JPH05246738A - Production of coated optical fiber - Google Patents

Production of coated optical fiber

Info

Publication number
JPH05246738A
JPH05246738A JP4081626A JP8162692A JPH05246738A JP H05246738 A JPH05246738 A JP H05246738A JP 4081626 A JP4081626 A JP 4081626A JP 8162692 A JP8162692 A JP 8162692A JP H05246738 A JPH05246738 A JP H05246738A
Authority
JP
Japan
Prior art keywords
optical fiber
coating
core wire
diameter
helium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4081626A
Other languages
Japanese (ja)
Inventor
Keigo Maeda
恵吾 前田
Toshiaki Tateishi
俊章 立石
Toru Wakita
徹 脇田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP4081626A priority Critical patent/JPH05246738A/en
Publication of JPH05246738A publication Critical patent/JPH05246738A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce a coated optical fiber while fixing the coating diameter without increasing the fluctuation of the outer diameter of the optical fiber. CONSTITUTION:An optical fiber preform 1 is heated and drawn from the lower end and made into an optical fiber 2 which is coated with a resin to produce a coated optical fiber 3. In this case, the temp. of the optical fiber 2 is controlled in an optical fiber cooling cylinder 6 by using gaseous helium to adjust the coating diameter while regulating the concn. of the gaseous helium in the cylinder 6.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光ファイバ母材から線
引きされた光ファイバに、樹脂による被覆を施す場合の
被覆径の調整方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of adjusting a coating diameter when a resin is coated on an optical fiber drawn from an optical fiber preform.

【0002】[0002]

【従来技術】光ファイバ心線は、加熱溶融した光ファイ
バ母材から線引して得た光ファイバに、線引直後に、線
引直後に、樹脂製の被覆を施して製造されるのが普通で
ある。この被覆には、ガラスから成る光ファイバの強度
保護及び外力に対する伝送特性保護の働きがある。被覆
径(被覆厚)は、この働きが最適となるように設計され
ており、光ファイバ心線の製造上、この径の管理は重要
である。一方、コストダウンのため光ファイバは高速で
線引きされる必要がある。この時、被覆径は光ファイバ
ガラスの温度に影響され、光ファイバが高速線引きに伴
い高温になると、被覆径が小さくなることがわかってい
る。これを回避するため、例えば特開昭55−1047
0号公報に示されているように、被覆される光ファイバ
の温度を低温のガスを用いて冷却し、ガス流量によって
光ファイバの温度を制御し被覆径を調整するという方法
が知られている。
2. Description of the Related Art An optical fiber core wire is manufactured by applying a resin coating to an optical fiber obtained by drawing a heat-melted optical fiber preform immediately after drawing and immediately after drawing. It is normal. This coating functions to protect the strength of the optical fiber made of glass and to protect the transmission characteristics against external force. The coating diameter (coating thickness) is designed so that this function is optimal, and it is important to control this diameter in manufacturing the optical fiber core wire. On the other hand, the optical fiber needs to be drawn at a high speed for cost reduction. At this time, the coating diameter is affected by the temperature of the optical fiber glass, and it is known that the coating diameter becomes smaller as the optical fiber becomes hot with high-speed drawing. In order to avoid this, for example, JP-A-55-1047
As disclosed in Japanese Patent Laid-Open No. 0-202, there is known a method in which the temperature of an optical fiber to be coated is cooled using a low-temperature gas and the temperature of the optical fiber is controlled by the gas flow rate to adjust the coating diameter. ..

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上述の
方法では、被覆径を一定にしようとヘリウムガス流量を
増加させた場合、光ファイバの振動が大きくなり、これ
が線引条件を微妙に変動させるため、光ファイバ外径の
変動が大きくなるという問題があった。
However, in the above method, when the flow rate of the helium gas is increased in order to keep the coating diameter constant, the vibration of the optical fiber becomes large, which causes a slight change in the drawing conditions. However, there has been a problem that the fluctuation of the outer diameter of the optical fiber becomes large.

【0004】[0004]

【課題を解決するための手段】本発明は上記問題点を解
決した光ファイバ心線の製造方法を提供するもので、光
ファイバ母材を加熱し、その下端より線引きされた光フ
ァイバに樹脂からなる被覆を施して光ファイバ心線を製
造するに際し、前記光ファイバの温度を光ファイバ冷却
筒内でヘリウムガスを用いて制御し、被覆径を調整する
光ファイバ心線の製造方法において、光ファイバ冷却筒
内のヘリウムガスの濃度を調整することを特徴とするも
のである。
SUMMARY OF THE INVENTION The present invention provides a method for manufacturing an optical fiber core wire which solves the above problems, in which an optical fiber preform is heated, and an optical fiber drawn from the lower end of the optical fiber core is made of resin. When manufacturing an optical fiber core wire by applying a coating, the temperature of the optical fiber is controlled by using helium gas in the optical fiber cooling cylinder, and a method for manufacturing an optical fiber core wire in which the coating diameter is adjusted, the optical fiber It is characterized in that the concentration of helium gas in the cooling cylinder is adjusted.

【0005】[0005]

【作用】本発明は、ヘリウムを含む冷却ガスの熱伝達率
がヘリウム濃度に依存し、ヘリウム濃度が大きくなると
熱伝達率が増加し、ヘリウム濃度が小さくなると熱伝達
率が減少するという現象に注目し、この現象を光ファイ
バの冷却に利用したものである。即ち、上述のように、
光ファイバ冷却筒内のヘリウムガスの濃度を調整するこ
とにより、冷却ガス流量を一定に保ちながら光ファイバ
の温度を調整し、光ファイバ外径の変動を大きくするこ
となく、被覆径を制御することができる。
The present invention pays attention to the phenomenon that the heat transfer coefficient of the cooling gas containing helium depends on the helium concentration, the heat transfer coefficient increases as the helium concentration increases, and the heat transfer coefficient decreases as the helium concentration decreases. However, this phenomenon is utilized for cooling the optical fiber. That is, as mentioned above,
By adjusting the helium gas concentration in the optical fiber cooling tube, the temperature of the optical fiber is adjusted while keeping the cooling gas flow rate constant, and the coating diameter is controlled without increasing the fluctuation of the optical fiber outer diameter. You can

【0006】[0006]

【実施例】以下、図面に示した実施例に基づいて本発明
を詳細に説明する。図1は、本発明にかかる光ファイバ
心線の製造方法の一実施例に用いた製造装置の説明図で
あり、図2は前記製造装置に用いた冷却筒の斜視図であ
る。図中、1は光ファイバ母材、2は光ファイバ、3は
光ファイバ心線、4は加熱炉、5は光ファイバ外径測定
器、6は冷却筒、7は被覆ダイス、8はUVランプ、9
は被覆外径測定器である。冷却筒6は、図2に示すよう
に、下端にヘリウムガス導入口11が設けられ、上端に
はシャッタ12で開口部の面積を調節することができる
ガス排出口13が設けられている。14はシャッタの開
度を調節するレバー、15はヘリウム濃度を算出するた
めに使用する酸素濃度計である。シャッタ12の開度を
大きくすると、外気の侵入量が増大してヘリウム濃度は
減少し、冷却効率も減少する。また、シャッタ12の開
度を小さくすると、外気の侵入量が減少し、ヘリウム濃
度は増加し、冷却効率も増加する。本装置では、被覆径
をレーザによる被覆外径測定器9で測定し、これを冷却
筒6のシャッタ12の開度にフードバックする。即ち、
被覆径が小さい場合には、シャッタの開度を小さくして
ヘリウム濃度を高め、光ファイバの温度を下げ、被覆径
が大きい場合には、シャッタの開度を大きくしてヘリウ
ム濃度を下げ、光ファイバの温度を上げる。上記冷却筒
6のヘリウム濃度と光ファイバ温度の関係およびシャッ
タ開度(開口部の直径)とヘリウム濃度の関係を図3お
よび図4に示した。上記装置を用いて、線引き速度40
0m/minで外径125μmの光ファイバを得、これ
に紫外線硬化性樹脂を被覆して被覆径250μmの光フ
ァイバ心線を製造した。光ファイバの冷却にはヘリウム
ガスを5l/minで流した。実際には、光ファイバ外
径を125μmに制御するため、線引き速度を380〜
420m/minの範囲で変動させる必要があった。そ
の結果は、光ファイバ外径を125μm±0.3μm、
被覆径を250μm±3μmに制御することができた。
また、冷却時に光ファイバの振れはほとんど生じなかっ
た。次に、比較例として図5に示す装置を用いて光ファ
イバ心線を製造した。この装置では、被覆径をレーザに
よる被覆外径測定器9で測定し、この結果を冷却に用い
たヘリウムガスの流量にフィードバックした。即ち、被
覆径が小さい場合には、流量が多くなるようにした。線
引き条件は前記実施例と同様にした。その結果は、線引
き速度を380〜420m/minの範囲で変動させ
て、被覆径を250μm±3μmに制御することができ
た。しかし、高速側ではヘリウムガスによる光ファイバ
の振れが起こり、光ファイバ外径は125μm±1.0
μmとなり、前記実施例に比較して大きく変動した。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below with reference to the embodiments shown in the drawings. FIG. 1 is an explanatory view of a manufacturing apparatus used in an embodiment of a method for manufacturing an optical fiber core wire according to the present invention, and FIG. 2 is a perspective view of a cooling cylinder used in the manufacturing apparatus. In the figure, 1 is an optical fiber base material, 2 is an optical fiber, 3 is an optical fiber core wire, 4 is a heating furnace, 5 is an optical fiber outer diameter measuring instrument, 6 is a cooling tube, 7 is a coating die, and 8 is a UV lamp. , 9
Is a coating outer diameter measuring instrument. As shown in FIG. 2, the cooling cylinder 6 is provided with a helium gas inlet 11 at its lower end and a gas outlet 13 whose upper end can be adjusted with a shutter 12 at its upper end. Reference numeral 14 is a lever for adjusting the opening of the shutter, and 15 is an oximeter used for calculating the helium concentration. When the opening degree of the shutter 12 is increased, the amount of invasion of outside air increases, the helium concentration decreases, and the cooling efficiency also decreases. Further, when the opening degree of the shutter 12 is reduced, the amount of outside air entering decreases, the helium concentration increases, and the cooling efficiency also increases. In this apparatus, the coating diameter is measured by a laser coating outer diameter measuring device 9, and this is hooded back to the opening degree of the shutter 12 of the cooling cylinder 6. That is,
When the coating diameter is small, the shutter opening is reduced to increase the helium concentration and the temperature of the optical fiber is lowered.When the coating diameter is large, the shutter opening is increased to reduce the helium concentration. Increase fiber temperature. The relationship between the helium concentration in the cooling cylinder 6 and the optical fiber temperature and the relationship between the shutter opening (diameter of the opening) and the helium concentration are shown in FIGS. 3 and 4. Using the above device, a drawing speed of 40
An optical fiber having an outer diameter of 125 μm was obtained at 0 m / min, and this was coated with an ultraviolet curable resin to manufacture an optical fiber core wire having a coating diameter of 250 μm. Helium gas was passed at 5 l / min to cool the optical fiber. In practice, the optical fiber outer diameter is controlled to 125 μm, so that the drawing speed is 380 to
It was necessary to vary within the range of 420 m / min. The result is that the outer diameter of the optical fiber is 125 μm ± 0.3 μm,
The coating diameter could be controlled to 250 μm ± 3 μm.
Further, the optical fiber hardly oscillated during cooling. Next, as a comparative example, an optical fiber core wire was manufactured using the apparatus shown in FIG. In this apparatus, the coating diameter was measured by a laser coating outer diameter measuring device 9, and the result was fed back to the flow rate of the helium gas used for cooling. That is, when the coating diameter is small, the flow rate is increased. The drawing conditions were the same as in the above example. As a result, it was possible to control the coating diameter to 250 μm ± 3 μm by varying the drawing speed in the range of 380 to 420 m / min. However, on the high speed side, the optical fiber shakes due to helium gas, and the outer diameter of the optical fiber is 125 μm ± 1.0.
.mu.m, which is a large variation compared with the above-mentioned example.

【0007】[0007]

【発明の効果】以上説明したように本発明によれば、光
ファイバ母材を加熱し、その下端より線引きされた光フ
ァイバに樹脂からなる被覆を施して光ファイバ心線を製
造するに際し、前記光ファイバの温度を光ファイバ冷却
筒内でヘリウムガスを用いて制御し、被覆径を調整する
光ファイバ心線の製造方法において、光ファイバ冷却筒
内のヘリウムガスの濃度を調整するため、光ファイバの
振れによる光ファイバ外径変動の増大を伴うことなく、
被覆径を一定に保つことができるという優れた効果があ
る。
As described above, according to the present invention, when an optical fiber preform is heated and an optical fiber drawn from the lower end thereof is coated with a resin to produce an optical fiber core wire, In the manufacturing method of the optical fiber core wire, in which the temperature of the optical fiber is controlled by using helium gas in the optical fiber cooling cylinder, and the coating diameter is adjusted, in order to adjust the concentration of helium gas in the optical fiber cooling cylinder, the optical fiber Without increasing the fluctuation of the outer diameter of the optical fiber due to the fluctuation of
There is an excellent effect that the coating diameter can be kept constant.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明にかかる光ファイバ心線の製造方法の一
実施例に用いた製造装置の説明図である。
FIG. 1 is an explanatory diagram of a manufacturing apparatus used in an embodiment of a method for manufacturing an optical fiber according to the present invention.

【図2】上記製造装置に用いた冷却筒の斜視図である。FIG. 2 is a perspective view of a cooling cylinder used in the manufacturing apparatus.

【図3】冷却筒のヘリウム濃度と光ファイバ温度の関係
を示す図である。
FIG. 3 is a diagram showing a relationship between a helium concentration in a cooling cylinder and an optical fiber temperature.

【図4】冷却筒のシャッタ開度とヘリウム濃度の関係を
示す図である。
FIG. 4 is a diagram showing a relationship between a shutter opening degree of a cooling cylinder and helium concentration.

【図5】比較例に用いた従来の光ファイバ心線の製造装
置の説明図である。
FIG. 5 is an explanatory diagram of a conventional optical fiber core wire manufacturing apparatus used in a comparative example.

【符号の説明】[Explanation of symbols]

1 光ファイバ母材 2 光ファイバ 3 光ファイバ心線 4 加熱炉 5 光ファイバ外径測定器 6 冷却筒 7 被覆ダイス 8 UVランプ 9 被覆外径測定器 11 ヘリウムガス導入口 12 シャッタ 13 排出口 14 レバー 15 酸素濃度計 1 Optical Fiber Base Material 2 Optical Fiber 3 Optical Fiber Core 4 Heating Furnace 5 Optical Fiber Outer Diameter Measuring Instrument 6 Cooling Tube 7 Coating Die 8 UV Lamp 9 Coating Outer Diameter Measuring Instrument 11 Helium Gas Inlet 12 Shutter 13 Outlet 14 Lever 15 Oxygen meter

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 光ファイバ母材を加熱し、その下端より
線引きされた光ファイバに樹脂からなる被覆を施して光
ファイバ心線を製造するに際し、前記光ファイバの温度
を光ファイバ冷却筒内でヘリウムガスを用いて制御し、
被覆径を調整する光ファイバ心線の製造方法において、
光ファイバ冷却筒内のヘリウムガスの濃度を調整するこ
とを特徴とする光ファイバ心線の製造方法。
1. When manufacturing an optical fiber core wire by heating an optical fiber preform and applying a resin coating to the optical fiber drawn from the lower end thereof, the temperature of the optical fiber is kept in an optical fiber cooling tube. Control with helium gas,
In the manufacturing method of the optical fiber core wire for adjusting the coating diameter,
A method for manufacturing an optical fiber core wire, which comprises adjusting the concentration of helium gas in an optical fiber cooling cylinder.
JP4081626A 1992-03-03 1992-03-03 Production of coated optical fiber Pending JPH05246738A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4081626A JPH05246738A (en) 1992-03-03 1992-03-03 Production of coated optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4081626A JPH05246738A (en) 1992-03-03 1992-03-03 Production of coated optical fiber

Publications (1)

Publication Number Publication Date
JPH05246738A true JPH05246738A (en) 1993-09-24

Family

ID=13751545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4081626A Pending JPH05246738A (en) 1992-03-03 1992-03-03 Production of coated optical fiber

Country Status (1)

Country Link
JP (1) JPH05246738A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011528309A (en) * 2008-05-22 2011-11-17 コーニング インコーポレイテッド Apparatus and method for control of coolant recirculation
JP2012254903A (en) * 2011-06-09 2012-12-27 Sumitomo Electric Ind Ltd Ultraviolet irradiation furnace for optical fiber and method for manufacturing optical fiber

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011528309A (en) * 2008-05-22 2011-11-17 コーニング インコーポレイテッド Apparatus and method for control of coolant recirculation
JP2012254903A (en) * 2011-06-09 2012-12-27 Sumitomo Electric Ind Ltd Ultraviolet irradiation furnace for optical fiber and method for manufacturing optical fiber

Similar Documents

Publication Publication Date Title
CA2045349C (en) Process of drawing optical fiber
EP0567961B2 (en) Method and apparatus for drawing optical fibers
US4437870A (en) Optical waveguide fiber cooler
US4514205A (en) Fiber cooling apparatus
JP5595925B2 (en) Fiber air turn for low attenuation fiber
JP5544354B2 (en) Manufacturing method of optical fiber
EP0079186B1 (en) Apparatus for drawing optical fibers
RU2136618C1 (en) Device and method of production of optical fiber
WO1995002560A1 (en) Optical fiber drawing furnace and drawing method
WO2000073224A1 (en) Production device and method for optical fiber
JPH09132424A (en) Method for drawing optical fiber
RU96119846A (en) DEVICE AND METHOD FOR EXTENSION OF OPTICAL FIBER
JPH05246738A (en) Production of coated optical fiber
AU738625B2 (en) Draw constant downfeed process
JP2003335545A (en) Method and apparatus for drawing optical fiber
WO2001002312A1 (en) Optical fiber drawing method and drawing device
JP3098232B1 (en) Method and apparatus for manufacturing optical fiber
JP2682603B2 (en) Inorganic coated optical fiber manufacturing apparatus and manufacturing method
JP4169997B2 (en) Optical fiber drawing method
JPH11337745A (en) Apparatus for production of plastic optical fiber and its production
JPS6227343A (en) Production of base material for single mode optical fiber
JPS62153137A (en) Wire drawing of optical fiber
JP2004338972A (en) Method and apparatus for manufacturing optical fiber
JPH06211535A (en) Optical fiber drawing method
JP2633034B2 (en) Manufacturing method of metal coated optical fiber