため、前記多孔性隔壁の各孔径を実質的に0.8〜0.001μmとする請求項1に記載のガス置換方法。 2. The gas replacement method according to claim 1, wherein each pore diameter of the porous partition wall is substantially 0.8 to 0.001 μm in order to prevent gas movement through the porous partition wall due to the pressure difference. 内管と、
前記内管を覆う外管とを備え、
前記内管は、内側入口と、内側出口と、前記内側入口と内側出口との間の内側ガス流路とを有し、
前記外管は、外側入口と、外側出口と、前記外側入口と前記外側出口との間の外側ガス流路とを有し、
前記内側入口、内側出口、外側入口、および外側出口は、前記内側ガス流路における微粒子を含む試料ガスの流動方向と前記外側ガス流路における置換ガスの流動方向が互いに逆方向となるように配置され、
前記内管における前記内側ガス流路の少なくとも一部を覆う部位は、前記試料ガスと前記置換ガスとの分圧差による拡散により前記試料ガスを前記内側ガス流路外に移動させると共に前記置換ガスを前記内側ガス流路内に移動させるための多孔性隔壁により構成され、前記多孔性隔壁の各孔径は、前記内側ガス流路における圧力と前記外側ガス流路における圧力との差による前記多孔性隔壁を介するガス移動を実質的に阻止するように設定されているガス置換装置。
An inner pipe,
An outer tube covering the inner tube,
The inner tube has an inner inlet, an inner outlet, and an inner gas flow path between the inner inlet and the inner outlet,
The outer tube has an outer inlet, an outer outlet, and an outer gas flow path between the outer inlet and the outer outlet;
The inner inlet, the inner outlet, the outer inlet, and the outer outlet are arranged so that the flow direction of the sample gas containing fine particles in the inner gas flow path is opposite to the flow direction of the replacement gas in the outer gas flow path. And
The portion of the inner tube that covers at least a part of the inner gas flow path moves the sample gas out of the inner gas flow path by diffusion due to a partial pressure difference between the sample gas and the replacement gas, and causes the replacement gas to flow. The porous partition wall is configured to move into the inner gas channel, and each pore diameter of the porous partition wall is determined by the difference between the pressure in the inner gas channel and the pressure in the outer gas channel. A gas displacement device that is set to substantially prevent gas movement through the.
前記多孔性隔壁の各孔径は実質的に0.8〜0.001μmとされている請求項3に記載のガス置換装置。 The gas replacement device according to claim 3, wherein each pore diameter of the porous partition wall is substantially 0.8 to 0.001 μm. 請求項3または4に記載のガス置換装置と、
前記ガス置換装置の内側出口から流出する微粒子の分析装置とを備える分析システム。
A gas replacement device according to claim 3 or 4,
An analysis system comprising: an analysis device for fine particles flowing out from an inner outlet of the gas replacement device.
JP2004360102A 2004-12-13 2004-12-13 Gas replacement method, gas replacement apparatus, and analysis system Active JP4315348B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004360102A JP4315348B2 (en) 2004-12-13 2004-12-13 Gas replacement method, gas replacement apparatus, and analysis system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004360102A JP4315348B2 (en) 2004-12-13 2004-12-13 Gas replacement method, gas replacement apparatus, and analysis system

Publications (2)

Publication Number Publication Date
JP2006170659A JP2006170659A (en) 2006-06-29
JP4315348B2 true JP4315348B2 (en) 2009-08-19

Family

ID=36671593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004360102A Active JP4315348B2 (en) 2004-12-13 2004-12-13 Gas replacement method, gas replacement apparatus, and analysis system

Country Status (1)

Country Link
JP (1) JP4315348B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201007165A (en) * 2008-08-12 2010-02-16 Sumitomo Seika Chemicals Analysis method and analysis system
JP5495978B2 (en) * 2010-06-28 2014-05-21 リオン株式会社 Gas particle measurement system
JP5871314B2 (en) * 2011-02-24 2016-03-01 住友精化株式会社 Method for measuring metal element in gas, method for determining calculation formula for measurement, and measurement system
JP5632871B2 (en) * 2012-03-28 2014-11-26 啓介 宇谷 Method and system for measuring gas to be measured
TWI697675B (en) 2017-10-19 2020-07-01 財團法人工業技術研究院 Apparatus for on-line monitoring particle contamination in special gases
JP6614535B2 (en) * 2018-03-02 2019-12-04 株式会社コンタミネーション・コントロール・サービス Metal contaminant removal device
KR102403636B1 (en) * 2020-01-15 2022-05-30 주식회사 베이스 System for analyzing heavy metal in real time

Also Published As

Publication number Publication date
JP2006170659A (en) 2006-06-29

Similar Documents

Publication Publication Date Title
JP4462575B2 (en) Sample introduction system
Barratt The preparation of standard gas mixtures. A review
US4689052A (en) Virtual impactor
JP5240806B2 (en) Nebulizer and analyzer for an analyzer that performs analysis by ionizing or atomizing a sample using plasma
US8080083B2 (en) Method and apparatus for converting oxidized mercury into elemental mercury
JP4315348B2 (en) Gas replacement method, gas replacement apparatus, and analysis system
WO2006119298A2 (en) Method and apparatus for converting oxidized mercury into elemental mercury
Cresser et al. A method for investigating size distributions of aqueous droplets in the range 0.5–10 μm produced by pneumatic nebulizers
JP2007127585A (en) Simultaneous collection device for tritium and carbon 14 in atmosphere
Narayanan et al. Characterization of a micro-helium discharge detector for gas chromatography
Švehla et al. Simple approaches to on-line and off-line speciation analysis of mercury in flue gases with detection by atomic absorption spectrometry: A pilot study
Kratzer et al. Feasibility of in situ trapping of selenium hydride in a DBD atomizer for ultrasensitive Se determination by atomic absorption spectrometry studied with a 75 Se radioactive indicator
US20080168752A1 (en) Separating particulate-containing gas flow into particulate and non-particulate flow portions
Sioutas et al. A high-volume small cutpoint virtual impactor for separation of atmospheric particulate from gaseous pollutants
JP4815915B2 (en) Inductively coupled plasma analysis method and apparatus therefor
de Oliveira et al. Selenium preconcentration in a gold “amalgamator” after hydride generation for atomic spectrometry
JP2010122160A (en) Mercury analyzing apparatus and method therefor
AU1495899A (en) Analytical method and apparatus
JP6682088B2 (en) Method and apparatus for measuring gaseous mercury or stibine
Tao et al. On-line mercury speciation in exhaust gas by using solid-phase chemical reduction
JP5632871B2 (en) Method and system for measuring gas to be measured
Hayashi et al. Low-pressure helium inductively coupled plasma mass spectrometry: sample aerosol introduction through a capillary interface from a vibrating mesh nebulizer
EP4174907A1 (en) Method and apparatus for mass analysing a sample
Lee Direct 7 and Near Real-Time Determination of Metals in Aerosols by Impaction-Graphite Furnace Atomic Spectrometry
Jankowski et al. Efficient use of the NAR-1 pneumatic nebulizer in plasma spectrometry at sub-milliliter liquid consumption rates

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090513

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090514

R150 Certificate of patent or registration of utility model

Ref document number: 4315348

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140529

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250